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Abstract. Java deserialization vulnerabilities arise when unexpected
data triggers dangerous function calls during deserialization processes.
Current deserialization vulnerability detection faces challenges such as
path explosion caused by polymorphism [29] in Java, leading to incom-
plete analysis and inefficiency.

In this paper, we present SerdeSniffer, a new Java deserialization vul-
nerability detection tool to address these challenges. SerdeSniffer is the
first tool that employs a bottom-up function summarization technique to
mitigate path explosion effectively. Specifically, SerdeSniffer uses func-
tion summaries during interprocedural analysis to effectively prevent
multiple calculations in taint analysis and utilizes fixpoint computation
to analyze issues related to function recursion and cyclic calls.

To avoid omissions in summary information, we use the over-tainting
method in taint analysis and treat uninitialized variables as taint sources.
We also merge the summary information of called functions to facilitate
polymorphic analysis. Furthermore, SerdeSniffer includes a vulnerabil-
ity detection algorithm that starts from dangerous functions and uses
summary information and propagation rules in a bottom-up approach,
and employs a sanitizer to eliminate ineffective propagation paths.

In comparative experiments based on ysoserial [23], a tool for generat-
ing payloads that exploit Java object deserialization, SerdeSniffer iden-
tified nine more historical gadget chains than other open source tools. In
testing the latest versions of components, SerdeSniffer discovered three
new gadget chains within 600s, the longest being 14 nodes, two of these
new chains confirmed by CVEs in the PUBLISHED state.
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1 Introduction

Serialization refers to the process of converting the state of an object (typically
represented as structured data) as storable or transmittable form. Serialization
is commonly used for preserving runtime state, data storage, or remote proce-
dure calls (RPC) scenarios [22]. Moremove, deserialization transforms serialized
binary or string data back into a valid object. In Java programs, native serial-
ization is accomplished through the writeObject method of a serializable class,
and deserialization through the readObject method.

Native Java deserialization is not entirely secure due to polymorphism and
class inheritance mechanisms in Java, which allow class field types to be replaced
during the deserialization process. This can trigger unexpected subclass method
calls. When applications handle serialized data from unreliable sources, attackers
exploit these vulnerabilities by tampering with or supplying malicious serialized
data as an attack vector, leading to remote code execution, data leaks, and
service disruptions. In recent years, widely used components such as Fastjson [1]
and the Java deserialization gadget chains in Apache Commons Collections [2]
have highlighted this issue, with these gadget chains often being difficult to
analyze manually. The attack surface typically covers all parts of the application
that handle untrusted serialized data, particularly those dependent on external
libraries. Unsafe components can compromise the security of other components
or even the entire application, as seen in the command execution vulnerability
in WebLogic that depends on multiple components [13].
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Fig. 1. Core code of the CC6 gadget chain in version 3.1 of the Apache Commons
Collections library.

Figure 1 highlights a deserialization vulnerability in version 3.1 of the Apache
Commons Collections library and demonstrates the path explosion due to Java
polymorphism. Data flow shows the key variable in key.hashCode, generated
during deserialization in HashSet, lacks static verification. As a result, any of the
487 subclasses with a method signature matching hashCode might be invoked,
though typically only hashCode of TiedMapEntry triggers the CC6 gadget chain.
The this variable in the hashCode function is also generated through the dese-
rialization process, leading to path explosion in functions that are invoked start-
ing from this variable. In addition to the polymorphism mentioned above, path



176 X. Liu et al.

explosion is also exacerbated by recursive and cyclic function calls and further
worsened by multi-component combination analysis.

Recent efforts in security research have integrated program analysis tech-
niques to detect Java deserialization vulnerabilities, aiming to pinpoint potential
gadget chains. Yet, balancing enhanced analytical precision with efficiency and
handling path explosion remains challenging. For instance, GadgetInspector [25]
utilizes the ASM framework and static taint analysis to construct function call
graphs but limits the analysis length due to path explosion, leading to missed
detections. Similarly, Serhybrid [33], despite starting from MagicMethods and
employing pointer analysis, overlooks polymorphism issues and inadequately
addresses path explosion. JDD [20] combines static taint analysis and pointer
analysis to identify potential entry points and latent gadget fragments, yet still
contends with the challenges of path explosion when addressing polymorphism.

1.1 Motivation

Despite recent progress in Java deserialization vulnerability detection solutions
still have several key shortcomings. These limitations affect the efficiency and
accuracy of vulnerability detection which eventually leads to false negatives. The
motivation of this study is to address several core issues that are widely neglected
or not fully resolved in current research and tool implementations:

(a) Insufficiencies in Deserialization Analysis

—>» data flow
——>» Variable-Type
——>» call edge

Type-1
public java.lang.Object getValue()
{

org.apache.commons.collections.keyvalue.TiedMapEntry # 0;
java.lang.Object $s1, $s3;

. java.util.Map $s2;

ReadObject()

#_0 := @this: org.apache.commons.collections.keyvalue.TiedMapEntry;

$s2 = #_0.<org.apache.commons.collections.keyvalue.TiedMapEntry: Map map>;

Variable

$s1 = #_0.<org.apache.commons.collections.keyvalue.TiedMapEntry: Object key>;

$s3 = interfaceinvoke $s2.<java.util.Map: Object get(java.lang.Object)>($s1);

O O O }return $s3;
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Fig. 2. Polymorphic issues in deserialization and disruption in data flow analysis.

