
SeMalloc: Semantics-Informed Memory Allocator
Ruizhe Wang

University of Waterloo
Waterloo, Ontario, Canada
ruizhe.wang@uwaterloo.ca

Meng Xu
University of Waterloo

Waterloo, Ontario, Canada
meng.xu.cs@uwaterloo.ca

N. Asokan
University of Waterloo

Waterloo, Ontario, Canada
asokan@acm.org

Abstract

Use-after-free (UAF) is a critical and prevalent problem in mem-
ory unsafe languages. While many solutions have been proposed,
balancing security, run-time cost, and memory overhead (an im-
possible trinity) is hard.

In this paper, we show one way to balance the trinity by passing
more semantics about the heap object to the allocator for it to make
informed allocation decisions. More specifically, we propose a new
notion of thread-, context-, and flow-sensitive “type”, SemaType, to
capture the semantics and prototype a SemaType-based allocator
that aims for the best trade-off amongst the impossible trinity. In
SeMalloc, only heap objects allocated from the same call site and
via the same function call stack can possibly share a virtual memory
address, which effectively stops type-confusion attacks and makes
UAF vulnerabilities harder to exploit.

Through extensive empirical evaluation, we show that SeMalloc
is realistic: (a) SeMalloc is effective in thwarting all real-world
vulnerabilities we tested; (b) benchmark programs run even slightly
faster with SeMalloc than the default heap allocator, at a memory
overhead averaged from 41% to 84%; and (c) SeMalloc balances
security and overhead strictly better than other closely related
works.

CCS Concepts

• Security and privacy→ Software security engineering.

Keywords

Static analysis, use-after-free, secure memory allocator
ACM Reference Format:

RuizheWang,MengXu, andN. Asokan. 2024. SeMalloc: Semantics-Informed
Memory Allocator. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3658644.3670363

1 Introduction

Heap vulnerabilities are common in memory unsafe languages like
C and C++. Exploiting these vulnerabilities, attackers can inflict
denial-of-service, information leakage, or arbitrary code execution.
Use-after-free (UAF) is a typical class of heap vulnerabilities that
have received special attention due to both its prevalence and the
number and variety of powerful exploits it enables [49].

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670363

UAF happens when a memory chunk is accessed after it is freed.
More specifically, freeing a heap object renders all pointers to this
object (or parts thereof) dangling. Any memory access through a
dangling pointer can lead to undefined behavior according to the C
standard [8].

There is a wealth of prior research intended to address UAF
vulnerabilities (see §2 for an exposition) and pros and cons can be
found in each theme of UAF-mitigation techniques. For example,
some allocators suffer from incomplete protection while others may
incur prohibitively high run-time or memory overhead. While no
allocation strategy is unquestionably superior in mitigating UAF
vulnerabilities, type-based allocation, which permits the reuse of
memory chunks only among allocations of the same type, seems to
be a promising direction and is the focus of this paper.

Although type-based allocation provides imperfect protection
only, the protection is more predictable than entroy-based alloca-
tors and more importantly, the protection can be achieved with
reasonable overheads. However, existing type-based allocators are
either coarse-grained in its definition of type [2, 52] leading to
weaker protection, or extremely fine-grained, treating each heap
object as a different “type" [55], and leading to complete protection
at a very high cost. Therefore, a gap remains in the design space for
type-based allocators to balance between security and overheads.

The goal of this paper is to find a sweet spot in the design
space of type-based allocation that achieves sufficiently high pro-
tection without excessive overhead. More specifically, we present
SeMalloc, a type-based UAF-mitigating allocator that operates on
a new definition of type at its core:

Two heap objects are of the same type if and only if they are (a)
allocated from the same allocation site (e.g., a specific malloc
call), and (b) the allocation call is invoked under the same call
stack, modulo recursion.

To avoid confusionwith the conventional notion of type in program-
ming languages, we denote our "type" definition SemaType. For
programs hardened with SeMalloc, UAF can only occur between
heap objects of the same SemaType.

SeMalloc’s run-time and memory overheads are low enough to
make it suitable for real-world use. For instance, on SPEC CPU 2017,
SeMalloc incurs an average run-time overhead of -0.6% which is
faster than MarkUs [1], MineSweeper [15], and DangZero [20]
(by giving up protection against UAF within the same SemaType),
and is similar to TypeAfterType [52] (with improved security) and
PUMM [56] (with improved usability). SeMalloc incurs an aver-
age memory overhead of 61.0% which is much lower than FFMal-
loc [55] (again, by giving up protection against UAFwithin the same
SemaType) but is higher than TypeAfterType due to improved type
sensitivity (hence security).
Summary. We claim the following contributions:

https://doi.org/10.1145/3658644.3670363
https://doi.org/10.1145/3658644.3670363
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3670363

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ruizhe Wang, Meng Xu, and N. Asokan

• A callout that the “type” in type-based heap allocator can be
defined differently and does not need to be a native type in the
programming language (§2.3);
• The design and implementation of a new type-based memory
allocator SeMalloc which uses SemaType, a carefully designed
“type”, to target a sweet spot between sensitivity (which decides
security) and performance (which is affected by tracking over-
head) (§3-§4); and
• A thorough evaluation of SeMalloc showing that it success-
fully detects all real-world attacks we tested (§5) with marginal
overheads (§6).

Both the software artifact and the full appendix of the paper are
available.

2 A Mini SoK on UAF

We present a mini systematization of knowledge (SoK) on tech-
niques that exploit or mitigate UAF vulnerabilities. The purposes
of this SoK is to help position SeMalloc in the research landscape,
and to identify synergies among UAF-mitigating strategies and
defence-in-depth opportunities.

2.1 Exploiting UAF Vulnerabilities

UAF is generally considered as a temporal memory error, i.e., an
error that occurs following a specific temporal order of events.
In the context of UAF, the events include allocation (e.g., malloc),
de-allocation (e.g., free), read, and write. Fortunately (or unfortu-
nately), for most programs, there are plenty of such events in their
original code logic; all an attacker needs to do is to find and trigger
the correct sequence of events to mount an attack without code
injection. Figure 1 is a crafted example to show how a dangling
pointer can be exploited differently with different event orderings.

Formally, if a new object 𝑁 (accessible through a fresh pointer
𝑝) is allocated over the heap location previously occupied by a
freed object 𝑂 (which leaves a dangling pointer 𝑞), then one of the
following cases can happen:

A a read through 𝑝 breaches the confidentiality of 𝑂 , although
this is usually called uninitialized read, which is generally not a
concern of UAF and can be mitigated via zeroing allocations [20,
26] or other techniques [4, 33];

B a write through 𝑝 breaches the integrity of𝑂 , as the written con-
tent can be subsequently read through 𝑞 which can compromise
the execution context where 𝑞 is used;

C a read through 𝑞 breaches the confidentiality of 𝑁 which can be
used to leak sensitive information such as pointer addresses (to
break ASLR [3, 6]) or secret data;

D a write through 𝑞 breaches the integrity of 𝑁 , as the written con-
tent can be subsequently read through 𝑝 which can compromise
the execution context where 𝑝 is used;

E a free through 𝑞 de-allocates 𝑁 entirely, and yet, the heap alloca-
tor cannot block it if 𝑝 and 𝑞 are the same integer representing
memory addresses (a free through 𝑝 is legit).

Exploit B-E can all be found in Figure 1. Again, note that from an
attacker’s point of view, exploiting a UAF bug does not require code
injection. Instead, an attacker can craft a “weird machine” [14] by
merely re-purposing operations involving the inadvertent alias pair

1 struct N {long usr; long pwd; int (*fn)(void);};
2 struct O {int (*oper)(void); long u1; long u2;};
3 void foo(long uid, long secret) {
4 struct N *p = malloc(sizeof(struct N));
5 p->fn = __safe_function_1;
6 p->usr = uid; p->pwd = secret;
7 p->fn();
8 }
9 void bar(long user1, long user2) {
10 struct O *x = malloc(sizeof(struct O));
11 x->oper = __safe_function_2;
12 struct O *q = x;
13 free(x); // q is dangling
14 q->oper();
15 q->u1 = user1; q->u2 = user2;
16 reply("Users: %l | %l", q->u1, q->u2);
17 free(q);
18 }

Figure 1: A hypothetical example to illustrate UAF exploits.

