1732

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

uBOX: A Lightweight and Hardware-Assisted
Sandbox for Multicore Embedded Systems

Xia Zhou"”, Yujie Bu, Meng Xu

Abstract—Multicore embedded systems employ a big. LITTLE
architecture to combine different cores into a single microcontroller
(MCU). However, resources sharing among cores raises security
challenges. Once LITTLE cores (which often receive external in-
puts) are compromised, the whole system will be affected. Existing
hardware-assisted isolation approaches use privilege separation
and code instrumentation to enforce memory isolation, which suf-
fer from inefficiencies. This paper presents uBOX, a lightweight
sandbox for multicore embedded systems. The goal of uBOX is
to enforce memory isolation over untrusted software (on LITTLE
cores) at the same privileged level. Specifically, it uses the Memory
Protection Unit (MPU) to restrict memory access by untrusted
software. To protect sandbox policies, uBOX deprives the write
capability of untrusted software towards MPU configurations by
replacing its regular store instructions with unprivileged coun-
terparts. Additionally, to protect uBOX’s necessary regular store
instructions from being abused, uBOX’s memory is set to read-only
and non-executable when running untrusted software. For the nor-
mal operation of uBOX, we use an overlooked feature of the MPU
and develop secure gates that quickly disable and re-enable the
MPU, allowing uBOX to execute at a permissive memory view. Our
evaluation demonstrates that uBOX effectively enforces isolation
with average 1.27 % runtime overhead, 0.83X Flash overhead, and
36.50X SRAM overhead.

Index Terms—Embedded systems, memory protection unit,
security isolation.

I. INTRODUCTION

N RECENT years, the big. LITTLE architecture has become
Iwidely adopted [1], [2], [3], [4], [5]. This heterogeneous
design couples slow but power-saving cores (LITTLE) with fast
but power-hungry ones (big), allowing the cores to adjust to
dynamic computing needs with less power consumption. Many
multicore embedded systems have incorporated this design [6],
[7], [8] due to the prolonged battery life.

However, this heterogeneous architecture also raises new
security challenges due to the shared resources between big

Received 24 February 2024; revised 12 August 2024; accepted 2 September
2024. Date of publication 11 September 2024; date of current version 14 March
2025. This work was supported in part by the National Key R&D Program of
Chinaunder Grant 2022YFEQ113200 and in part by the National Natural Science
Foundation of China (NSFC) under Grant 62172360 and Grant U21A20464.
(Corresponding author: Yajin Zhou.)

Xia Zhou, Yujie Bu, Yajin Zhou, and Lei Wu are with the School
of Computer Science and Technology,Zhejiang University, Hangzhou, CA
310027, China (e-mail: zhouxia_icsr@zju.edu.cn; insomnia6974 @ gmail.com;
yajin_zhou@zju.edu.cn; lei_wu@zju.edu.cn).

Meng Xu is with the Cheriton School of Computer Science,University of
Waterloo, Waterloo N2L 3G1, Canada (e-mail: meng.xu.cs @uwaterloo.ca).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TDSC.2024.3454421, provided by the authors.

Digital Object Identifier 10.1109/TDSC.2024.3454421

, Member, IEEE, Yajin Zhou

, and Lei Wu

and LITTLE cores. Specifically, memories and peripherals are
shared among the cores. If a vulnerability exists in the software
stack on one side of the cores, (e.g., the LITTLE cores, which
usually interact with external inputs), attackers can first exploit
one side and then use it as an intermediate to further compromise
the other side (e.g., the big cores). Moreover, embedded systems
often disregard privilege separation and run the entire firmware
at the privileged level for performance reasons, which exagger-
ates this issue. As shown in previous attacks, attackers can first
exploit the vulnerabilities of a Wi-Fi SoC and then compromise
the application processor [9], [10]. Therefore, it is essential to
enforce isolation between big and LITTLE cores.

Software Fault Isolation (SFI) is a mechanism to enforce the
establishment of logical protection domains through software
instrumentation and hardware-assisted methods [11], [12], [13],
[14], [15], [16]. Because pure software-based SFI systems usu-
ally rely on heavyweight code instrumentation or safe program-
ming languages, they have high performance overhead and com-
patibility issues [17], [18]. Hardware-assisted schemes, on the
other hand, leverage hardware primitives to achieve protection.
They are thus more efficient and are getting more attention.

A classic theme in hardware-assisted SFI is to utilize the
MPU to confine the memory access of untrusted software [19],
[20], [21], [22], [23]. Memory isolation is achieved via privilege
separation and demotion of most untrusted code to the unpriv-
ileged level. Any modification to system configurations from
unprivileged code will be trapped and checked by a trusted and
privileged reference monitor. However, some security-sensitive
instructions that modify system status must run at the privileged
level. To protect them from being abused by attackers to further
break the isolation, additional measures like CFI [24], [25] and
shadow stack [26], [27] need to be deployed, which incurs
overhead [28], [29], [30], [31]. So the research question is: can
we design an SFI mechanism that efficiently prevents itself from
being circumvented?

This paper presents uBOX, a lightweight sandbox isolating
the firmware without relying on full privilege separation, with
an overview illustrated in Fig. 1. Note that in this paper, we
hypothetically consider LITTLE cores as untrustworthy for
illustration purposes, but uBOX can be applied to big cores if
they are deemed untrusted. uBOX adopts the MPU to confine
memory access of untrusted software. More importantly, to
comply with the convention of embedded systems development,
uBOX runs all untrusted code at the privileged level. However,
this compatibility accommodation brings two challenges to be
addressed:

1545-5971 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0008-6364-1530
https://orcid.org/0009-0001-6364-4837
https://orcid.org/0000-0001-7610-4736
https://orcid.org/0000-0003-1675-5283
mailto:zhouxia_icsr@zju.edu.cn
mailto:insomnia6974@gmail.com
mailto:yajin_zhou@zju.edu.cn
mailto:lei_wu@zju.edu.cn
mailto:meng.xu.cs@uwaterloo.ca
https://doi.org/10.1109/TDSC.2024.3454421

ZHOU et al.: uBOX: A LIGHTWEIGHT AND HARDWARE-ASSISTED SANDBOX FOR MULTICORE EMBEDDED SYSTEMS

---uBOX --
Flash

SRAM

Peripherals

Shared Resources LITTLE Cores

Big Cores

Fig. 1. uBOX confines memory access of LITTLE cores. P: Privileged.

Challenge I: The MPU is not sufficient to protect memory
isolation policies as any privileged memory access to system
configurations is always permitted [32].

To resolve this challenge, we develop fault-based configu-
ration protection to deprive untrusted code of the capability
that writes to privileged-only memory ranges. To construct
this protection, we employ unprivileged store instructions of
the ARMv7-M architecture [33].! Specifically, regular store
instructions from untrusted code are replaced with unprivileged
counterparts. Therefore, untrusted modifications to system con-
figurations will be trapped to a trusted reference monitor. This
challenge is faced similarly in prior works as well and is also
resolved with unprivileged store instructions [35], [36]. The
difference between uBOX and prior works, however, lies in the
handling of store instructions that cannot be “unprivileged”.

Challenge 11: Even most regular store instructions have been
replaced with unprivileged ones, a few of them must be reserved
in our reference monitor for the normal functionality of uBOX.
Therefore, privileged attackers may abuse these instructions and
leverage them to breach the sandbox. Moreover, the ARMv7-
M architecture lacks higher privilege levels, such as hypervi-
sor or monitor levels to host our reference monitor. Although
the TrustZone-M extension has been introduced for Cortex-M
MCUs, itis available only from the ARMvS8-M architecture [37],
which is not widely used in mainstream multicore MCUs.?

To resolve this challenge, we develop state-based execution
protection that quickly changes the executable state of our ref-
erence monitor. Initially, the memory of our reference monitor
is configured as read-only and non-executable when running
the untrusted code. To properly run the reference monitor, we
establish a secure memory domain for it and design secure
gates that quickly change domains [38], [39], [40], [41], [42],
[43]. In particular, we adopt an overlooked feature of the MPU,
which can be used to quickly disable and re-enable the MPU
itself. The MPU can be disabled automatically once the current
execution priority value is equal to or less than -1 (Section II-C).
Consequently, our reference monitor can operate normally at a
permissive memory view, i.e., the secure domain. In such a view,
our reference monitor has unrestricted access to read and write
across the entire address space, with code execution similarly
unrestricted.

We have implemented a prototype of uBOX. It consists of two
components: 1) uBOX-Compiler isan LLVM-based compiler

UIn our survey of top 5 MCU suppliers based on the Arm architecture [34],
we discovered that 98.04% of them feature at least one core with the ARMv7-M
architecture.

2In our survey, 5.22% of the multicore MCUs use the ARMvV8-M architecture.

1733
(a) Cortex-M4 (LITTLE Core) Memory View
(64 KB) (128 KB) 0xE0000000
= =
’é % Cortex-M4's
] g System Memory
£ E)) (0.5 GB)
: D} Flash |2F SRAM |Peripheral | External Memory| External Device o)
= (~0.5 GB) s (~0.5 GB)| (0.5 GB) (1 GB) (1 GB) Cortex-M7's E
IL—) ﬁ System Memory | &
sl = [a) (0.5 GB)]
é S
(64 KB) (128 KB) 0xE0000000
< (b) Cortex-M7 (Big Core) Memory View >
Fig. 2. Divergent memory views of the Cortex-M7 and Cortex-M4 cores of

the STM32H745 MCU. Although the two cores share most of the address
space and resources, each core maintains a distinct system memory starting
at 0xE0000000.

that compiles the source code and produces an executable pro-
gram image finally; 2) uBOX-Monitor acts as the reference
monitor for the sandbox. It mediates all write access to sensitive
memory regions and blocks any malicious operations. We have
evaluated uBOX on the STM32H7451-DISCO board [44]. It fea-
tures a dual-core STM32H745 MCU, consisting of a Cortex-M7
core (referred to as “CM7 core” or “big core”) and a Cortex-
M4 core (referred to as “CM4 core” or “LITTLE core”) [45].
We conduct experiments on 6 representative applications and
CoreMark [46] benchmark to evaluate the overall performance
overhead of uBOX. The experimental results show that uBOX
is lightweight, incurring average 1.27% of runtime overhead. It
incurs 0.83X of Flash overhead and 36.50X of SRAM overhead.
Although the SRAM overhead is relatively high, uBOX does not
cause too much memory overhead as the SRAM consumption is
constant, which is acceptable. Furthermore, we evaluated uBOX
with 6 microbenchmarks to understand the performance impact
of its each functionality.
Summary: The contributions of this paper are threefold:
® We propose uBOX, a new lightweight sandbox for multi-
core embedded systems with intra-address space memory
isolation.
® We design two key techniques to protect our reference mon-
itor, uBOX-Moni tor. We employ two essential hardware
primitives to construct these techniques.
e We implement a prototype of uBOX and evaluate it with
6 representative applications, CoreMark benchmark, and
6 microbenchmarks on the STM32H7451-DISCO board.
Our evaluation demonstrates that ¥uBOX incurs a negligi-
ble performance overhead and does not cause excessive
memory pressure.

