
CS 453 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module: Hardware Security
Lecture: security features, enablers, and accelerators

Fall 2024



Intro CET PA MPX MTE CHERI RoT

Outline

1 Introduction

2 Intel Control-flow Enforcement Technology (CET)

3 Arm Pointer Authentication (PA)

4 Intel Memory Protection Extensions (MPX)

5 Arm Memory Tagging Extension (MTE)

6 Capability Hardware Enhanced RISC Instructions (CHERI)

7 Authenticated boot and Root-of-Trust (RoT)

2 / 43



Intro CET PA MPX MTE CHERI RoT

Motivation

Q: What can hardware do for software and system security?

User CodeUser CodeRing 3

Ring 2

Ring 1

OS kernelRing 0

Hardware

3 / 43



Intro CET PA MPX MTE CHERI RoT

Motivation

Q: What can hardware do for software and system security?

User CodeUser CodeRing 3

Ring 2

Ring 1

OS kernelRing 0

Hardware

3 / 43



Intro CET PA MPX MTE CHERI RoT

Motivation

Q: What can hardware do for software and system security?

A: There are generally two views on hardware-assisted security:

Hardware runs at an even higher privilege level such that a
malicious or compromised kernel cannot temper with — e.g.,
TPMs or TEEs (next lecture)

Hardware can accelerate security mechanisms that are
conventionally enforced by kernel, compiler, or even the
developers manually — e.g., CHERI (this lecture)

4 / 43



Intro CET PA MPX MTE CHERI RoT

Motivation

Q: What can hardware do for software and system security?

A: There are generally two views on hardware-assisted security:

Hardware runs at an even higher privilege level such that a
malicious or compromised kernel cannot temper with — e.g.,
TPMs or TEEs (next lecture)

Hardware can accelerate security mechanisms that are
conventionally enforced by kernel, compiler, or even the
developers manually — e.g., CHERI (this lecture)

4 / 43



Intro CET PA MPX MTE CHERI RoT

Motivation

Q: What can hardware do for software and system security?

A: There are generally two views on hardware-assisted security:

Hardware runs at an even higher privilege level such that a
malicious or compromised kernel cannot temper with — e.g.,
TPMs or TEEs (next lecture)

Hardware can accelerate security mechanisms that are
conventionally enforced by kernel, compiler, or even the
developers manually — e.g., CHERI (this lecture)

4 / 43



Intro CET PA MPX MTE CHERI RoT

Categorization of hardware-assisted security

Adapted from survey paper A Comprehensive Survey of Hardware-Assisted Security:

From The Edge to The Cloud

5 / 43

https://doi.org/10.1016/j.iot.2019.100055
https://doi.org/10.1016/j.iot.2019.100055


Intro CET PA MPX MTE CHERI RoT

Outline

1 Introduction

2 Intel Control-flow Enforcement Technology (CET)

3 Arm Pointer Authentication (PA)

4 Intel Memory Protection Extensions (MPX)

5 Arm Memory Tagging Extension (MTE)

6 Capability Hardware Enhanced RISC Instructions (CHERI)

7 Authenticated boot and Root-of-Trust (RoT)

6 / 43



Intro CET PA MPX MTE CHERI RoT

Recap on CFI

Control-Flow Integrity (CFI) is a classic example of runtime
reference monitor in software security.

CFI is also sometimes referred to as program shepherding

monitoring control flow transfers during program execution to
enforce a security policy — from a paper in USENIX Security’02.

7 / 43

https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding


Intro CET PA MPX MTE CHERI RoT

Basic ideas of CFI

1 void f1();
2 void f2();
3 void f3();
4 void f4(int, int);
5

6 void foo(int usr) {
7 void (*func)();
8

9 if (usr == MAGIC)
10 func = f1;

11 else
12 func = f2;

13

14 // forward edge CFI check

15 CHECK_CFI_FORWARD(func);

16 func();

17

18 // backward edge CFI check

19 CHECK_CFI_BACKWARD();

20 }

Option 1: allow all functions

- f1, f2, f3, f4, foo, printf, system, ...