Exploit-B: line 13–4–6–14 → arbitrary code execution
Exploit-C: line 13–4–5–6–16 → information leak
Exploit-D: line 13–4–15–7 → arbitrary code execution
Exploit-E: line 13–4–17 → 𝑝 is de-allocated and dangling

(𝑝 , 𝑞) in the original code logic. Intuitively, the more operations an
attacker can re-purpose, the more useful a UAF can be in launching
attacks. In the extreme case where any new object can be allocated
over the heap location accessible by the dangling pointer 𝑞, this
UAF is effectively an arbitrary read/write exploit primitive.

On a side note, Exploit-E is different from what is conventionally
known as double free which arises when the old pointer 𝑞 is freed
twice without the allocation of a new heap object 𝑁 . Double free
vulnerabilities can be mitigated cheaply by maintaining a set of
freed and yet-to-be allocated memory addresses [30, 39, 46] as a
top-up of other UAF-mitigation strategies.
Type confusion. The methodology to exploit the UAF bug in Fig-
ure 1 is also known as type confusion or type manipulation, which
is arguably the most popular way to exploit a UAF bug, especially
when an object type involved contains a function pointer. However,
type confusion is not the only way to exploit a UAF; and more
importantly, a UAF bug can be exploited even when the two objects
involved have the same type, as shown in Figure 2. Despite the fact
that both the victim pointer 𝑝 and dangling pointer 𝑞 share the
same type, one can still leak sensitive data via 𝑝 or cause __real_fn
to be called in register_fake and vice versa.
Multi-threading and race conditions. Although Figure 1 and
2 are demonstrated in a multi-threaded setting, and indeed many
exploits in thewild require some form of race condition towork [25],
multi-threading is not a strict requirement to exploit a UAF bug,
as long as the attackers can find a similar sequence of events in a
sequential execution, as showcased in [13, 21, 24, 35–37].

2.2 Mitigating UAF Vulnerabilities

Attackers’ view on how to exploit UAF vulnerabilities (§2.1) also
sheds light on how to mitigate UAF, which has been extensively
researched. In fact, existing techniques line up nicely as layered
protection against UAF vulnerabilities:

https://github.com/ssg-research/semalloc
https://arxiv.org/abs/2402.03373

SeMalloc: Semantics-Informed Memory Allocator CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 struct N {long usr; long pwd; int (*fn)(void);};
2 void register_real(long uid, long secret) {
3 struct N *p = malloc(sizeof(struct N));
4 p->fn = __real_fn;
5 p->usr = uid; p->pwd = secret;
6 p->fn();
7 }
8 void register_fake(long uid, long secret) {
9 struct N *x = malloc(sizeof(struct N));
10 x->fn = __mock_fn;
11 struct O *q = x;
12 free(x); // q is dangling
13 q->fn();
14 q->usr = uid; q->pwd = secret;
15 reply("Debug: %l | %l", q->usr, q->pwd);
16 free(q);
17 }

Figure 2: A hypothetical example to illustrate UAF exploits against

objects of the same type.

A) Invalidate dangling pointers, which breaks the foundation
of any UAF exploits. In literature, this has been achieved via various
creative techniques, including:
• Track pointer derivation at runtime and nullify all associated
pointers upon object de-allocation [26, 44, 53, 57];
• Treat pointers as capabilities to access memory (instead of inte-
gers) and free revokes the capability [12, 17, 20].

Prior works in this category have demonstrated complete protection
against heap-based UAF but may pay the price of compatibility (e.g.,
CHERI [54]), kernel privilege [20], high overhead (e.g., 80% run-
time overhead for DangNull [26]), or subtle complexities as shown
in HeapExpo [44].

B1) Prevent heap objects from being allocated over any

pointer that might be dangling, which can be achieved by track-
ing pointer derivation [45] or sweeping all stored pointers [1, 15, 41].
In other words, these allocators do not trust the free request from
developers; instead, they de-allocate memory only when “abso-
lutely” safe. Hence, allocators in this category can achieve complete
protection against heap-based UAF (modulo subtle pointer propaga-
tion flows [44]). However, they arguably introduce high overheads.
For example, MarkUs [1] more than doubles the run-time on the
PARSEC benchmark (see §6.2).

B2) Prevent heap objects that an attacker targets (victim
objects) from being allocated over a dangling pointer. This
is essentially a weaker version of B1 and entrusts allocators to
decide which class of objects should or should never be allocated
on a specific free memory chunk. Intuitively, the ideal allocator
would never place a victim object over a freed memory chunk with
attacker-controlled dangling pointers.

Unfortunately, this ideal allocator cannot exist, as there is no
way for an allocator to tell which object can be a victim (i.e., a
valuable target for attackers) among all allocated objects, even with
information from static or dynamic program analysis. Hence, in
theory, perfect UAF-mitigation is not possible with this approach.

However, if an allocator knows enough about the semantics of
allocated objects, it can place objects of different semantics into
different and isolated pools. In this way, a dangling pointer of
certain semantics controlled by the attacker can only be used to

access newly allocated objects bearing the same semantics. This
is commonly known as type-based allocation which makes UAF
exploitation harder by confining what attackers can do after ob-
taining a dangling pointer. Not surprisingly, allocators in this cate-
gory [2, 52, 55], including SeMalloc, differ on their definition of
semantics or type, which we give an in-depth reflection in §2.3.

PUMM [56] proposes that the completion of a “task” can be
a clear signal to de-allocate freed memory accumulated in the
ended task such that the freed memory can be re-allocated in a new
task which is irrelevant to any previous tasks. As tasks can have
arbitrarily-defined boundary (e.g., one iteration of a loop is one
task), PUMM effectively encodes temporal information into type
and in theory, can be complementary to type-based allocators [2, 52]
including SeMalloc.

B3) Confine allocations or reduce the level of certainty

on when and which a victim object will be allocated over a

dangling pointer. Allocators in this category [30, 39, 46] typically
leverage on multiple randomization schemes to boost entropy, such
as big bag of pages (BIBOP)-based [22] allocation and delayed freel-
ist. Randomization provides a probabilistic defense against UAF
exploits by lowering their success rates. However, entropy-based al-
locators can still be prone to information leaks or heap fengshui [47]
which reduces the level of entropy in practice.

With that said, entropy-based allocators typically incur low over-
head (both in run-time and memory). For example, Guarder reports
a 3% run-time overhead and 27% memory overhead with its highest
level of entropy configuration while SlimGuard [30] further reduces
the memory footprint.

C) Validate a pointer upon use. This line of work checks
whether a pointer is safe for read/write operation upon dereference
and can detect UAF attempts on the spot. Achieving this typically
requires heavy instrumentation on instructions that may access
memory through a pointer which significantly outnumber malloc
and free operations. This explains the high overhead [28, 38, 42]
even amongst the works designed to run in production [10, 16, 23,
27, 58] (e.g., 20% run-time overhead for Vik [10]).
Summary. Prior works in categories A, B1, and C can mitigate
all heap-based UAF attacks (assuming perfect implementation) but
might also incur excessive overheads or require special hardware or
kernel modification. Type- or entropy-based secure allocators (cate-
gories B2, B3) incur smaller overheads at the expense of incomplete
protection.

Defense-in-depth: While all building blocks for a layered UAF
defense has been proposed, to the best of our knowledge, there is no
real-world allocator that combines them, in all or in parts. This SoK
shows an opportunity to provide a defense-in-depth solution that
holistically integrates memory allocators of all themes of defences.

2.3 A Reflection on Semantics And Type

In programming languages, “type” is typically considered as a token
that encodes some “semantics” of an object. As briefly discussed
in §2.2, a type-based heap allocator confines the types of objects a
dangling pointer might ever access [2, 52, 55]. More specifically, if
a freed object is of type T, only objects of the same type T can then
be allocated over the free chunk. Intuitively, type-based allocation

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ruizhe Wang, Meng Xu, and N. Asokan

provides a tunable defense against UAF with a clear security and
performance trade-off—all by varying the definition of “type”.

While there are many ways to define types (hence the research
on type systems [9]), one particularly useful angle in the context of
type-based allocation is the sensitivity of a type, i.e., howwell a type
can distinguish heap allocations occurring under different execution
states. The insight is that: objects allocated under the same or

similar execution states are expected to behave similarly in

the program, and such behaviors are essentially the semantics of
the objects, which serve as the “type” in type-based allocation.