Deserialization analysis must address Java polymorphism and the simula-
tion of value assignments for uninitialized variables. During deserialization,
objects are generated from data streams without clear type information, lead-
ing to multiple potential call paths and polymorphic issues, as illustrated in
Fig. 2.a. The uncertainty in deserialized objects’ contents and the absence of
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object pointers in standard analysis disrupt pointer and taint analysis con-
nections, as shown in Fig. 2.b. Conventional pointer analysis struggles with-
out explicit Store and New assignments, impeding effective analysis between
variables s2 and s1, and blocking data flow from this to s3.

(b) Balancing Precision and Efficiency
Achieving precision and efficiency in Java deserialization vulnerability detec-
tion is crucial. Polymorphic analysis and mock for uninitialized variables
enhance accuracy and reduce efficiency. While taint analysis improves pre-
cision due to data flow tracking, it reduces efficiency. Traditional methods
like the RTA algorithm [15], unsuitable for unknown deserialization object
types, are replaced by the CHA (class hierarchy analysis) algorithm [22] to
address polymorphism, enhancing analysis depth but expanding the space.
To optimize efficiency without losing precision, CHA is applied selectively to
tainted objects, conserving resources and time while ensuring high accuracy.

(c) Challenges in Reflective Analysis

public class Example {

Example.main() public static void main(String[] args) {
try {
— MyClass obj = new MyClass();
MyClass.init() Method method = obj.getClass().

getMethod("displayMessage", String.class);
method. invoke(obj, "Reflection");
} catch (Exception e) {
e.printStackTrace();

java.lang.Object.getClass()

[java.lang.Class.getMethod() |

java.lang.reflect. } ¥
Method.invoke class MyClass {

public void displayMessage(String message) {

L>Myclass.displayMessage() N System.out.println(message);
}

Fig. 3. Example of Java reflection in code.

The reflection complicates deserialization vulnerability detection by allow-
ing runtime inspection, invocation, and modification of class properties and
methods, as illustrated in Fig.3. Programs can dynamically invoke meth-
ods like displayMessage without direct reference, enhancing development
flexibility while posing significant challenges for static analysis. The unpre-
dictable nature of reflection at compile time hinders accurate vulnerability
detection, increasing the risk of false negatives, and complicating the com-
prehensive identification of security vulnerabilities in static analysis tools.

1.2 Research Contributions

This study introduces a new tool for detecting Java deserialization vulnerabili-
ties, SerdeSniffer. This tool combines static taint analysis and graph databases to
address the deficiencies in efficiency, accuracy, and depth of vulnerability mining
due to the path explosion. The main contributions of this research include:
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(a) Use of Function Summaries: SerdeSniffer introduces function summaries
for the first time to address the path explosion introduced by polymor-
phism in Java deserialization vulnerability detection. SerdeSniffer proposes
the BIFSum(Bottom-up Information Flow Summary) algorithm to systemat-
ically build function summaries within components. In the analysis process,
BIFSum treats uninitialized variables as temporary taint sources and uses
over-tainting analysis to prevent omissions in summary information. It also
employs abstract fixpoint analysis to resolve function recursion and looping
issues within the summarization process.

(b) Rule-Based Vulnerability Detection: SerdeSniffer employs rule-based
vulnerability detection algorithms that analyze from dangerous functions
using function summaries to determine if reachable functions can taint Sink
functions. If taint rules are met, the reachable function controls the Sink. Dur-
ing analysis, data flow is sanitized to remove invalid variables. After retrieving
the shortest gadget chain via a graph database, it verifies the type consistency
of alias objects within the chain to minimize false positives.

(¢) Experimental Validation and Practical Application: In comparative
experiments with ysoserial, SerdeSniffer demonstrated high efficiency and
effectiveness in detecting historical vulnerabilities, discovering 8 more histor-
ical gadget chains than other tools. In testing the latest versions of com-
ponents, SerdeSniffer was able to identify three new gadget chains with a
maximum length of 14 within 600s, two of which have been confirmed in
the CVE database. Experiments also show that SerdeSniffer can effectively
detect vulnerabilities within a reasonable time frame even in scenarios involv-
ing complex components or component combinations.

1.3 Structure of the Paper

This paper introduces the SerdeSniffer framework and its advancements in
detecting Java deserialization vulnerabilities. It starts with an overview of the
background and the objectives. The second section describes the architecture and
key technologies of SerdeSniffer, followed by a detailed explanation of its static
analysis algorithms like the BIFSum algorithm in the third section. The fourth
section evaluates SerdeSniffer through case studies, while the fifth analyzes the
results, discussing its strengths and limitations. The sixth section reviews related
work in the field of Java deserialization vulnerability detection, highlighting the
advantages of SerdeSniffer relative to other technologies. Finally, the contribu-
tions of SerdeSniffer are summarized, and future research directions are dis-
cussed.

