
CS 489 / 698: Software and Systems Security

Meng Xu (University of Waterloo)

Module 4: Bug Finding Tools and Practices
Part 1: fuzz testing

Fall 2024



Intro Evolution Coverage Loop Concolic Conclusion

Outline

1 Introduction

2 Evolution: from the rain-fuzzer to modern fuzzing

3 Program state coverage: “natural selection” in the fuzzing world

4 Loops: another trouble maker for branch coverage

5 Concolic execution: forced path exploration

6 Conclusion

2 / 29



Intro Evolution Coverage Loop Concolic Conclusion

History: why do we call it “fuzzing”?

In 80’s, someone remotely logged into a unix system over a dial-up
network link during a storm.

The rain caused a lot of random noise on the dial-up link.

And these noise caused applications that were using data off the
dial-up network line to crash.

Gist of the story? — The rain tests the program way better than
human beings.

3 / 29



Intro Evolution Coverage Loop Concolic Conclusion

History: why do we call it “fuzzing”?

In 80’s, someone remotely logged into a unix system over a dial-up
network link during a storm.

The rain caused a lot of random noise on the dial-up link.

And these noise caused applications that were using data off the
dial-up network line to crash.

Gist of the story? — The rain tests the program way better than
human beings.

3 / 29



Intro Evolution Coverage Loop Concolic Conclusion

History: why do we call it “fuzzing”?

In 80’s, someone remotely logged into a unix system over a dial-up
network link during a storm.

The rain caused a lot of random noise on the dial-up link.

And these noise caused applications that were using data off the
dial-up network line to crash.

Gist of the story? — The rain tests the program way better than
human beings.

3 / 29



Intro Evolution Coverage Loop Concolic Conclusion

The goal of fuzzing

Q: What is fuzzing doing essentially? Try to describe it in a way
that is as abstract/general as possible.

A: To drive the execution of a system into desired states.

4 / 29



Intro Evolution Coverage Loop Concolic Conclusion

The goal of fuzzing

Q: What is fuzzing doing essentially? Try to describe it in a way
that is as abstract/general as possible.

A: To drive the execution of a system into desired states.

4 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Elaborating on the definition

What is special about the target system?

Do we know the source code?
Do we know the input format?
What are the challenges when executing the “system”?

What do we mean by a state?

How can we tell that one state is different from another?

What do we mean by desired?

New/unseen behavior?
Closeness to targeted execution points?

What do we mean by driving the execution?

What can possibly be one mutation?
How do you select the next mutation?

5 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Outline

1 Introduction

2 Evolution: from the rain-fuzzer to modern fuzzing

3 Program state coverage: “natural selection” in the fuzzing world

4 Loops: another trouble maker for branch coverage

5 Concolic execution: forced path exploration

6 Conclusion

6 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Genetic algorithm

Training a program to play the snake game with genetic algorithm

7 / 29

https://www.youtube.com/watch?v=zIkBYwdkuTk


Intro Evolution Coverage Loop Concolic Conclusion

Feedback-guided evolution process

Seed Pool Seed Test Case
Execution Engine

Feedback Correctness

Initial Seeds

Seed 
Selection

Mutation 
Strategy Target System

Instrumentation

Report
SeedGood 

Seed ? Violations

Yes

Natural selection — survival of the fittest

8 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Feedback-guided evolution process

Seed Pool Seed Test Case
Execution Engine

Feedback Correctness

Initial Seeds

Seed 
Selection

Mutation 
Strategy Target System

Instrumentation

Report
SeedGood 

Seed ? Violations

Yes

Natural selection — survival of the fittest

8 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Demo with AFL++

Acknowledgement: this demo is based on one of the examples
used in the “Fuzzing with AFL” workshop by Michael Macnair.

9 / 29

https://github.com/mykter/afl-training


Intro Evolution Coverage Loop Concolic Conclusion

Outline

1 Introduction

2 Evolution: from the rain-fuzzer to modern fuzzing

3 Program state coverage: “natural selection” in the fuzzing world

4 Loops: another trouble maker for branch coverage

5 Concolic execution: forced path exploration

6 Conclusion

10 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Intuition: what makes a high-quality seed?

1 pub fn foo(a: num, b: num) {
2 let c = if (a >= 0) {
3 1

4 } else {
5 2

6 };

7

8 // irrelevant operations

9

10 let d = if (b >= 0) {
11 2

12 } else {
13 3

14 };

15

16 // irrelevant operations

17

18 assert!(c != d);

19 }

Q: What is the testing plan?

Cover every line?

Cover every if-else branch?

