CS 453 / 698: Software and Systems Security

Module: Hardware Security
Lecture: security features, enablers, and accelerators

Meng Xu (University of Waterloo)

Fall 2024

Intro
@000

Outline

@ Introduction

2/43

Intro
[e] Tele}

Motivation

Q: What can hardware do for software and system security? J

3/43

Intro
[e] Tele}

Motivation

Q: What can hardware do for software and system security? J
Ring 3 User Code User Code
Ring 2
Ring 1
Ring 0 OS kernel
Hardware

3/43

Intro
[e]e] e}

Motivation

Q: What can hardware do for software and system security? J

A: There are generally two views on hardware-assisted security:

4/43

Intro
[e]e] e}

Motivation

Q: What can hardware do for software and system security? J

A: There are generally two views on hardware-assisted security:

@ Hardware runs at an even higher privilege level such that a
malicious or compromised kernel cannot temper with — e.g.,
TPMs or TEEs (next lecture)

4/43

Intro
[e]e] e}

Motivation

Q: What can hardware do for software and system security? J

A: There are generally two views on hardware-assisted security:

@ Hardware runs at an even higher privilege level such that a
malicious or compromised kernel cannot temper with — e.g.,
TPMs or TEEs (next lecture)

@ Hardware can accelerate security mechanisms that are
conventionally enforced by kernel, compiler, or even the
developers manually — e.g., CHERI (this lecture)

4/43

Intro
[e]e]e]]

Categorization of hardware-assisted security

HW-assisted
Technologies

Security Performance
Enhancement Boost

HW-assisted
HW-assisted Random Number
Trusted Computing ~ Generation

TPM IntrinsiclD Intel

SRAM Secure
Intel AMD Embed PUF Key

TXT PSP TPMs
TEE HW-assisted

Pointers Violation
Intel ARM AMD Prevention

SGX TrustZ MET
rusieons Intel ARM Intel

MPX PA CET

Adapted from survey paper A Comprehensive Survey of Hardware-Assisted Security:
From The Edge to The Cloud

5/43

https://doi.org/10.1016/j.iot.2019.100055
https://doi.org/10.1016/j.iot.2019.100055

CET
©0000000000

Outline

© Intel Control-flow Enforcement Technology (CET)

6/43

CET
0®000000000

Recap on CFI

Control-Flow Integrity (CFl) is a classic example of runtime
reference monitor in software security.

CFl is also sometimes referred to as program shepherding

monitoring control flow transfers during program execution to
enforce a security policy — from a paper in USENIX Security'02.

7/43

https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding

CET
00@00000000

Basic ideas of CFl

Option 1: allow all functions

1 void f1Q);

2 void £20); - f1, £2, £3, f4, foo, printf, system, ...

3 void £f3Q);

4 void f4(int, int); i i i

5 Option 2: allowed only functions defined
6 void foo(int usr) { in the current module

7 void (*func)(;

8 - f1, £2, £3, f4, foo

9 if (usr == MAGIC)

10 func = f1; . . .

11 else Option 3: allow functions with type

12 func = £2; signature void (*) Q)

14 // forward edge CFI check - f1, £2, £3

15 CHECK_CFI_FORWARD(func);

16 func(Q;

17 Option 4: allow functions whose address
18 // backward edge CFI check k . d

19 CHECK_CFI_BACKWARD(); are taken (e.g., assigned)

20 } - f1, £2

8/43

CET
00080000000

Example: Microsoft Control-flow Guard (CFG)

CFG implements coars:

Compile time =

void Foo(...) {
// SomeFunc is address-taken
// and may be called indirectly
Object->FuncPtr = SomeFunc;

Metadata is automatically added to the image which
identifies functions that may be called indirectly

void Bar(...) {
// Compiler-inserted check to
// verify call target is valid
_guard_check_icall(Object->FuncPtr);
Object->FuncPtr(xyz);

}

A lightweight check is inserted prior to indirect calls
which will verify that the call target is valid at runtime

Process
Start

Image
Load

Indirect
(e1]]

rained control-flow integrity for indirect calls

Runtime

*Map valid call target data

*Update valid call target data
with metadata from PE image

«Perform O(1) validity check
«Terminate process if invalid
target

«Jmp if target is valid

CFG is a deterministic mitigation, its security is not
dependent on keeping secrets.