Borrowing sensitivity notions from program analysis, we can
define type sensitivity from the following perspectives:
Flow-sensitive. If a function is invoked in two places within the
same function, a flow-sensitive type will differentiate these two
function calls. To illustrate, in the code below, the two malloc calls
are different under a flow-sensitive scheme.
1 void foo() {
2 void *p = malloc(sizeof(int));
3 void *q = malloc(sizeof(int));
4 }

Path-sensitive. If a function is reached via different control-flow
paths within a function (modulo loop), a path-sensitive type will
differentiate these two execution paths. To illustrate, in the code
below, the malloc call might allocate objects of different types
depending on the boolean cond.
1 void foo(bool cond) {
2 size_t len = sizeof(int);
3 if (cond) { len = sizeof(long); }
4 void *p = malloc(len);
5 }

Context-sensitive. If a function is reached via different call traces
(modulo recursion), a context-sensitive type will differentiate these
two calling contexts. To illustrate, in the code below, the malloc
call under contexts [foo→ wrapper] and [bar→ wrapper] allocate
objects of different types.
1 void wrapper(size_t len) {
2 void *p = malloc(len);
3 }
4 void foo() { wrapper(sizeof(int)); }
5 void bar() { wrapper(sizeof(int)); }

Thread-sensitive. If a function is invoked in different threads,
a thread-sensitive type will differentiate the threads. To illustrate,
in the code below, the malloc call under the two threads allocates
objects of different types.
1 void *thread(void *ptr) {
2 void *p = malloc(sizeof(int));
3 }
4 void foo() {
5 pthread_t t1, t2;
6 pthread_create(&t1, NULL, *thread, NULL);
7 pthread_create(&t2, NULL, *thread, NULL);
8 }

Sensitivity in cyclic control-flow structures. In loops and re-
cursive calls, the sensitivity is typically classified as:
• Unbounded, where different iterations of a loop or recursion yield
different types.
• Bounded, where different iterations of a loop or recursion yield
different types, up to a pre-defined limit.

• Insensitive, where different iterations of a loop or recursion yield
the same type.

Finding the right sensitivity level. For a type-based heap allo-
cator to be secure yet practical, finding the right sensitivity level is
the key.

A type definition with higher sensitivity implies a smaller set
of object types a dangling pointer may point to. In this regard, the
default glibc allocator [19] in most Linux-based systems is (almost)
completely insensitive. Regarding the two closely related works,
the type definition in Cling [2] adopts a weaker form of context-
sensitivity, where the context is defined as two innermost return
addresses on the current call stack—an approximation to call trace.
Type-after-Type [52] is based on statically-inferred unqualified
types native to the programming language enriched by malloc
wrapper trace.

And yet, for a type-based allocator, it is not necessarily true that
more sensitivity is better. To illustrate, the type definition with
the highest sensitivity is to treat every heap object as a different
type. This effectively means that a heap allocator will never reclaim
memory—an impractical approach, as a long-running program may
allocate and free an endless number of heap objects yet the virtual
memory address space has a limit (e.g., 48-bit on x86). FFMalloc [55]
is a close approximation to this extreme approach and incurs a
large memory overhead despite the fact that it still reclaims virtual
pages. A path-, context-, and thread-sensitive type qualifier will
be extremely sensitive as well, and yet, tracking path sensitivity
requires instrumentation at basic block granularity, which adds a
significant overhead.
Conclusion. While prior works have tried to address UAF vulnera-
bilities, the challenge of finding the right balance between the level
of protection and incurred overhead remains. Certainly manually
porting the program has the potential of achieving the trinity of
optimizing all memory, run-time, and security [58], in the rest of
this paper, we present our approach towards finding such a balance
without this aid.

3 Capture Semantics with SemaType
We now introduce SemaType, a type qualifier [18] tailored to cap-
ture the semantics of heap allocations, and showcase how to deduce
SemaType at runtime through a concrete example.

3.1 Defining SemaType
SemaType is a thread-, context- and flow-sensitive type qualifier over
the standard type system of the underlying programming language
(e.g., LLVM IR in SeMalloc) with bounded sensitivity for recursions
and no sensitivity for loops (sensitivity levels defined in §2.3).

Informally, in a more operative description, two heap objects are
of the same SemaType if and only if they are:
• allocated from the same allocation site (e.g., the very same malloc
call in the source code); and
• allocated under the same call stack, modulo recursion.
In the presence of recursive calls, SemaType differentiates call traces
inside each strongly connected component (SCC, representing a
group of recursive calls) in the call graph up to a fixed limit. In
SeMalloc, this bound is 214 different call traces overall (see Fig-
ure 5).

SeMalloc: Semantics-Informed Memory Allocator CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Deducing SemaType. In theory, the SemaType of every heap al-
location can be deduced at compile-time by inlining all functions,
converting recursive calls to loops, and creating a huge main func-
tion. This, however, is impractical for any reasonable-sized real-
world program as analyzing a huge function can be both time- and
memory-intensive in current compilers while aggressive inlining
results in large binaries. Distinguishing heap allocations by thread
(i.e., thread-sensitivity) at compile-time further adds complexity,
as it requires more extensive function cloning to differentiate per-
thread code statically.

Fortunately, SemaType can be deduced at runtime as well, at the
cost of code instrumentation (and hence, overhead). More specifi-
cally, the dynamic deduction of SemaType can be facilitated with
context-tracking logic automatically and strategically instrumented
at compile-time.
A concrete example. To illustrate how SemaType can be deduced,
we use the simple example in Figure 3. The code snippet is shown
in §A.1 and the figure is a conventional call graph of the program
enhanced with (1) flow-sensitive edges (e.g., two edges from a
to e marked as [l] and [r] respectively) and (2) annotations on
whether the call occurs inside a loop or not (i.e., dashed vs solid
edges).

3.2 Cyclic Control-flow Structures

Due to the existence of a recursive call group (the SCC), there are
an unlimited number of call traces that can reach malloc from main.
This is why we cannot enumerate all call traces to assign each call
trace a SemaType statically. And yet, even we can track the call
context at runtime, having an unlimited number of SemaTypes for
this program is not desirable either, because such an approach is,
in the worst case, the same as giving each allocated heap object a
different SemaType. As discussed in §2.3, this can be overly sensitive
and may cause a significant memory overhead as in FFMalloc [55].

How can we fit unlimited number of call traces into a fixed number
of SemaTypes? We considered two simple solutions:
• Bounded unrolling: unroll the SCC to a limited depth and treat
each malloc called from the unrolled iterations differently. Be-
yond the unrolled iterations, assign a single SemaType to the
malloc called inside this SCC.
• Aggregation-based hitmap: aggregate the call trace inside the SCC
to a fixed number of bits; call traces with the same aggregated
value are deemed to have the same SemaType.

SeMalloc uses the aggregation-based hitmap solution as it pro-
vides slightly better security by distributing SemaType more uni-
formly across different rounds of recursion.

However, malloc calls occurring in different loop iterations are
not differentiated by SemaType. Differentiating loop iterations will
require path-sensitive instrumentation, i.e., instrumentations (and
hence overhead) linear to the number of basic blocks; while differen-
tiating iterations in recursive calls only requires instrumentations
linear to the number of functions, which is arguably significantly
smaller in most real-world programs. This helps to reduce the per-
formance impact caused by instrumentation.

3.3 SemaType Representation
SemaType can be represented as a composition of two values:

SCC

c

f

malloc

g

main

ab

d

e

SemaType without recursive calls
A main→a→e[l]→malloc
B main→a→e[r]→malloc
C main→a→d→malloc
D main→a→d→e→malloc
E main→d→e→malloc
F main→d→malloc
SemaType with recursive calls
G main→b→c→malloc
H main→b→c→f→g→malloc
I main→b→c→f→g→
c→malloc

J main→b→c→f→g→
c→f→g→malloc

K main→b→c→f→g→
c→f→g→c→malloc
· · · · · · · · · ·
· · · · · · · · · ·
* main→b→c→· · · →malloc

Figure 3: Call graph (left) of a crafted program §A.1 illustrating

how SemaType (right) can be deduced. In this call graph, each node is a
function and solid edges represent function calls not in a loop inside the
corresponding function CFG while dashed edges represent function calls
inside a loop.

• nID: a non-recurrence identifier representing top-level call traces
in the directed acyclic call graph, which is built by abstracting
each SCC in the call graph into a node;
• rID: a recurrence identifier for call traces within an SCC.
The nID and rID for the current execution context are both tracked
at runtime through global variables. Their values are merged to-
gether to form a SemaType when the execution is about to invoke
a memory allocation function (e.g., malloc).

