CS 458 / 658: Computer Security and Privacy Module 6 - Data Security and Privacy Part 3 - Differential privacy

Meng Xu (University of Waterloo)

Winter 2022

Dinur-Nissim	Intuition	Definition	Mechanisms	More
•0000000000	00000000	0000000000	000000000	000
Outline				

1 The Dinur-Nissim reconstruction attack

- 2 The intuition behind differential privacy
- 3 A formal definition of differential privacy
- 4 Perturbation mechanisms
- 5 More topics on differential privacy

In all the cases covered in Part 2, we always give a *faithful* aggregation result for each query sent from the data analyst.

In all the cases covered in Part 2, we always give a *faithful* aggregation result for each query sent from the data analyst.

For example:

- Inference of the salary
- Census reconstruction attack

In all the cases covered in Part 2, we always give a *faithful* aggregation result for each query sent from the data analyst.

For example:

- Inference of the salary
- Census reconstruction attack

Q: How about we add noise to the query response?

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00●00000000	0000000	0000000000	0000000000	000
Formalize o	ur setun			

Dinur-Nissim	Intuition	Definition	Mechanisms	More
oo●oooooooo	00000000	0000000000	000000000	000
Formalize our s	setup			

• There is a database, *D*, which potentially contains sensitive information about individuals.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
oo●oooooooo	00000000	0000000000	000000000	000
Formalize our s	setup			

- There is a database, *D*, which potentially contains sensitive information about individuals.
- The database curator has access to the full database. We assume the curator is trusted.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
oo●oooooooo	00000000	0000000000	000000000	000
Formalize our s	setup			

- There is a database, *D*, which potentially contains sensitive information about individuals.
- The database curator has access to the full database. We assume the curator is trusted.
- The data analyst consumes the data by asking a series of queries to the curator. Each query is denoted as S and the curator provides a response to query S with R_S.
 The analyst may be honest or malicious.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
oo●oooooooo	00000000	0000000000	000000000	000
Formalize our s	setup			

- There is a database, *D*, which potentially contains sensitive information about individuals.
- The database curator has access to the full database. We assume the curator is trusted.
- The data analyst consumes the data by asking a series of queries to the curator. Each query is denoted as S and the curator provides a response to query S with R_S.
 The analyst may be honest or malicious.
- The way in which the curator responds to queries is called the mechanism. Formally, $M: S \rightarrow R_S$. We'd like a mechnism that
 - gives statistically useful responses but
 - avoids leaking sensitive information about individuals.

000000000000	00000000	00000000000	0000000000	000
Dinur-Nissim	Intuition	Definition	Mechanisms	More

Bad news: adding noise is tricky

Dinur-Nissim reconstruction attack: if the mechanism adds too little noise when responding to aggregated queries, an adversary can reconstruct the database *with high accuracy and efficiency*.

Dinur-Nissim reconstruction attack: if the mechanism adds too little noise when responding to aggregated queries, an adversary can reconstruct the database *with high accuracy and efficiency*.

This mechanism is called **blatantly non-private**.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
0000●0000000	00000000	0000000000	000000000	000
Attack setup				

We consider the database to be a collection of n records

$$D = \{d_1, d_2, ..., d_n\}$$

where each record corresponds to one individual.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
0000000000	00000000	0000000000	000000000	000
Attack setup				

We consider the database to be a collection of n records

$$D = \{d_1, d_2, ..., d_n\}$$

where each record corresponds to one individual.

Each record d_i may consist of k attributes. For simplicity, we assume that the adversary already knows k - 1 attribute for all records and the only attribute unknown to the adversary is a single bit.

$$D = \begin{bmatrix} a_{\{1,1\}} & a_{\{1,2\}} & \dots & a_{\{1,k-1\}} & b_1 \\ a_{\{2,1\}} & a_{\{2,2\}} & \dots & a_{\{2,k-1\}} & b_2 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{\{n,1\}} & a_{\{n,2\}} & \dots & a_{\{n,k-1\}} & b_n \end{bmatrix}$$

A				
00000000000	0000000	0000000000	000000000	000
Dinur-Nissim		Definition	Mechanisms	More

llach	secup	елапріє	

Name	ZIP	DOB	COVID
Alice	K8V 7R6	5/2/1984	1
Bob	V5K 5J9	2/8/2001	0
Charlie	V1C 7J2	10/10/1954	1
David	R4K 5T1	4/4/1944	0
Eve	G7N 8Y3	1/1/1980	1
	995 m	ore entries	1

Dinur-Nissim	Intuition	Definition	Mechanisms	More
000000●00000	0000000	0000000000	000000000	000
Threat model				

The attacker is allowed to ask aggregated queries, and perhaps the most basic type of aggregate query in this case is a counting query, i.e., how many records in D that satisfies a condition $C(a_{\{*,1\}}, a_{\{*,2\}}, \ldots, a_{\{*,k-1\}})$ have their secret bit set to 1?