For C/C++ code, CFG requires no source code changes.

ntd111LdrpDispatchUsercalllarget

00007F7b 42100e10 4c8b1d59e5000 mov.
[ntdl1!LdrsystenDl1InitBlock+0xbo]

r11,quord per

000070 4e100€17 4c8bdo mov r1e,rax
00007FFb" de100e1a 49c1ea09 shr r10,9

00007FFb" de100ele 478blcd3 mov rii,quord pr [r11+r1e*s]

00007 Ffb 4210022 4c8bdo mov rie,rax

00007FFb 40100625 49c10a03 shr rie,3

00007¢Fb" 4010029 a80F test al,ofh

00007¢£b" 4e100e2b 7509 jne ntdlllLdrpbispatchUserCallTarget+0x26
ntd111LdrpDispatchUsercallTarget+ex1d

00070 4e100e2d 4dofa3d3 bt r11,r10

0000770 de100e31 7303 jae ntdll!LdrpDispatchUserCallTarget+0x26

ntdlllLdrpDispatchUsercallTarget+ex23:
00007FF0 4e100e33 48FFe0 mp.

lllustration taken from Microsoft Talk: The Evolution of CFIl Attacks and Defenses

9/43

https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2018_02_OffensiveCon

CET
0000®000000

Example: Microsoft Return-flow Guard (RFG)

RFG was our compatible, ABI compliant, performant software shadow stack

[..] //Prior code

call ChildFunction
+1TB shadow stack region created —
ISR -Region cannot be queried mov rax, [rsp]
Start «ANV's in region are fatal
a «FS segment points to the shadow mov fs:[rsp], rax
stack of the current thread
[..] //Child code

mov rcx, fs:[rsp]
[[3ET I . f process enables RFG: patch NOP's cmp recx, [rsp]
Load with RFG prolog/epilog

jne _fast_fail

ret

+Prolog: Push return address to OXABCD: [..]
FAPYITAN shadow stack //Remainder of
Call ~Epilog: Fast fail if return address on parent function

alls stack and shadow stack are
mismatched

NOP's added to the prolog & epilog of all
functions

Metadata added to the image to locate the
prolog and epilog NOP bytes

If attacker changes the return address at these points RFG is defeated

RFG relies on a secret: the shadow stack's virtual address

Illustration taken from Microsoft Talk: The Evolution of CFl Attacks and Defenses

10/43

https://github.com/microsoft/MSRC-Security-Research/tree/master/presentations/2018_02_OffensiveCon

CET
00000800000

RFG deployment experience

Secrets are bad!

AnC attack (a side-channel attack) could successfully leak where
shadow stacks are mapped.

11/43

https://www.vusec.net/projects/anc/

CET

0000000000

Back-edge protection: shadow stack

SHADOW STACK (SS)

SS delivers return address protection to defend against
return-oriented programming (ROP) attack methods.

STACK

Intel CET will help block call if return
addresses on both stacks don't match

Copyright: Intel 12/43

CET
00000000000

CET: shadow stack

@ For every regular stack CET adds a shadow stack region, which is
indexed via a new register %ssp.

@ Regular memory stores (executed from any ring) are not allowed
in shadow stack region

When enabled,

@ Each time a call instruction gets executed, in addition to the
return address being pushed onto the regular stack, a copy of it is
also pushed (automatically) onto the shadow stack.

@ Each time a ret instruction gets executed, the return addresses
pointed by %rsp and %ssp are (automatically) popped from the
two stacks, and their values are compared together.

13/43

CET
00000000800

CET: Indirect Branch Tracking (IBT)

CET introduces a new (4-byte) instruction, i.e., endbr, which
becomes the only allowed target of indirect call/jmp instructions.

In other words, forward-edge transfers via (indirect) call or jmp
instructions are pinned to code locations that are “marked” with an
endbr; else, an exception (#CP) is raised.

14 /43

CET
00000000080

IBT example

1 [main>:
2 movq $0x4004£fb, -8(%rbp)
1 void main(Q) { 3 mov -8(%rbp), %rdx
2 int (*f) {}; 4 call *%rdx
3 f = foo; 5
4 £0; 6 retq
5 } 7
6 8 [foo>:
7 int foo() { 9 endbr64
8 return 0; 10 B
9 } 11 mov rax, 0
12 B
13 retq

15/43

CET
0000000000e

IBT example

void main() {

int

int

int (*f) {};
int (@) {};
f = foo;

g = bar;
£0;

g0;

foo() {
return 0;

bar() {
return 1;

© 00 N O UAs W N

R I I S
N = O © 0 N O Uk W H O

ain>:

movq
mov
call
mov
call

retq

Hfoo>:

endbr64

B

mov

retq

ar>:

endbr64

B

mov

retq

$0x4004fb, -16(%rbp)
-16(%rbp), %rdx
*%rdx

-8(%rbp), %rdx
*%rdx

rax, 0

rax, 1

16/43

Outline

© Arm Pointer Authentication (PA)

17/43

Motivation

Goal: ensures pointers in memory remain unchanged.