II. BACKGROUND
A. The Multicore Architecture

The STM32H745 MCU comprises two cores, namely a CM7
core and a CM4 core [45], and both cores are based on the
ARMYV7-M architecture [32]. Each core is assigned to different
tasks and operates independently. In general, the CM7 core runs
computation-intensive tasks such as Al inference and human-
machine interface. The CM4 core runs lightweight tasks such
as sensing, and communication. Furthermore, each core has a
distinct memory view. As illustrated in Fig. 2, most of the address
space and resources are shared between the two cores, including

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

1734

Flash, SRAM, and peripherals. However, each core has its
distinct address space for system configurations, which starts at
0xE0000000. This special address space includes the Private
Peripheral Bus (PPB), where core peripherals, such as the MPU
and the Data Watchpoint and Trace (DWT) unit, are located.
As a result, one core is incapable of confining the accessible
memory of the other core by configuring its corresponding MPU.
Moreover, the CM7 core has dedicated Instruction Memory
(ITCM) and Data Tightly Coupled Memory (DTCM) for fast
instruction fetch and data access (Fig. 2(b)). The CM4 core
can access DTCM and ITCM only through the Master DMA
(MDMA) controller indirectly. The MDMA controller is located
at the address space of peripherals.

B. Memory Protection Unit

The Memory Protection Unit (MPU) enforces memory per-
missions on the physical address space. Depending on the spe-
cific MCU customization, the MPU can have either 8 or 16
memory regions. Each region is capable of independently setting
the memory permissions of a memory range and is assigned
with a region id starting from 0. When multiple memory regions
overlap with each other, the region with the highest id among
them determines the memory permissions of the overlapped
address range. A MemManage (memory management) excep-
tion will be raised if any memory access violates the memory
permissions. The size of a region must be a power of 2, and
the minimum region size is 32 bytes. The starting address of
a region must align with its size, otherwise the configuration
will be invalid. Additionally, one region can be divided into
eight subregions of equal size. Each subregion can be disabled
or enabled independently. If a subregion within a region is
disabled, the memory permissions defined by that region will
not be enforced at the memory covered by the corresponding
subregion.

Moreover, the ARMv7-M architecture also features a default
memory view in which privileged software can execute while
unprivileged one cannot. This default view is permissive and is
used if the MPU is disabled. In this view, privileged software has
unrestricted access to the entire address space for both reading
and writing, and code execution is equally unrestricted.

C. Execution Priority & MPU Bypass

In the ARMvV7-M architecture, every exception has execution
priority determined by a priority value. A lower priority value
indicates a higher execution priority. High-priority tasks or
exception handlers can preempt the execution of low-priority
ones. The execution priority is configurable at runtime only
by privileged code and the maximum configurable execution
priority is 0. Moreover, three exceptions have fixed execution
priority: the Reset exception (-3), the Non-Maskable Interrupt
(NMT) exception (-2), and the HardFault exception (-1).

The MPU has an MPU bypass feature associated with certain
execution priorities, which is often overlooked. Specifically, if
the current priority value is equal to or less than -1 (i.e., the
execution priority of the HardFault exception), and the HFN-
MIENA bit of the MPU_CTRL register is set to 0, the MPU will

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

be disabled automatically and the privileged software will run
in the permissive memory view. To raise the execution priority
to -1, software can set the 1-bit FAULTMASK register to 1 by
executing CPS or MSR instructions. Conversely, the process of
recovering from an execution priority of -1 is to set FAULTMASK
to 0. This feature can be used to quickly disable and enable the
MPU.

D. Unprivileged Store Instructions

The ARMv7-M architecture features two privilege levels,
privileged and unprivileged [32]. Notably, access to system
memory is only confined by the default memory view rather
than the MPU. In other words, privileged software can always
access the system memory without the constraints of the MPU.
In contrast, direct access to the system memory region by un-
privileged software will always trigger a BusFault exception.
Unprivileged software can use an SVC instruction to trigger
a Supervisor call (SVCall) to elevate itself to the privileged
level. Moreover, the ARMv7-M architecture features unprivi-
leged store instructions (STRT) [33]. At the privileged level,
unprivileged store instructions are confined in the same way as
regular store instructions at the unprivileged level. In particular,
writing to the system memory via unprivileged store instructions
will always trigger a BusFault exception.

III. ASSUMPTIONS & THREAT MODEL

Our system assumes a strong threat model. As LITTLE cores
usually process external inputs, we consider the firmware run-
ning on the CM4 core as untrusted. Moreover, we assume that
the CM4 core runs its firmware at the privileged level, which
conforms to the convention of embedded systems. Moreover,
we assume that both cores run firmware at the privileged level,
which conforms to the convention of embedded systems. At-
tackers can exploit vulnerabilities of the firmware running on
the CM4, thereby gaining primitives to arbitrary memory reads
and writes to further compromise the whole system. We also
assume that the source code of the firmware operating on the
CM4 core is available. Additionally, we assume that each of
the trusted/untrusted code and data section is continuous. This
assumption can be achieved by arranging sections layout through
uBOX-Compiler (Section IV-A). Both firmware can be either
bare-metal or compiled with a RTOS (e.g., FreeRTOS). The
goal of attackers is to corrupt the memory of other cores and
compromise the whole system.

We assume that the compilation toolchain for code compila-
tion and instrumentation is trustworthy. Moreover, we assume
that the code of uBOX-Moni tor is trusted and free of memory
safety issues. Our reference monitor includes exception handlers
for HardFault, BusFault, MemManage, and SVCall ex-
ceptions, and wrapper functions used for updating the MPU. In
addition, the Reset and NMI exception handlers are trusted.
The boot processes of both cores are trusted as well. Further-
more, we assume that the CM4 core features a hardware MPU
and unprivileged store instructions (specifically, STRT instruc-
tions), both of which are essential hardware primitives for our
uBOX design. The primary goal of uBOX is to isolate attackers

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: uBOX: A LIGHTWEIGHT AND HARDWARE-ASSISTED SANDBOX FOR MULTICORE EMBEDDED SYSTEMS

| Report
N
B O
0 Unsafe
o structions2 OO > .
'

Instruction Replacement Code Scanner Program lmdgc: Program Image
(§4.3.1) (§4.32) Generation

Fig. 3. The workflow of uBOX.

within the boundaries of the CM4 core without affecting the
execution of the other core.

Denial of Service (DoS) attacks that disrupt the uBOX-
Monitor’s operation by raising the top-priority Reset ex-
ception, leading to system reboot, are beyond the scope of this
work. Side-channel attacks and physical attacks are considered
out-of-scope in this work. Since Cortex-M MCUs lack the Input-
Output Memory Management Unit IOMMU), we also disregard
DMA attacks performed by malicious peripherals through DMA
controllers.

IV. DESIGN

uBOX is a lightweight sandbox designed for multicore em-
bedded systems. It addresses the two challenges discussed in
Section I while achieving the following goals:

G1 Complete mediation: Our reference monitor must com-
prehensively restrict memory access from untrusted soft-
ware to prevent potential breaches of the sandbox.

G2 Tamperproofness: Privileged attackers should not affect
the normal operation of our reference monitor. Therefore,
the sandbox policies and the memory of our reference
monitor should be well protected to guarantee integrity.

G3 Scalability: The hardware primitives utilized by our
sandbox should be widely available in MCUs, ensuring
scalability.

G4 Lightweight: Our sandbox should introduce minimal per-
formance overhead.

G5 Compatibility: Our sandbox should be compatible with
mainstream RTOSes such as FreeRTOS.

A. Workflow

Our system comprises two distinct components: uBOX-
Compiler and uBOX-Monitor. uBOX-Compiler is an
LLVM-based compiler that performs the compilation and in-
strumentation. uBOX-Monitor is our reference monitor that
enforces the isolation at the same privileged level as adversaries.
Fig. 3 depicts the workflow of our system.

The input of our compiler can be categorized into three
parts. The first part includes the source code of the application
and the RTOS kernel. The second part is the source code of
uBOX-Monitor. The third part is the default MPU policies
used for enforcing memory isolation at runtime. First, uBOX-
Compiler compiles all the source code to produce the LLVM
IR bytecode. Subsequently, it runs several LLVM passes to
apply code instrumentation (Section IV-C1) at the link-time

1735

OxFFFFFFFF

System Memory (0) PU: RO-NX P: RW
External Device U: RW (Exclude System Memory)
External Memory
Peripheral
[uBOX-Monitor Data, Stack ﬂl [uBOX-Monitor Data, Stack a
(5) PU: RW-NX
SRAM
Cortex-M4 Data, Stack, Heap
(7) PU: NA
Unmapped Cortex-M7 Data, Stack, Heap
uBOX-Monitor Code B [:BOX-Monitor Code)
(4) PU: RO
Flash Cortex-M4 Code
Unmapped (6) PU: NA
Bk, Cortex-M7 Code

0x0
(a) Cortex-M4's
Address Space

(b) Cortex-M4's Memory View
(Predefined Regions: 0,4,5,6,7)

(¢) Default Memory View
(Used by uBOX-Monitor)

Fig. 4. uBOX’s default MPU policies for the Cortex-M4 core. P: Privileged.
U: Unprivileged. RO: Read-Only. RW: Read & Write. NX: Non-eXecutable.
NA: No Access.

optimization stage to produce an intermediate program image.
After that, our compiler employs a code scanner (Section IV-C2)
to analyze the generated image and verifies that there are no
unsafe instructions left. Otherwise, it will produce a report
to help developers eliminate unsafe instructions. Eventually, a
program image compiled and linked with uBOX-Monitor is
generated as the output.

B. MPU Region Arrangement

In the default memory configuration, the CM7 core and the
CM4 each utilize a separate address range for Flash and SRAM
to store their respective private code and data, yet they share
the peripheral address space (Section II-A). Furthermore, a
portion of SRAM is designed as shared memory between the
two cores to facilitate inter-core communication. Consequently,
our system must establish a security boundary to segregate the
private address spaces of each core and regulate access to the
shared memory.

uBOX-Moni tor utilizes the MPU to regulate the memory
access of the untrusted software at runtime. In our workflow,
uBOX-Monitor uses the default MPU policies (Fig. 3) to
arrange MPU regions. The default MPU policies adhere to
the default memory configuration of the two cores. Note that
we assume that the untrusted software runs at the privileged
level. The policies employ eight MPU regions and an extra
default memory view to protect sensitive memories efficiently
and securely. As depicted in Fig. 4(b), the eight MPU regions of
the default MPU policies are arranged as follows:

e Region 0 is designated to set the entire memory view of the

CM4 core as read-only and non-executable, which meets
Gl1.

e Region 1-3 are reserved for enabling dynamic write ac-
cess to peripherals. If the application is compiled with a
FreeRTOS-MPU, region 3 is reserved for memory write to
extra memory ranges of an untrusted task and regions 1-2
are still reserved for peripherals, which meets GS.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

1736

® Region 4 is designated to set the code memory of the CM4
core as executable, which enables the normal execution of
untrusted software.