Dinur-Nissim	Intuition	Definition	Mechanisms	More
000000●00000	0000000	0000000000	000000000	000
Threat model				

The attacker is allowed to ask aggregated queries, and perhaps the most basic type of aggregate query in this case is a counting query, i.e., how many records in D that satisfies a condition $C(a_{\{*,1\}}, a_{\{*,2\}}, \ldots, a_{\{*,k-1\}})$ have their secret bit set to 1?

For example: How many rows satisfying condition (Name = "David" OR DOB > 1980) have COVID = 1.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
000000●00000	0000000	0000000000	000000000	000
Threat model				

The attacker is allowed to ask aggregated queries, and perhaps the most basic type of aggregate query in this case is a counting query, i.e., how many records in D that satisfies a condition $C(a_{\{*,1\}}, a_{\{*,2\}}, \ldots, a_{\{*,k-1\}})$ have their secret bit set to 1?

For example: How many rows satisfying condition (Name = "David" OR DOB > 1980) have COVID = 1.

The key point is, the adversary is allowed to pick arbitrary rows in the database using their background knowledge to formulate queries. Formally, $S \in \{0,1\}^n$. An example is $S = [0,1,1,1,\ldots,0]$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
000000000000	00000000	0000000000	000000000	000
Curator mecha	nism			

Upon receiving a query S, the curator will first calculate the true answer $A(S) = S \times [b_1, b_2, \dots, b_n]$.

$$R_S = A(S)$$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
ooooooooooo	00000000	0000000000	000000000	000
Curator mecha	nism			

Upon receiving a query S, the curator will first calculate the true answer $A(S) = S \times [b_1, b_2, \dots, b_n]$.

$$R_S = A(S) + E$$

And subsequently add a random noise E to the true answer.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
000000000000	00000000	0000000000		000
The inefficien	t attack			

Theorem: If the analyst is allowed to ask 2^n queries to a dataset of n users, and the curator adds noise with some bound E, then based on the results, the adversary can reconstruct the database in all but at most 4E positions.

Theorem: If the analyst is allowed to ask 2^n queries to a dataset of n users, and the curator adds noise with some bound E, then based on the results, the adversary can reconstruct the database in all but at most 4E positions.

e.g., $E = \frac{n}{400} \implies$ reconstruction of 99% entries in the database.

Theorem: If the analyst is allowed to ask 2^n queries to a dataset of n users, and the curator adds noise with some bound E, then based on the results, the adversary can reconstruct the database in all but at most 4E positions.

e.g., $E = \frac{n}{400} \implies$ reconstruction of 99% entries in the database.

Algorithm:

- For an attacker, there are only 2^n database candidates.
- For each candidate database $C \in \{0,1\}^n$, if there exists a query S such that $|\Sigma_{i \in S} C[i] R_S| > E$, rule out C.
- Any database candidate not ruled out (C) differs with the actual database (D) by 4E at max.

Proof: Any database candidate not ruled out (C) differs with the actual database (D) by 4E at max

Consider query $I_0 \leftarrow \{i | D[i] = 0\}$, we know that

 $|\Sigma_{i \in I_0} C[i] - R_{I_0}| \le E, |\Sigma_{i \in I_0} D[i] - R_{I_0}| \le E, \implies \Sigma_{i \in I_0} |C[i] - D[i]| \le 2E$

Consider query $I_1 \leftarrow \{i | D[i] = 1\}$, we know that

 $|\Sigma_{i \in I_1} C[i] - R_{I_1}| \le E, |\Sigma_{i \in I_1} D[i] - R_{I_1}| \le E, \implies \Sigma_{i \in I_1} |C[i] - D[i]| \le 2E$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
oooooooooooo	00000000	0000000000	0000000000	000
The efficient a	ttack			

Theorem: If the analyst is allowed to ask O(n) queries to a dataset of *n* users, and the curator adds noise with some bound $E = O(\alpha \sqrt{n})$, then based on the results, a computationally efficient adversary can reconstruct the database in all but at most $\Theta(\alpha^2 n)$ positions.

Definition: A mechanism is blatantly non-private if an adversary can reconstruct a database that matches with the true database in

all but o(n) entries.

 Dinur-Nissim
 Intuition
 Definition
 Mechanisms
 More

 00000000000
 00000000000
 00000000000
 0000000000
 0000000000

 Blatantly non-private
 0000000000
 0000000000
 0000000000

Definition: A mechanism is blatantly non-private if an adversary can reconstruct a database that matches with the true database in all but o(n) entries.

NOTE 1: According to the efficient attack scenario, adding a noise of $O(\sqrt{n})$ is blatantly non-private.

Definition: A mechanism is blatantly non-private if an adversary can reconstruct a database that matches with the true database in all but o(n) entries.

NOTE 1: According to the efficient attack scenario, adding a noise of $O(\sqrt{n})$ is blatantly non-private.

NOTE 2: This definition does not specify whether a mechanism is private. Instead, it defines a criteria to show that a mechanism is clearly not private.

Definition: A mechanism is blatantly non-private if an adversary can reconstruct a database that matches with the true database in all but o(n) entries.

NOTE 1: According to the efficient attack scenario, adding a noise of $O(\sqrt{n})$ is blatantly non-private.