Option 2: allowed only functions defined
in the current module

- f1, f2, f3, f4, foo

Option 3: allow functions with type
signature void (*)()

- f1, f2, f3

Option 4: allow functions whose address
are taken (e.g., assigned)

- f1, f2

8 / 43



Intro CET PA MPX MTE CHERI RoT

Example: Microsoft Control-flow Guard (CFG)

Illustration taken from Microsoft Talk: The Evolution of CFI Attacks and Defenses

9 / 43

https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2018_02_OffensiveCon


Intro CET PA MPX MTE CHERI RoT

Example: Microsoft Return-flow Guard (RFG)

Illustration taken from Microsoft Talk: The Evolution of CFI Attacks and Defenses

10 / 43

https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2018_02_OffensiveCon


Intro CET PA MPX MTE CHERI RoT

RFG deployment experience

Secrets are bad!

AnC attack (a side-channel attack) could successfully leak where
shadow stacks are mapped.

11 / 43

https://www.vusec.net/projects/anc/


Intro CET PA MPX MTE CHERI RoT

Back-edge protection: shadow stack

Copyright: Intel 12 / 43



Intro CET PA MPX MTE CHERI RoT

CET: shadow stack

For every regular stack CET adds a shadow stack region, which is
indexed via a new register %ssp.

Regular memory stores (executed from any ring) are not allowed
in shadow stack region

When enabled,

Each time a call instruction gets executed, in addition to the
return address being pushed onto the regular stack, a copy of it is
also pushed (automatically) onto the shadow stack.

Each time a ret instruction gets executed, the return addresses
pointed by %rsp and %ssp are (automatically) popped from the
two stacks, and their values are compared together.

13 / 43



Intro CET PA MPX MTE CHERI RoT

CET: Indirect Branch Tracking (IBT)

CET introduces a new (4-byte) instruction, i.e., endbr, which
becomes the only allowed target of indirect call/jmp instructions.

In other words, forward-edge transfers via (indirect) call or jmp
instructions are pinned to code locations that are “marked” with an
endbr; else, an exception (#CP) is raised.

14 / 43



Intro CET PA MPX MTE CHERI RoT

IBT example

1 void main() {
2 int (*f) {};
3 f = foo;

4 f();

5 }

6

7 int foo() {
8 return 0;
9 }

1 <main>:

2 movq $0x4004fb, -8(%rbp)
3 mov -8(%rbp), %rdx

4 call *%rdx

5 :

6 retq

7

8 <foo>:

9 endbr64
10 :

11 mov rax, 0

12 :

13 retq

15 / 43



Intro CET PA MPX MTE CHERI RoT

IBT example

1 void main() {
2 int (*f) {};
3 int (*g) {};
4 f = foo;

5 g = bar;

6 f();

7 g();

8 }

9

10 int foo() {
11 return 0;
12 }

13

14 int bar() {
15 return 1;
16 }

1 <main>:

2 movq $0x4004fb, -16(%rbp)
3 mov -16(%rbp), %rdx

4 call *%rdx

5 mov -8(%rbp), %rdx

6 call *%rdx

7 :

8 retq

9

10 <foo>:

11 endbr64
12 :

13 mov rax, 0

14 :

15 retq

16

17 <bar>:

18 endbr64
19 :

20 mov rax, 1

21 :

22 retq

16 / 43



Intro CET PA MPX MTE CHERI RoT

Outline

1 Introduction

2 Intel Control-flow Enforcement Technology (CET)

3 Arm Pointer Authentication (PA)

4 Intel Memory Protection Extensions (MPX)

5 Arm Memory Tagging Extension (MTE)

6 Capability Hardware Enhanced RISC Instructions (CHERI)

7 Authenticated boot and Root-of-Trust (RoT)

17 / 43



Intro CET PA MPX MTE CHERI RoT

Motivation

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.

- Perfect code pointer integrity implies control-flow integrity (CFI).

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.

18 / 43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf


Intro CET PA MPX MTE CHERI RoT

Motivation

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.