We assign each call site outside SCCs with a weight (§4.3). Before
making a call, nID is incremented by the weight of the call site
and decremented by the same weight upon return. This rule for
nID generalizes to a stack of calls as well. Operationally, nID is the
cumulative weight of all call sites in the call stack when a heap
allocation happens. Our weight assignment algorithm (§4.3) ensures
that two SemaType instances have the same nID if and only if their
external SCC traces are identical (formally proved in §A.3).
rID is for intra-SCC call stack tracking. Unlike nID, rID is an

aggregated value of what happened inside an SCC. rID is tracked
with two global variables 𝑠 and ℎ, where
• 𝑠 is a stack that hosts the stack pointers before a function within
an SCC is called (a.k.a., a call stack), and
• ℎ is the aggregation of stack 𝑠 , representing the rID (§4.4). ℎ is
computed and stored before an SCC function calls a function not
in the current SCC (an outbound call), and is cleared after the
call to this SCC (an inbound call) returns.

Repetitive allocation. A SemaType only needs to be tracked if
heap objects of this SemaType can be allocated repetitively. For
one-time allocations, i.e., a SemaType that can only be reached in
one call stack where none of the call site is in a loop (see §7 for
evidence that this is rare), once an one-time object is freed, its space
is never reused. Therefore, we optimize SemaType tracking only
to those instances where re-allocation is possible, identified by the
presence of at least one recursive call site in their allocation traces.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ruizhe Wang, Meng Xu, and N. Asokan

We keep track of the recursive depth 𝑙 by incrementing it be-
fore executing an iterative function call and decrementing after it.
Upon memory allocation, if 𝑙 is not zero, we can conclude that this
SemaType object may be recurrently allocated. 𝑙 is also increased
before a non-SCC function calls a SCC function (inbound call) and
decreased after it.
Illustration. Revisiting the example in Figure 3, only A and B are
non-repetitive; all other SemaTypes need to be tracked: types C—F
are repetitive because of looping while other types are repetitive
due to involvement in recursive calls.

We take H as a case study for variable management. The nID is
increased before calling c and malloc. The call stack 𝑠 holds three
stack pointers, pushed into it before each SCC function (c, f, and
g) is called. Upon calling malloc, the rID (i.e., ℎ) is computed. The
b→c function call enters a SCC, causing 𝑙 to be incremented. Upon
calling malloc, 𝑙 is non-zero indicating a recurrent allocation.
Thread sensitivity. Note that thread identifiers are not dis-
cussed here in the representation of SemaType despite the fact
that SemaType is thread-sensitive. This is because the backend
heap allocator does not need this information to be deduced
through compiler-instrumented code at runtime. Instead, it can
be queried directly by the backend allocator via a system call (e.g.,
syscall(__NR_gettid)) or even one assembly instruction if the
platform supports. As a result, we do not specifically encode a
thread ID in the malloc argument passed to the backend allocator
(see §4.5).

3.4 Alternative: Path-sensitivity

SemaType is not path-sensitive. Although a thread-, context- and
path-sensitive type qualifier is intriguing, we have to weaken path-
to flow-sensitivity for practical reasons:
• Within a function control-flow graph (CFG), paths exponentially
outnumber CFG nodes (the latter is captured by flow-sensitivity),
hence adopting a path-based SemaType will bloat the number of
SemaTypes and allocation pools.
• Deducing execution paths requires either dynamic CFG branch
tracking (non-trivial run-time overhead) or static function split-
ting, e.g., assign different SemaTypes to the same malloc based
on whether function arguments satisfies predicate 𝑋 , except that
devising 𝑋 is undecidable.
• Empirical evaluation (§5) shows that SemaType in its current
form is sufficient to defend against known exploits.

4 SemaType-based Heap Allocation

In this section, we describe the design and implementation details
of SeMalloc—a SemaType-based heap allcator for mitigating UAF
vulnerabilities. We first introduce our threat model and explain
how SeMalloc realizes dynamic SemaType deduction and allocates
memory accordingly.
Threat model. We assume that (a) the underlying operating sys-
tem kernel and hardware are trusted, (b) the targeted program
is uncompromised at startup, and (c) the attacker can obtain and
analyze the source code and the compiled binaries of both the tar-
geted program and SeMalloc. Exploiting implementation bugs in
SeMalloc or utilizing side-channel information (e.g., cache and
power usage) is out of scope.

LLVM IR

Track SemaType
§3.3

Call Graph
Construction §4.2

Edge Weight
Assignment §4.3

malloc (① || ② || ③)

malloc (③)

Allocator Backend
§4.6

LLVM Pass

Stack Pointer
Aggregation §4.4

malloc (① || ③)

Parameter
Encoding §4.5

Figure 4: Design overview of SeMalloc (1 : flags, 2 : SemaType, 3 :
allocation size). The size is the parameter without SeMalloc, while

SeMalloc encodes the trace information into the parameter after

applying the pass.

4.1 Overview

SeMalloc consists of an LLVM transformation pass and a heap
allocator backend. The LLVM pass analyzes the intermediate rep-
resentation (IR), inserts instructions to create and instrument the
tracking variables, and encodes the allocation parameters with
SemaType-tracking information. The LLVM pass is built on top of
MLTA [32] (for comprehensive and robust call graph construction)
and CXXGraph [7] (for graph algorithms). The pass instruments
SemaType tracking and encoding in the program which eventually
passes SemaType through common heap allocation APIs. The heap
allocator backend takes the encoded information for segregated
memory allocation.

Figure 4 gives a comprehensive overview of SeMalloc. In the
transformation pass, SeMalloc first constructs a call graph that
only contains functions (nodes) and call sites (edges) relevant to
SemaType that need to be tracked (see §4.2), and assigns weights on
all edges and nodes in it for nID computation (see §4.3). In the call
graph, an SCC is treated as a function node, and call traces within
it are not considered by nID. Instead, intra-SCC calls are tracked
in rID by obtaining and aggregating the stack pointers with an
aggregation algorithm (see §4.4). They are encoded into the size
parameter of an allocation request (see §4.5).

We explain how the allocator backend enforces allocation seg-
regation using SemaType in §4.6. For simplicity, we use malloc to
represent all functions that may request heap memory directly from
the backend. We refer readers to §A.2 for a complete discussion
about how the IR is transformed after applying the pass and how
instructions are inserted.

4.2 Call Graph Construction

We start by building a call graph for the program to be hardened by
SeMalloc. While call graph is a foundational concept with mature
support in modern compilers, the call graph in SeMalloc is slightly
more complicated in two aspects:

1) Flow-sensitive edges. If function e is called in two places by
function a, there will be two edges from a to e in the call graph, as
shown in the example in Figure 3.

SeMalloc: Semantics-Informed Memory Allocator CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2) Indirect calls. SeMalloc takes special care for indirect calls
whose call targets cannot be resolved at compile-time and hence
do not show up in a conventional call graph. To handle indirect
calls, SeMalloc first identifies all callee candidates via MLTA [32],
i.e., by matching the function type hierarchically. Subsequently,
for each callee candidate identified, SeMalloc adds an edge in the
call graph and treat different callee candidates as if they are called
in different places in the calling function. This is a conservative
treatment for indirect calls and can lead to more SemaTypes being
derived than necessary which can result in a better security but a
larger memory overhead.
Additional trimming and marking. With a baseline call graph,
the next step is to remove nodes and edges that are irrelevant
to SemaType, i.e., paths that do not eventually lead to a malloc.
We also mark call sites that occur in a loop in the caller function
(e.g., dashed edges in Figure 3) in order to distinguish recurrent
allocations vs one-time allocations (see §3.2). This marked call
graph enables SeMalloc to optimize instrumentation to recurrent
mallocs only. We remove all nodes or edges that are not (eventually)
called by or (eventually) call any recurrent edge. This call graph
contains only nodes and edges that eventually call malloc while
each edge leads to at least one recurrent SemaType object.

Finally, we use the Kosaraju-Sharir algorithm [43] to identify
SCCs and create a new call graph with each SCC being abstracted
as a single node. In this way, the new call graph is essentially a
directed acyclic graph (DAG) while recursions (i.e., intra-SCC paths)
are handled using rID (see §4.4).

4.3 Edge Weight Assignment

Recall from §3.3 that nID, which is part of the representation for
SemaType, serves to distinguish different call stacks that end up
with mallocmodulo recursions in SCCs. As nID is calculated as the
sum of weights per each edge in the path, these weights need to be
assigned strategically to ensure that different paths yields different
nID values.

To assign weights, we run a topological sort on the DAG for
a deterministic ordering of functions and then go through each
function to assign weights according to Algorithm 1.