NOTE 2: This definition does not specify whether a mechanism is private. Instead, it defines a criteria to show that a mechanism is clearly not private.

Differential privacy, on the other hand, is a definition on whether a mechanism is private.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	•0000000	0000000000	0000000000	000
Outline				

- 1 The Dinur-Nissim reconstruction attack
- 2 The intuition behind differential privacy
- 3 A formal definition of differential privacy
- 4 Perturbation mechanisms
- 5 More topics on differential privacy

We add more noise such that the adversary cannot reconstruct the database. But how much more is more?

We add more noise such that the adversary cannot reconstruct the database. But how much more is more?

Well, that depends on what your privacy goal is.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	0000000	0000000000	000000000	000
An informal pr	rivacy goal			

Consider a setting where

- I hand in my data to a database D (which is trusted),
- an algorithm A runs over D and releases a set of data T,
- the adversary knows the details of A and has access to T.

Consider a setting where

- I hand in my data to a database D (which is trusted),
- an algorithm A runs over D and releases a set of data T,
- the adversary knows the details of A and has access to T.

A privacy notion: I don't care if the adversary can reconstruct the entire database or not. All I care is that the adversary learns (almost) nothing new about me even after seeing A and T, and regardless of what other datasets are available.

Dinur-Nissim cooocooo loo doooo Definition cooocooo Mechanisms cooocooo An informal privacy goal

Consider a setting where

- I hand in my data to a database D (which is trusted),
- an algorithm A runs over D and releases a set of data T,
- the adversary knows the details of A and has access to T.

A privacy notion: I don't care if the adversary can reconstruct the entire database or not. All I care is that the adversary learns (almost) nothing new about me even after seeing A and T, and regardless of what other datasets are available.

This privacy notion makes no assumption about what background knowledge the adversary might possess:

- If the adversary does not know whether I am in the database, it won't know that either after seeing the result.
- If the adversary already knows whether I am in the database, it won't know more about the secret values I supplied.
Dinur-Nissim Definition Definition Mechanisms More 0000

Background knowledge 2: CS458 is challenging and historical records show that most students score in the range of [45, 55].

Background knowledge 2: CS458 is challenging and historical records show that most students score in the range of [45, 55].

Algorithm: You are given an algorithm that

- allows you to make 5 queries,
- each query returns the average score of 3 randomly selected students (out of 30 scores in total).

Background knowledge 2: CS458 is challenging and historical records show that most students score in the range of [45, 55].

Algorithm: You are given an algorithm that

- allows you to make 5 queries,
- each query returns the average score of 3 randomly selected students (out of 30 scores in total).
- \mathbf{Q} : How can you infer whether Alice is enrolled in CS458 or not?

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000
The attack				

Just send 5 queries and observe what is returned by the database.

Dinur-Nissim 00000000000	Intuition 00000000	Definition 0000000000	Mechanisms 000000000	More 000
The attack				

Just send 5 queries and observe what is returned by the database.

- D1 with Alice enrolled:
- Alice: 90
- Everyone else (29 of them): 50

- D2 with Alice not enrolled:
- Everyone (30 of them): 50

Dinur-Nissim 00000000000	Intuition 00000000	Definition 0000000000	Mechanisms 000000000	More 000
The attack				
Just send 5 queries and observe what is returned by the database.				
D1 with Alice en	rolled:	D2 with Alic	e not enrolled:	

• Alice: 90

• Everyone (30 of them): 50

• Everyone else (29 of them): 50

Q: What will happen if Alice IS NOT enrolled (i.e., D2)?

Dinur-Nissim 00000000000	Intuition 00000000	Definition 0000000000	Mechanisms 000000000	More 000
The attack				
Just send 5	queries and obs	erve what is return	ned by the databas	ie.
D1 with Alice en Alice: 90	rolled:	D2 with Alic	e not enrolled:	

• Everyone else (29 of them): 50

Everyone (30 of them): 50

Q: What will happen if Alice IS NOT enrolled (i.e., D2)? **A**: Expect [50, 50, 50, 50, 50] in response.

Dinur-Nissim 00000000000	Intuition 0000●000	Definition 0000000000	Mechanisms 000000000	More 000
The attack				
Just send 5	queries and obs	serve what is return	ned by the databas	se.
D1 with Alice en Alice: 90	rolled:	D2 with Alic	e not enrolled:	

Everyone else (29 of them): 50

one (30 of them): 50

- **Q**: What will happen if Alice IS NOT enrolled (i.e., D2)? A: Expect [50, 50, 50, 50, 50] in response.
- **Q**: What will happen if Alice IS enrolled (i.e., D1)?