® Region 5 is designated to allow the untrusted software to

write its global data, stack, and heap.

® Region 6 and region 7 are designed to protect sensitive

memories. Specifically, they prohibit memory read and
write to the CM7 core’s memory.

To meet G2, the memory of uBOX-Monitor should be
non-writable for untrusted code. The protection to this dedicated
range of memory varies according to the size of the CM4 core’s
writable memory. If the size is a power of 2, which can be
covered by region 5, the final subregion of region 5 will be
disabled and the memory covered by the final subregion is used
to place uBOX-Monitoxr’s writable memory. Otherwise, the
CM4 core’s writable memory will be shrunk to a smaller power
of 2 to fit region 5. Then the CM4 core’s writable memory
uncovered by region 5 will be reserved for uBOX-Monitor.
Moreover, uBOX-Monitor’s code is well placed to ensure
that it is uncovered by region 4. Eventually, uBOX-Monitor’s
memory is regulated by region 0 and configured as read-only and
non-executable, as illustrated in Fig. 4(b). Therefore, if attackers
try to modify the data of uBOX-Monitor or hijack the con-
trol flow to execute uBOX-Monitor’s code, a MemManage
exception will be raised and further handled by our reference
monitor. The default MPU policies are saved to the read-only
memory in Flash, which also meets G2.

C. Fault-Based Configuration Protection

Although uBOX confines the memory access of untrusted
software with the MPU, privileged memory access to system
configurations is always permitted (Challenge I in Section I).
Therefore, attackers can corrupt the MPU policies to break the
isolation with regular store instructions directly. To resolve this
challenge and meet G1, uBOX devises the fault-based configu-
ration protection to confine privileged attackers from tampering
with sandbox policies. uBOX takes two steps to implement this
protection through uBOX-Compiler.

1) Instruction Replacement: uBOX-Compiler eliminates
regular store instructions by transforming them into the un-
privileged store instructions. It utilizes several LLVM passes
to perform instruction analysis and replacement. Note that reg-
ular store instructions of uBOX-Monitor are left unmodified.
However, the ARMv7-M architecture lacks unprivileged coun-
terparts for store exclusive (STREX) instructions. To address
this issue, uBOX provides wrapper functions for them. Further
elaboration on it will be discussed in Section IV-D1. In this
step, unprivileged store instructions are available in other archi-
tectures such as ARMv8-M, which satisfies G3.

2) Code Scanner: As shown in Fig. 3, uBOX-Compiler
integrates a code scanner to check the produced program im-
age and verify that there are no unsafe instructions within the
untrusted software. Unsafe instructions consist of regular store
instructions and system instructions such as CPS and MSR that
can modify system status. Although most unsafe instructions
are eliminated by instruction replacement, a few of them still
exist as assembly code cannot be handled by LLVM passes.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

Moreover, the instruction misalignment issue complicates the
situation [28], [35]. The ARMv7-M architecture incorporates
the Thumb?2 instruction set, which supports instruction lengths
of either 16-bit or 32-bit while maintaining instruction alignment
on a two-byte boundary [32]. A 32-bit instruction can be split
from the middle to form new 16-bit or 32-bit instructions, which
may potentially be unsafe instructions. Therefore, it is still pos-
sible for unsafe instructions to persist within untrusted software.
By exploiting them, adversaries can regain the capability of
breaking the isolation.

uBOX-Compiler traverses the untrusted code to guarantee
the following: 1) The absence of regular store instructions. 2)
The absence of system instructions that modify the FAULTMASK
register outside of secure gates (Section IV-D) and wrapper
functions (Listing 1). Once detecting unsafe instructions, a
report will be generated. The report includes details of mis-
aligned instructions, such as their addresses, mnemonics, and
encoding. Utilizing this report, developers can employ dis-
assemblers such as IDA Pro [47] and Binary Ninja [48] to
quickly find out the source of misaligned instructions and fix
them. Our appendix in the supplementary material illustrates
a few examples of misaligned unsafe instructions and how
to address them. Subsequently, a new program image will be
generated and subjected to further verification. This interactive
process continues until no unsafe instructions are found, which
meets G1.

D. State-Based Execution Protection

Nonetheless, attackers may try to abuse uBOX-Monitor’s
unsafe instructions to break our protection, as those unsafe
instructions are unchanged to support normal functionalities
(Challenge II in Section I). To prevent such attacks, uBOX
devises state-based execution protection to establish a secure
execution domain for our reference monitor through two pri-
mary steps. First, the memory permissions of uBOX-Monitor
are set as read-only and non-executable (Section IV-B). As a
result, attackers cannot execute any unsafe instructions within
it. Second, uBOX uses two secure gates to quickly transition
between the disabled and enabled states of the MPU to facilitate
the normal execution of uBOX-Monitor.

As illustrated in Listing 1 for handling the trusted exceptions,
at the entry_gate, the current execution priority is first
raised to -1 by setting the FAULTMASK register to 1 (Line 5).
Consequently, the MPU is disabled and the execution is confined
by the default memory view only (Fig. 4(c)). Subsequently, the
CPU context including all the general purpose registers and a
status register (xPSR) are saved to the memory which is only
writable by uBOX-Monitor (Line 7). Note that registers from
co-processors such as the Floating Point Unit (FPU) are not
saved as uBOX-Monitor does not use the FPU. Next, the
stack is switched to uBOX-Monitor’s trusted stack (Line 9).
Following this, it invokes the function that handles the exception
(Line 12). Upon the completion of exception handling, the
control flow will transfer to the exit_gate. The stack is
then switched back to the one used by the untrusted software
(Line 15). Next, the saved context is restored (Line 17). After

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: uBOX: A LIGHTWEIGHT AND HARDWARE-ASSISTED SANDBOX FOR MULTICORE EMBEDDED SYSTEMS

1| void Exception_Handler(void) {

2 __asm volatile (

3 entry_gate:

4 /* Set FAULTMASK to 1, raise priority to -1 %/
5 CPSID f

6 /* Save context %/

7 Save {R0-R12,SP,LR,PC,xPSR}

8 /* Switch to uBOX-Monitor's stack */

9 Switch Stack

10 handler_main:

1 /* Handle the exception by uBOX-Monitor x/
12 bl Exception_Handler_Main

13 exit_gate:

14 /* Switch back to untrusted code's stack */
15 Switch Stack

16 /* Restore context */

17 Restore {R0-R12,SP,LR,PC,xPSR}

18 /* Set FAULTMASK to @, recover priority */
19 CPSIE f

20|);

21 |}
Listing 1. Secure Gates Designed for Handling (Trusted) Exceptions of

uBOX-Monitor

(FAULTMASK=0 FAULTMASK=1)\

Instruction Emulation

Task (84.4.1)

Dynamic Peripheral

Middleware Activation (§4.4.2)

entry
gate

(§4.43)

Real-time Operating
System

Hardware Abstraction
Layer

Cortex-M4's Software

Context Switch
(84.4.4)

Environment Initialization
(84.4.5)
uBOX-Monitor
1

\A
Peripherals, DMA Controllers, & Cortex-M4's System Memor
\ﬁ p Y y Y,

exit
gate

Secure Gates

[|
[|
[Secure DMA Proxy]
l |
[J

Fig. 5. Runtime protection of uBOX-Monitor.

that, the execution priority is recovered (Line 19), thereby re-
enabling the MPU. Finally, the control flow will transfer back
to the untrusted code.

Our state-based execution protection effectively prevents
attackers from abusing unsafe instructions within uBOX-
Moni tor, which meets G1. Unlike using code instrumentation
approaches, our secure gates efficiently change the MPU states
and enable the normal execution of uBOX-Monitor, thereby
meeting G4. The hardware primitives required for the state-
based execution protection include the MPU, and the default
memory view, which are fundamental features and can be found
in other architectures such as ARMv8-M, which satisfies G3.

With the secure domain established, uBOX-Monitor can
run its services securely. Specifically, the services include in-
struction emulation, dynamical peripherals activation, and the
secure DMA proxy, as depicted in Fig. 5. These services uphold
the functionality of the untrusted software and confining its
memory access, thereby meeting G1.

1) Instruction Emulation: As discussed in Section IV-C1,
our compiler ensures the absence of regular store instructions,
only unprivileged ones remain. Once an unprivileged store in-
struction writes system configurations, a BusFault exception
will be triggered. Consequently, uBOX-Moni tor utilizes the

1737

BusFault exception handler to emulate the unprivileged store
instruction.

The process of emulating an unprivileged store instruction
is straightforward. Initially, uBOX-Monitor verifies the fault
status register to validate that the BusFault is indeed trig-
gered by unprivileged access to system configurations. Once
confirmed, it proceeds to retrieve the instruction’s address and
parse the instruction to identify the target address for the write
and the value to be written. After that, uBOX-Monitor checks
the target address to ensure that it is security-insensitive. Specifi-
cally, uBOX-Moni tor prohibits write access to MPU registers
and the Vector Table Offset Register (VTOR). Finally, uBOX-
Monitor writes the parsed value to the target address via a
regular store instruction.

Additionally, uBOX-Monitor provides wrapper functions
for STREX instructions that lack the unprivileged counterparts.
STREX instructions are commonly used together with load
exclusive (LDREX) instructions and both serve as a synchro-
nization primitive for the ARMv7-M architecture. In particular,
an LDREX instruction reads a value from a memory address and
tries to tag that address as exclusive. Following this, an STREX
instruction attempts to write to a tagged address. The 1-bit return
value of the STREX instruction indicates whether the memory
write is successful. Otherwise, the LDREX fails to tag the address
and the above process should repeat. If an exception occurs
between the LDREX and STREX instructions, the exclusive
tag will be automatically cleared. Therefore, uBOX-Monitor
designs wrapper functions for STREX instructions, without the
need for exception handling assistance. As shown in Listing 2,
the wrapper function first raises its execution priority to -1 by
executing a CPS instruction (Line 9). Next it checks the target
address that the STREX instruction writes (Line 10). Finally,
it invokes the function that executes a STREX instruction by
inline assembly. Note that function _strex at Line 1 is located
at uBOX-Monitor’s code memory, which is only executable
between Line 9 and Line 16.

1| uint32_t _strex(uint32_t value, volatile void *addr) {
2 __asm volatile (

3 "STREX %@, %2, %1" :

4 "=&r” (ret), "=Q" (xaddr): "r" (value));

5 return ret;
6
7
8
9

uint32_t strex(uint32_t value, volatile void *addr) {
/* Set FAULTMASK to 1, raise priority to -1 %/
__asm volatile ("CPSID f"); /* entry_gate */

10 if (check_addr(addr) == True) {

1 ret = _strex(value, addr);

12 3}

13 else

14 ret = 1;

15 /* Set FAULTMASK to @, recover priority */

16 __asm volatile ("CPSIE f"); /* exit_gate */

17 return ret;

18|}

Listing 2. Wrapper Function for the STREX Instruction

2) Dynamic Peripheral Activation: As discussed in Sec-
tion IV-B, the memory of peripherals is designated as read-only
by the MPU. Any write to this area will trigger a MemManage
exception. uBOX-Monitor dynamically activates the periph-
eral to facilitate the normal execution of untrusted software.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

1738

Algorithm 1: Dynamic Peripheral Activation & Secure
DMA Proxy.