18/43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Motivation

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.

18/43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Motivation

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.
- Perfect code pointer integrity implies control-flow integrity (CFI).

(\> O
\ function {
store return_address

corr‘upt_addr‘ess!

load return_address
verify integrit

18/43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Motivation

Goal: ensures pointers in memory remain unchanged.

- i.e., the value of the pointer remains unchanged, not the memory
content referred to by this pointer.
- Perfect code pointer integrity implies control-flow integrity (CFI).

O O

function {
store return_address

corr‘upt_addr‘ess!
PR

load return_address
verify integrit

- Data pointer integrity is also important (e.g., against data-only
attacks and data-oriented programming) and can be (partially)
achieved via Pointer Authentication.
18/43

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Overview

Available since Armv8.3-A instruction set architecture (ISA) when
the processor executes in 64-bit Arm state (AArch64)

(8 bits] (L reserved bit] [3-23bits
L= —

tag/PAC || sign ext./PAC virtual address (A))
' \¢ e
[general purpfse registers] HK(AP’ M) PA key (K)
‘I 64-bit modifier (M) —/ conﬁgurati{; register)

PA consists of a set of instructions for creating and authenticating
pointer authentication codes (PACs).

19/43

PAC details

@ Each PAC is derived from

- A pointer value
- A 64-bit context value (modifier)

- A 128-bit secret key

20/43

https://eprint.iacr.org/2016/444.pdf

PAC details

@ Each PAC is derived from
- A pointer value
* an N-bit memory address
- A 64-bit context value (modifier)

* doesn't need to secret, as long as it provides enough entropy

- A 128-bit secret key

* held in system registers, set by the kernel per each process,
* can be used, but cannot be read/written by userspace

20/43

https://eprint.iacr.org/2016/444.pdf

PAC details

@ Each PAC is derived from
- A pointer value
* an N-bit memory address
- A 64-bit context value (modifier)

* doesn't need to secret, as long as it provides enough entropy
- A 128-bit secret key

* held in system registers, set by the kernel per each process,
* can be used, but cannot be read/written by userspace

@ PAC essentially a key-ed message authentication code (MAC)
where the MAC algorithm can be implementation defined

- by default, it is QARMA

e Instructions hide the algorithm details (sign + authenticate)

20/43

https://eprint.iacr.org/2016/444.pdf

PA
0000e

Example: PA-based return address signing

Deployed as -msign-return-address in GCC and LLVM/Clang

[Function return address]-

func {

pacia LR, k¥

return address

—J

| generate PAC J—— iakey

PAC ii PAC i return address

>1dr LR:

{ PAC? i PAC? §

pacia —add PAC
autia — authenticate

ret

}

return address

autia LR, @-l

[1
ey pac_2)

21/43

Outline

@ Intel Memory Protection Extensions (MPX)

22/43

Brief history

Intel MPX (Memory Protection Extensions) was a set of extensions
to the x86 instruction set architecture to perform bounds checking.

23/43

https://intel-mpx.github.io/code/submission.pdf
https://intel-mpx.github.io/code/submission.pdf

Brief history

Intel MPX (Memory Protection Extensions) was a set of extensions
to the x86 instruction set architecture to perform bounds checking.

2013-07: Intel introduces MPX in its ISA manual

2015-02: Linux kernel adds support to MPX in its 3.19 release
2015-04: GCC adds support to MPX in its 5.0 release
2015-08: MPX becomes available in Skylake microarchitecture

2018-06: An important paper Intel MPX Explained: A Cross-layer
Analysis of the Intel MPX System Stack was published.

2019-77: Intel removes MPX from its ISA manual
@ 2019-05: GCC drops support for MPX in its 9.1 release
@ 2020-03: Linux kernel drops support for MPX in its 5.6 release

23/43

https://intel-mpx.github.io/code/submission.pdf
https://intel-mpx.github.io/code/submission.pdf

How does MPX work?