- Perfect code pointer integrity implies control-flow integrity (CFI).

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.

18 / 43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf


Intro CET PA MPX MTE CHERI RoT

Motivation

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.

- Perfect code pointer integrity implies control-flow integrity (CFI).

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.

18 / 43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf


Intro CET PA MPX MTE CHERI RoT

Motivation

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.

- Perfect code pointer integrity implies control-flow integrity (CFI).

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.

18 / 43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf


Intro CET PA MPX MTE CHERI RoT

Overview

Available since Armv8.3-A instruction set architecture (ISA) when
the processor executes in 64-bit Arm state (AArch64)

PA consists of a set of instructions for creating and authenticating
pointer authentication codes (PACs).

19 / 43



Intro CET PA MPX MTE CHERI RoT

PAC details

Each PAC is derived from
- A pointer value

* an N-bit memory address

- A 64-bit context value (modifier)

* doesn’t need to secret, as long as it provides enough entropy

- A 128-bit secret key

* held in system registers, set by the kernel per each process,
* can be used, but cannot be read/written by userspace

PAC essentially a key-ed message authentication code (MAC)
where the MAC algorithm can be implementation defined

- by default, it is QARMA

Instructions hide the algorithm details (sign + authenticate)

20 / 43

https://eprint.iacr.org/2016/444.pdf


Intro CET PA MPX MTE CHERI RoT

PAC details

Each PAC is derived from
- A pointer value

* an N-bit memory address

- A 64-bit context value (modifier)

* doesn’t need to secret, as long as it provides enough entropy

- A 128-bit secret key

* held in system registers, set by the kernel per each process,
* can be used, but cannot be read/written by userspace

PAC essentially a key-ed message authentication code (MAC)
where the MAC algorithm can be implementation defined

- by default, it is QARMA

Instructions hide the algorithm details (sign + authenticate)

20 / 43

https://eprint.iacr.org/2016/444.pdf


Intro CET PA MPX MTE CHERI RoT

PAC details

Each PAC is derived from
- A pointer value

* an N-bit memory address

- A 64-bit context value (modifier)

* doesn’t need to secret, as long as it provides enough entropy

- A 128-bit secret key

* held in system registers, set by the kernel per each process,
* can be used, but cannot be read/written by userspace

PAC essentially a key-ed message authentication code (MAC)
where the MAC algorithm can be implementation defined

- by default, it is QARMA

Instructions hide the algorithm details (sign + authenticate)

20 / 43

https://eprint.iacr.org/2016/444.pdf


Intro CET PA MPX MTE CHERI RoT

Example: PA-based return address signing

Deployed as -msign-return-address in GCC and LLVM/Clang

21 / 43



Intro CET PA MPX MTE CHERI RoT

Outline

1 Introduction

2 Intel Control-flow Enforcement Technology (CET)

3 Arm Pointer Authentication (PA)

4 Intel Memory Protection Extensions (MPX)

5 Arm Memory Tagging Extension (MTE)

6 Capability Hardware Enhanced RISC Instructions (CHERI)

7 Authenticated boot and Root-of-Trust (RoT)

22 / 43



Intro CET PA MPX MTE CHERI RoT

Brief history

Intel MPX (Memory Protection Extensions) was a set of extensions
to the x86 instruction set architecture to perform bounds checking.

2013-07: Intel introduces MPX in its ISA manual

2015-02: Linux kernel adds support to MPX in its 3.19 release

2015-04: GCC adds support to MPX in its 5.0 release

2015-08: MPX becomes available in Skylake microarchitecture

2018-06: An important paper Intel MPX Explained: A Cross-layer
Analysis of the Intel MPX System Stack was published.

2019-??: Intel removes MPX from its ISA manual

2019-05: GCC drops support for MPX in its 9.1 release

2020-03: Linux kernel drops support for MPX in its 5.6 release

23 / 43

https://intel-mpx.github.io/code/submission.pdf
https://intel-mpx.github.io/code/submission.pdf


Intro CET PA MPX MTE CHERI RoT

Brief history

Intel MPX (Memory Protection Extensions) was a set of extensions
to the x86 instruction set architecture to perform bounds checking.