Cover every exit status?

Cover every path?

=⇒ if the fuzzer generates an
input that expands the coverage,
that input is a good seed.

11 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Intuition: what makes a high-quality seed?

1 pub fn foo(a: num, b: num) {
2 let c = if (a >= 0) {
3 1

4 } else {
5 2

6 };

7

8 // irrelevant operations

9

10 let d = if (b >= 0) {
11 2

12 } else {
13 3

14 };

15

16 // irrelevant operations

17

18 assert!(c != d);

19 }

Q: What is the testing plan?

Cover every line?

Cover every if-else branch?

Cover every exit status?

Cover every path?

=⇒ if the fuzzer generates an
input that expands the coverage,
that input is a good seed.

11 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Intuition: what makes a high-quality seed?

1 pub fn foo(a: num, b: num) {
2 let c = if (a >= 0) {
3 1

4 } else {
5 2

6 };

7

8 // irrelevant operations

9

10 let d = if (b >= 0) {
11 2

12 } else {
13 3

14 };

15

16 // irrelevant operations

17

18 assert!(c != d);

19 }

Q: What is the testing plan?

Cover every line?

Cover every if-else branch?

Cover every exit status?

Cover every path?

=⇒ if the fuzzer generates an
input that expands the coverage,
that input is a good seed.

11 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Intuition: what makes a high-quality seed?

1 pub fn foo(a: num, b: num) {
2 let c = if (a >= 0) {
3 1

4 } else {
5 2

6 };

7

8 // irrelevant operations

9

10 let d = if (b >= 0) {
11 2

12 } else {
13 3

14 };

15

16 // irrelevant operations

17

18 assert!(c != d);

19 }

Q: What is the testing plan?

Cover every line?

Cover every if-else branch?

Cover every exit status?

Cover every path?

=⇒ if the fuzzer generates an
input that expands the coverage,
that input is a good seed.

11 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Illustration of different coverage metrics

1 pub fn foo(a: num, b: num) {
2 let c = if (a >= 0) {
3 1

4 } else {
5 2

6 };

7

8 // irrelevant operations

9

10 let d = if (b >= 0) {
11 2

12 } else {
13 3

14 };

15

16 // irrelevant operations

17

18 assert!(c != d);

19 }

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

12 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Illustration of different coverage metrics

Cover every line?

- Block coverage

Cover every if-else branch?

- Branch coverage

Cover every exit status?

- Return coverage

Cover every path?

- Path coverage

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

13 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Illustration of different coverage metrics

Cover every line?

- Block coverage

Cover every if-else branch?

- Branch coverage

Cover every exit status?

- Return coverage

Cover every path?

- Path coverage

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

13 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Path coverage: a theoretical optimum

Claim: A program is saturately tested if we obtain a set of inputs
that covers every feasible path of the program CFG.

NOTE: feasible paths include paths that leads to explicit and
implicit panics.

14 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Path coverage demo

a = 1, b = 1

a = 1, b = -1

a = -1, b = 1

a = -1, b = -1

No new program behaviors can be
discovered =⇒ the program is
saturately tested

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

15 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Path coverage demo

a = 1, b = 1

a = 1, b = -1

a = -1, b = 1

a = -1, b = -1

No new program behaviors can be
discovered =⇒ the program is
saturately tested

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

15 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Path coverage demo

a = 1, b = 1

a = 1, b = -1

a = -1, b = 1

a = -1, b = -1

No new program behaviors can be
discovered =⇒ the program is
saturately tested

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

15 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Path coverage demo

a = 1, b = 1

a = 1, b = -1

a = -1, b = 1

a = -1, b = -1

No new program behaviors can be
discovered =⇒ the program is
saturately tested

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

15 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Path coverage demo

a = 1, b = 1

a = 1, b = -1

a = -1, b = 1

a = -1, b = -1

No new program behaviors can be
discovered =⇒ the program is
saturately tested

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

15 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Path coverage demo

a = 1, b = 1

a = 1, b = -1

a = -1, b = 1

a = -1, b = -1

No new program behaviors can be
discovered =⇒ the program is
saturately tested

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

15 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Why not path coverage in practice?

Short answer: I don’t know... AFL (American Fuzzy Lop) didn’t
adopt path coverage, so everyone follows suite...

Long answer:

tracking block / branch coverage is stateless while tracking path
coverage requires stateful instrumentations.

different parts of the execution are not necessarily related, i.e., a
new path does not necessarily mean interesting findings.

it is hard to quantitatively measure the completeness of path
coverage (because of infeasible paths). But by default, all
branches should be somewhat feasible.