Data:
Array for peripherals excluding DMA controllers: ArrayPeri
Array for DMA controllers: ArrayDM AC
Number of free MPU regions: FreeRegionNum
ID of the first free MPU region: F'reeRegionStart
ID of the next MPU region for activation: Free RegionNext
Function DynPeriActivation(inst):
addr, value < Parselnst (inst)
foreach peri € ArrayPeri do
if peri.base < addr < (peri.base 4 peri.size) then
base < peri.base
stze 4— peri.size
SetMPURegionRW (F'ree Region N ext, base, size)
UpdateFreeRegionNext (& F'reeRegion Next,
FreeRegionNum, FreeRegionStart)
break
end
end
return
Function SecureDMAProxy (inst):
addr, value < Parselnst (inst)
ch_base + 0
foreach peri € ArrayDMAC do
if peri.base < addr < (peri.base + peri.size) then
‘ ch_base < GetDMAChannelBase (peri.base, addr)

> DMA channel base address.

break
end
end
if ch_base # 0 then
if DMATXHasEnabled (ch_base) = T'rue or ToEnableDMA
(ch_base, addr, value) = True then
if DMATXBenign(ch_base) = T'rue then
| EmulateSTRT (addr, value)
end

else
| EmulateSTRT (addr, value)
end

end
return

This design rationale stems from the observation that a single
peripheral may contain multiple memory-mapped registers that
will be subsequently accessed. Emulating every individual store
instruction that targets the same peripheral will incur unneces-
sary performance overhead.

The process of dynamic peripheral activation is illustrated in
Algorithm 1. First, uBOX-Moni tor parses the store instruction
that triggers the MemManage exception, which is similar to the
process in Section IV-D1. Next, it compares the target address
to an array of peripherals (excluding DMA controllers), to
identify the correct peripheral. These peripherals are arranged
in an ascending order according to their base addresses. Hence,
uBOX-Moni tor applies the binary search method to match the
peripheral. Once the peripheral is identified, uBOX-Monitor
configures the MPU region indicated by FreeRegionNext
and sets the peripheral as readable and writable. Lastly, it updates
the variable FreeRegionNext that indicates the next MPU
region for peripheral activation.

3) Secure DMA Proxy: As studied previously, the data trans-
fers facilitated by the DMA are not restricted by the MPU [21],
[31]. Consequently, it is important to carefully examine every
memory transmission through DMA. We observed that before
issuing the data transmission through a DMA channel, the enable
bit of the control register associated with that DMA channel
must be set to 1. Therefore, uBOX-Monitor only needs to

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

examine the DMA configuration if the DMA transmission is
either already enabled or about to be enabled.

As illustrated in Algorithm 1, uBOX-Monitor devises a
secure DMA proxy to handle DMA transactions, which meets
G1. Similarly, it initially compares the target address against an
array of DMA controllers. Once the target DMA controller is
identified, uBOX-Moni tor proceeds to determine the specific
DMA channel that the store instruction accesses. Subsequently,
itidentifies whether the DM A channel is already enabled or if the
store instruction intends to enable the DMA channel. If either
condition is satisfied, uBOX-Monitor thoroughly evaluates
the configuration of that particular DMA channel, ensuring that
the memory transmission process never overlaps with security-
sensitive memories. Conversely, if both the conditions are not
met, uBOX-Monitor simply emulates that (unprivileged) store
instruction.

4) Context Switch: uBOX also designs API functions that
update MPU configurations for FreeRTOS, which meets GS5.
In particular, FreeRTOS employs the PendSV exceptions to
facilitate context switching. During a context switch, the MPU is
updated for the task that is about to be scheduled. Consequently,
the MPU configurations for the task need careful examination.
To this end, uBOX-Monitor re-implemented the PendSv
exception handler and inserted invocations to the API functions,
which verify the MPU configurations for the region configurable
by a task, i.e., region 3 in our design (Section IV-B). The veri-
fication ensures two key aspects: 1) the memory range covered
by region 3 does not overlap with other MPU regions (except
for region 0); 2) the memory permissions defined by region 3
disallow code execution.

5) Environment Initialization: uBOX sets up the initial ex-
ecution environment before executing untrusted code. Specifi-
cally, uBOX-Compi ler inserts an initialization routine before
invoking the main function. The routine takes four essential
steps. First, it activates the handling of BusFault and Mem-
Manage exceptions by setting necessary bits in the System
Handler Control and State Register (SHCSR). Note that this
write operation is also performed through an unprivileged store
instruction. However, the handling of BusFault is not acti-
vated at that time and the BusFault exception will escalate
to a HardFault exception. Hence this instruction emulation
will be performed by the HardFault handler instead, which
is also part of uBOX-Monitor. Second, the routine executes
an SVC instruction and invokes an SVCall to configure the
MPU with default MPU policies. Third, the HFNMIENA bit is
set to O to ensure that the MPU can be deactivated once the
current execution priority is -1. Finally, the execution flow will
transfer to the main function and the untrusted code will run
with privilege.

V. IMPLEMENTATION

We have implemented a prototype of #BOX on the
STM32H7451-DISCO board [44], which features a dual-core
MCU consisting of a CM7 core and a CM4 core. uBOX-
Compiler is implemented as passes based on the LLVM
15.0.0 [49], which includes around 3.0 K lines of C++ code.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: uBOX: A LIGHTWEIGHT AND HARDWARE-ASSISTED SANDBOX FOR MULTICORE EMBEDDED SYSTEMS

uBOX-Moni tor includes around 2.3 K lines of C and assembly
code, which is compatible with FreeRTOS-MPU version 10.3.1.
Our system also includes around 700 lines of Python code for
generating the default MPU policies.

We also adjust the system initialization procedure for the
board. Upon board power-on, each core independently initializes
its respective clocks and hardware semaphores. The CM4 core
then suspends itself by executing a WFE instruction. Subse-
quently, the CM7 core proceeds to initialize other peripherals.
Afterward, the CM7 core notifies the CM4 core by issuing an
external interrupt. The CM4 core wakes up upon receiving this
interrupt, and both cores continue execution.

Notably, the WFE instruction only suspends the processor
when the 1-bitEvent Registeris(. Otherwise, thisinstruc-
tion simply sets the register to 0 without affecting the execution.
The Event Register canbe automatically set to 1 when an
exception return occurs or after executing an SEV instruction. It
can be set to 0 by a system reset or by executing a WFE instruc-
tion. As uBOX-Moni tor utilizes the MemManage exception
to dynamically activate peripherals (Section IV-D2), multiple
exception returns occurred before the CM4 core executes the
WEE instruction. Consequently, the CM4 core will fail to suspend
itself. To address this issue, we insert an additional SEV followed
by a WFE instruction before the original WFE instruction. This
ensures that the Event Register is set to O when the CM4
core tries to enter into the stop mode.

VI. EVALUATION

In this section, we evaluate the efficiency and effectiveness
of uBOX. In summary, we evaluate our prototype of uBOX to
answer the following research questions:

RQ1 Whatare the security benefits of uBOX? (Section VI-A)

RQ2 How does uBOX prevent attacks targeting the sandbox

itself? (Section VI-B)
RQ3 What is the performance overhead of uBOX? (Sec-
tion VI-C)

A. Security Evaluation

For RQ1, we evaluated the security benefits of uBOX by illus-
trating how uBOX defends various attacks from a compromised
CM4 core in this section. We assume that the CM4 core is com-
promised by attackers through exploiting various vulnerabilities,
such as buffer overflow [50], [51], [52] and integer overflow [53],
[54], [55]. To this end, we modified application PingPong and
inserted additional code to facilitate compromising the CM4
core. In particular, the code receives user input through USART
and contains an integer overflow vulnerability.

Due to shared resources among cores, a compromised CM4
core can exploit various heterogeneous attack vectors to com-
promise the CM7 core. We evaluated the security benefits of our
system in 6 attack cases. As shown in Table I, uBOX successfully
prevents all of them.

Case @ and case ® depend on the reading capability of the
compromised CM4 core. In case @, the CM4 core can read
shared resources between the two cores directly. Furthermore,
it can use MDMA to read the private content from ITCM and

1739

TABLE I
SECURITY EVALUATION OF THE COMPROMISED CM4 CORE ATTACKING THE
CM7 CORE

Attack Information Security Analysis

Attacks Primitives Baseline uBOX
© Full Memory Dump Arbitrary Read X 4
® Information Leak Specific Read X 4
® Denial of Service Arbitrary Write X 4
@ Data Pointer Corrupt Specific Write X 4
® Control Flow Hijack Specific Write X 4
® Code Injection Specific Read & Write X v

X: successful. v: prevented.

DTCM of the CM7 core indirectly (Section II-A). Consequently,
the compromised CM4 core in the baseline is able to perform
memory dumping targeting the CM7 core with the arbitrary read
primitive. In case @, attackers can leak sensitive information
such as private password or critical data used by the CM7 core
with the specific read primitive. However, with uBOX enabled,
the read capability of the CM4 core will be restricted. If the CM4
core attempts to read memory that does not belong to itself, an
MemManage exception will be raised and further handled by
uBOX-Monitor.

Case ®@®® depend on the memory write capability of the
compromised CM4 core. Attackers can influence the runtime
behavior of the CM7 core by corrupting its memory. In case ©,
the Denial of Service attack is straightforward. In particular, the
compromised CM4 core can randomly corrupt CM7’s memory,
which would result in a crash eventually. With further infor-
mation leaked through case @, case @® would be feasible. In
case @, once the CM4 core could locate some critical variables,
e.g., variables that control the loop, overwriting to such data
may mislead the data processing of the CM7 core and even
gain a potential arbitrary read/write primitive. Similarly, in case
@, if attackers could locate and corrupt code pointers (e.g.,
function pointers) of the CM7 core, its control flow will be
hijacked. With the deployment of uBOX, CM7’s memory would
be non-writable by attackers.

Case ® code injection attack is a compound result of previous
attack vectors and is more complicated. A compromised CM4
core needs to take three steps to perform this attack. First, the
malicious payload needs to be injected into CM7’s writable
memory. Second, attackers need to hijack the control flow of
the CM7 core to configure its MPU and set the memory of the
previously injected code as executable. Third, attackers need
to divert the control flow of the CM7 core into the injected
code. uBOX successfully defeats this attack as CM7’s memory
is inaccessible to attackers.

B. Security Analysis of uBOX

Although attacks targeting the CM7 core are prevented by
our system, adversaries may compromise #uBOX itself to break
the isolation through control-flow hijacking or data-only attacks.
In this section, to answer RQ2, we analyze the potential attack
vectors of uBOX and how our system prevents them.