Algorithm 1: Edge weight assignment.
1 nodes← topological_sort(DAG)
2 for each n ∈ nodes do
3 w← 0
4 for each e ∈ n.outgoing_edges do
5 e.weight← w
6 w← w + max(1, e.dst.weight)
7 end

8 n.weight← w
9 end

We maintain two weights while going through each function:
the function weight and the call-site weight. The function weight
describes how many different SemaTypes exist if taking this func-
tion as the program entry point. The call-site weight is the sum of
the weights of all functions called before it within the function. It

describes how many different SemaTypes all previous call sites of
the current function lead to. More specifically, it is an offset that
guarantees that all SemaTypes allocated through the current call
site have their nID larger than all previous SemaType nIDs to avoid
collision. For example, in a function, the path weight of the first call
site is zero, and the weight of the next call site is the weight of the
first callee function (note the minimum weight is one and e.dst is
a node whose weight has been computed in a previous round, line
4–7). As long as the offset is computed correctly, no collision will
happen.

After processing all call sites, we assign the weight of the current
function as the sum of the weights of all its callees (line 8). Using the
topological order, we guarantee that all callee weights are computed
before they are needed; we set the weight of malloc to zero as it
does not call any function.

Note that weight assignment (Algorithm 1) ensures a one-to-one
mapping between a nID and an end-to-end path that reaches the
malloc in the call DAG (see §A.3 for a proof). It is worth-noting,
however, that tracking the path at runtime directly is possible but
would incur a slightly higher overhead than tracking the nID, which
only involves two arithmetic operations per each call site.
Optimization. To further minimize the instrumentation needed, a
node can be removed from the call graph if it has only one incoming
edge, i.e., the function f (represented by this node) is only called
in one place. Essentially, removing the node has the same effect as
inlining f into its caller (without actually transforming the code).
In this situation, the call site that invokes f does not need to be
instrumented for nID-related logic. And this optimization repeats
until we cannot find such f in the call graph.

4.4 SCC Stack Pointers Aggregation

We use an aggregation approach to track the execution path within
SCCs. Before calling each function within the SCCs, we obtain and
push the stack pointer into the stack 𝑠 , which is the aggregation
input to compute rID.

Algorithm 2: Aggregation of stack pointers.
1 h← 0
2 for each p ∈ s do
3 h← h≪ 2 ; p← (p≫ 6) & 0x3 ; h← h + p
4 end

5 h← h & 0x3FFFF

rID is computed using Algorithm 2. Initially, we set it to be zero
(line 1). We then go through each stack pointer by adding 7th and
8th least significant bits (LSBs) of each input to it and shift it left
by two bits (line 3-5). We specifically take these two LSBs as stack
pointers are 8-byte aligned in the x86 clang environment [31], and
we select those bits that are not identical in different call frames.
Finally, we only keep the least fourteen bits of the aggregated value,
which represents the most recent seven functions called within
SCCs.

We note that as a stack pointer is dependent on the call depth
and all calls that are not returned, this algorithm accounts for the
entire call trace without losing function calls older than the most

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ruizhe Wang, Meng Xu, and N. Asokan

1514131211109876543210Offsets

Object Size
0

16

nID32

HLrID48

Figure 5: Parameter encoding rule for regular objects (L: loop identi-

fier; H: huge block identifier).

recent seven. The current parameter maximizes tracking depth with
a minimal 2-bit entropy to differentiate call frames. If recursive calls
are shallow or many functions are involved in an SCC, it will be
preferable to track fewer layers with more bits taken per pointer.

4.5 Parameter Encoding

The heap allocator backend requires two pieces of information
as input: allocation size (as required by all memory allocators)
and SemaType (unique information in SeMalloc), and allocates
heap objects based on them. While standard memory allocation
APIs already accept the allocation size as a parameter, we need
to find a way to pass SemaType to the backend. And SeMalloc,
conceptually, has two options:
• Changing the malloc signature: This would involve
adding a new parameter to the existing interface
and hence, introducing a new function signature like
malloc(size_t size, void *semantics).
• Repurposing the size_t parameter type: This implicitly change
the type of the size parameter with SemaType encoded alongside
the existing size.

In SeMalloc, we take the second approach for compatibility with
the existing allocation interface, and encode SemaType within the
malloc size parameter using the format shown in Figure 5 for
blocks smaller than 4GB.

We set the loop bit (L) if the number of loop layers (𝑙) is not
zero to notify the backend that it might reuse the memory freed
by another object. We store the nID and rID accordingly as the
SemaType, and we use the remaining 32 bits to store the size of the
allocated object.

For larger blocks, we set the huge-block bit (H) and use all the
remaining 63 bits to store the block size. These blocks are allocated
via a system call, and launching UAF attacks on them is not trivial
(see §A.7 for details).

This design is compatible with legacy code or external libraries
that are not transformed by our pass with function allocation call
size up to 4GB. However, memory allocated this way does not have
the loop identifier set, and is not going to be released unless the
block is big enough that allocated from the OS directly (see §A.7
for details). This indeed is not common as shown in §A.11, where
most tests have more than 99% allocations identified with recurrent
SemaType.
Tunable parameters. While Loop (L) and huge (H) indicators are
both 1-bit and are not tunable, other parameters can be tuned to fit
specific program or security requirements.

• size (default 32-bit): A smaller size leaves more room for nID
and rID, but may impair functionality: if legacy code or exter-
nal libraries that are not transformed by SeMalloc incur larger
allocations, the overflowed bits will be taken as SemaType, caus-
ing the allocated block to be smaller than required. The 32-bit
default is an empirical number based on programs we evaluated.
• nID (default 16-bit): Ideally, the size of nID should be the smallest
number that satisfies 2𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑛𝐼𝐷) ≥ ∑

𝑃𝑖 for a target program,
where 𝑃𝑖 represents the number of traces to reach an allocation
site 𝑖 in the flow-sensitive call graph after DAG-reduction (§4.2).
We take the 16-bit default to support all tested programs and
benchmarks (see §6).
• rID (default 14-bit): Given a 64-bit pointer, the size of rID is
passively decided by size and nID. However, the calculation of
rID is tunable, as discussed in §4.4.

4.6 Heap Allocator Backend

The backend heap allocator for SeMalloc is packaged as a library
that can either be preloaded at loading time or statically linked to
replace the default allocator. The backend extracts and decodes the
SemaType packed in the size parameter and enforce SemaType-
based allocation by allocating objects of different SemaTypes from
segregated pools.

More specifically, SeMalloc backend adopts BIBOP [22] for
block allocation inside each SemaType pool. BIBOP allocates blocks
of the same size class together using one or more continuous mem-
ory pages, and preemptively allocate sub-pools for each size class. A
block is not going to be further split or coalesced. SeMalloc is built
upon this design. For each thread (hence thread-sensitivity §2.3) it
allocates a global BIBOP pool for one-time SemaTypes and individ-
ual pools for different SemaTypes upon seeing a recurrent request
for the same SemaType. SeMalloc uses power of two size classes,
for example, all blocks with the same SemaType and of size 65 to
128 bytes will be allocated to the same pool.

Operationally, upon receiving a heap allocaiton request, the
backend first checks the huge bit and, if applicable, allocates huge
blocks using the mmap [29] system call. For regular blocks, if the loop
bit is not set, SeMalloc will allocate it using the global pool, and
it will never be released even after it is freed. If the loop bit is set,
SeMalloc allocates it using the global pool if the SemaType is seen
for the first time and otherwise create an individual pool dedicated
for all following allocations with this SemaType A freed block in
the individual pool can be reused by later allocations with the same
SemaType. We refer readers to §A.7 for additional implementation
details of this runtime backend.

5 Security Analysis

We provide both qualitative analysis and empirical evidence on the
effectiveness of SeMalloc in mitigating UAF exploits.

5.1 Qualitative Analysis

The key reason why type-based allocators cannot deliver perfect
UAF mitigation is UAF within the same type. More specifically, to
SeMalloc, this means UAF within memory objects marked with
the same SemaType—and this is not only possible but also common
due to recurrent allocations, i.e., malloc inside a cyclic control-flow

SeMalloc: Semantics-Informed Memory Allocator CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

structures such as loops or recursive calls (§3.2). On the other hand,
memory reuse is crucial in reducing memory footprint. An allocator
that places each object into a new pool and never reclaim memory
is immune to UAF at the cost of a high memory waste. Therefore,
intuitively, the more recurrent allocations a program have, the less
effective SeMalloc is in mitigating UAF exploits, but the greater
the memory saved by SeMalloc, compared to allocators that never
free memory.