In practice, branch coverage hits a nice balance between
effectiveness and easiness of instrumentation.

16 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Why not path coverage in practice?

Short answer: I don’t know... AFL (American Fuzzy Lop) didn’t
adopt path coverage, so everyone follows suite...

Long answer:

tracking block / branch coverage is stateless while tracking path
coverage requires stateful instrumentations.

different parts of the execution are not necessarily related, i.e., a
new path does not necessarily mean interesting findings.

it is hard to quantitatively measure the completeness of path
coverage (because of infeasible paths). But by default, all
branches should be somewhat feasible.

In practice, branch coverage hits a nice balance between
effectiveness and easiness of instrumentation.

16 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Why not path coverage in practice?

Short answer: I don’t know... AFL (American Fuzzy Lop) didn’t
adopt path coverage, so everyone follows suite...

Long answer:

tracking block / branch coverage is stateless while tracking path
coverage requires stateful instrumentations.

different parts of the execution are not necessarily related, i.e., a
new path does not necessarily mean interesting findings.

it is hard to quantitatively measure the completeness of path
coverage (because of infeasible paths). But by default, all
branches should be somewhat feasible.

In practice, branch coverage hits a nice balance between
effectiveness and easiness of instrumentation.

16 / 29



Intro Evolution Coverage Loop Concolic Conclusion

What’s wrong with branch coverage?

a = 1, b = 1

a = -1, b = -1

Two seeds already covered most
of the branches.

a = 1, b = -1

A seed that yields new path but is
considered as a bad seed as it
yields no new branch coverage.

=⇒ fuzzer is not rewarded by
mutating a and b, hence, lowering
their priorities and the panic case
may never be found,

especially
when fuzzing complex CFGs

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

17 / 29



Intro Evolution Coverage Loop Concolic Conclusion

What’s wrong with branch coverage?

a = 1, b = 1

a = -1, b = -1

Two seeds already covered most
of the branches.

a = 1, b = -1

A seed that yields new path but is
considered as a bad seed as it
yields no new branch coverage.

=⇒ fuzzer is not rewarded by
mutating a and b, hence, lowering
their priorities and the panic case
may never be found,

especially
when fuzzing complex CFGs

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

17 / 29



Intro Evolution Coverage Loop Concolic Conclusion

What’s wrong with branch coverage?

a = 1, b = 1

a = -1, b = -1

Two seeds already covered most
of the branches.

a = 1, b = -1

A seed that yields new path but is
considered as a bad seed as it
yields no new branch coverage.

=⇒ fuzzer is not rewarded by
mutating a and b, hence, lowering
their priorities and the panic case
may never be found,

especially
when fuzzing complex CFGs

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

17 / 29



Intro Evolution Coverage Loop Concolic Conclusion

What’s wrong with branch coverage?

a = 1, b = 1

a = -1, b = -1

Two seeds already covered most
of the branches.

a = 1, b = -1

A seed that yields new path but is
considered as a bad seed as it
yields no new branch coverage.

=⇒ fuzzer is not rewarded by
mutating a and b, hence, lowering
their priorities and the panic case
may never be found,

especially
when fuzzing complex CFGs

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

17 / 29



Intro Evolution Coverage Loop Concolic Conclusion

What’s wrong with branch coverage?

a = 1, b = 1

a = -1, b = -1

Two seeds already covered most
of the branches.

a = 1, b = -1

A seed that yields new path but is
considered as a bad seed as it
yields no new branch coverage.

=⇒ fuzzer is not rewarded by
mutating a and b, hence, lowering
their priorities and the panic case
may never be found, especially
when fuzzing complex CFGs

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

17 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Outline

1 Introduction

2 Evolution: from the rain-fuzzer to modern fuzzing

3 Program state coverage: “natural selection” in the fuzzing world

4 Loops: another trouble maker for branch coverage

5 Concolic execution: forced path exploration

6 Conclusion

18 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Looping example

1 pub fn looping(
2 x: num,
3 y: num,
4 n: num
5 ) {

6 let i = 0;
7 while (x < n) {
8 if (y > x) {
9 x++;

10 }

11 else {
12 y++;

13 }

14 i++;

15 }

16 assert!(i != 7);

17 }

[B0]

i = 0

x < n ?