2013-07: Intel introduces MPX in its ISA manual

2015-02: Linux kernel adds support to MPX in its 3.19 release

2015-04: GCC adds support to MPX in its 5.0 release

2015-08: MPX becomes available in Skylake microarchitecture

2018-06: An important paper Intel MPX Explained: A Cross-layer
Analysis of the Intel MPX System Stack was published.

2019-??: Intel removes MPX from its ISA manual

2019-05: GCC drops support for MPX in its 9.1 release

2020-03: Linux kernel drops support for MPX in its 5.6 release

23 / 43

https://intel-mpx.github.io/code/submission.pdf
https://intel-mpx.github.io/code/submission.pdf


Intro CET PA MPX MTE CHERI RoT

How does MPX work?

1 struct obj { char buf[100]; int len }
2 obj* a[10]; total = 0;

3 for (i=0; i<M; i++) { total += a[i]->len; }

1 for (i=0; i<M; i++):
2 ai = a + i // Pointer arithmetic on a

3 objptr = load ai // Pointer to obj at a[i]

4 lenptr = objptr + 100 // Pointer to obj.len

5 len = load lenptr

6 total += len // Total length of all objs

1 a_b = bndmk a, a+79

2 for (i=0; i<M; i++):
3 ai = a + i

4 bndcl a_b, ai // Lower-bound check of a[i]

5 bndcu a_b, ai+7 // Upper-bound check of a[i]

6 objptr = load ai

7 objptr_b = bndldx ai // Bounds for pointer at a[i]

8 lenptr = objptr + 100

9 bndcl objptr_b, lenptr // Lower-bound check of obj.len

10 bndcu objptr_b, lenptr+3 // Upper-bound check of obj.len

11 len = load lenptr

12 total += len

24 / 43



Intro CET PA MPX MTE CHERI RoT

How does MPX work?

1 struct obj { char buf[100]; int len }
2 obj* a[10]; total = 0;

3 for (i=0; i<M; i++) { total += a[i]->len; }

1 for (i=0; i<M; i++):
2 ai = a + i // Pointer arithmetic on a

3 objptr = load ai // Pointer to obj at a[i]

4 lenptr = objptr + 100 // Pointer to obj.len

5 len = load lenptr

6 total += len // Total length of all objs

1 a_b = bndmk a, a+79

2 for (i=0; i<M; i++):
3 ai = a + i

4 bndcl a_b, ai // Lower-bound check of a[i]

5 bndcu a_b, ai+7 // Upper-bound check of a[i]

6 objptr = load ai

7 objptr_b = bndldx ai // Bounds for pointer at a[i]

8 lenptr = objptr + 100

9 bndcl objptr_b, lenptr // Lower-bound check of obj.len

10 bndcu objptr_b, lenptr+3 // Upper-bound check of obj.len

11 len = load lenptr

12 total += len

24 / 43



Intro CET PA MPX MTE CHERI RoT

How does MPX work?

1 struct obj { char buf[100]; int len }
2 obj* a[10]; total = 0;

3 for (i=0; i<M; i++) { total += a[i]->len; }

1 for (i=0; i<M; i++):
2 ai = a + i // Pointer arithmetic on a

3 objptr = load ai // Pointer to obj at a[i]

4 lenptr = objptr + 100 // Pointer to obj.len

5 len = load lenptr

6 total += len // Total length of all objs

1 a_b = bndmk a, a+79

2 for (i=0; i<M; i++):
3 ai = a + i

4 bndcl a_b, ai // Lower-bound check of a[i]

5 bndcu a_b, ai+7 // Upper-bound check of a[i]

6 objptr = load ai

7 objptr_b = bndldx ai // Bounds for pointer at a[i]

8 lenptr = objptr + 100

9 bndcl objptr_b, lenptr // Lower-bound check of obj.len

10 bndcu objptr_b, lenptr+3 // Upper-bound check of obj.len

11 len = load lenptr

12 total += len

24 / 43



Intro CET PA MPX MTE CHERI RoT

Recap: spatial safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:

Memory read: (object_id, offset [int], length [int])

Memory write: (object_id, offset [int], length [int], _)

It is a violation of spatial safety if:

offset + length >= size or

offset < 0

25 / 43



Intro CET PA MPX MTE CHERI RoT

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

At the hardware level,

- new instructions
- a set of 128-bit registers (why 128-bit?)
- the #BR exception thrown by these new instructions

At the kernel level:

a new #BR exception handler for
- allocating storage for bounds on-demand, and
- sending a signal to the program upon bound violation.

At the compiler level,

- new MPX transformation passes
- new runtime libraries for initialization/finalization routines, debug
information, and bridges to other non-MPX-protected libraries.

At the application level,

- manual change of troublesome C coding patterns
- multithreading issues
- interaction with other ISA extensions (e.g., TSX and SGX).

26 / 43



Intro CET PA MPX MTE CHERI RoT

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

At the hardware level,
- new instructions
- a set of 128-bit registers (why 128-bit?)
- the #BR exception thrown by these new instructions
At the kernel level:

a new #BR exception handler for
- allocating storage for bounds on-demand, and
- sending a signal to the program upon bound violation.

At the compiler level,

- new MPX transformation passes
- new runtime libraries for initialization/finalization routines, debug
information, and bridges to other non-MPX-protected libraries.

At the application level,

- manual change of troublesome C coding patterns
- multithreading issues
- interaction with other ISA extensions (e.g., TSX and SGX).

26 / 43



Intro CET PA MPX MTE CHERI RoT

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

At the hardware level,
- new instructions
- a set of 128-bit registers (why 128-bit?)
- the #BR exception thrown by these new instructions
At the kernel level: a new #BR exception handler for
- allocating storage for bounds on-demand, and
- sending a signal to the program upon bound violation.
At the compiler level,

- new MPX transformation passes
- new runtime libraries for initialization/finalization routines, debug
information, and bridges to other non-MPX-protected libraries.

At the application level,

- manual change of troublesome C coding patterns
- multithreading issues
- interaction with other ISA extensions (e.g., TSX and SGX).

26 / 43



Intro CET PA MPX MTE CHERI RoT

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

At the hardware level,
- new instructions
- a set of 128-bit registers (why 128-bit?)
- the #BR exception thrown by these new instructions
At the kernel level: a new #BR exception handler for
- allocating storage for bounds on-demand, and
- sending a signal to the program upon bound violation.
At the compiler level,
- new MPX transformation passes
- new runtime libraries for initialization/finalization routines, debug
information, and bridges to other non-MPX-protected libraries.

At the application level,

- manual change of troublesome C coding patterns
- multithreading issues
- interaction with other ISA extensions (e.g., TSX and SGX).

26 / 43



Intro CET PA MPX MTE CHERI RoT

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

At the hardware level,
- new instructions
- a set of 128-bit registers (why 128-bit?)
- the #BR exception thrown by these new instructions
At the kernel level: a new #BR exception handler for
- allocating storage for bounds on-demand, and
- sending a signal to the program upon bound violation.
At the compiler level,
- new MPX transformation passes
- new runtime libraries for initialization/finalization routines, debug
information, and bridges to other non-MPX-protected libraries.

At the application level,
- manual change of troublesome C coding patterns
- multithreading issues
- interaction with other ISA extensions (e.g., TSX and SGX).

26 / 43



Intro CET PA MPX MTE CHERI RoT

What do we gain?