In this section, we sketch a qualitative explanation on how loops
and recursive calls affect the security of SeMalloc.
Setup. Assume a program has 𝑁 allocation sites:
• each allocation site 𝑖 ∈ 1..𝑁 can be reached via 𝑃𝑖 traces in the
flow-sensitive call graph after CFG-reduction (§4.2);
• each trace 𝑇𝑖, 𝑗 (where 𝑗 ∈ 1..𝑃𝑖) contains 𝑅𝑖, 𝑗 nodes that are
reduced from call graph SCCs, i.e., recursive calls (§4.4);
• 𝑘 out of 𝑁 sites are in a loop w.r.t a function-level CFG.
SeMalloc assigns one nID to each trace 𝑇𝑖, 𝑗 and up to 2#bits(𝑟𝐼𝐷)
rIDs per trace. Thus, this program will have:
• a minimum of

∑
𝑃𝑖 SemaTypes, the minimum occurs when the

program does not contain any recursive calls, or
• amaximumof 2#bits(𝑟𝐼𝐷)×∑ 𝑃𝑖 SemaTypes, themaximumoccurs
when all traces 𝑇𝑖, 𝑗 have recursive calls.

UAF-protection in different scenarios. We discuss how UAF
protection in SeMalloc can be weakened by recurrent allocations
with reference to complete UAF mitigation:
• No recurrent allocation (𝑘 = 0 and all 𝑅𝑖, 𝑗 = 0): SeMalloc pro-
vides perfect security against UAF, a similar level of protection
as complete UAF-mitigating allocators since no memory reuse
exists. SeMalloc provides strictly more protection than exist-
ing type-based allocators: in the worst case, all

∑
𝑃𝑖 SemaTypes

can the same C/C++ type which will be allocated from the same
pool.
• With malloc in loops (𝑘 ≠ 0 and all 𝑅𝑖, 𝑗 = 0): SeMalloc pro-
vides weaker security than complete UAF-mitigating allocators
as UAF is possible within the same SemaType in one of the 𝑘
loop allocations. Higher 𝑘 means weaker UAF protection, but a
smaller memory footprint. Regardless of 𝑘 , SeMalloc provides
strictly more protection than existing type-based allocators, as
shown in §2.3.
• With malloc in one group of recursive calls only (𝑘 = 0 and all
𝑅𝑖, 𝑗 = 0 except 𝑅𝑎,𝑏 = 1): SeMalloc provides weaker security
than complete UAF-mitigating allocators as UAF is possible
among the same SemaType in the recursive call group. Every
SemaType in trace 𝑇𝑎,𝑏 shares the same nID, and there is only
limited entropy for rID but potentially unlimited call traces
in the recursive call group. Having more SCCs in call graphs
means weaker security but more memory-saving. Regardless
of the number of SCCs, SeMalloc still provides strictly more
protection than existing type-based allocators, as shown in §2.3.
• With malloc in both loops and recursive calls (𝑘 ≠ 0 and some
or all 𝑅𝑖, 𝑗 ≠ 0): Security degradation comes from all sources of
recurrent allocations (discussed above) as there are now more
chances for two objects to be marked as the same SemaType.
However, memory savings are also brought in due to exactly
the same reasons.

Table 1: SeMalloc is effective in thwarting () exploitation of all

real-world UAF vulnerabilities evaluated while TypeAfterType [52]

and Cling [2] provide no protection (#) or partial protection (G#)
to most vulnerabilities.

†
: Cling is not open-sourced and is only

analyzed conceptually.

Vulnerability Exp. (§2.1) [52] [2]
†

SeMalloc

CVE-2015-6831 B # #
CVE-2015-6835 C # #
Python-24613 C
mRuby-4001 D G# G#
yasm-91 D/E G# #
CVE-2018-11496 D/E # #
CVE-2018-20623 C G#
yasm-issue-91 C G# G#
mjs-issue-78 B G# #
mjs-issue-73 B G# #
CVE-2017-10686 D/E G# #
CVE-2016-3189 D # #
CVE-2009-0749 D/E
CVE-2011-0065 B G#
CVE-2012-0469 B G#

Effectiveness evaluation. To show how SemaType diversifies
heap allocation, we compare the number of different allocation sites
using SemaTypes and pure object types in the last two columns
of §A.11 based on programs in the PARSEC3 [5] and SPEC 2017 [48]
benchmarks. In programs that have complicated program contexts
(e.g., 600 and 602), SemaType diversifies the allocations by more
than 250x than the native allocation sites. Other tested programs
that have the same native-typed objects allocated from different
traces are also diversified accordingly.

5.2 Empirical Check on Real-world Exploits

We evaluate the effectiveness of SeMalloc in stopping UAF ex-
ploits by running it with 15 real-world UAF vulnerabilities. We
compare the protection results with two type-based allocators,
Cling [2] and TypeAfterType [52], while other allocators used in
performance evaluation (§6) either have theoretically complete
UAF-mitigation [1, 15, 20, 55] or requires case-by-case manual an-
notation to work (e.g., PUMM [56]).

Tested vulnerabilities are summarized in Table 1. They are se-
lected from three sources: representative CVEs from DangZero [20],
TypeAfterType [52], uafBench [34], and further enriched with addi-
tional vulnerabilities selected by us to cover the exploitation types
discussed in §2.1. We present two representative examples here and
two more in §A.6.

While SeMalloc successfully thwarts all exploits, TypeAfter-
Type provides no defense against four exploits and only partial
protections for most attacks, as the attacker can still launch attacks
successfully but cannot create powerful attack primitives. Addition-
ally, we checked all exploits since 2019 in exploitDB [40], and we
are not aware of any exploitation against SeMalloc—confirming
that SeMalloc can help confine UAF exploitability in practice.
Case study: mjs-issue-78 [34]. This vulnerability is in mjs, a re-
stricted JavaScript engine, and can be triggered when mjs parses a
crafted JSON string as shown in the test case.

https://github.com/cesanta/mjs/blob/238dc31c6eb386bd91f3a3f1491fc46b650783b1/mjs/tests/unit_test.c#L2838-L2842

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ruizhe Wang, Meng Xu, and N. Asokan

While parsing, both the raw JSON string and intermediate out-
puts are stored in one buffer: field owned_strings within type
(struct mjs), a context manager for an mjs engine. As the parser
keeps appending parsed elements to the buffer (more precisely, to
mjs->owned_string->buf) during mjs_mk_string, the buffer might
potentially be reallocated via mbuf_resize, causing other pointers
that also refer to the same buffer to be dangling (e.g., frozen->cur).
To summarize, the dangling pointer in this UAF vulnerability is
allocated in the call trace of mjs_json_parse→ json_walk→ ...
→ frozen_cb→ mjs_mk_string→ mbuf_resize→ realloc.

Assuming that the memory chunk freed by mbuf_resize is later
reallocated to a buffer in which the attacker can put arbitrary data,
then the attacker-controlled object can be accessed by a dangling
pointer (e.g., the frozen->cur through one of “cur(f)”). This UAF-
readmight lead to compromised execution states, making it a type-B
exploit.

From an attackers’ perspective, to exploit this UAF vulnerability,
the crux is to gain control of an object that may be allocated to the
memory chunk freed by mbuf_resize. This can be done in at least
two ways based on our findings:

Exploit 1: Run an mjs engine in another thread and have the
other mjs engine parse an attacker-supplied JSON string. In this way,
the attacker-controlled buffer is allocated using exactly the same
call trace as the dangling pointer. Therefore, only SeMalloc can
defend against this exploit because SemaType is thread-sensitive
while flow- and context-sensitivity is not enough.

Recall that Cling defines the “type” of an allocated object based
on the two innermost return addresses on the call stack when
realloc is invoked. This definition cannot distinguish objects al-
located using exactly the same call stack on different threads. The
lack of thread-sensitivity is also the reason why TypeAfterType
cannot defend against this exploit, as both the freed object (which
inadvertently creates dangling pointers) and attacker-controlled
object are classified as the same “type”, hence allowing UAF among
them.

Exploit 2: An attacker may exploit another call trace mjs_mkstr
→ mjs_mk_string→ mbuf_resize→ realloc to obtain a control-
lable buffer potentially in the same thread where mjs_json_parse
is invoked (e.g., by placing a mkstr(..) JavaScript call after the
JSON string). In this way, the attacker-controlled buffer is allocated
using a different call trace as the dangling pointer. SeMalloc miti-
gates this exploit by assigning different SemaTypes to the dangling
pointer and attacker-controlled buffer, eliminating the possibility
of UAF among them.