2 Framework Overview

SerdeSniffer is a static analysis framework designed for the detection of Java
deserialization vulnerabilities. As shown in Fig. 4, the framework comprises two
main parts: data processing and static analysis. The data processing part is



SerdeSniffer 179

Data Processing Static Analysis X |Data Processing
Bottom-up Information flow

_ Intraprocedural _Summary Analysis Gadget Chains
analysis
Merge _ _ Interprocegural _ Foedback
Database CHA analysis analysis
= VarPointsTo Analysis

'
'
% X ' Type
Taln/tf:;rzinssfer < Generte Type
4 Tainted Information Sanitizer

g

ke B

Fig. 4. The SerdeSniffer Framework Diagram

Summary
Methods

Check TaintedVar

Neo4jJ %

Facts Generator _Facts Databases

responsible for preparing, analyzing, and organizing data before and after static
analysis; the static analysis part focuses on the BIFSum algorithm and vulnera-
bility detection implemented based on Datalog [34], with the detailed algorithms
being thoroughly introduced in Sect. 3.

Data Processing. The data processing component of SerdeSniffer is essential
for handling data preparation, organization, and analysis. It converts Class, Jar,
and other test targets into analyzable formats using the Soot framework [2§],
which generates SSA-formatted IR [26] that feeds into a Facts database for
Datalog-based static analysis, as shown in Fig.4. For combined components,
SerdeSniffer merges their Facts databases to serve as new analysis inputs.
Post-analysis, data undergoes systematic organization in a graph database
during the data organization phase. This is followed by a detailed analysis phase
using predefined queries to generate function call graphs. During the data anal-
ysis phase, Sanitizers assess the type consistency of alias objects within the call
graph. Detected inconsistencies prompt modifications to the query statements,
refining them to exclude invalid call paths. This iterative process continues until
the graph database yields no further results, ensuring that only valid and effec-
tive deserialization vulnerability gadget chains are recognized by SerdeSniffer.

Static Analysis. Static analysis is central to the SerdeSniffer framework,
which includes intraprocedural analysis, interprocedural analysis, and vulner-
ability detection, all implemented via Datalog-based fixpoint analysis. Below is
an overview of functionalities in each component.

During intraprocedural analysis, static analysis initially performs pointer
analysis and taint analysis on the SSA-formatted Intermediate Representation
(IR). This includes analyzing the preliminary call graph and intraprocedural
data flow information for each function. The system then checks if the this
pointer and return values of the function might be tainted by input values to
build function summaries. For tainted function call instructions, the CHA algo-
rithm is used to build function call graphs and address polymorphism issues.
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Interprocedural analysis relies on function summaries and call graphs to per-
form cross-functional taint analysis. In this phase, static analysis calculates new
tainted variables based on the summaries of called functions and updates taint
propagation information. Through fixpoint analysis, the system continually iden-
tifies and updates new tainted variables, iterating repeatedly until all relevant
function summaries are fully analyzed to ensure comprehensive analysis.

The vulnerability detection phase is based on the results of the first two anal-
ysis stages. By analyzing the constructed call graphs and taint propagation infor-
mation, the system identifies potential vulnerability gadget chains. Using pre-
defined rules for dangerous function propagation, the reachable and propagable
dangerous function call graph is constructed from the bottom up. Once the anal-
ysis is complete, this information is imported into a graph database to support
the final identification and assessment of vulnerabilities.

3 Algorithms

This chapter introduces the Bottom-up Information Flow Summary (BIFSum)
Algorithm used in SerdeSniffer, which addresses the path explosion. It also
details the data processing part of SerdeSniffer, explaining the combination anal-
ysis between components and data cleansing to enhance accuracy.

3.1 Bottom-Up Information Flow Summary (BIFSum)

The BIFSum addresses several challenges in deserialization analysis, including
the balance between precision and efficiency, and the difficulties of reflective anal-
ysis. This method specifically targets the unique nature of object initialization
during deserialization, where initialization is conducted via deserialization rather
than through constructors. Traditional methods often fail to adequately address
the complexity introduced by these uniquely initialized objects, and the result-
ing path explosion significantly limits the comprehensive and efficient analysis
of the code space.

BISum mitigates path explosion by establishing function summaries. Dur-
ing intraprocedural analysis, function parameters and the this are designated
as taint sources. Depending on whether the Receiver Object is tainted, CHA
algorithm or pointer analysis is executed to construct a call graph. Analyzing
the possibility that taint sources may reach the variables of the called functions,
thus generating TaintedToInvocationVariable as function summary informa-
tion in Algorithm 1. In interprocedural analysis, the pre-computed summaries
are used to directly uupdate the taint analysis information in the caller, facil-
itating the calculation of new taint propagation objects until all functions are
analyzed and no new summary information emerges.

Algorithms Description. The main content of the BIFSum algorithm is
detailed in Algorithm 1. Initially, all functions that require summary compu-
tation are identified, labeling methods with no function calls as BottomMethod
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and others as NodeMethod. Lines 5-7 in Algorithm 1 are dedicated to the initial-
ization phase for each function, where the this pointer and formal parameters of
the current function are treated as sources of taint. Fields and arrays that can-
not be initialized are simulated and set as temporary taint sources to prevent
disruptions in pointer analysis and taint analysis.