Dinur-Nissim 00000000000	Intuition 0000€000	Definition 0000000000	Mechanisms 000000000	More 000
The attack				
Just send 5	queries and obs	erve what is returr	ned by the databas	ie.
D1 with Alice en	rolled:	D2 with Alic	e not enrolled:	

Alice: 90

• Everyone else (29 of them): 50

- Everyone (30 of them): 50
- **Q**: What will happen if Alice IS NOT enrolled (i.e., D2)? **A**: Expect [50, 50, 50, 50, 50] in response.
- **Q**: What will happen if Alice IS enrolled (i.e., D1)?
- A: For a single response, we either get

•
$$63 \leftrightarrow \frac{C_{29}^2}{C_{30}^3} = 10\%$$

50 ↔ otherwise

Dinur-Nissim 00000000000	Intuition 00000000	Definition 0000000000	Mechanisms 000000000	More 000
The attack				
Just send 5	queries and obs	erve what is returr	ned by the databas	se.
D1 with Alice en	rolled:	D2 with Alic	e not enrolled:	

Alice: 90

• Everyone (30 of them): 50

• Everyone else (29 of them): 50

Q: What will happen if Alice IS NOT enrolled (i.e., D2)? **A**: Expect [50, 50, 50, 50, 50] in response.

Q: What will happen if Alice IS enrolled (i.e., D1)?

A: For a single response, we either get

•
$$63 \leftrightarrow \frac{C_{29}^2}{C_{30}^3} = 10\%$$

50 ↔ otherwise

For all 5 responses, the chance of getting at least one 63 is $1 - (1 - \frac{C_{20}^2}{C_{30}^3})^5 = 40.95\%!$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000
What went wrong?				

Alice's score has too much impact on the output! As a result, seeing the output of the algorithm allows the attacker to differentiate which database is the underlying database representing the class score.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000
What went wrong?				

Alice's score has too much impact on the output! As a result, seeing the output of the algorithm allows the attacker to differentiate which database is the underlying database representing the class score.

This is exactly what *Differential Privacy (DP)* tries to capture!

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000
What went w	rong?			

Alice's score has too much impact on the output! As a result, seeing the output of the algorithm allows the attacker to differentiate which database is the underlying database representing the class score.

This is exactly what *Differential Privacy (DP)* tries to capture!

Informally, the DP notion requires any single element in a dataset to have only a limited impact on the output.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000
The defense				

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000
The defense				

Background knowledge 2: CS458 is challenging and historical records show that most students score in the range of [45, 55].

Algorithm: You are given an algorithm that

- allows you to make 5 queries,
- each query returns the average score of 3 randomly selected students (out of 30 scores in total)

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000
The defense				

Background knowledge 2: CS458 is challenging and historical records show that most students score in the range of [45, 55].

Algorithm: You are given an algorithm that

- allows you to make 5 queries,
- each query returns the average score of 3 randomly selected students (out of 30 scores in total) plus a random value

Demo time (dp-demo.py)

... on trying to persuade you to join a differentially private survey:

You will not be affected, adversely or otherwise, by allowing your data to be used in any study or analysis, no matter what other studies, data sets, or information sources, are available.

... on trying to persuade you to join a differentially private survey:

You will not be affected, adversely or otherwise, by allowing your data to be used in any study or analysis, no matter what other studies, data sets, or information sources, are available.

But this is only true if they tell you what algorithm they use to release your data and you have verified that their algorithm is indeed differentially private.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
000000000000		•000000000	0000000000	000
Outling				

- The Dinur-Nissim reconstruction attack
- 2 The intuition behind differential privacy
- 3 A formal definition of differential privacy
- 4 Perturbation mechanisms

5 More topics on differential privacy

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	0000000	0●00000000	000000000	000
Formalize our s	setup			

- There is a database, *D*, which potentially contains sensitive information about individuals.
- The database curator has access to the full database. We assume the curator is trusted.
- The data analyst consumes the data by asking a series of queries to the curator. Each query is denoted as S and the curator provides a response to query S with R_S.
 The analyst may be honest or malicious.
- The way in which the curator responds to queries is called the mechanism. Formally, $M: S \rightarrow R_S$. We'd like a mechnism that
 - gives statistically useful responses but
 - avoids leaking sensitive information about individuals.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	00●00000000	000000000	000
Neighboring da	atabases			

Two databases D_1 and D_2 are neighbouring if they agree except for a single entry.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	0000000	00●0000000	000000000	000
Neighboring d	atabases			

Two databases D_1 and D_2 are neighbouring if they agree except for a single entry.

- Unbounded DP: D₁ and D₂ are neighboring if D₂ can be obtained from D₁ by adding or removing one element
- Bounded DP: D_1 and D_2 are neighboring if D_2 can be obtained from D_1 by replacing one element

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	000000000	000000000	000
ϵ -differential p	rivacy			

Idea: If the mechanism M behaves nearly identically for D_1 and D_2 , then an attacker can't tell whether D_1 or D_2 was used (and hence can't learn much about the individual).

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000
ϵ -differential p	rivacy			

Idea: If the mechanism M behaves nearly identically for D_1 and D_2 , then an attacker can't tell whether D_1 or D_2 was used (and hence can't learn much about the individual).

Definition:

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

 $\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \leq e^{\epsilon} \Pr[M(D_2) \in T]$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000
ϵ -differential p	orivacy			

Definition:

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

 $\forall T \subseteq Y$, $\Pr[M(D_1) \in T] \leq e^{\epsilon} \Pr[M(D_2) \in T]$

ϵ -differential	privacy			
Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	000000000	000

Definition:

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

```
\forall T \subseteq Y, \Pr[M(D_1) \in T] \leq e^{\epsilon} \Pr[M(D_2) \in T]
```

The $\forall T \subseteq Y$ means that the attacker cannot find a perspective through which the two databases behaves differently.