Cling takes mbuf_resize as an allocation wrapper and treats
all objects allocated through mjs_mk_string to have the same
type. This allows UAF between the dangling pointer and attacker-
controlled buffer despite that they are originated from differ-
ent roots. TypeAfterType, on the other hand, further takes
mjs_mk_string as a malloc wrapper as it still passes a variable
length to mbuf_resize. This enables TypeAfterTypet to differenti-
ate objects allocated through frozen_cb and mjs_mkstr. Hence, can
mitigate this exploit.
Case study: CVE-2015-6835 [36]. This vulnerability is in the
PS_SERIALIZER_DECODE_FUNC function, which restore a PHP session
from a serialized string. During this process, php_var_unserialize
returns a zval pointer, which is stored in a hashtable. However, the

same pointer might be freed later and this causes the stored copy
to be dangling. Through this dangling pointer, an attacker might
corrupt any zval object that may be reallocated to the freed slot.
zval is a reference-counting wrapper of almost all other objects

in the PHP engine. Therefore, the attacker can corrupt any zval
object that may be reallocated to this free slot and its value can
be leaked through the dangling pointer. In the PoC exploit, the
attacker simply uses the PHP echo(..) function to dump a newly
allocated zval through the dangling pointer, i.e., a type-C exploit.

In this PoC exploit, both the dangling pointer and victom objects
are allocated through a common call trace: php_var_unserialize
→ emalloc→ malloc. This is critical to understand why both Cling
and TypeAfterType fail to provide protection. For Cling, this malloc
wrapper chain implies that all zval objects allocated through this
chain share the same type (measured by the two innermost re-
turn addresses on the call stack). This leaves the dangling pointer
plenty of candidate objects to refer to after several rounds of de-
serialization in PHP. TypeAfterType can inline malloc wrappers
but the inlining stops at php_var_unserialize because it sees the
sizeof(zval) argument in emalloc and hence, will allocate all zval
objects originating from this malloc wrapper from the same pool.
Unfortunately, the dangling pointer is also allocated this way, en-
abling UAF among the dangling pointer to other zval objects as
well.

SeMalloc can mitigate this exploit because SemaType is not
only context-sensitive but also flow-sensitive. For examples, a ses-
sion initialization zval can never be allocated from the same pool
as a zval created in the middle of a session.

6 Performance Evaluation

We evaluate the performance of SeMalloc across a diverse range
of scenarios, including macro, micro, and real-world programs. For
comparative analysis, we also benchmark two type-based alloca-
tors: FFMalloc [55] and TypeAfterType [52], two complete UAF-
mitigating allocators: MarkUs [1] and MineSweeper [15], and the
glibc memory allocator [19] on the same test suites. We additionally
compare with DangZero [20] on all benchmarks and PUMM [56]
on targeted server programs (§6.4) as both are state-of-the-art UAF-
mitigating allocators with low overheads despite DangZero requires
kernel privilege and PUMM requires annotation and profiling. Al-
though Cling [2] is a closely related work, we omit it in our evalua-
tion because its code is not available.

Based on the design features of eachmemory allocator, we expect
that SeMalloc should incur a:
A lower run-time overhead than MarkUs and MineSweeper,
B lower memory overhead than FFMalloc,
C similar run-time overhead compared with TypeAfterType and

potentially a higher memory overhead,
D smaller run-time overhead and similar memory overhead with

DangZero,
E similar run-time and memory overheads with PUMM.
Preview. The outcomes of our evaluation are in alignment with
these expectations with consistent results across mimalloc-bench,
SPEC CPU 2017, PARSEC 3, and real-world server programs (Nginx,
Lighttpd, and Redis).

https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L3126
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L2098-L2102
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L13656
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L13706
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L6430
https://github.com/cesanta/mjs/blob/9eae0e6e8fbfa25b71ea2446d9ee667c5c4271fe/mjs.c#L5966

SeMalloc: Semantics-Informed Memory Allocator CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

PARSEC SPEC
0.5

1.0

1.5

2.0
SEMalloc
Markus

FFMalloc
MineSweeper

TypeAfterType
DangZero

Figure 6: Normalized average and standard deviation of run-time

overhead on PARSEC and SPEC benchmarks.

PARSEC SPEC
0.5

1.0

1.5

2.0

2.5
SEMalloc
Markus

FFMalloc
MineSweeper

TypeAfterType
DangZero

Figure 7: Normalized average and standard deviation of memory

overhead on PARSEC and SPEC benchmarks.

6.1 Evaluation Setup

All experiments except DangZero are conducted in the Ubuntu
22.04.4 environment, on a server configured with a 48-core 2.40GHz
Intel Xeon Silver 4214R CPU with 128GB of system memory. Dan-
gZero experiments are executed on the same machine with QEMU-
KVM as DangZero requires patching the Linux 4.0 kernel in the
guest VM.

We use LLVM 15 to compile programs. For simplicity, we use the
WLLVM [51] compiler wrapper to link the whole program bitcode
into a single IR file. While generating the IR, we enable the compiler
to track pointer types by setting the -fno-opaque-pointers flag,
and disable constructor aliasing with -mno-constructor-aliases
flag to simplify the call graph. We then transform the IR using
our pass and compile it to generate the hardened program. We
also generate unhardened programs by directly compiling the IR
without running the SeMalloc-specific transformation pass.

We use a Python wrapper to measure clock time and maximum
memory usage (maxrss) in program execution for all test programs
except from DangZero-protected programs, which is additionally
measured with the page table size as instructed in their paper. All
results are based on five runs, normalized with respect to the corre-
sponding glibc. We compute performance averages using geometric
means, and report standard deviations as well.

While we built all related tools as instructed in the latest versions
of their respective official GitHub repositories, we note that MarkUs,
TypeAfterType, DangZero, and MineSweeper are not compatible
with all tests. We exclude them from computing their respective
average overheads and the complete list can be found at §A.8. Indi-
vidual test results are at §A.9. Maximumworking set size is at §A.10.

6.2 Macro Benchmarks

We choose the widely used SPEC and PARSEC benchmark suites as
macro benchmarks. They are general-purpose benchmarkswith var-
ious kinds of programs that can show the performance of SeMalloc
in a broad range of scenarios.

SPEC CPU2017 : We use SPEC CPU2017 [48] version 1.1.9 and
report the results of 12 C/C++ tests in both "Integer" and "Floating
Point" test suites. We note that some tests run the executable multi-
ple times with different inputs. We report the sum of time and the
max of memory use for these tests.

PARSEC 3: We use the latest PARSEC 3 [5] benchmark, exclud-
ing two (“raytrace” and “facesim”) from analysis because they are
incompatible with the Clang compiler, and one (“x264”) as it causes
a segmentation fault with glibc.
Benchmark Performance. We provide the run-time and mem-
ory overheads as well as standard deviations of these benchmarks
in Figure 6 and Figure 7. Performance results of individual programs
are in §A.9.

On SPEC, SeMalloc, FFMalloc, and TypeAfterType outperform
the glibc allocator (0.6%, 3.3%, and 3.0% respectively). This is ex-
plainable as pre-allocating heap pools by types reduces the number
of page requests made the kernel and hence can reduce alloca-
tion latency. Placing heap objects of similar types or SemaTypes
in adjacent memory is also beneficial to cache lines. MarkUs and
MineSweeper incur significant overheads (21.0% and 33.4% respec-
tively), which is expected due to expensive pointer scanning op-
erations. DangZero also incurs a significant 45.2% overhead even
with a modified kernel presented, which does not align with our
expectations, and is explained below.

All allocators incur extra memory overhead than glibc. As ex-
pected, for type-based allocators, the more sensitive the type (Ty-
peAfterType→ SeMalloc→ FFMalloc) the greater the memory
overhead (23.5% → 61.0% → 98.4%). MarkUs and MineSweeper
incur 31.1% and 32.5% memory overheads respectively due to quar-
antine of freed blocks although the number here is for reference
only. DangZero incurs a 47% memory overhead (including kernel
memory consumption) due to the use of alias page tables.