Algorithm 1. BIFSum (Bottom-up Information Flow Summary)
1: def Methods: Collection of all Methods

2: def SourceVariable: This and FormalParams

3: def LostVar: Variables that lose value in some methods

4: while !fixPoint.reachable() do

CurrentMethod «—Methods.pop()
TSrc.add(CurrentMethod.SourceVariable)
TmpTSrc.add(CurrentMethod.LostVar)
TVar «P /Taint. Analysis()
9: if TmpTSrc.isTransferredFrom(TSrc) then

10: Merge(TmpTSrc, TSrc)
11: end if
12: for CurrentStmt: CurrentMethod.stmts do
13: if CurrentStmt.instanceof(Virtuallnvocation)
and TVar.contains(CurrentStmt.base) then
14: ToMethod —CHA (baseType,MethodSignature)
15: else
16: ToMethod «VarPointsTo _CallGraph(baseV ar,MethodSignature)
17: end if
18: if CurrentStmt.isReflectable(Virtuallnvocation) then
19: ReflectMethod, Re flectClass <—VarPointsTo(PreviousVariables)
20: ToMethod «—Extend Reflect(ReflectMethod, ReflectClass)
21: end if
22: Update(TVar, ToMethod.summary)
23: CallGraphInSummarizer «— CallGraph(CurrentMethod, ToMethod)

24: end for

25: if TVar.transferred(TSrc) and TVar.isRetVars() then
26: Summary(TaintSouTSrcrce, TVar)

27: end if

28: end while

Datalog Rules abot Function Summary Information:

Tainted ToInvocationVariable(from, from method, to, to _method) :-
(Tainted TolnvocationParam (from, from method, to, to_method);
TaintedToInvocationBase(from, from method, to, to_method))

In actual pointer and taint analyses, line 8 specifies using the P/Taint Anal-
ysis algorithm based on over-tainting to perform intraprocedural analysis and
avoid summary omissions. Unlike traditional analyses, P/Taint analysis indepen-
dently of pointer analysis [24], enhancing speed. After initial analyses, lines 9-11
assess whether taint sources can propagate temporary taint sources; if so, taint
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information is merged. Over-tainting in P/Taint Analysis extends tainted ele-
ments to entire arrays or objects, ensuring completeness in function summaries.

BIFSum algorithm has two approaches for interprocedural call analysis: when
the base of a call instruction is a tainted object, the CHA algorithm is used to
avoid underreporting caused by deserialization assignments, as in lines 12-14;
otherwise, pointer analysis is utilized to compute call information, as in lines
15-17. After obtaining call information, as in lines 22-23 of the algorithm, the
summary information from the ToMethod is used to compute variable propaga-
tion information. Lines 2527 focus on computing function summaries, particu-
larly detecting which taint sources affect return variables like this and return.

« = = = )» Function Summaries

O Invocation
Recursion £,(v){ (14 Summaries Results
n—
o :;O?En n = new_v(v); n = new_v(v);
‘ return Tn)i - return Fy(n);
+ ¥
fo(v){ T (v) {
n = new_v(v); n = new_v(v); |-
={> return fpext(n); if check(v) : |*
) return ;|-
/] e return fi(n) |
b »{F,: Params—>ret
Figure a Figure b

Fig.5. a: Abstract representation of cycles and recursion; b: Abstract function taint
propagation and function summary.

Cycles and Recursion. In static analysis, when dealing with issues of recursion
and loops, the BIFSum algorithm employs an abstract fixpoint analysis method.
As shown in Figs. 5-a and 5-b, BIFSum simplifies recursive and cyclic calls into
a series of function calls from F} to F, in the function call graph, where n
represents the depth of recursion or number of cycles, and it is assumed that
these calls include a termination condition in F,.

When F,, meets the termination condition and its return value ret is poten-
tially influenced by its taint sources (such as this and formalParams), we
will process a function summary for Fj,, as shown in Fig.5-b, depicting F}, :
Param — Ret, indicating that function parameters can taint the function return
value. During the function summary calculation process illustrated in Fig. 5-b,
BIFSum applies the fourth line of the algorithm for fixpoint analysis. The gener-
ated Summary— F,, is used to infer upward from F} to F},_1, continuing until all
functions are analyzed. This method optimizes the analysis process and avoids
performance issues common in traditional recursive or cyclic analyses, such as
repeated calculations in path explosion.
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Fig. 6. Comparison of the BIFSum Algorithm and Taint Analysis

Handling Path Explosion. Figure6 illustrates specifically how the BIF-
Sum algorithm in SerdeSniffer, compared to other static analyses, utilizes func-
tion summaries to address the path explosion. Initially, the BIFSum algorithm
employs function summaries in a bottom-up manner only during interprocedural
analysis; for intraprocedural analysis, it computes and stores function summaries
independently of other functions and only queries them when using the sum-
maries. Additionally, function summaries include mappings from taint sources
to taint outputs, which reduces the number of states that need to be consid-
ered, abstracts away the internal details of functions, and focuses on how taint
is propagated through functions.

As depicted in Fig. 6, functions that are repeatedly called in taint analysis
undergo complete pointer and taint analysis for each of the n different calling
edges, leading to n full analyses for the repeatedly called function parts. In
contrast, for the function summaries of BIFSum, once summaries are constructed
based on over-tainting for the repeatedly called functions, the analysis of n calls
merely utilizes the mapping from taint sources to taint outputs, without redoing
the pointer and taint analyses.

Moreover, concerning function calls induced by Java polymorphism in taint
analysis, it is necessary first to compute the calling function, and then perform
full taint analysis among the m polymorphic target functions. For the BIFSum
algorithm, it simply queries the summary information of the m target functions,
eliminating the need to redo taint analysis.