Definition:

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

```
\forall T \subseteq Y, \Pr[M(D_1) \in T] \leq e^{\epsilon} \Pr[M(D_2) \in T]
```

The $\forall T \subseteq Y$ means that the attacker cannot find a perspective through which the two databases behaves differently.

In the CS458 grades example, for a single query,

- $M: {\text{Name} \times [0-100]} \rightarrow [0-100]$
- T : [60 100]
- $\Pr[M(D_1) \in T] = 10\%$
- $\Pr[M(D_2) \in T] = 0\%$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	0000000	00000€00000	000000000	000
ϵ -differential	privacy			

Definition (Wrong):

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

 $\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \leq \Pr[M(D_2) \in T] + \epsilon$

00000000000		0000000000	000000000	000
ϵ -differential	privacy			

Definition (Wrong):

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

```
\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \leq \Pr[M(D_2) \in T] + \epsilon
```

Suppose we have:

- $\epsilon = 0.01$
- $\Pr[M(D_1) \in T] = 0.005$
- $\Pr[M(D_2) \in T] = 0.001$

- $\epsilon = 0.01$
- $\Pr[M(D_1) \in T] = 0.96$
- $\Pr[M(D_2) \in T] = 0.94$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	00000000000	000000000	000
ϵ -differential p	rivacy			

Definition (Better):

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

 $\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \leq \epsilon \times \Pr[M(D_2) \in T]$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	000000●0000	000000000	000
ϵ -differential p	rivacy			

Definition (Better):

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

$$\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \leq \epsilon \times \Pr[M(D_2) \in T]$$

It does not make sense for ϵ to be <1 or too large.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	000000000000	000000000	000
ϵ -differential p	privacy			

Definition (Almost):

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

$$\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \leq (1 + \epsilon) \Pr[M(D_2) \in T]$$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	00000000000	000000000	000
ϵ -differential p	privacy			

Definition (Almost):

A mechanism $M: X \to Y$ is ϵ -differentially private (ϵ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

$$\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \leq (1 + \epsilon) \Pr[M(D_2) \in T]$$

NOTE: for small ϵ , $e^{\epsilon} \approx 1 + \epsilon$ by Talor series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

Theorem: Suppose mechanism $M : X \to Y$ is ϵ -differentially private. Then, for any mechanism $A : Y \to Z$, we have that $A \circ M : X \to Z$ is also ϵ -differentially private.

Theorem: Suppose mechanism $M : X \to Y$ is ϵ -differentially private. Then, for any mechanism $A : Y \to Z$, we have that $A \circ M : X \to Z$ is also ϵ -differentially private.

Once the data is privatized, it can't be "un-privatized"
Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	00000000000	000000000	000
Compositional	privacy			

Theorem: Given

- $M_1: X \to Y_1$ being ϵ_1 -DP, and
- $M_2: X \to Y_2$ being ϵ_2 -DP.

We define a new mechanism $M : X \to Y_1 \times Y_2$ as $M(X) = (M_1(X), M_2(X))$. Then M is $(\epsilon_1 + \epsilon_2)$ -DP.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	00000000000	000000000	000
Compositional	privacy			

Theorem: Given

- $M_1: X o Y_1$ being ϵ_1 -DP, and
- $M_2: X \to Y_2$ being ϵ_2 -DP.

We define a new mechanism $M: X \to Y_1 \times Y_2$ as $M(X) = (M_1(X), M_2(X))$. Then M is $(\epsilon_1 + \epsilon_2)$ -DP.

This has a gossip analogy:

- If A tells you something (potentially with noise),
- and then B tells you some other things (again, with noise).
 At the end of the day you might have learned more information by

At the end of the day you might have learned more information by combining them together.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	000000000●	000000000	000
Group privacy				

Theorem: Suppose mechanism $M : X \to Y$ is ϵ -differentially private. Suppose D_1 and D_2 are two datasets which differ in exactly k positions. Then:

 $\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \leq e^{k\epsilon} \Pr[M(D_2) \in T]$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	0000000	000000000●	000000000	000
Group privacy				

Theorem: Suppose mechanism $M : X \to Y$ is ϵ -differentially private. Suppose D_1 and D_2 are two datasets which differ in exactly k positions. Then:

$$\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \le e^{k\epsilon} \Pr[M(D_2) \in T]$$

If you need to hide the "effect" if a whole group, you need to prepare a larger privacy budget.

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	0000000	0000000000	●000000000	000
Outline				

- The Dinur-Nissim reconstruction attack
- 2 The intuition behind differential privacy
- 3 A formal definition of differential privacy
- Perturbation mechanisms
- More topics on differential privacy

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	o●oooooooo	000
Sensitivity				

 ${\bf Q}:$ How much noise to add?