Evaluation results available on this website

27 / 43

https://intel-mpx.github.io/overview/


Intro CET PA MPX MTE CHERI RoT

Lessons learned

New MPX instructions are not as fast as expected
- The average overhead of 20-50% is not significantly better than ASan

The supporting infrastructure is not mature enough
- MPX transformation in compilers might be buggy
- Other libraries needs to have MPX-enabled

MPX provides no temporal protection
- ASan has partial support

MPX does not support multithreading transparently
- Both false positives and false negatives if the application does not
conform to C11 memory model or if the compiler does not update
bounds in atomic primitives

MPX is not compatible with some C idioms
- e.g., using a struct field (usually the first field of struct) to access
other fields of the struct

- custom memory management, e.g., arbitrary type casts and
in-pointer bit twiddling

28 / 43



Intro CET PA MPX MTE CHERI RoT

Outline

1 Introduction

2 Intel Control-flow Enforcement Technology (CET)

3 Arm Pointer Authentication (PA)

4 Intel Memory Protection Extensions (MPX)

5 Arm Memory Tagging Extension (MTE)

6 Capability Hardware Enhanced RISC Instructions (CHERI)

7 Authenticated boot and Root-of-Trust (RoT)

29 / 43



Intro CET PA MPX MTE CHERI RoT

Overview

Introduced into the Armv8.5-A instruction set architecture (ISA) as
Memory Tagging Extension (MTE) in 2018.

64-bit architecture only (AArch64)

As a hardware accelerator for detecting memory errors

MTE implements a “lock-and-key” scheme for memory access:

Two types of tags:

- Every aligned 16 bytes of memory have a 4-bit tag stored separately,
i.e., not addressable (the “lock”)

- Every pointer has a 4-bit tag stored in the top byte (the “key”)

LD/ST instructions check both tags, raise exception on mismatch

New instructions are introduced to manipulate the tags

30 / 43



Intro CET PA MPX MTE CHERI RoT

Overview

Introduced into the Armv8.5-A instruction set architecture (ISA) as
Memory Tagging Extension (MTE) in 2018.

64-bit architecture only (AArch64)

As a hardware accelerator for detecting memory errors

MTE implements a “lock-and-key” scheme for memory access:

Two types of tags:

- Every aligned 16 bytes of memory have a 4-bit tag stored separately,
i.e., not addressable (the “lock”)

- Every pointer has a 4-bit tag stored in the top byte (the “key”)

LD/ST instructions check both tags, raise exception on mismatch

New instructions are introduced to manipulate the tags

30 / 43



Intro CET PA MPX MTE CHERI RoT

MTE illustration

Source: article Delivering enhanced security through Memory Tagging Extension 31 / 43

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhanced-security-through-mte


Intro CET PA MPX MTE CHERI RoT

Detecting heap overflow

32 / 43



Intro CET PA MPX MTE CHERI RoT

Detecting heap overflow

32 / 43



Intro CET PA MPX MTE CHERI RoT

Detecting use-after-free

33 / 43



Intro CET PA MPX MTE CHERI RoT

Detecting use-after-free

33 / 43



Intro CET PA MPX MTE CHERI RoT

Detecting use-after-free

33 / 43



Intro CET PA MPX MTE CHERI RoT

Adoption in practice

LLVM MemTagSanitizer detects a similar class of errors as
AddressSanitizer or HardwareAssistedAddressSanitizer, but with
much lower overhead.

Source of numbers: LLVM whitepaper on memory tagging

In Android 12, the kernel and userspace heap memory allocator
can augment each allocation with metadata, based on this article.

34 / 43

https://llvm.org/docs/MemTagSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://arxiv.org/pdf/1802.09517.pdf
https://source.android.com/docs/security/test/memory-safety/arm-mte


Intro CET PA MPX MTE CHERI RoT

Adoption in practice

LLVM MemTagSanitizer detects a similar class of errors as
AddressSanitizer or HardwareAssistedAddressSanitizer, but with
much lower overhead.

Source of numbers: LLVM whitepaper on memory tagging

In Android 12, the kernel and userspace heap memory allocator
can augment each allocation with metadata, based on this article.