[B1]

y > x

[B2]

[B3]

x++

[B4]

y++

[B5]

return

[B6]

panic
[B7]

i++

T F

T F T F

y <= x < n

1 y++ until y == x

2 y++; x++ until x == n

x < y <= n

1 x++ until x == y

2 y++; x++ until x == n

x < n <= y

1 x++ until x == n

19 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Looping example

1 pub fn looping(
2 x: num,
3 y: num,
4 n: num
5 ) {

6 let i = 0;
7 while (x < n) {
8 if (y > x) {
9 x++;

10 }

11 else {
12 y++;

13 }

14 i++;

15 }

16 assert!(i != 7);

17 }

[B0]

i = 0

x < n ?

[B1]

y > x

[B2]

[B3]

x++

[B4]

y++

[B5]

return

[B6]

panic
[B7]

i++

T F

T F T F

y <= x < n

1 y++ until y == x

2 y++; x++ until x == n

x < y <= n

1 x++ until x == y

2 y++; x++ until x == n

x < n <= y

1 x++ until x == n

19 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Looping example

1 pub fn looping(
2 x: num,
3 y: num,
4 n: num
5 ) {

6 let i = 0;
7 while (x < n) {
8 if (y > x) {
9 x++;

10 }

11 else {
12 y++;

13 }

14 i++;

15 }

16 assert!(i != 7);

17 }

[B0]

i = 0

x < n ?

[B1]

y > x

[B2]

[B3]

x++

[B4]

y++

[B5]

return

[B6]

panic
[B7]

i++

T F

T F T F

y <= x < n

1 y++ until y == x

2 y++; x++ until x == n

x < y <= n

1 x++ until x == y

2 y++; x++ until x == n

x < n <= y

1 x++ until x == n

19 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Looping example

1 pub fn looping(
2 x: num,
3 y: num,
4 n: num
5 ) {

6 let i = 0;
7 while (x < n) {
8 if (y > x) {
9 x++;

10 }

11 else {
12 y++;

13 }

14 i++;

15 }

16 assert!(i != 7);

17 }

[B0]

i = 0

x < n ?

[B1]

y > x

[B2]

[B3]

x++

[B4]

y++

[B5]

return

[B6]

panic
[B7]

i++

T F

T F T F

y <= x < n

1 y++ until y == x

2 y++; x++ until x == n

x < y <= n

1 x++ until x == y

2 y++; x++ until x == n

x < n <= y

1 x++ until x == n

19 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Solution: bounded loop unrolling

[B0]

i = 0

x < n ?

[B1]

y > x

[B2]

i == 7 ?

[B3]

x++

[B4]

y++

[B5]

return

[B6]

panic
[B7]

i++

T F

T F T F

[B0 1]

x < n ?

[B1 1]

y > x

[B2 1]

i == 7 ?

[B3 1]

x++

[B4 1]

y++

[B5 1]

return

[B6 1]

panic
[B7 1]

i++

T F

T F T F

20 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Solution: bounded loop unrolling;

[B0]

i = 0

x < n ?

[B1]

y > x

[B2]

i == 7 ?

[B3]

x++

[B4]

y++

[B5]

return

[B6]

panic
[B7]

i++

T F

T F T F

[B0 1]

x < n ?

[B1 1]

y > x

[B2 1]

i == 7 ?

[B3 1]

x++

[B4 1]

y++

[B5 1]

return

[B6 1]

panic
[B7 1]

i++

T F

T F T F

[B0 2]

x < n ?

[B1 2]

y > x

[B2 2]

i == 7 ?

[B3 2]

x++

[B4 2]

y++

[B5 2]

return

[B6 2]

panic
[B7 2]

i++

T F

T F T F

21 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Solution: bounded loop unrolling;

[B0]

i = 0

x < n ?

[B1]

y > x

[B2]

i == 7 ?

[B3]

x++

[B4]

y++

[B5]

return

[B6]

panic
[B7]

i++

T F

T F T F

[B0 1]

x < n ?

[B1 1]

y > x

[B2 1]

i == 7 ?

[B3 1]

x++

[B4 1]

y++

[B5 1]

return

[B6 1]

panic
[B7 1]

i++

T F

T F T F

[B0 2]

x < n ?

[B1 2]

y > x

[B2 2]

i == 7 ?

[B3 2]

x++

[B4 2]

y++

[B5 2]

return

[B6 2]

panic
[B7 2]

i++

T F

T F T F

[B0 3]

x < n ?

[B1 3]

y > x

[B2 2]

i == 7 ?