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	o●oooooooo	000
Sensitivity				

Q: How much noise to add? \longleftarrow Sensitivity is a measurement

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	o●oooooooo	000
Sensitivity				

Q: How much noise to add? \longleftarrow Sensitivity is a measurement

Definition: given a query processing function $f : X \to \mathbb{R}^k$, the ℓ_1 -sensitivity of f is defined as:

$$\Delta_1^f = \max_{D_1 \sim D_2} \| f(D_1) - f(D_2) \|_1 \quad ext{where } D_1, D_2 \in X$$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	o●oooooooo	000
Sensitivity				

 $\mathbf{Q}:$ How much noise to add? \longleftarrow Sensitivity is a measurement

Definition: given a query processing function $f : X \to \mathbb{R}^k$, the ℓ_1 -sensitivity of f is defined as:

$$\Delta_1^f = \max_{D_1\sim D_2} \|f(D_1)-f(D_2)\|_1 \quad ext{where } D_1, D_2\in X$$

NOTE 1: The range of f is k-dimensional

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	o●oooooooo	000
Sensitivity				

 $\mathbf{Q}:$ How much noise to add? \longleftarrow Sensitivity is a measurement

Definition: given a query processing function $f : X \to \mathbb{R}^k$, the ℓ_1 -sensitivity of f is defined as:

$$\Delta_1^f = \max_{D_1 \sim D_2} \|f(D_1) - f(D_2)\|_1 \quad \text{where } D_1, D_2 \in X$$

NOTE 1: The range of f is k-dimensional

NOTE 2: ℓ_1 -sensitivity is $\|\vec{x_1} - \vec{x_2}\|_1 = \sum_i |\vec{x_1}[i] - \vec{x_2}[i]|$

Dinur-Nissim Intuition Definition Mechanisms More 000 Sensitivity w/ one pair of neighboring databases

D1 with Alice enrolled:

- Alice: 90
- Everyone else (29 of them): 50

D2 with Alice not enrolled:

• Everyone (30 of them): 50

Algorithm: You are allowed to make a query that returns the average score of this course.

Q: What is the ℓ_1 -sensitivity here?

Dinur-Nissim Intuition Definition Mechanisms More 000 Sensitivity w/ one pair of neighboring databases

D1 with Alice enrolled:

- Alice: 90
- Everyone else (29 of them): 50

D2 with Alice not enrolled:

• Everyone (30 of them): 50

Algorithm: You are allowed to make a query that returns the average score of this course.

Q: What is the ℓ_1 -sensitivity here? **A**: $|Avg(D_1) - Avg(D_2)| = 1.33$

Q: What if we don't know the scores?

Suppose we only know that each student's score $\in [0-100]$, and

- (in bounded DP): there are 30 students enrolled
- (in unbounded DP): there are 29 or 30 students enrolled

Algorithm: You are allowed to make a query that returns the average score of this course.

Q: What is the ℓ_1 -sensitivity here?

Suppose we only know that each student's score $\in [0 - 100]$, and there are 30 students enrolled in the course.

Algorithm: You are allowed to make a query that returns the average score of this course.

$$\ell_{1} = \max(|\frac{\sum_{29 \text{ students}} + k_{1}}{30} - \frac{\sum_{29 \text{ students}} + k_{2}}{30}|)$$

= $\frac{1}{30} \max(|k_{1} - k_{2}|)$
= $\frac{1}{30} \times 100 \quad \iff (k_{1} = 0 \land k_{2} = 100) \lor (k_{1} = 100 \land k_{2} = 0)$
= $\frac{10}{3}$

Suppose we only know that each student's score $\in [0 - 100]$, and there are either 29 or 30 students enrolled in the course.

Algorithm: You are allowed to make a query that returns the average score of this course.

$$\ell_{1} = \max(|\frac{\sum_{29 \text{ students}}}{29} - \frac{\sum_{29 \text{ students}} + k}{30}|)$$

$$= \max(|\frac{\sum_{29 \text{ students}}}{29 \times 30} - \frac{k}{30}|)$$

$$\xrightarrow{\text{case1}} \max(\frac{\sum_{29 \text{ students}}}{29 \times 30}) - \min(\frac{k}{30})$$

$$\xrightarrow{\text{case2}} \max(\frac{k}{30}) - \min(\frac{\sum_{29 \text{ students}}}{29 \times 30})$$

$$= \frac{10}{3} \text{ for both cases}$$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	0000000000	000
Laplace distrib	ution			

Lap (μ, b) is defined as:

$$\Pr[x = v] = \frac{1}{2b} \exp\left(\frac{-|v - \mu|}{b}\right)$$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	0000000000	000
Laplace distrib	ution			

Lap (μ, b) is defined as:

$$\Pr[x = v] = \frac{1}{2b} \exp\left(\frac{-|v - \mu|}{b}\right)$$

- Usually, for DP, we set μ = 0, so you may see Lap(b) which is essentially Lap(0, b)
- Lap (μ, b) has variance $\sigma^2 = 2b^2$
- As *b* increases, the distribution becomes more flat

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	0000000●00	000
Laplace mecha	anism			

