
CS 453/698 Assignment 4

TA: Ruizhe Wang (ruizhe.wang@uwaterloo.ca)
Office hours: Fridays 1pm to 2pm

Due date: December 3rd, 2024

Escaping seccomp-based Sandboxes

Environment preparation

We recommend using the ugster VM for this assignment. The portal.sh script, as usual, can be
found in http://ugster72d.student.cs.uwaterloo.ca:8000.

• If you have already registered on ugster for A3, you can re-use your current VM. If you would like
to reset the VM to a clean state for the new assignment, please reset your VM by ./portal.sh

destroy and then ./portal.sh launch. However, be careful that this will completely wipe-out
your data, so if you are still working on A3 or you’d like to save your work on A3, please do so
before wiping out the machine.

• If you have not registered on ugster for A3, please register on the ugster platform with a new
pair of keys. This can be done with ./portal.sh register.

• In either case, please take care of your private key! if you lose your private key after successful
registration, you will be locked out of the system completely. There is no way back. You can
request a key reset on Piazza, and every reset means a 1 pt deduction on the whole assignment.

After you register to the ugster platform and have your VM launched, please SSH into your VM and
run the following command from the directory /home/vagrant to setup the VM for A4:� �
wget http://ugster72d.student.cs.uwaterloo.ca/a4/a4_setup.sh && \

chmod +x a4_setup.sh && ./a4_setup.sh� �
This will create four binary executable files sandbox[1-4] and a text file flag in /home/vagrant.

1

mailto:ruizhe.wang@uwaterloo.ca
ugster72d.student.cs.uwaterloo.ca:8000
http://ugster72d.student.cs.uwaterloo.ca:8000


Tasks

We have provided four binary executable files: sandbox1, sandbox2, sandbox3, and sandbox4. Each
of these programs implements a seccomp-based sandbox and employs some distinct filtering rules.
The programs are designed to execute external programs sploit1, sploit2, sploit3, and sploit4

respectively. Additionally, we have provided a flag file that stores a flag you required to get.

Your task is to write four exploit programs in C language, namely sploit1.c, sploit2.c, sploit3.c,
and sploit4.c, and compile them into four binary executable files sploit1, sploit2, sploit3, and
sploit4, respectively, in such a way that when running the sandbox programs, the contents of the
flag file are written into standard output. You are expected to submit the four source code files of
your exploit programs with a Makefile, such that we can get your compiled binary executable files by
simply typing make in the terminal.

Below is an example demonstrating how to test your code and run the sandbox programs:� �
// compile your exploit programs

// (should produces sploit[1-4])

$ make

// run the sandbox programs

// (your exploit programs should be in the same folder as the sandbox programs)

$ ./sandbox1

the flag should be written to standard output and displayed here

$ ./sandbox2

the flag should be written to standard output and displayed here

$ ./sandbox3

the flag should be written to standard output and displayed here

$ ./sandbox4

the flag should be written to standard output and displayed here� �
NOTE: When grading your submissions, we will replace the contents of the flag file. Therefore, you
should NOT hardcode the contents of the flag file in your program.

Each sploit carries an equal weight of 10 pts, making a total of 40 pts.

Tips to make your life a bit easier

• It might be a good idea to refresh your knowledge about system calls from CS 350 or whatever
operating system courses you have taken.

• strace is a handy utility which will tell you the system calls invoked by a process.

• While reading the assembly can be a way to extract the seccomp-bpf rules enforced in each
sandbox, it is not recommended. There are other ways of extracting the rules enforced.

2

https://man7.org/linux/man-pages/man1/strace.1.html


Deliverables

All assignment submissions take place on LEARN dropbox.

You are required to hand in a single compressed .zip file that contains the following:

• sploit1.c, sploit2.c, sploit3.c, sploit4.c: The exploit programs.

• Makefile: A Makefile that compiles all your exploit programs.

• write-up.pdf (optional): An optional write-up in PDF format (see below).

Write-up. We use an auto-grader to check the code submitted for this assignment. While efficient,
the auto-grader can only provide a binary pass/fail result, which rules out the possibility of awarding
partial marks for each task. As a result, we also solicit a write-up submissions.

The write-up can include information about any of the exploits you attempted as long as you believe
the information is relevant for the grading. Typical things to be put in the write-up include:

• How the code you submitted is expected to work

• How you manage to get certain hardcoded information in the code

• Explanation on critical steps / algorithms in the code

• Any special situations the TAs need to be aware when running the code

• If you do not complete the full task, how far you have explored

On the other hand, if you are confident that all your code will work out of the box and can tolerate a
zero score for any tasks on which the auto-grader fails to execute your code, you do not need to submit
a write-up (or you can omit certain tasks in the write-up).

3