Control Flow Hijacking Attacks: Adversaries may directly
hijack CM4’s control flow to execute unsafe instructions and

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

1740

disable the MPU. For unsafe instructions from the untrusted
software, uBOX-Compiler employs a code scanner to check
the generated program image. It verifies that the untrusted soft-
ware is free of unsafe instructions (Section IV-C2). For unsafe
instructions from the uBOX-Monitor, the code memory of
uBOX-Moni tor is set as read-only and non-executable by the
MPU (Section IV-B). It guarantees that any unsafe instruction
within the code region cannot be executed.

For indirectly attacks, attackers may try to hijack the control
flow of uBOX-Moni tor to further execute unsafe instructions
within it. Specifically, attackers may attempt to corrupt code
pointers of uBOX-Moni tor including the function pointers or
return addresses. However, uBOX-Monitor’s data and stack
is configured as read-only when running untrusted software
(Section IV-B). Consequently, this attack can be prevented by
uBOX.

Data-only Attacks: This attack vector can be divided into three
parts. First, attackers may try to tamper with security-critical data
of uBOX-Monitor, such as the FreeRegionNext pointer
that indicates the next MPU region for peripheral activation
(SectionIV-D2). Second, attackers may try to corrupt the context
that is saved when entering into uBOX-Monitor’s exception
handlers. Third, attackers may conduct the time-of-check to
time-of-use (TOCTTOU) attack by triggering an controlled
exception to disrupt the execution of uBOX-Moni tor and then
corrupts uBOX-Moni tor’s critical data, such as the MPU con-
figurations of an untrusted task. The first two attack vectors can
be prevented as the memory of saved context is read-only when
running untrusted code. The third one can be prohibited because
the execution of uBOX-Monitor cannot be interfered with. In
particular, the execution priority of uBOX-Monitor has been
lifted to -1 after executing entry_gate (Section IV-D), which
is higher than any other configurable exceptions (Section II-C).

C. Performance Evaluation

For RQ3, we first evaluate it with macrobenchmarks to un-
derstand the overall runtime and memory overhead of uBOX.
Then we evaluate uBOX with microbenchmarks to measure the
performance impact of uBOX’s each component. After that, we
evaluate the manual efforts required for eliminating misaligned
regular store instructions. All the tests were performed on the
STM32H7451-DISCO board [44]. On this board, both CM7 and
CM4 cores have 1 MB Flash memory. It also contains 512 KB
SRAM for the CM7 core and 288 KB SRAM for the CM4 core.
Additionally, it has 64 KB SRAM used for memory sharing.
Each tested program is compiled into two different executable
files. The first one is generated by vanilla programs and used as
the baseline. The second one is compiled with uBOX.

1) Macrobenchmarks: Our macrobenchmarks include 6
representative applications, which are adopted from the
STM32CubeH7 package [56]. This benchmark selection com-
plies with previous works [20], [23], [29]. Their descriptions are
as follows:

FatFs’s CM7 core initially establishes a FAT file system.
After that, each core creates a file, writes a message to the
file, and subsequently reads the message back to verify whether

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

the content remains consistent. FatFs halts execution after each
core concludes a comparison of the content read from the FAT
file system against its original counterpart. MDMA_CM4’s CM4
core fills a large buffer with a specific number through MDMA.
Upon completing the memory transmission, the number to be
filled in the buffer will be modified for subsequent memory
transmissions through MDMA. Concurrently, the CM7 core
continuously reads the large buffer to validate if the filled content
aligns with expectations. If the content matches the expected
value, the CM7 core will blink the green LED. Otherwise,
the red LED will blink. MDMA_CM4 stops execution after
the CM4 core fills up the large buffer (by MDMA) for 10
times. Shared_Res’s two cores operate in tandem, utilizing a
shared semaphore to synchronize their access to the USART
peripheral. When a core obtains the permission to utilize the
USART, it proceeds to print a message through this peripheral
while simultaneously causing the green or red LED to blink
accordingly. This process continues until the CM4 core has
printed 10 messages. Share_Res finishes execution after the
CM4 core prints 10 messages through the USART. Bare_ CM4’s
CM7 core executes a FreeRTOS task that periodically transmits
a message to the CM4 core via shared memory. The CM4 core
receives the message and verifies its content. If the received
message is consistent with the expected one, the green LED will
be blinked. Otherwise, the red LED is blinked instead. Note that
the application code running on the CM4 core is bare-metal.
Bare_CM4 terminates its execution once the CM4 core receives
the anticipated message from the CM7 core for 10 iterations.
RTOS _Dual’s CM7 core runs two FreeRTOS tasks. The first
task continuously sends messages to the two FreeRTOS tasks on
the CM4 core. CM4 Core’s two tasks alternate in receiving the
messages and validating their content. Whenever the received
content corresponds to the expected value, the respective task
increments its associated count. Additionally, the CM7 core has
a separate check task that periodically reads the counts of the two
CM4 tasks. If the counts differ from the previously read ones, the
check task signals this by blinking the green LED, indicating that
the CM4 core’s two tasks are operating normally. Conversely, the
red LED is activated. RTOS_Dual finishes execution after either
task of the CM4 core receives its expected message from the
CMT7 core for 10 times. PingPong’s CM7 core sends a message
to the CM4 core. The message contains a number starting at
0. The CM4 core receives this message, extracts the number,
increments it by 1, and subsequently transmits it back to the
CM7 core. This back-and-forth message exchange between the
two cores continues until the number reaches 2000. CoreMark
is a performance benchmark for MCUs. We ported CoreMark
to PingPong’s CM4 core, setting it to run 4000 iterations. The
iterations per second reported by it is used as the results of
runtime overhead.

Runtime Overhead: We use the DWT unit [57], which is a
common hardware feature in Cortex-M MCUSs, to collect the
number of CPU cycles executed by the CM4 core at runtime for
each individual application. Specifically, we gather two distinct
timestamps, i.e., before and after the execution of function
main. Furthermore, we measure additional CPU cycles required
for booting the CM4 core, i.e., prior to executing main. By

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: uBOX: A LIGHTWEIGHT AND HARDWARE-ASSISTED SANDBOX FOR MULTICORE EMBEDDED SYSTEMS

1.065
1,060 Bascline
uBox

1.055
1.050
1.045
1.040

1.020
1.015
1.010
1.005
1.000
0.995

4
FatFs MDMA_CM4 Shared Res Bare CM4 RTOS_Dual PingPong
Runtime Overhead (X)

CoreMark ~ Average

Fig. 6. Runtime overhead of uBOX.
- 1.7 4
150§] uBOX l.g 3 Instrument
}4313: . 1.5 3 Fragment
150 3 {‘3‘ R uBOX
110 3 12
100 4 1.1
90 § 1.0
80 4 0.9
3 0.7
@3 o
0.5
409 0.4 =
30 0.3 K
20 3 02 >
10 7 B R
i W BAH NIAAAARGGC
B e® ¥ oD 0D (a0 & B e® ¥ o w0 o
R I O) S O AR N e s o 1O S O AR R T
¥ O\J\g\(ﬁe‘%&e q/socv’q\“%qcc‘a%’qe A 9@%@@%66 éo%q\O?SCo‘al\PSe
(a) SRAM Overhead (X) (b) Flash Overhead (X)

Fig. 7. Memory overhead of uBOX.

adding the difference between the two aforementioned times-
tamps and the increased CPU cycles for system booting, we
obtain the increased CPU cycles for uBOX. Each application is
tested for 5 iterations.

As demonstrated in Fig. 6, the average runtime overhead
incurred by uBOX is 1.27%, which is negligible. The Ping-
Pong application incurs a maximum runtime overhead, which
is 6.43%. Such an occurrence can be attributed to the compar-
atively small number of overall consumed CPU cycles for the
PingPong baseline.

SRAM Overhead: We utilized the llvm-size tool to gather
section information from both the vanilla and instrumented
executable files of each tested application. As demonstrated
in Fig. 7(a), the average increase in SRAM usage for uBOX
amounts to 36.50X. The application with the maximum SRAM
overhead is Shared_Res, exhibiting a substantial increase of
151.70X. This is primarily due to the fact that the vanilla version
of this application requires only 216 bytes of SRAM, whereas
uBOX necessitates a considerably larger 32 KB. Conversely,
RTOS_Dual showcases the smallest SRAM increase, which is
0.35X. In this case, the vanilla program requires 91.72 KB of
SRAM, while uBOX requires 32 KB.

As discussed in Section IV-B, a portion of high-address
SRAM of the CM4 core is reserved to place the data and stack of
uBOX-Monitor. The protection is achieved by either disabling
the final subregion of region 5 or shrinking the memory of
region 5 to uncover this dedicated memory. Consequently, its

1741

TABLE II
CONSUMED CPU CYCLES OF MICROBENCHMARKS

Microbenchmark Baseline #BOX (Increased)
Instruction Emulation 58 2021 (+1963)
STREX Wrapper 112 678 (+566)
Dynamic Peripheral Activation 28 1639 (+1611)
Secure DMA Proxy 1430 31918 (+30488)
System Boot 164 8950 (+8786)
Context Switch 331 927 (+596)

size accounts for approximately 12.5% (1/8) of the SRAM for
the CM4 core, which is constant and will not cause excessive
memory pressure at runtime. Despite the relatively high SRAM
overhead associated with uBOX, the increase in SRAM con-
sumption remains reasonable and acceptable.

To reduce SRAM overhead, an MPU region (1-3), originally
for dynamic peripheral activation (Section IV-B), could be reas-
signed to protect the memory range of uBOX-Monitor’s data
and stack. Consequently, the SRAM for uBOX-Monitoxr’sdata
stack could be reduced.

Flash Overhead: The Flash overhead includes code instru-
mentation, uBOX-Monitor’s code, and memory fragmenta-
tion. As depicted in Fig. 7(b), the average Flash increase amounts
to 0.83X. The maximum Flash overhead is 1.47X in the case
of MDMA_CM4. On the other hand, RTOS_Dual presents the
minimum Flash overhead, which is 0.11X. Among the tested
applications, the primary factor of the Flash overhead is memory
fragmentation, which is caused by the strict address alignment
requirement imposed by the MPU regions (Section IT). To enable
code execution of untrusted software, uBOX places the code
sections (e.g., the . text section) to the address aligned to their
power of 2 sizes as discussed in Section IV-A. Overall, the Flash
overhead demonstrated by uBOX is moderate.

2) Microbenchmarks: We design 6 microbenchmarks to un-
derstand the performance impact of each individual functionality
of uBOX. The process of measuring the overhead is similar
to the evaluation of macrobenchmarks in Section VI-C1. Each
microbenchmark is evaluated for 5 iterations.