1 struct obj { char buf[100]; int len }
2 obj* a[l0]; total = 0;
3 for (i=0; i<M; i++) { total += a[i]->len; }

24/43

How does MPX work?

1 struct obj { char buf[100]; int len }
2 obj* a[l0]; total = 0;
3 for (i=0; i<M; i++) { total += a[i]->len; }

1 for (i=0; i<M; i++):

2 ai = a + 1 // Pointer arithmetic on a
3 objptr = load ai // Pointer to obj at a[i]

4 lenptr = objptr + 100 // Pointer to obj.len

5 len = load lenptr

6 total += len // Total length of all objs

24/43

How does MPX work?

struct obj { char buf[100]; int len }

obj* a[10]; total = 0;

for (i=0; i<M; i++) { total += a[i]->len; }

QG R W N =

for (i=0; i<M; i++):

ai = a + 1 // Pointer arithmetic on a
objptr = load ai // Pointer to obj at a[i]
lenptr = objptr + 100 // Pointer to obj.len

len = load lenptr

total += len // Total length of all objs

© 0w N O Ue W N

= o=
N o= O

a_b = bndmk a, a+79

for (i=0; i<M; i++):
ai = a+ 1
bndcl a_b, ai
bndcu a_b, ai+7
objptr = load ai
objptr_b = bndldx ai
lenptr = objptr + 100
bndcl objptr_b, lenptr
bndcu objptr_b, lenptr+3
len = load lenptr
total += len

// Lower-bound check of a[i]
// Upper-bound check of a[i]

// Bounds for pointer at a[i]
// Lower-bound check of obj.len

// Upper-bound check of obj.len

24/43

Recap: spatial safety

At any point of time during the program execution,
for any object in memory, we know its
(object_id, size [int], alive [bool])

At the same time, for each memory access, we know:
@ Memory read: (object_id, offset [int], length [int])
@ Memory write: (object_id, offset [int], length [int], _)

It is a violation of spatial safety if:
@ offset + length >= size or

@ offset < 0

25/43

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

@ At the hardware level,

@ At the kernel level:

@ At the compiler level,

@ At the application level,

26/43

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

@ At the hardware level,

- new instructions

- a set of 128-bit registers (why 128-bit?)

- the #BR exception thrown by these new instructions
@ At the kernel level:

@ At the compiler level,

@ At the application level,

26/43

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

@ At the hardware level,
- new instructions
- a set of 128-bit registers (why 128-bit?)
- the #BR exception thrown by these new instructions
@ At the kernel level: a new #BR exception handler for
- allocating storage for bounds on-demand, and
- sending a signal to the program upon bound violation.
@ At the compiler level,

@ At the application level,

26/43

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

@ At the hardware level,
- new instructions
- a set of 128-bit registers (why 128-bit?)
- the #BR exception thrown by these new instructions
@ At the kernel level: a new #BR exception handler for
- allocating storage for bounds on-demand, and
- sending a signal to the program upon bound violation.
@ At the compiler level,
- new MPX transformation passes
- new runtime libraries for initialization/finalization routines, debug
information, and bridges to other non-MPX-protected libraries.
@ At the application level,

26/43

Supporting MPX

Adopting Intel MPX requires modifications at each level of the
hardware-software stack:

@ At the hardware level,
- new instructions
- a set of 128-bit registers (why 128-bit?)
- the #BR exception thrown by these new instructions
@ At the kernel level: a new #BR exception handler for
- allocating storage for bounds on-demand, and
- sending a signal to the program upon bound violation.
@ At the compiler level,
- new MPX transformation passes
- new runtime libraries for initialization/finalization routines, debug
information, and bridges to other non-MPX-protected libraries.
@ At the application level,
- manual change of troublesome C coding patterns
- multithreading issues

- interaction with other ISA extensions (e.g., TSX and SGX). 2043

What do we gain?