Reflective Analysis. BIFSum employs a straightforward reflective analysis
to address reflection issues in programs. In the program, BIFSum uses pointer
analysis to determine if the parameter in forName points to a string constant,
obtaining the class name of the target function, as in lines 18-21 of the Algorithm
1. Then, by assessing if the parameter in getMethod points to a string constant,
it obtains the function name of the target function. Finally, based on the class
name and function name, it locates the function and uses line 23 of BIFSum
to invoke the summary information of the reflective function, updating variable
propagation information within the function.

Utilizing Summaries for Vulnerability Detection. This section details
how the BIFSum algorithm utilizes the Tainted TolnvocationVariable informa-
tion for vulnerability detection. The vulnerability detection process involves two
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key steps: establishing rules for Sink functions and conducting a bottom-up vul-
nerability detection based on these rules. For instance, lines 24 in Algorithm
2 define a SinkSummarizerRule for command execution, stating that the con-
trollability condition for the Sink function is that the first formal parameter is
propagative, and this rule is designated as Rule 1. Moreover, BIFSum establishes
rules for common high-risk functions, including controllable reflection functions,
file reading, command execution, class loading, RMI, and JNDI.

Algorithm 2. Datalog rules for Sink Summarizer and Method Summarizer

1: Datalog Rules:
2: SinkSummarizerRule(sink, 1) :-

3:  ReachabelSinkingMethod(source, _, sink, one), FormalParam(0, sink, one),
4: sink = "<java.lang.Runtime: java.lang.Process exec(java.lang.String)>".

5: ReachableMethod(Method, from, Sink, to):-

6:  ((TaintedTolnvocationVariable(from, Method, to, Sink), DefineSink(Sink));
7:  (ReachableMethod(PMethod, PFrom, SinkMethod, to),

Tainted ToInvocationVariable(from, Method, PFrom, PMethod))).
: Result(method, sink, rule) :-
ReachableMethod(method, from, sink, one), rule = 1, isSourceFrom(from),
10:  FormalParam(0, sink, one), SinkSummarizerRule(sink, rule).

© oo

After establishing the rules for the Sink functions, as shown in lines 5-
7 of Algorithm 2, BIFSum begins from the Sink function and calculates the
propagability of function parameters to the Sink function from the bottom up,
until all function parameters to the Sink function are confirmed to be reach-
able and controllable, and this step is referred to as ReachableMethod. Then,
lines 8-10 specify that under Rule 1, if the from variable in ReachableMethod
is a predetermined source of taint, such as the this variable in the readObject
function, and fully satisfies the conditions set by the SinkSummarizerRule, BIF-
Sum considers the current ReachableMethod able to effectively trigger and con-
trol the Sink function. Lastly, all reachable and controllable call graphs from
ReachableMethod to the Sink function are imported into the Neo4j database.

3.2 Data Processing

Combination Analysis. In the component combination analysis, the Serde
Sniffer framework defines the Facts database for each component as Facts,,
where each database contains multiple relations, denoted as Factsgrules,,. The
variable m represents the number of relation types that need to be processed,
including information on variables, details of assignments, function calls, and
other key relational information. During the combination process, the actual
operation involves merging the corresponding Facts _Rules,, from each Facts,,
to create a new consolidated database, Facts Merge. This process can be
described as:
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n m
Facts Merge = U U Facts_Rules;; (1)
i=1j=1
In this merging process, each entry of Facts Rules,, includes the component
package information, and all variables are treated in the Static Single Assignment
(SSA) form. This approach ensures that data do not overwrite each other during
the merge, thereby maintaining data integrity and consistency.
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Fig. 7. Example of Type Inconsistency Detection

Data Cleansing. After the static analysis is complete, SerdeSniffer imports
all effective call graphs that can trigger vulnerabilities into a graph database.
Within this database, deserialization functions marked as the start method
(StartMethod) are used to find the shortest path graphs from StartMethod to
dangerous functions, which are subsequently output as results.

Upon obtaining specific gadget chain call graphs, SerdeSniffer utilizes the call
graph information to detect the consistency and validity of deserialized objects
based on the data flow information, from top to bottom. Specifically, the system
analyzes data flows based on interprocedural and intraprocedural taint analysis
results, and checks the inclusiveness of different object types under the same
pointer from top to bottom. If the type of a previous object is a superclass or
the same class of a subsequent object, it is determined that the types of these
objects are inclusive, thereby confirming their consistency.

For example, in the results of testing version 2.14.0 of org.zaproxy.zap,
Fig. 7 shows the core code and key call graph of a false positive gadget chain. In
this graph, the collection object in the containsAll method and the object in
fromObject alias. The type of the collection is the Collection class, while the
actual type of the object is the DynaBean class. Since there is no class inheritance
relationship between these two classes, there is a type conflict between the two
variables, leading to the determination that this call chain is invalid.
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4 Experiments

To effectively implement and evaluate the algorithms in SerdeSniffer, we inte-
grated the BIFSum algorithm within the premier Java static analysis tool,
Doop [17]. Doop leverages the Datalog language, utilizing frameworks like souf-
flé [27], to perform pointer and taint analysis on large-scale Java programs [16].
Rules files in Doop, which are based on Soufllé, are extendable, allowing for the
implementation of the BIFSum algorithm by adding analysis rules.