Instruction Emulation: To evaluate the additional CPU cy-
cles required for emulating an STRT instruction, we use inline
assembly code that sets and clears the USGFAULTENA bit of
the SHCSR register, which enables and disables handling the
UsageFault exception. For the purpose of triggering instruc-
tion emulation (Section IV-D1), we use STRT instructions to
write this bit. In the baseline, we use regular store instructions
instead. As the results demonstrated in Table II, our system
introduces additional 1963 cycles by emulating one STRT in-
struction twice. This overhead stems from various operations,
such as saving and restoring context for handling BusFault,
analysis of the triggering instruction, verification of the target
address, and writing the value to the target address. Context
saving involves saving registers to stack while context restoring
involves restoring registers from stack (Listing 1).

STREX Wrapper: This microbenchmark measures the over-
head of wrapper functions for the STREX instruction. We utilize
this wrapper (Section IV-D1) in conjunction with a LDREX

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

1742

instruction to form an atomic write operation. Conversely, we
directly use the STREX instruction in the baseline. Specifically,
we employ this operation to consecutively write 1 and O to the
least significant bit of a 32-bit integer. As shown in Table II,
uBOX-Monitor incurs additional 566 cycles. The overhead
of the wrapper is significantly lower compared to instruction
emulation as it requires no context switch.

Dynamic Peripheral Activation: This benchmark measures
the overhead associated with dynamic peripheral activation
by writing 0 to the UE bit of the USART control register
(USART_CR1). For the application compiled with uBOX, the
memory write operation to this bit triggers a MemManage
exception, which is subsequently handled by uBOX-Monitor
(Section IV-D2). According to the results illustrated in Table II,
our system incurs an additional 1611 cycles of overhead. This
overhead encompasses various factors, including the context
switch required for handling the MemManage exception, in-
struction parsing, the identification of the target peripheral, and
the reconfiguration of the reserved MPU region.

Secure DMA Proxy: This synthetic benchmark measures the
overhead of a complete DMA operation. Specifically, it involves
filling a large buffer with a specific number through MDMA.
Once the memory transmission ends, a callback function is
invoked to modify a global variable, which indicates the status of
the DMA operation. As demonstrated in Table II, uBOX incurs
an additional 30488 cycles of overhead. Unlike other ordinary
peripherals, uBOX-Monitor needs to carefully examine ev-
ery write operation to the memory-mapped registers of DMA
controllers (Section IV-D3).

System Boot: This benchmark measures the overhead of
initializing the execution environment by uBOX-Monitor.
Specifically, uBOX-Monitor performs two steps for initial-
ization before invoking the main function (Section IV-D1). As
depicted in Table II, our system incurs an additional 8786 cycles
of overhead. This additional overhead occurs only once.

Context Switch: The context switch in FreeRTOS is executed
through the PendSV exception. To quantify the additional over-
head of a context switch, we manually add instructions at the be-
ginning and end of the PendSV exception handler to collect the
consumed CPU cycles. As shown in Table II, uBOX-Monitor
introduces an additional 596 cycles of overhead for a context
switch. This overhead arises from the validation of the MPU
region settings provided by untrusted tasks and updating the
MPU. Specifically, the validation includes checking the memory
range and permissions of the provided MPU configurations.

3) Efforts of Removing Misaligned Regular Store Instruc-
tions: As discussed in Section IV-C2, our system requires man-
ual work to remove misaligned regular store instructions. To
quantify this effort, we measured the prevalence of such instruc-
tions across 7 applications in our macrobenchmarks. Specifi-
cally, uBOX-Compiler examined 2- or 4-byte sequences at
2-byte intervals from the start of the code section (. text) in
each application built with uBOX, employing capstone [58] to
determine whether those sequences could constitute a regular
store instruction. If so, uBOX-Compi ler analyzed subsequent
instructions to assess their exploitability. If an undefined instruc-
tion was reached before a control flow transition instruction (e.g.,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

TABLE III
COUNT OF MISALIGNED REGULAR STORE INSTRUCTIONS

Application Code Size (KB) Count
FatFs 77.75 667.0
MDMA_CM4 18.89 144.0
Shared_Res 21.30 140.0
Bare_CM4 52.81 292.0
RTOS_Dual 51.00 287.0
PingPong 37.96 232.0
CoreMark 72.35 392.0
Average 47.44 307.7

branches, breakpoints, or pops affecting the PC register), the
preceding store instruction was considered as non-exploitable.
Otherwise, uBOX-Compi ler identified it as a misaligned store
instruction requiring further attention.

Table III shows that the number of misaligned regular store
instructions correlates with the size of the . text section. The
average count is 307.7. FatFs has the highest number due to
the largest . text section of around 77.75 KB. Conversely,
Shared_Res has the lowest count, with the second smallest
. text section size of around 21.3 KB.

VII. RELATED WORK

Memory Isolation for Embedded Systems: Extensive research
has been dedicated to enforcing memory isolation in embed-
ded systems through software-based or hardware-assisted ap-
proaches. Regarding software-based methods, memory isolation
depends on memory-safe programming languages, such as We-
bassembly [59] and embedded Rust [60]. eWASM [17] adopts
Webassembly to ensure memory safety and type safety at the
thread level. Additionally, CRT-C [18] utilizes CheckedC [61]
to constrain memory access for each compartment. While suit-
able for new development, these approaches generally require
a re-implementation of existing code (including RTOS) which
hinders adaptability.

Hardware-assisted approaches leverage hardware features,
such as the MPU and privilege modes, to facilitate memory
isolation. For instance, MINION [19] ensures memory iso-
lation for the RTOS-based embedded systems at the thread-
level. ACES [20] compartmentalizes the program into compart-
ments and enforces compartment-level memory isolation. ACES
supports flexible policies to partition a program. Similarly,
OPEC [23] divides the program at the operation granularity. To
achieve fine-grained memory isolation, OPEC generates shadow
copies of shared global variables of each compartment. Since
memory transmission through DMA is not regulated by the
MPU, D-BOX [21] designs secure DMA APIs for untrusted
software to protect embedded systems from DMA based attacks.
However, malicious input from peripherals can also threaten em-
bedded systems. To defend such attacks, M2MON [22] sanitizes
the malicious writes from untrusted code to memory-mapped
registers of peripherals and filters out malicious signals from
the physical world.

The aforementioned hardware-assisted approaches necessi-
tate privilege separation to protect their reference monitors.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: uBOX: A LIGHTWEIGHT AND HARDWARE-ASSISTED SANDBOX FOR MULTICORE EMBEDDED SYSTEMS

Consequently, untrusted code is forced to execute at the un-
privileged level. To execute privileged instructions from un-
trusted code properly, frequent context switches are required.
Intra-address space mechanisms, which do not require privilege
separation, are more efficient. EC [36] runs untrusted compart-
ments and the reference monitor at the same privileged level. To
constrain privileged attackers, EC employs the debug watchpoint
to trap the write operations targeting security-sensitive system
configurations. Any attempt to modify the sensitive memory
will trigger a DebugMon exception, which is further managed
by EC. SHERLOC [62] utilizes the Micro Trace Buffer feature
of the ARMv8-M architecture to monitor the control flow of both
unprivileged and privileged code from the non-secure world. Its
reference monitor runs within the secure world. uBOX achieves
memory isolation and protects its reference monitor at the same
privileged level with untrusted code.

Security Mitigation for Embedded Systems: Apart from en-
forcing memory isolation, various research works mitigate spe-
cific attacks to embedded systems. Shen et al. [63] achieves
Execute-Only-Memory (XOM) against information leak at-
tacks. Specifically, it uses the debug watchpoint to monitor all
the read operations to the protected code memory. uXOM [28]
utilizes unprivileged load instructions to deprive the read ca-
pability of untrusted code, while simultaneously keeping code
executable. Additionally, uXOM employs unprivileged store
instructions to protect MPU configurations similar to uBOX.
RECFISH [64], uRAI [29], and Silhouette [30] protect the
return address integrity of embedded systems. In particular,
uBOX uses the isolated memory domain to securely execute the
reference monitor for SFI. Kage [31] enforces holistic control
flow integrity on RTOS-based embedded systems. Furthermore,
HERA [65] and RapidPatch [66] propose hotpatch approaches,
which patch the read-only code of embedded systems without
modification at runtime. EPOXY [67], Randezvous [68], and
HARM [69] use randomization techniques to defend against
code reuse attacks. These studies are orthogonal to uBOX.

Strengthened Security Primitives: Plenty of research works
aim to propose new or strengthen existing secure primitives
for embedded devices to extend their applications. DICE [70]
and Lazarus [71] provide mechanisms for regaining control
over remotely deployed embedded devices, even if they suf-
fer complete compromise. These protection mechanisms are
independent of memory isolation methods and complement our
system. PISTIS [72] proposes a software based security archi-
tecture which enables efficient memory isolation. In particular,
it targets TT MSP430 MCUs [73], which use an instruction set
where indirect memory access and indirect control flow transfer
can be distinguished from their direct counterparts, setting it
apart from the ARMv7-M architecture. MyTEE [74] establishes
a trusted execution environment on the ARMv8-A based em-
bedded systems that lack critical TrustZone extensions. This is
accomplished by carefully using the 2-stage address translation
and the secure monitor mode. RT-TEE [75] strengthens the ARM
TrustZone with availability, ensuring the timely completion of
real-time tasks. uBOX uses a novel approach to run the reference
monitor at a permissive memory view and confines privileged
attackers with the MPU.

1743

VIII. DISCUSSION

Applications Modifying the MPU: Currently, our reference
monitor prohibits applications from writing to MPU registers.
Therefore, any attempt by an application to set the MPU will
be denied. However, some applications may require MPU cus-
tomization. To accommodate these, we can repurpose one of the
MPU regions (1-3), initially for dynamic peripheral activation
(Section IV-D2), for applications needing customized MPU
configurations. Applications will be confined to this specific
region’s configuration without disrupting the existing security
policy.

Confidentiality of the Reference Monitor: Currently, the con-
fidentiality of the uBOX-Monitor cannot be guaranteed. This
limitation arises from the limited number of MPU regions avail-
able in the ARMv7-M architecture. In particular, the memory
permissions for the uBOX-Monitor’s code and data are set
to read-only and non-executable when executing untrusted soft-
ware. Although the integrity of the uBOX-Monitor’s code
and data is ensured, attackers can still freely read the memory of
our reference monitor, thereby compromising its confidentiality.
Note that in MCUs equipped with the MPU with more than 8
MPU regions, such as the Cortex-M33 [76] MCU, two dedicated
MPU regions can be reserved to establish no-access permissions
for uBOX-Monitor’s memory. Therefore, any unauthorized
memory read to uBOX-Monitor will be prohibited.

Scalability of uBOX: Our system utilizes unprivileged store
instructions and the MPU bypass feature to create a secure envi-
ronment for uBOX-Moni tor. Itis compatible with ARMv8-M
Main extension MCUs, which include both features [37]. How-
ever, it’s not applicable to ARMvS8-M Baseline [77] or ARMv6-
M [78] MCUs due to the absence of the MPU bypass feature. In
RISC-V MCUs, Physical Memory Protection (PMP) [79] can
be employed, akin to the MPU, to set memory permissions over
physical addresses. To establish a secure execution environment
at the M-mode, where unsafe operating systems may operate,
the Smepmp extension and PMP configuration locking feature
can be used. Unlike the MPU, PMP is configured via Control and
Status Register (CSR) instructions, not memory load and store
instructions. Hence, any CSR instructions that alter the PMP
must be substituted with call gates, as there are no unprivileged
equivalents for CSR instructions.