Definition: Let $f : X \to \mathbb{R}^k$ is the function that calculates the "true" value of a query. The Laplace mechanism is defined as:

$$M(D) = f(D) + (Y_1, Y_2, \cdots, Y_k)$$

where Y_i are independent and identically distributed (i.i.d) random variables sampled from Lap $\left(\frac{\Delta_1^f}{\epsilon}\right)$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	0000000●00	000
Laplace mecha	nism			

Definition: Let $f : X \to \mathbb{R}^k$ is the function that calculates the "true" value of a query. The Laplace mechanism is defined as:

$$M(D) = f(D) + (Y_1, Y_2, \cdots, Y_k)$$

where Y_i are independent and identically distributed (i.i.d) random variables sampled from Lap $\left(\frac{\Delta_1^f}{\epsilon}\right)$

In our CS458 example: let's take $\epsilon = 0.1$, and together with $\Delta = 1.33$, we have M(D) = f(D) + Lap(13.3)

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	00000000000	000
Laplace mecha	nism			

Definition: Let $f : X \to \mathbb{R}^k$ is the function that calculates the "true" value of a query. The Laplace mechanism is defined as:

$$M(D) = f(D) + (Y_1, Y_2, \cdots, Y_k)$$

where Y_i are independent and identically distributed (i.i.d) random variables sampled from Lap $\left(\frac{\Delta_1^f}{\epsilon}\right)$

In our CS458 example: let's take $\epsilon = 0.1$, and together with $\Delta = 1.33$, we have M(D) = f(D) + Lap(13.3)

Demo time (average-demo.py)

 Dinur-Nissim
 Intuition
 Definition
 Mechanisms
 More

 000000000000
 00000000000
 00000000000
 000

 Does the Laplace mechanism work in our example?

Let's first update the PDF by replacing $b = \frac{\Delta}{\epsilon}$:

$$\Pr[x = v] = rac{\epsilon}{2\Delta} \exp\left(rac{-\epsilon |v - \mu|}{\Delta}
ight)$$

For D_1 , $\mu=$ 50,

$$\Pr_{1}[x = 51.33] = \frac{\epsilon}{2\Delta} \exp\left(\frac{-\epsilon|51.33 - 50|}{\Delta}\right) = C \times e^{-0.1}$$

For D_2 , $\mu = 51.33$,

$$\Pr_{2}[x = 51.33] = \frac{\epsilon}{2\Delta} \exp\left(\frac{-\epsilon|51.33 - 51.33|}{\Delta}\right) = C \times e^{-0.075}$$

$$\frac{\Pr_2[x=51.33]}{\Pr_1[x=51.33]} = \frac{C \times e^{-0.075}}{C \times e^{-0.1}} = e^{0.025} \approx 1.025$$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	00000000	0000000000	00000000●	000
The Laplace m	echanism is	ε-DP		

- Let D_1 and D_2 be any neighboring databases
- Let $f: X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

- Let D_1 and D_2 be any neighboring databases
- Let $f: X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

$$\frac{\Pr[M(D_1) = z]}{\Pr[M(D_2) = z]} = \frac{\prod_{i=1}^{k} \frac{\epsilon}{2\Delta} \exp\left(\frac{-\epsilon}{\Delta} |f(D_1)[i] - z[i]|\right)}{\prod_{i=1}^{k} \frac{\epsilon}{2\Delta} \exp\left(\frac{-\epsilon}{\Delta} |f(D_2)[i] - z[i]|\right)}$$

- Let D_1 and D_2 be any neighboring databases
- Let $f: X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

$$\frac{\Pr[M(D_1) = z]}{\Pr[M(D_2) = z]} = \frac{\prod_{i=1}^{k} \frac{\epsilon}{2\Delta} \exp\left(\frac{-\epsilon}{\Delta} |f(D_1)[i] - z[i]|\right)}{\prod_{i=1}^{k} \frac{\epsilon}{2\Delta} \exp\left(\frac{-\epsilon}{\Delta} |f(D_2)[i] - z[i]|\right)}$$
$$= \frac{\prod_{i=1}^{k} \exp\left(\frac{-\epsilon}{\Delta} |f(D_1)[i] - z[i]|\right)}{\prod_{i=1}^{k} \exp\left(\frac{-\epsilon}{\Delta} |f(D_2)[i] - z[i]|\right)}$$

- Let D_1 and D_2 be any neighboring databases
- Let $f: X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

$$\frac{\Pr[M(D_1) = z]}{\Pr[M(D_2) = z]} = \frac{\prod_{i=1}^{k} \exp\left(\frac{-\epsilon}{\Delta} |f(D_1)[i] - z[i]|\right)}{\prod_{i=1}^{k} \exp\left(\frac{-\epsilon}{\Delta} |f(D_2)[i] - z[i]|\right)}$$
$$= \prod_{i=1}^{k} \frac{\exp\left(\frac{-\epsilon}{\Delta} |f(D_1)[i] - z[i]|\right)}{\exp\left(\frac{-\epsilon}{\Delta} |f(D_2)[i] - z[i]|\right)}$$