Approach Detects RIPEbugs Otherbugs Broken Perf (x)
Native: no protection - 64 (34) 6 (3) 0 (0) 1.00 (1.00)

MPX security levels:

L1: only-writes and no narrowing of bounds inter-object overwrites 14 (14) 3 (0) 3 (5 1.29 (1.18)
L2: no narrowing of bounds + inter-object overreads 14 (14) 3 (0) 2 (8) 2.39 (1.4¢)
L3: only-writes and narrowing of bounds all overwrites* 14 (0) 2 (0) 4 (7) 1.30 (1.19)
L4: narrowing of bounds (default) + all overreads* 14 (0) 0 (0) 4 (9) 252 (147)
L5:+ fchkp-first-field-has-own-bounds * +alloverreads 0 (-) 0 (-) 6 (-) 252 (-)
Lé6:+ BNDPRESERVE=1 (protect all code) all overflows in all code 0 (0) 0 (0) 34 (29 -
AddressSanitizer inter-object overflows 12 3 0 1.55

* except intra-object overwrites & overreads through the first field of struct, level 5 removes this limitation (only relevant for GCC version)

Evaluation results available on this website

27/43

https://intel-mpx.github.io/overview/

Lessons learned

@ New MPX instructions are not as fast as expected
- The average overhead of 20-50% is not significantly better than ASan
@ The supporting infrastructure is not mature enough

- MPX transformation in compilers might be buggy
- Other libraries needs to have MPX-enabled

@ MPX provides no temporal protection
- ASan has partial support
@ MPX does not support multithreading transparently
- Both false positives and false negatives if the application does not
conform to C11 memory model or if the compiler does not update
bounds in atomic primitives
@ MPX is not compatible with some C idioms
- e.g., using a struct field (usually the first field of struct) to access
other fields of the struct
- custom memory management, e.g., arbitrary type casts and
in-pointer bit twiddling

28/43

Outline

© Arm Memory Tagging Extension (MTE)

29/43

Overview

Introduced into the Armv8.5-A instruction set architecture (ISA) as
Memory Tagging Extension (MTE) in 2018.

@ 64-bit architecture only (AArch64)

@ As a hardware accelerator for detecting memory errors

30/43

Overview

Introduced into the Armv8.5-A instruction set architecture (ISA) as
Memory Tagging Extension (MTE) in 2018.

@ 64-bit architecture only (AArch64)

@ As a hardware accelerator for detecting memory errors

MTE implements a “lock-and-key” scheme for memory access:

@ Two types of tags:
- Every aligned 16 bytes of memory have a 4-bit tag stored separately,
i.e., not addressable (the “lock™)
- Every pointer has a 4-bit tag stored in the top byte (the “key")

@ LD/ST instructions check both tags, raise exception on mismatch

@ New instructions are introduced to manipulate the tags

30/43

MTE illustration

Memory Tag
(Lock)

Address Tag
(Key)

0x9000

0x8000

7
7
7
4
4
4
4
4
4
4
4
6
6
6
6
6

Source: article Delivering enhanced security through Memory Tagging Extension 31/43

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhanced-security-through-mte

Detecting heap overflow

char *l\= new char[20]; // @xl@@7fffffff124@

o o o

32/43

Detecting heap overflow

char *g = new char[20]; // 0xl@@7fffffff124@

—
B[327 = ... // heap-buffer-overflow M #* W

32/43

Detecting use-after-free

char *k= new char[20]; // 0xl@07fﬂ:ﬁcﬁc1240

o e o S

33/43

Detecting use-after-free

char *k= new char[20]; // 0xl@07ffﬁcfﬁc124@

delete [] I; // Memory is retagged @ = B

33/43

Detecting use-after-free

char *k= new char[20]; // 0xl@07ﬁcﬁcfﬁc124@

delete [] I; // Memory is retagged @ = B

Blel = ... // heap-use-after-free ll # B

33/43

Adoption in practice

o LLVM MemTagSanitizer detects a similar class of errors as
AddressSanitizer or HardwareAssistedAddressSanitizer, but with
much lower overhead.

T 1§

o L

Source of numbers: LLVM whitepaper on memory tagging

34/43

https://llvm.org/docs/MemTagSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://arxiv.org/pdf/1802.09517.pdf
https://source.android.com/docs/security/test/memory-safety/arm-mte

Adoption in practice

o LLVM MemTagSanitizer detects a similar class of errors as
AddressSanitizer or HardwareAssistedAddressSanitizer, but with
much lower overhead.

T -

Source of numbers: LLVM whitepaper on memory tagging

@ In Android 12, the kernel and userspace heap memory allocator
can augment each allocation with metadata, based on this article.
34/43

https://llvm.org/docs/MemTagSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
https://arxiv.org/pdf/1802.09517.pdf
https://source.android.com/docs/security/test/memory-safety/arm-mte

Outline

@ Capability Hardware Enhanced RISC Instructions (CHERI)

35/43

Re-defining pointers

A pointer is not only an N-bit value representing a memory address,
rather, it is a capability granting certain permissions to access a
restrictive range in the memory address space.