34 / 43

https://llvm.org/docs/MemTagSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://arxiv.org/pdf/1802.09517.pdf
https://source.android.com/docs/security/test/memory-safety/arm-mte


Intro CET PA MPX MTE CHERI RoT

Outline

1 Introduction

2 Intel Control-flow Enforcement Technology (CET)

3 Arm Pointer Authentication (PA)

4 Intel Memory Protection Extensions (MPX)

5 Arm Memory Tagging Extension (MTE)

6 Capability Hardware Enhanced RISC Instructions (CHERI)

7 Authenticated boot and Root-of-Trust (RoT)

35 / 43



Intro CET PA MPX MTE CHERI RoT

Re-defining pointers

A pointer is not only an N-bit value representing a memory address,
rather, it is a capability granting certain permissions to access a
restrictive range in the memory address space.

36 / 43



Intro CET PA MPX MTE CHERI RoT

CHERI memory capability

A “pointer”, or rather, a memory capability, in the view of the
CHERI Morello architecture (source of image: Pawel Zalewski’s blog post).

37 / 43

https://developer.arm.com/documentation/ddi0606/latest
https://www.thegoodpenguin.co.uk/blog/introducing-arm-morello-cheri-architecture/


Intro CET PA MPX MTE CHERI RoT

CHERI basic idea

Q: What will happen?

38 / 43



Intro CET PA MPX MTE CHERI RoT

CHERI basic idea

Q: What will happen?

38 / 43



Intro CET PA MPX MTE CHERI RoT

CHERI basic idea

Q: What will happen?

38 / 43



Intro CET PA MPX MTE CHERI RoT

CHERI basic idea

Q: What will happen?

38 / 43



Intro CET PA MPX MTE CHERI RoT

CHERI software stack

Completely re-vamped software stack:

Compilers: custom-made Clang/LLVM

Operating systems: hand-tuned FreeBSD, FreeRTOS

Applications: ported WebKit, OpenSSH, and PostgreSQL

39 / 43



Intro CET PA MPX MTE CHERI RoT

Outline

1 Introduction

2 Intel Control-flow Enforcement Technology (CET)

3 Arm Pointer Authentication (PA)

4 Intel Memory Protection Extensions (MPX)

5 Arm Memory Tagging Extension (MTE)

6 Capability Hardware Enhanced RISC Instructions (CHERI)

7 Authenticated boot and Root-of-Trust (RoT)

40 / 43



Intro CET PA MPX MTE CHERI RoT

Overview

Goal: ensures only trusted and authenticated software (e.g.,
firmware, kernel, application) runs on a computing system.

An abstract view of the authenticated boot process

41 / 43



Intro CET PA MPX MTE CHERI RoT

Overview

Goal: ensures only trusted and authenticated software (e.g.,
firmware, kernel, application) runs on a computing system.

An abstract view of the authenticated boot process

41 / 43



Intro CET PA MPX MTE CHERI RoT

Requirements for the root-of-trust (RoT) component

Boot process is guaranteed to start from the RoT component

The cryptographic key is non-readable, non-writable at any
privilege level

- The only way to use the key is to verify the signature via special
hardware instructions.

The RoT component, upon booting, must first measure the code
content of the first stage bootloader and validate the
measurement with the signature.

Usually, the RoT component is encapsulated in a hardware module
named Hardware Security Module (HSM).

42 / 43



Intro CET PA MPX MTE CHERI RoT

Requirements for the root-of-trust (RoT) component

Boot process is guaranteed to start from the RoT component

The cryptographic key is non-readable, non-writable at any
privilege level

- The only way to use the key is to verify the signature via special
hardware instructions.

The RoT component, upon booting, must first measure the code
content of the first stage bootloader and validate the
measurement with the signature.

Usually, the RoT component is encapsulated in a hardware module
named Hardware Security Module (HSM).

42 / 43



Intro CET PA MPX MTE CHERI RoT

⟨ End ⟩

43 / 43


	security features, enablers, and accelerators
	Introduction
	Intel Control-flow Enforcement Technology (CET)
	Arm Pointer Authentication (PA)
	Intel Memory Protection Extensions (MPX)
	Arm Memory Tagging Extension (MTE)
	Capability Hardware Enhanced RISC Instructions (CHERI)
	Authenticated boot and Root-of-Trust (RoT)