During the implementation of the BIFSum algorithm in Doop, we first mod-
ified the Soot-fact-generator in Doop to accommodate as many JDK ver-
sions as possible, testing a broader range of components. Additionally, in the
analysis rules of Doop, we disabled the original pointer and taint analyses that
were extended from the call graph, such as ContextResponse and StaticCon-
textResponse. Instead, we utilized CallGraphInSummarizer from SerdeSniffer
to ensure intraprocedural pointer and taint analyses and interprocedural func-
tion summary utilization. Moreover, SerdeSniffer expands the analysis scope to
all functions and provides lightweight function summary information for native
functions to ensure as many functions as possible generate summary information.

In the data processing stage, SerdeSniffer uses Neodj for graph database
implementation and shortest path retrieval. As one of the most advanced graph
database engines, Neo4j allows efficient data import through the database import
method, minimizing the impact of data import processes [8]. SerdeSniffer applies
the Dijkstra algorithm to efficiently identify the shortest paths in deserializa-
tion vulnerability gadget chains [30]. In subsequent data processing, SerdeSnif-
fer designs customizable blacklist query statements to retrieve the next available
gadget chain when issues arise with deserialized objects or functions.

4.1 Experimental Setup

The experiments were conducted on an Intel(R) Xeon(R) Gold 5117 CPU @
2x2.0GHz with 90G of memory, running on Debian 12.2. The experimental
analysis utilized Doop version 4.24.10, deployed in an analysis environment with
soufllé version 2.3 and Oracle JDK 8. The choice of Oracle JDK 8, despite being
an older version, was due to its widespread adoption and compatibility with
many legacy systems, ensuring comprehensive and relevant test coverage. Anal-
ysis options in Doop include context-insensitive analysis, minimized information
flow analysis, lightweight reflection, and simple proxy options.

4.2 Test Dataset

To evaluate the effectiveness of SerdeSniffer, we chose ysoserial as the primary
baseline dataset. The ysoserial project is a Java deserialization vulnerability
exploit project and is the most popular and prominent Java deserialization
exploit tool. It includes major and exploitable Java deserialization exploit chains,
which have been widely used and studied, becoming an important benchmark
in the field of Java deserialization vulnerability detection. The project contains
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31 historical vulnerability components, 9 of which rely solely on their own com-
ponents, while the remaining 22 require other components within ysoserial for
exploitation, as detailed in Table 1.

4.3 Effectiveness

The experimental results of SerdeSniffer on the test dataset are shown in Table 1.
This table shows the number of historical gadget chains pre component in
the Count column, and the Results column compares the number of effec-
tive exploitation chains identified by SerdeSniffer to the total number of gadget
chains analyzed. Additionally, for larger components like clojure, SerdeSniffer
not only completes the analysis but also effectively identifies historical gad-
get chains. Even when analyzing deserialization vulnerabilities involving multi-
ple components, SerdeSniffer maintains effective performance within acceptable
time frames.

Table 1. SerdeSniffer Experimental Results. Note: “R” for Reachable and “T” for
Taintable

Component ‘Vcrsion ‘Timc(s)‘ ‘Loc ‘Objccts‘R ‘T ‘Count‘Rosults
ysoserial Single Component

commons-collections 3.1 325 5.53M |52 33 115 5/11
commons-collections4 4.0 211 3.12M |56 39 [13[2 2/13
clojure 1.8.0 450 6.71M |18 25 102 2/10
rome 1.0 307 5.49M |18 10 5 |1 1/5
bsh 2.0b5 285 5.50M |3 19 111 0/1
groovy 2.3.9 650 8.09M |19 6 (0|1 0/1
¢3p0 0.9.5.2 306 5.93M |32 159 1 1/9
rhino.js 1.7R2 305 5.76M |27 5 |11 1/1
jython-standalone 2.5.2 856 9.31M |44 105/36(1 1/36
ysoserial Component Combination

spring-beans; core; xalan 4.1.4.R; 2.7.2 1458 7.27TM 29 23111 1/2
json-lib; logging, lang; aop, core; beanutils; 2.4; 1.0; 1.2; 4.1.4.R; 1.9.2/1365 6.45M |61 33 111 1/11
Discovered vulnerabilities

clojure 1.12-alphab 579 6.88M 20 30 [15]2 2/15
beanutils;json-lib;cc;aop 1.9.4; 2.4; 5.3.32; 3.2.2 1242 11.22M|27 155 1 1/5

Compared to previous tools, SerdeSniffer can identify more historical gad-
get chains. Table 2 compares the performance of tools such as SerHybrid, Gad-
getInspector and ODDFuzz [9] on different components. The Count and Results
columns in Table 2 correspond to those in Table 1, indicating historical vulnera-
bility counts and comparing effective chains identified by different tools. In test-
ing the commons-collections 3.1 component, SerdeSniffer identified 5 effec-
tive gadget chains in 325s, analyzing a total of 11 potential chains; in contrast,
SerHybrid and GadgetInspector respectively identified only 1 effective gadget
chain. Additionally, ODDFuzz identified only 3 effective gadget chains. Addi-
tionally, within the effective time frame, SerdeSniffer can effectively identify
historical exploitation chains in components such as bsh 2.0b5.
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Table 2. Comparative Experiments. Note: “T'O” stands for “TIMEOUT”, “T” for Time
in seconds and “R” for Results

Component Version|Count|SerdeSniffer|SerHybrid|GadgetInspector ODDFuzz
T R T R TR T R

commons-collections (3.1 5 3255/11 1894/1/14 |57/1/4 N/A[3/87
commons-collections4/4.0 2 2112/13  |837 |1/15|55/0/4 N/A12/112
clojure 180 2 4502/10 |TO N/A 62]1/12 N/Al1/184
bsh 20b5 1 2851/1 851 |1/1 |580/2 N/A0/8
jython 2.5.2 |1 856/1/36 TO [N/A |77/0/42 N/A|1/32
rome 1.0 1 3071/5 578 0/1 [56/0/2 N/A1/5

4.4 Vulnerability Discovery

SerdeSniffer unveiled fresh insights during tests on recent components. Specif-
ically, in Clojure version 1.12-alphab, it detected a command execution gadget
chain after 579s of analysis, assigning it CVE-2024-22871 [4] and CVE-2017-
20189 [3], with an introduction to the latter provided in Appendix A.