36/43

CHERI memory capability

1 bit capability tag: 15-bit: 64-bit:
1 - valid defines if and how 56-bit bounds and 8-bit
0 - invalid the capability is sealed flag. This is offset from
the Bounds field
Bit 128 127 109 94 63 0
Tag Permissions Object type Bounds Value
18-bit: 87-bit bound, limits
limits usage the scope of the capability
of the capability (31 + 56 bits)

A “pointer”, or rather, a memory capability, in the view of the
CHERI Morello architecture (source of image: Pawel Zalewski's blog post).

37/43

https://developer.arm.com/documentation/ddi0606/latest
https://www.thegoodpenguin.co.uk/blog/introducing-arm-morello-cheri-architecture/

CHERI basic idea

#include <stdio.h>
int x=1;

int secret_key = 4091;
int main() {

int *xp = &x;
p = p+l;
int y = xp;

printf("sd\in",y);

38/43

CHERI basic idea

#include <stdio.h>
int x=1;
int secret_key = 4091;
int main() {
int *xp = &x;
p = p+l;
int y = xp;
printf("%sd\n",y);
}

Q: What will happen?

38/43

CHERI basic idea

#include <stdio.h> x: signed int [@3, 0x14]
int secret_key = 4091; -
int main() {

int *xp = &x;

p = p+l;

int y = xp;

secret_key: signed int [@4, 0x18]
4091

printf("sd\in",y);
}

p: signed int* [@5, 0x20]

0x18

TTTTTTT

Q: What will happen? J

38/43

CHERI basic idea

#include <stdio.h> x: signed int [@3, 0x14] X: signed int [@3, 0x14]

.]
Ll

int secret_key = 4091;
int main() {

secret_key: signed int [@4, 0x18] secret_key: signed int [@4, 0x18]

int xp = &x;

p 4091 ‘ 4091 |
p = p+l;
int y = xp;

p: signed int* [@5, 0x20]

address 0x18 [

base 0x14
length 0x4
perms R/W

printf("sd\in",y); p: signed int* [@5, 0x20]

0x18

TTTTTTT

ITTTTTITTTTTITITIT

tag 1

Q: What will happen? J

38/43

CHERI
0000e

CHERI software stack

Completely re-vamped software stack:

o Compilers: custom-made Clang/LLVM
o Operating systems: hand-tuned FreeBSD, FreeRTOS
@ Applications: ported WebKit, OpenSSH, and PostgreSQL

39/43

Outline

@ Authenticated boot and Root-of-Trust (RoT)

40/43

Overview

Goal: ensures only trusted and authenticated software (e.g.,
firmware, kernel, application) runs on a computing system.

41/43

Overview

Goal: ensures only trusted and authenticated software (e.g.,
firmware, kernel, application) runs on a computing system.

T L L TP Lt ¥
Trusted Root Intermediate Intermediate

Component Bootloader 1 Bootloader n

[Public Key] [5ignature] [F’ublic Key} ’5ignature] [Pub\ic Key]

L SR

Authenticate Authenticate Authenticate
then Load then Load then Load

Final Stage
Bootloader

[Signature]

An abstract view of the authenticated boot process

41/43

Requirements for the root-of-trust (RoT) component

@ Boot process is guaranteed to start from the RoT component

@ The cryptographic key is non-readable, non-writable at any
privilege level
- The only way to use the key is to verify the signature via special

hardware instructions.

@ The RoT component, upon booting, must first measure the code
content of the first stage bootloader and validate the
measurement with the signature.

42/43

Requirements for the root-of-trust (RoT) component

@ Boot process is guaranteed to start from the RoT component

@ The cryptographic key is non-readable, non-writable at any
privilege level
- The only way to use the key is to verify the signature via special

hardware instructions.

@ The RoT component, upon booting, must first measure the code
content of the first stage bootloader and validate the
measurement with the signature.

Usually, the RoT component is encapsulated in a hardware module
named Hardware Security Module (HSM).

42/43

(End)

43/43

	security features, enablers, and accelerators
	Introduction
	Intel Control-flow Enforcement Technology (CET)
	Arm Pointer Authentication (PA)
	Intel Memory Protection Extensions (MPX)
	Arm Memory Tagging Extension (MTE)
	Capability Hardware Enhanced RISC Instructions (CHERI)
	Authenticated boot and Root-of-Trust (RoT)