[B3 2]

x++

[B4 2]

y++

[B5 2]

return

[B6 2]

panic
[B7 2]

i++

T F

T F T F

22 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Outline

1 Introduction

2 Evolution: from the rain-fuzzer to modern fuzzing

3 Program state coverage: “natural selection” in the fuzzing world

4 Loops: another trouble maker for branch coverage

5 Concolic execution: forced path exploration

6 Conclusion

23 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Narrow-range constraints

Random input generation is not suitable for passing narrow-ranged
constraints. For example:

1 fn foo(x: u64, y: u64) {
2 if x + y = 42 {
3 panic!();

4 }

5 }

If x and y are randomly generated u64, the chances that their sum
equals 42 is extremely low.

On the other hand, this is much easier for SMT solvers to produce
valid values for x and y that satisfies this constraint.

24 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Narrow-range constraints

Random input generation is not suitable for passing narrow-ranged
constraints. For example:

1 fn foo(x: u64, y: u64) {
2 if x + y = 42 {
3 panic!();

4 }

5 }

If x and y are randomly generated u64, the chances that their sum
equals 42 is extremely low.

On the other hand, this is much easier for SMT solvers to produce
valid values for x and y that satisfies this constraint.

24 / 29



Intro Evolution Coverage Loop Concolic Conclusion

The general intuition behind concolic execution

Let fuzzing do must of the state exploration. If the coverage
saturates, i.e., the fuzzer is not able to make progress on finding new
coverage, invoke the symbolic reasoning engine to breakthrough.

25 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Concolic execution demo

a = 1, b = 1

We start with a sample input for the
program, and execute the input concretely
to obtain an execution trace.

Query 1: given constraint a ≥ 0 ∧ b ≥ 0
and the program, can we toggle c ̸= d?
=⇒ unsat, infeasible path

Query 2: given constraint a ≥ 0 and the
program, can we toggle b ≥ 0?
=⇒ sat, a = 1, b = −1

Query 3: given constraint true and the
program, can we toggle a ≥ 0?
=⇒ sat, a = −1

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

26 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Concolic execution demo

a = 1, b = 1

We start with a sample input for the
program, and execute the input concretely
to obtain an execution trace.

Query 1: given constraint a ≥ 0 ∧ b ≥ 0
and the program, can we toggle c ̸= d?
=⇒ unsat, infeasible path

Query 2: given constraint a ≥ 0 and the
program, can we toggle b ≥ 0?
=⇒ sat, a = 1, b = −1

Query 3: given constraint true and the
program, can we toggle a ≥ 0?
=⇒ sat, a = −1

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

26 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Concolic execution demo

a = 1, b = 1

We start with a sample input for the
program, and execute the input concretely
to obtain an execution trace.

Query 1: given constraint a ≥ 0 ∧ b ≥ 0
and the program, can we toggle c ̸= d?
=⇒ unsat, infeasible path

Query 2: given constraint a ≥ 0 and the
program, can we toggle b ≥ 0?
=⇒ sat, a = 1, b = −1

Query 3: given constraint true and the
program, can we toggle a ≥ 0?
=⇒ sat, a = −1

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

26 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Concolic execution demo

a = 1, b = 1

We start with a sample input for the
program, and execute the input concretely
to obtain an execution trace.

Query 1: given constraint a ≥ 0 ∧ b ≥ 0
and the program, can we toggle c ̸= d?
=⇒ unsat, infeasible path

Query 2: given constraint a ≥ 0 and the
program, can we toggle b ≥ 0?
=⇒ sat, a = 1, b = −1

Query 3: given constraint true and the
program, can we toggle a ≥ 0?
=⇒ sat, a = −1

[B0]

a >= 0 ?

[B1]

c = 1

[B2]

c = 2

[B3]

. . .

[B4]

b >= 0 ?

[B5]

d = 2

[B6]

d = 3

[B7]

. . .

[B8]

c != d ?

[B9]

return

[B10]

panic

T F

T F

T F

26 / 29



Intro Evolution Coverage Loop Concolic Conclusion

Outline

1 Introduction

2 Evolution: from the rain-fuzzer to modern fuzzing

3 Program state coverage: “natural selection” in the fuzzing world

4 Loops: another trouble maker for branch coverage

5 Concolic execution: forced path exploration

6 Conclusion

27 / 29



Intro Evolution Coverage Loop Concolic Conclusion

A comprehensive survey of current works

Fuzzing Family Tree

28 / 29

https://fuzzing-survey.org/


Intro Evolution Coverage Loop Concolic Conclusion

⟨ End ⟩

29 / 29


	fuzz testing
	Introduction
	Evolution: from the rain-fuzzer to modern fuzzing
	Program state coverage: ``natural selection'' in the fuzzing world
	Loops: another trouble maker for branch coverage
	Concolic execution: forced path exploration
	Conclusion