And, it is important to note that CVE-2017-20189 applied for in 2024, was
found to affect Clojure version 1.9 and had a similar historical gadget chain in
2017 [11]. Therefore, the final assignment of CVE-2017-20189 includes both the
newly discovered gadget chain by SerdeSniffer and the historical gadget chain [3].
Additionally, it was observed that the dependent components of zaproxy could
combine to form a new deserialization gadget chain with spring-aop [5].

5 Discussion

According to the experimental results presented in Table1, SerdeSniffer has
demonstrated its effectiveness across multiple components, successfully iden-
tifying known vulnerabilities in components including Clojure and commons-
collections. The SerdeSniffer tool has shown its capability in the static analysis
domain for effective detection of Java deserialization vulnerabilities, particu-
larly the BIFSum algorithm, which effectively addresses the path explosion. The
Sanitizer mechanism also helps to avoid variables and statements that cannot
propagate, thereby enhancing the precision of the analysis.

According to the comparative experimental results in Table2, SerdeSniffer
was compared against some tools. The results indicate that SerdeSniffer per-
forms well, particularly in handling complex components and large-scale Java
programs, confirming its effectiveness and practicality in detecting Java deseri-
alization vulnerabilities.

Tests on groovy and bsh components revealed that historical vulnerabilities,
involving dynamic proxies used in dangerous functions, couldn’t be detected.
As shown in Fig. 8, the BeanShelll gadget chain exploited dynamic Comparator
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proxies, binding malicious InvocationHandler implementations to the compara-
tor of PriorityQueue. The framework of SerdeSniffer struggles with such proxies,
leading to inaccuracies in vulnerability detection. Future work could explore an
analysis of class inheriting InvocationHandler and Serializable for better
reachability and propagability, and utilize runtime data to refine static analysis
of dynamic proxies and reflection.

public PriorityQueue getObject(String command) throws Exception {
// BeanShell payload
String payload =
"compare(Object foo, Object bar) {new java.lang.ProcessBuilder(new String[l{" +
Strings.join( Arrays.asList(command.replaceATT("\\\\", " \\\\\\\\")
LreplaceATL("\"","\\\"").split(" ")), ",", "\"", "\"")+"}).start();return new Integer(1);}";
// Create Interpreter
Interpreter i = new Interpreter();
i.eval(payload);
// Create InvocationHandler
XThis xt = new XThis(i.getNameSpace(), 1i);
InvocationHandler handler = (InvocationHandler) Reflections.
getField(xt.getClass(), "invocationHandler").get(xt);
// Create Comparator Proxy
Comparator comparator = (Comparator) Proxy.
newProxyInstance(Comparator.class.getClassLoader(),new Class<?>[]{Comparator.class},handler);
// Prepare Trigger Gadget (will call Comparator.compare() during deserialization)
final PriorityQueue<Object> priorityQueue = new PriorityQueue<Object>(2, comparator);
Object[] queue = new Object[] {1,1};
Reflections.setFieldValue(priorityQueue, "queue", queue);
Reflections.setFieldValue(priorityQueue, "size", 2);
return priorityQueue;

Fig. 8. BeanShelll Historical Vulnerability Validation Code

Unlike mixed analysis tools such as SerHybrid and GCMiner [18], SerdeSnif-
fer does not combine static and dynamic analyses, which restricts automatic
vulnerability validation. Future enhancements could include constructing an
abstract object graph from data flow and utilizing call graphs to guide the fuzzing
process in tools like JQF [32] for generating test cases.

Despite the extensive research in the field of Java deserialization vulnera-
bility detection, there are not many open-source tools available for compari-
son, as Table 3 shows the actual open-source status of recent works. In Table 3,
GCMiner, although open-source, cannot be executed properly due to missing
components such as fake-tabby, and there are relevant discussions in the GitHub
community [7]. In addressing path explosion using Function Summaries, only
summarizes dynamic functions, not considering the potential path explosion
caused by the introduction of the CHA algorithm in normal method calls.
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Table 3. Status of Recent Tools as of April 2024. Note: e for True, o for False, and ®
for Special

Tool Open SourcePolymorphic AnalysisFunction Summaries Dynamic Analysis Data Generation
tabby [14] . . o o o
GadgetInspector [25] e o o o o
Serhybrid [12] . o o . .
GCMiner [6] © o o . o
ODDFUZZ 9] o . o . 0
JDD [20] o . ® . °
SerdeSniffer [10] . . . o o

6 Related Work

To identify Java deserialization vulnerabilities, researchers initially used static
analysis on Java apps. lan Haken created GadgetInspector, the first open-source
tool specifically for Java deserialization exploit chains. It leverages the ASM
bytecode framework for taint analysis on binaries, allowing quick vulnerability
detection within a practical time frame. GadgetInspector is widely recognized in
both academia and industry and remains the top choice among security experts.
However, it fails to address path explosion due to polymorphism and setting a
fixed analysis duration limits the thoroughness of the analysis.