Harden Existing Protections: Recent security protections for
ARMvV7-M based embedded systems (e.g., uXOM [28]) rely on
SFI to instrument unaltered regular store instructions, thereby
safeguarding the MPU configurations. Moreover, additional
mechanisms are required to enforce control flow integrity to
ensure that the SFI cannot be circumvented. In contrast, uBOX
uses the state-based execution protection to prevent regular store
instructions and other system instructions of uBOX-Monitor
from being abused by attackers. In the future, we plan to improve
existing protections with our state-based execution protection.

IX. CONCLUSION

Multicore embedded systems employ a heterogeneous ar-
chitecture that consolidate varying performance cores into one
MCU. These cores serve different purposes, with LITTLE cores

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

1744

processing external inputs and big cores handling computation-
intensive tasks. Due to the resource sharing among cores, the
compromise of one core will affect the whole system. Existing
hardware-assisted SFI mechanisms adopt the MPU to enforce
memory isolation over untrusted software. However, they rely
on privilege separation and code instrumentation to protect the
isolation policies from unauthorized modifications.

In this paper, we propose uBOX, a lightweight sandbox for
multicore embedded systems. Similar to previous works, uBOX
restricts the memory access of untrusted software through the
MPU. On the contrary, uBOX isolates the untrusted software at
the same privileged level. To prevent attackers from modifying
isolation policies, uBOX devises the fault-based configuration
protection and traps any write access from untrusted software
towards system configurations. To prevent attackers from abus-
ing uBOX-Monitor’s code, uBOX devises the state-based
execution protection to securely host uBOX-Monitor with
the default memory view. Reusing uBOX-Monitor’s code by
attackers is prohibited by the MPU as its memory is configured as
read-only and non-executable when running untrusted software.
Our evaluation demonstrates that uBOX incurring negligible
runtime overhead, moderate Flash overhead, and reasonable and
constant SRAM overhead.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments and feedback. Additionally, the first
author of this paper extends personal thanks to Dr. Yuan Chen,
Dingding Wang, Huamao Wu, and Jinyan Xu for their assistance
with proofreading and discussions. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
funding agencies.

REFERENCES

[1] Apple, “iPhone 14 pro,” 2022. [Online]. Available: https://www.apple.
com/hk/en/iphone- 14-pro/specs/

[2] Qualcomm, “Snapdragon 8 gen 2 mobile platform,” 2023. [Online].
Available: https://www.qualcomm.com/products/mobile/snapdragon/
smartphones/snapdragon- 8-series-mobile-platforms/snapdragon- 8- gen-
2-mobile-platform

[3] Hisilicon, “Qirin 9000,” 2023. [Online]. Available: https://www.hisilicon.
com/en/products/Kirin/Kirin-flagship-chips/Kirin-9000

[4] Samsung, “Exynos 1380, 2023. [Online]. Available: https://
semiconductor.samsung.com/processor/mobile-processor/exynos- 1380/

[5] Intel, “Performance hybrid architecture,” 2023. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/
hybrid-architecture.html

[6] A. Semiconductor, “Alif ensemble family,” 2023. [Online]. Available:
https://alifsemi.com/ensemble/

[71 NXP, “i. MX 8 M nano family - arm cortex-A53, cortex-M7,” 2023.
[Online]. Available: https://www.nxp.com/products/processors-and-
microcontrollers/arm-processors/i-mx-applications-processors/i-mx- 8-
applications-processors/i-mx-8m-nano-family-arm-cortex-a53-cortex-
m7:i. MX8MNANO

[8] STMicroelectronics, “STM32H7 series,” 2023. [Online]. Available:
https://www.st.com/en/microcontrollers-microprocessors/stm32h7-
series.html

[9] P. Zero, “Over the air: Exploiting broadcom’s Wi-Fi stack (Part 1),”
2017. [Online]. Available: https://googleprojectzero.blogspot.com/2017/
04/over-air-exploiting-broadcoms- wi-fi_4.html

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

[10] P. Zero, “Over the air-vol. 2, PT 1: Exploiting the Wi-Fi stack on apple
devices,” 2017. [Online]. Available: https://googleprojectzero.blogspot.
com/2017/09/over-air-vol-2-pt- 1-exploiting- wi-fi.html

[11] R.Wahbe, S.Lucco, T.E. Anderson, and S. L. Graham, “Efficient software-
based fault isolation,” in Proc. 14th ACM Symp. Operating Syst. Princ.,
1993, pp. 203-216.

[12] B. Yee et al., “Native client: A sandbox for portable, untrusted x86 native
code,” in Proc. IEEE Symp. Secur. Privacy, 2009, pp. 79-93.

[13] D. Sehr et al., “Adapting software fault isolation to contemporary CPU
architectures,” in Proc. 19th USENIX Secur. Symp., 2010, pp. 1-12.

[14] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan, “RockSalt:
Better, faster, stronger SFI for the x86,” in Proc. 33rd ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2012, pp. 395-404.

[15] B. Niu and G. Tan, “Monitor integrity protection with space efficiency and

separate compilation,” in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., 2013, pp. 199-210.

Y. Zhou, X. Wang, Y. Chen, and Z. Wang, “ARMIlock: Hardware-based

fault isolation for ARM,” in Proc. 21st ACM SIGSAC Conf. Comput.

Commun. Secur., 2014, pp. 558-569.

[17] G. Peach, R. Pan, Z. Wu, G. Parmer, C. Haster, and L. Cherkasova,
“eWASM: Practical software fault isolation for reliable embedded de-
vices,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39,
no. 11, pp. 3492-3505, Nov. 2020.

[18] A.Khan, D. Xu, and D. Tian, “Low-cost privilege separation with compile
time compartmentalization for embedded systems,” in Proc. IEEE Symp.
Secur. Privacy, 2023, pp. 3008-3025.

[19] C. H. Kim et al., “Securing real-time microcontroller systems through
customized memory view switching,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2018, pp. 1-15.

[20] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “ACES:
Automatic compartments for embedded systems,” in Proc. 27th USENIX
Secur. Symp., 2018, pp. 65-82.

[21] A.Mera, Y. H. Chen, R. Sun, E. Kirda, and L. Lu, “D-Box: DMA-enabled

compartmentalization for embedded applications,” in Proc. Netw. Distrib.

Syst. Secur. Symp., 2022, pp. 1-17.

A. Khan, H. Kim, B. Lee, D. Xu, A. Bianchi, and D. J. Tian, “M2MON:

Building an MMIO-based security reference monitor for unmanned vehi-

cles,” in Proc. USENIX Secur. Symp., 2021, pp. 285-302.

[23] X. Zhou, J. Li, W. Zhang, Y. Zhou, W. Shen, and K. Ren, “OPEC:
Operation-based security isolation for bare-metal embedded systems,” in
Proc. 7th Eur. Conf. Comput. Syst., 2022, pp. 317-333.

[24] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity
principles, implementations, and applications,” ACM Trans. Inf. Syst.
Secur., vol. 13, no. 1, pp. 1-40, 2009.

[25] N. Burow et al., “Control-flow integrity: Precision, security, and perfor-
mance,” ACM Comput. Surv., vol. 50, no. 1, pp. 1-33,2017.

[26] N.Burow, X. Zhang, and M. Payer, “SoK: Shining light on shadow stacks,”
in Proc. IEEE Symp. Secur. Privacy, 2019, pp. 985-999.

[27] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in Proc. 10th ACM Symp. Inf., Comput.
Commun. Secur., 2015, pp. 555-566.

[28] D.Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, “uXOM: Efficient
eXecute-only memory on ARM cortex-M,” in Proc. 28th USENIX Secur.
Symp., 2019, pp. 231-247.

[29] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “uRAIL:
Securing embedded systems with return address integrity,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2020, pp. 1-18.

[30] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Silhouette:
Efficient protected shadow stacks for embedded systems,” in Proc. 29th
USENIX Secur. Symp., 2020, pp. 1219-1236.

[31] Y.Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell, “Holistic

control-flow protection on real-time embedded systems with kage,” in

Proc. 31st USENIX Secur. Symp., 2022, pp. 2281-2298.

Arm, “ARMvV7-M architecture reference manual,” 2021. [Online]. Avail-

able: https://developer.arm.com/documentation/ddi0403/latest/

[33] Arm, “Unprivileged loads and stores,” 2021. [Online]. Available:
https://developer.arm.com/documentation/ddi0403/d/ Application-
Level- Architecture/The- ARMv7-M-Instruction-Set/Load-and- store-
instructions/Unprivileged-loads-and-stores

[34] Hard Find Electronics Ltd., “Top 5 MCU manufacturers view for the
development of the microcontroller market,” 2024. [Online]. Available:
https://www.hardfindelec.com/a/76030.html

[35] Z. B. Aweke and T. Austin, “uSFI: Ultra-lightweight software fault iso-
lation for IoT-Class devices,” in Proc. Des., Automat. Test Europe Conf.
Exhib., 2018, pp. 1015-1020.

[16]

[22]

[32]

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

https://www.apple.com/hk/en/iphone-14-pro/specs/
https://www.apple.com/hk/en/iphone-14-pro/specs/
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-2-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-2-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-2-mobile-platform
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-9000
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-9000
https://semiconductor.samsung.com/processor/mobile-processor/exynos-1380/
https://semiconductor.samsung.com/processor/mobile-processor/exynos-1380/
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://alifsemi.com/ensemble/
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-nano-family-arm-cortex-a53-cortex-m7:i.MX8MNANO
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-nano-family-arm-cortex-a53-cortex-m7:i.MX8MNANO
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-nano-family-arm-cortex-a53-cortex-m7:i.MX8MNANO
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-nano-family-arm-cortex-a53-cortex-m7:i.MX8MNANO
https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h7-series.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/09/over-air-vol-2-pt-1-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/09/over-air-vol-2-pt-1-exploiting-wi-fi.html
https://developer.arm.com/documentation/ddi0403/latest/
https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-Instruction-Set/Load-and-store-instructions/Unprivileged-loads-and-stores
https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-Instruction-Set/Load-and-store-instructions/Unprivileged-loads-and-stores
https://developer.arm.com/documentation/ddi0403/d/Application-Level-Architecture/The-ARMv7-M-Instruction-Set/Load-and-store-instructions/Unprivileged-loads-and-stores
https://www.hardfindelec.com/a/76030.html

ZHOU et al.: uBOX: A LIGHTWEIGHT AND HARDWARE-ASSISTED SANDBOX FOR MULTICORE EMBEDDED SYSTEMS

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58

[59]

[60]
[61]

[62]

[63]

A.Khan, D. Xu, and D. Tian, “EC: Embedded systems compartmentaliza-
tion via intra-kernel isolation,” in Proc. IEEE Symp. Secur. Privacy, 2023,
pp- 2990-3007.