- Let D_1 and D_2 be any neighboring databases
- Let $f: X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

$$\frac{\Pr[\mathcal{M}(D_1) = z]}{\Pr[\mathcal{M}(D_2) = z]} = \prod_{i=1}^k \frac{\exp\left(\frac{-\epsilon}{\Delta} |f(D_1)[i] - z[i]|\right)}{\exp\left(\frac{-\epsilon}{\Delta} |f(D_2)[i] - z[i]|\right)}$$
$$= \prod_{i=1}^k \exp\left(\frac{\epsilon}{\Delta} (|f(D_1)[i] - z[i]| - |f(D_2)[i] - z[i]|)\right)$$

- Let D_1 and D_2 be any neighboring databases
- Let $f: X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

$$\frac{\Pr[\mathcal{M}(D_1) = z]}{\Pr[\mathcal{M}(D_2) = z]} = \prod_{i=1}^{k} \exp\left(\frac{\epsilon}{\Delta} (|f(D_1)[i] - z[i]| - |f(D_2)[i] - z[i]|)\right)$$
$$\leq \prod_{i=1}^{k} \exp\left(\frac{\epsilon}{\Delta} |f(D_1)[i] - f(D_2)[i]|\right)$$

- Let D_1 and D_2 be any neighboring databases
- Let $f: X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

$$\frac{\Pr[M(D_1) = z]}{\Pr[M(D_2) = z]} \le \prod_{i=1}^k \exp\left(\frac{\epsilon}{\Delta} |f(D_1)[i] - f(D_2)[i]|\right) \\ = \exp\left(\frac{\epsilon}{\Delta} \sum_{i=1}^k |f(D_1)[i] - f(D_2)[i]|\right)$$

- Let D_1 and D_2 be any neighboring databases
- Let $f: X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

$$\frac{\Pr[M(D_1) = z]}{\Pr[M(D_2) = z]} \le \exp\left(\frac{\epsilon}{\Delta} \sum_{i=1}^k |f(D_1)[i] - f(D_2)[i]|\right)$$
$$= \exp\left(\frac{\epsilon}{\Delta} ||f(D_1) - f(D_2)||_1\right)$$

- Let D_1 and D_2 be any neighboring databases
- Let $f:X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

$$\frac{\Pr[M(D_1) = z]}{\Pr[M(D_2) = z]} \le \exp\left(\frac{\epsilon}{\Delta} \|f(D_1) - f(D_2)\|_1\right) \\ \le \exp\left(\frac{\epsilon}{\Delta}\Delta\right)$$

The Laplace mechanism is ϵ -DP

- Let D_1 and D_2 be any neighboring databases
- Let $f:X \to \mathbb{R}^k$ be the function that calculates the "true" value
- Let $z \in \mathbb{R}^k$ being any potential response

$$\frac{\Pr[M(D_1) = z]}{\Pr[M(D_2) = z]} \le \exp(\epsilon)$$

Dinur-Nissim	Intuition	Definition	Mechanisms	More
00000000000	0000000	0000000000	000000000	●00
Outline				

- 1 The Dinur-Nissim reconstruction attack
- 2 The intuition behind differential privacy
- 3 A formal definition of differential privacy
- 4 Perturbation mechanisms
- 5 More topics on differential privacy

Dinur-Nissim Intuition Definition Mechanisms Ocoococo Approximate differential privacy

Definition:

A mechanism $M: X \to Y$ is (ϵ, δ) -differentially private $((\epsilon, \delta)$ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

$$\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \le e^{\epsilon} \Pr[M(D_2) \in T] + \delta$$

Definition:

A mechanism $M: X \to Y$ is (ϵ, δ) -differentially private $((\epsilon, \delta)$ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

$$\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \le e^{\epsilon} \Pr[M(D_2) \in T] + \delta$$

Interpretation: The new privacy parameter, δ , represents a "failure probability" for the definition.

- With probability 1δ we will get the same guarantee as pure differential privacy;
- With probability δ , we get no privacy guarantee at all.

Definition:

A mechanism $M: X \to Y$ is (ϵ, δ) -differentially private $((\epsilon, \delta)$ -DP) if for any two neighboring databases $D_1: X$ and $D_2: X$:

$$\forall T \subseteq Y, \quad \Pr[M(D_1) \in T] \le e^{\epsilon} \Pr[M(D_2) \in T] + \delta$$

Interpretation: The new privacy parameter, δ , represents a "failure probability" for the definition.

- With probability 1δ we will get the same guarantee as pure differential privacy;
- With probability δ , we get no privacy guarantee at all.

This definition allows us to add a much smaller noise.

Local differential privacy (LDP) is a model of differential privacy with the added restriction that even if an adversary has access to the personal responses of an individual in the database, that adversary will still be unable to learn too much about the user's personal data.
Local differential privacy (LDP) is a model of differential privacy with the added restriction that even if an adversary has access to the personal responses of an individual in the database, that adversary will still be unable to learn too much about the user's personal data.

This eliminates the trust on the database curator.

Local differential privacy (LDP) is a model of differential privacy with the added restriction that even if an adversary has access to the personal responses of an individual in the database, that adversary will still be unable to learn too much about the user's personal data.

This eliminates the trust on the database curator.

Example: Randomized response to a survey