Subsequently, with the advancement of static analysis technology, researchers
adopted more comprehensive and unified static analysis frameworks for Java
deserialization vulnerability detection. In the Tabby Project [21], Java code is
converted into a code property graph stored in a graph database. By analyzing
data flows on top of detecting function call graphs, it checks for the reachability
of dangerous functions. As the number of function call graphs increases, so does
the analysis space and overhead of data flows, still facing the problem of path
explosion.

Shawn Rasheed introduced the SerHybrid tool, which is based on the cutting-
edge Java analysis tool Doop and was the first to use a hybrid analysis app-
roach to inspect Java deserialization vulnerabilities. SerHybrid begins analyzing
serialization issues from common functions such as toString and hash, but it
overlooks the special nature of the serialization process and the polymorphism
issues involved, leading to insufficient coverage of vulnerability detection. Addi-
tionally, SerHybrid employs Randoop for test data generation, but the original
Randoop [31], as a unit testing tool, lacks the capability to generate complex
objects.

Later, more researchers applied hybrid analysis to Java deserialization vul-
nerability detection. Sicong Cao and others introduced tools like ODDFuzz [19]
and GCMiner during the same period. Unlike the hybrid methods in SerHybrid,
ODDFuzz and GCMiner detail hybrid analysis and focus on the generation capa-
bility of verification data. Other researchers proposed the JDD tool, aimed at
reducing the impact of path explosion by constructing gadget fragments from
the bottom up, and addressing dynamic features such as reflection and proxies.
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Compared to existing methods, SerdeSniffer introduces a function summary-
based static analysis approach that effectively mitigates path explosion for the
first time, balancing efficiency with accuracy. Additionally, SerdeSniffer provides
a new static analysis tool for existing hybrid analysis researches, enriching cur-
rent hybrid analysis methods. However, SerdeSniffer uses function call graphs
and taint analysis, leading to a higher rate of false positives due to possible over-
tainting and incomplete reachability of function call graphs. Future integration
of hybrid analysis could lower false positives and improve automatic exploit gen-
eration efficiency. Additionally, SerdeSniffer struggles with special invocations
like dynamic proxies, increasing the risk of false negatives.

7 Conclusion

This paper introduces SerdeSniffer, a novel framework for detecting Java
deserialization vulnerabilities. Employing the innovative BIFSum algorithm,
SerdeSniffer effectively resolves the path explosion caused by polymorphism in
Java deserialization for the first time. By integrating a rule-based vulnerabil-
ity detection algorithm and a Sanitizer mechanism, SerdeSniffer enhances the
precision and efliciency of vulnerability assessments. This work offers a ground-
breaking approach to mitigating Java deserialization vulnerabilities, providing a
new tool for researchers to identify and address security gaps in Java applica-
tions.
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ment Science and Technology of Hainan Province (GHYF2022010), and Beijing Natural
Science Foundation (4242031).

A Appendix

The content of this appendix is the Clojure command execution gadget chain.

A.1 Clojure Command Execution

The new deserialization vulnerability in Clojure, affecting versions 1.9 to
1.12-alphab, presents distinct characteristics compared to historical vulnerabil-
ities. To address vulnerabilities, version 1.9 introduced patches that blocked
the serialization of specific classes including AbstractTableModel$ff19274a.
Despite these efforts, this version also inadvertently made clojure.lang.Var
serializable, thereby opening up new avenues for potential exploitation.

SerdeSniffer discovered a new exploitation chain that bypasses these patch
restrictions. As shown in Fig.9, the deserialization of HashMap triggers the
hashCode function in the PersistentQueue class. This sequence continues into
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java.util. HashSet: void readObject(java.io.Obj ‘

I } lojure.lang.RestFn: java.lang.Object appIyTo(cIojure.lang.lSeq)‘

l clojure : Object i ic(ji lang.Object,java.lang.Object) l

]
ljava.util.HashMap: Object put(iava,Iang.Object,]ava,lang.Object)‘ T |cloiure.java.process$start: java.lang.Object doInvoke(java.lang.Object)
‘nlojure&oreﬂ,apply: java.lang.Object invoke(java.lang.Object,java.lang.Object) i

‘clojureAcure$apply: java.lang.Object invoke(java.lang.Object,java.lang.Object)

clojure.lang.PersistentQueue: int hashCode() l T ‘clojure.java.pron:ess$starl: java.lang.Object invokeStatic(clojure.lang.ISeq) ‘

clojure.core$partial$fn_5920: java.lang.Object invoke(java.lang.Object) l

clojure.lang.lterate: java.lang.Object first() ‘—T

Fig. 9. Clojure Deserialization Vulnerability, Call Chain Length of 14

java.lang.ProcessBuilder: java.lang.Process start() '

first function of PersistentQueue$Seq, which allows for the serializa-

tion and manipulation of its Iterate objects. These serialized objects facilitate
function calls that use the serialized £ and prevSeed fields, ultimately leading
to command execution via the invoke function of core$partial$fn__5920 in
process$start.
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