Arm, “Armv8-M architecture reference manual,” 2021. [Online]. Avail-
able: https://developer.arm.com/documentation/ddi0553/latest/

S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software ab-
straction for intel memory protection keys (intel MPK),” in Proc. USENIX
Annu. Tech. Conf., 2019, pp. 241-254.

J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “EPK: Scalable and efficient
memory protection keys,” in Proc. USENIX Annu. Tech. Conf., 2022,
pp. 609-624.

D. Schrammel et al., “Donky: Domain keys—efficient in-process isola-
tion for RISC-V and x86,” in Proc. 29th USENIX Secur. Symp., 2020,
pp. 1677-1694.

A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P.
Druschel, and D. Garg, “ERIM: Secure, efficient in-process isolation
with protection keys (MPK),” in Proc. 28th USENIX Secur. Symp., 2019,
pp. 1221-1238.

Z. Yuan, S. Hong, R. Chang, Y. Zhou, W. Shen, and K. Ren, “VDom: Fast
and unlimited virtual domains on multiple architectures,” in Proc. 28th
ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,
2023, pp. 905-919.

S. Park, S. Lee, and T. Kim, “Memory protection keys: Facts, key exten-
sion perspectives, and discussions,” IEEE Secur. Privacy, vol. 21, no. 3,
pp. 8—15, May/Jun. 2023.

Arm, “STM32H7451-DISCO, discovery kit with STM32H745X1
MCU,” 2019. [Online]. Available: https://www.st.com/en/evaluation-
tools/stm32h745i-disco.html

Arm, “STM32H745/755,” 2019. [Online]. Available: https://www.st.com/
en/microcontrollers-microprocessors/stm32h745--755.html

EEMBC, “CPU benchmark-MCU benchmark — CoreMark — EEMBC
embedded microprocessor benchmark consortium,” 1997. [Online]. Avail-
able: https://www.eembc.org/coremark/

Hex-Rays, “IDA pro,” 2024. [Online]. Available: https://hex-rays.com/
ida-pro/

V. 35, “Binary ninja,” 2024. [Online]. Available: https://binary.ninja/
LLVM, “LLVM: A compilation framework for lifelong program anal-
ysis & transformation,” in Proc. Int. Symp. Code Gener. Optim., 2004,
pp. 75-86.

CVE, “CVE-2018-16528," 2018. Accessed: Oct. 7, 2023. [Online].
Available: https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2018-
16528

CVE, “CVE-2018-16525," 2018. Accessed: Oct. 7, 2023. [Online].
Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-
16525

CVE, “CVE-2018-16526," 2018. Accessed: Oct. 7, 2023. [Online].
Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-
16526

CVE, “CVE-2021-31572,” 2021. Accessed: Oct. 7, 2023. [Online].
Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-
31572

CVE, “CVE-2020-10062,” 2020. Accessed: Oct. 7, 2023. [Online].
Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-
10062

CVE, “CVE-2020-10067,” 2020. Accessed: Oct. 7, 2023. [Online].
Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-
10067

STMicroelectronics, “STM32CubeH7,” 2023. Accessed: Jun.
17, 2023. [Online]. Available: https://www.st.com/zh/embedded-
software/stm32cubeh7.html

Arm, “Data watchpoint and trace unit,” 2023. [Online]. Available:
https://developer.arm.com/documentation/ddi0439/b/Data- Watchpoint-
and-Trace- Unit

Capstone, “Capstone: The ultimate disassembler,” 2024. [Online]. Avail-
able: https://www.capstone-engine.org/

A. Haas et al., “Bringing the web up to speed with WebAssembly,” in
Proc. 38th ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
2017, pp. 185-200.

E. Rust, “Rust for embedded systems,” 2023. [Online]. Available: https:
/Iwww.rust-lang.org/what/embedded

Microsoft, “Checked C,” 2015. [Online]. Available: https://www.
microsoft.com/en-us/research/project/checked-c/

X. Tan and Z. Zhao, “SHERLOC: Secure and holistic control-flow vi-
olation detection on embedded systems,” in Proc. ACM Conf. Comput.
Commun. Secur., 2023, pp. 1332-1346.

Z. Shen, K. Dharsee, and J. Criswell, “Fast execute-only memory for
embedded systems,” in Proc. I[EEE Secure Develop., 2020, pp. 7-14.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

1745

R.J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C.
Ward, “Control-flow integrity for real-time embedded systems,” in Proc.
31st Euromicro Conf. Real-Time Syst., 2019, pp. 2:1-2:24.

C. Niesler, S. Surminski, and L. Davi, “HERA: Hotpatching of embedded
real-time applications,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2021,
pp. 1-16.

Y. He et al., “RapidPatch: Firmware hotpatching for real-time embedded
devices,” in Proc. 31th USENIX Secur. Symp., 2022, pp. 2225-2242.

A. A. Clements et al., “Protecting bare-metal embedded systems
with privilege overlays,” in Proc. IEEE Symp. Secur. Privacy, 2017,
pp- 289-303.

Z.Shen, K. Dharsee, and J. Criswell, “Randezvous: Making randomization
effective on MCUS,” in Proc. 38th Annu. Comput. Secur. Appl. Conf.,2022,
pp. 28-41.

J. Shi, L. Guan, W. Li, D. Zhang, P. Chen, and N. Zhang, “HARM:
Hardware-assisted continuous re-randomization for microcontrollers,” in
Proc. IEEE 7th Eur. Symp. Secur. Privacy, 2022, pp. 520-536.

M. Xu et al.,, “Dominance as a new trusted computing primitive for
the Internet of Things,” in Proc. IEEE Symp. Secur. Privacy, 2019,
pp. 1415-1430.

M. Huber, S. Hristozov, S. Ott, V. Sarafov, and M. Peinado, “The Lazarus
effect: Healing compromised devices in the internet of small things,” in
Proc. 15th ACM Asia Conf. Comput. Commun. Secur., 2020, pp. 6—19.
M. Grisafi, M. Ammar, M. Roveri, and B. Crispo, “PISTIS: Trusted
computing architecture for low-end embedded systems,” in Proc. 31st
USENIX Secur. Symp., 2022, pp. 3843-3860.

T. Instruments, “MSP430 microcontrollers,” 2023. Accessed: Jun.
17, 2023. [Online]. Available: https://www.ti.com/microcontrollers-
mcus-processors/msp430-microcontrollers/overview.html

S. Han and J. Jang, “MyTEE: Own the trusted execution environment
on embedded devices,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2023,
pp. 1-15.

J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “RT-TEE: Real-time system
availability for cyber-physical systems using arm trustzone,” in Proc. IEEE
Symp. Secur. Privacy, 2022, pp. 352-369.

Arm, “Cortex-M33,” 2023. [Online]. Available: https://developer.arm.
com/documentation/100230/latest/

Arm, “Introduction to the Armv8-M architecture and its pro-
grammers model,” 2021. [Online]. Available: https://developer.
arm.com/documentation/107656/0101/Introduction-to- Armv8-M-
architecture/ Architecture-and-micro-architecture/ Architecture

Arm, “ARMv6-M architecture reference manual,” 2018. [Online]. Avail-
able: https://developer.arm.com/documentation/ddi0419/1atest/

R.-V. Foundation, “The RISC-V instruction set manual, volume II:
Privileged architecture, version 20240411,” 2024. [Online]. Available:
https://github.com/riscv/riscv-isa-manual/releases/download/20240411/
priv-isa-asciidoc.pdf

Xia Zhou received the BE degree in information
security from Sichuan University, in 2018. He is
currently working toward the doctoral degree in cy-
berspace security with Zhejiang University. His cur-
rent research interests lie in the hardware-assisted
security isolation on embedded systems.

Yujie Bu received the BA degree in broadcasting and
TV from Zhejiang University, in 2021. He is currently
working toward the PhD degree with the Hong Kong
Polytechnic University. His current research interests
lie in the OS-hardware boundary security and dis-
tributed system security like blockchain.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

https://developer.arm.com/documentation/ddi0553/latest/
https://www.st.com/en/evaluation-tools/stm32h745i-disco.html
https://www.st.com/en/evaluation-tools/stm32h745i-disco.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h745--755.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h745--755.html
https://www.eembc.org/coremark/
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://binary.ninja/
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2018-16528
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2018-16528
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2018-16525
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2018-16525
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2018-16526
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2018-16526
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2021-31572
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2021-31572
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2020-10062
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2020-10062
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2020-10067
https://cve.mitre.org/cgi-bin/cvename.cgi{?}name$=$CVE-2020-10067
https://www.st.com/zh/embedded-software/stm32cubeh7.html
https://www.st.com/zh/embedded-software/stm32cubeh7.html
https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit
https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit
https://www.capstone-engine.org/
https://www.rust-lang.org/what/embedded
https://www.rust-lang.org/what/embedded
https://www.microsoft.com/en-us/research/project/checked-c/
https://www.microsoft.com/en-us/research/project/checked-c/
https://www.ti.com/microcontrollers-mcus-processors/msp430-microcontrollers/overview.html
https://www.ti.com/microcontrollers-mcus-processors/msp430-microcontrollers/overview.html
https://developer.arm.com/documentation/100230/latest/
https://developer.arm.com/documentation/100230/latest/
https://developer.arm.com/documentation/107656/0101/Introduction-to-Armv8-M-architecture/Architecture-and-micro-architecture/Architecture
https://developer.arm.com/documentation/107656/0101/Introduction-to-Armv8-M-architecture/Architecture-and-micro-architecture/Architecture
https://developer.arm.com/documentation/107656/0101/Introduction-to-Armv8-M-architecture/Architecture-and-micro-architecture/Architecture
https://developer.arm.com/documentation/ddi0419/latest/
https://github.com/riscv/riscv-isa-manual/releases/download/20240411/priv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/20240411/priv-isa-asciidoc.pdf

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

Meng Xu (Member, IEEE) received the PhD degree
from the Georgia Institute of Technology, in 2020. He
is an assistant professor with the Cheriton School of
Computer Science, University of Waterloo, Canada.
His research is in the area of system and software
security, with a focus on delivering high-quality so-
lutions to practical security programs, especially in
finding and patching vulnerabilities in critical com-
puter systems. This usually includes research and
development of automated program analysis testing
verification tools that facilitate the security reasoning
of critical programs.

Yajin Zhou received the PhD degree in computer sci-
ence from North Carolina State University, Raleigh,
NC, USA. He is currently a ZJU 100 young professor
with the School of Cyber Science and Technology,
and the College of Computer Science and Technol-
ogy, Zhejiang University, China. His research mainly
focuses on smartphone and system security, such as
identifying real-world threats and building practical
solutions, mainly in the context of embedded systems
(or IoT devices).

Lei Wu received the PhD degree from North Carolina
State University, in 2015. He is an associate professor
with the School of Cyber Science and Technology,
and the College of Computer Science and Technol-
ogy, Zhejiang University, China. His research interest
lies mainly in security areas, including system secu-
rity and blockchain security.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 17,2025 at 18:01:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