The results on PARSEC also align with expectations that
SeMalloc incurs: smaller run-time overhead (-0.4%) than MarkUs
(144%) and MineSweeper (23.0%), smaller memory overhead (40.5%)
than FFMalloc (84.1%), similar run-time overhead with TypeAfter-
Type (1.0%), and smaller run-time and similar memory overheads
with DangZero (19.5% and 32.3% respectively).
Abnormalities. While the overall evaluation results align with
expectations A, B, C, andD,we do notice abnormalities in the results.
Failed test cases and how they might affect the reported evaluation
numbers in related works are summarized in §A.8. Here, we focus
on discussing individual test cases that do not yield expected results.

SeMalloc allows memory reuse among allocations of the same
SemaTypewhile FFMalloc does not allow any virtual memory reuse,
thus running SeMalloc should incur less memory overheads com-
pared with FFMalloc. However, on the benchmarks, we observe
three exceptions: “641”, “644”, and “fer”. Test “641” and “fer” fre-
quently call functions in external libraries that allocates heap mem-
ories causing excessive memory use. Test “644” reaches its memory
usage peak at the beginning of the program that allocates a signifi-
cant number of blocks together and they are all not released until
the end of the program. As FFMalloc allocates blocks at a 16-byte
granularity, it uses less memory to allocate them compared with
SeMalloc uses the size of two size classes to allocate blocks. The

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ruizhe Wang, Meng Xu, and N. Asokan

Run-time Memory
0.5

1.0

1.5

2.0

2.5
SEMalloc
Markus

FFMalloc
MineSweeper

TypeAfterType
DangZero

Figure 8: Normalized average and standard deviation of run-time

and memory overheads on mimalloc-bench.

Redis Nginx Lighttpd
0.5

1.0

1.5

2.0
SEMalloc
Markus
FFMalloc

MineSweeper
TypeAfterType

DangZero
PUMM

Figure 9: Normalized average and standard deviation of throughput

overhead on three real-world programs.

Redis Nginx Lighttpd
0
1
2
3
4 SEMalloc

Markus
FFMalloc

TypeAfterType
MineSweeper

DangZero
PUMM

Figure 10: Normalized average and standard deviation of memory

overhead on three real-world programs.

observed overhead comes from the data storage instead of the way
SeMalloc reuse freed blocks.

6.3 Micro Benchmarks

We use mimalloc-bench [11], a dedicated benchmark designed to
stress test memory allocators with frequent (and sometimes only)
allocations and de-allocations. We exclude one test: “mleak” that
tests memory leakage instead of allocation performance, and sum-
marize the overheads and standard deviations of the rest of tests
in Figure 8. Individual results can be found in §A.9.

On average, SeMalloc introduces less execution delay compared
with allocators that offer more security (i.e., MarkUs, MineSweeper,
DangZero and FFMallloc) and perform slightly better than Ty-
peAfterType. For memory overhead, SeMalloc cuts the memory
usage bymore than half comparedwith FFMalloc, which aligns with
our expectations and make it a possible approach for real-world
programs.

6.4 Performance on Real-world Programs

We evaluate three real-world performance of SeMalloc using Ng-
inx (1.18.0), Lighttpd (1.4.71) and Redis (7.2.1). For network servers,
we use ApacheBench (ab) [50] 2.3 to evaluate their throughput with
500 concurrent requests, and take the Nginx default 613 bytes root
page as the requested page. On Redis, we use the same settings as
how its performance is measured in mimalloc-bench [11].

The results are in Figure 9 and Figure 10. Overhead numbers
can be found in §A.9. While running Nginx, MarkUs consumes a

significant amount of memory possibly due to an implementation
error. DangZero is not compatible with Redis and Lighttpd, and
MineSweeper is not compatible with Nginx. Running them causes
segmentation faults and hence we exclude them from the analy-
sis. PUMM incurs negligible run-time overheads for the two web
servers but an abnormal 43% overhead for Redis, possibly due to
an implementation bug or an incomplete program profiling that
misidentifies the “task”. Albeit these outliers, the results align with
our expectations for SeMalloc set earlier in the beginning of §6.

7 On Recurrent Allocations

In SeMalloc, a SemaType only needs to be tracked dynamically if
heap objects of this SemaType are allocated recurrently, i.e., through
loops or recursions (see §3.2, §3.3, and §4.6). For non-recurrent
allocations, once an object is freed, its space is never reused. In two
extreme cases,
• if a program itself involves absolutely zero recurrent heap alloca-
tions (but the dependent libraries may allocate heap memories)
SeMalloc behaves exactly like FFMalloc [55];
• if there is only one execution context where heap allocation can
happen (i.e., a single SemaType), SeMalloc behaves exactly like
the glibc heap allocator [19].

Fortunately, most programs are not written in these extreme cases
as shown in the last two columns of §A.11. And yet, this observa-
tion leads us to wonder how prevalent recurrent heap allocations
are in common benchmark programs that evaluate heap allocators.
Needless to say, programs that have a more diverse set of recurrent
allocations can benefit more from the fact that SeMalloc attempts
to strike a sweet spot in security, performance, and memory over-
head in the context of UAF mitigation.

We use recurrent allocation percentage to describe how many
allocations are one-time allocations. For most programs that fre-
quently allocate blocks, over 99% of the allocations are effectively
captured and allocated to individual SemaType pools. These pools
handle a significant amount of memory reallocation (as shown
in the fourth to the last column), which improves memory effi-
ciency and thus explains why empirically SeMalloc incurs a lower
memory overhead than FFMalloc and limits memory leakage.

However, we observe three exceptions: "620," "bod," and "fer".
They often call functions from external libraries (such as those
linked with the -lm flag in the math.h library) that allocate heap
memory as well. These external libraries are not transformed by
SeMalloc, leading to untracked heap allocations that are handled
in the global non-releasing pool (like FFMalloc). Therefore, adopting
SeMalloc for a program that heavily depends on external libraries
for heap allocations may not be ideal, and the developers can opt
to recompile the dependent libraries with SeMalloc for better
compatibility.

8 Concluding Remarks

Type is a loosely defined concept in security research and is often
subject to different interpretations. In this paper, we look at “type”
through the lens of heap allocators. To a heap allocator, a type is an
encoding of information about the to-be-allocated object. Intuitively,
the more information (i.e., semantics) a heap allocator knows, the
better decisions it can make. While conventional memory allocators

SeMalloc: Semantics-Informed Memory Allocator CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

only take object size as the semantics, we argue that SemaType can
be a useful extension to object size, and, more importantly, can be
deduced cheaply at runtime (memory overhead of SeMalloc is not
related to deducing SemaType).

Through SeMalloc, we show that SemaType can be used to
balance security, run-time cost, and memory overhead in UAF mit-
igation. And yet we believe that SemaType is applicable beyond
SeMalloc. For example, when applied to a performance-oriented
memory allocator, SemaType might help the allocator to partition
heap pools strategically to exploit cache coherence. Alternatively,
combined with other software fault isolation (SFI) strategies (e.g.,
red-zoning or pointer-as-capabilities), SemaTypemight help specify
and enforce finer-grained data access policies.
Acknowledgement. This work is funded in part by NSERC
(RGPIN-2022-03325), the David R. Cheriton endowment, and re-
search gifts from Intel Labs.

References

[1] Sam Ainsworth and Timothy M. Jones. 2020. MarkUs: Drop-in Use-After-Free
Prevention for Low-level Languages. In IEEE S&P. 578–591.

[2] Periklis Akritidis. 2020. Cling: AMemory Allocator to Mitigate Dangling Pointers.
In USENIX Security.

[3] Alejandro Guerrero. 2022. N-day exploit for CVE-2022-2586: Linux kernel
nft_object UAF.

[4] Cristiano Giuffrida Alyssa Milburn, Herber Bos. 2017. Safelnit: Comprehensive
and Practical Mitigation of Uninitialized Read Vulnerabilities.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PAR-
SEC Benchmark Suite: Characterization and Architectural Implications. Technical
Report TR-811-08. Princeton University.

[6] Blaze Labs. 2022. The never ending problems of local ASLR holes in Linux.
[7] Matteo Botticci. 2022. ZigRazor/CXXGraph: Release v0.2.2.
[8] C Language Working Group. 2023. Programming languages — C.
[9] Luca Cardelli. 1996. Type Systems. ACM Computing Surveys.
[10] Haehyun Cho, Jinbum Park, Adam Oest, Tiffany Bao, Ruoyu Wang, Yan Shoshi-

taishvili, Adam Doupé, and Gail-Joon Ahn. 2022. ViK: practical mitigation of
temporal memory safety violations through object ID inspection. In ASPLOS.
Association for Computing Machinery, New York, NY, USA.

[11] daanx. 2024. Suite for benchmarking malloc implementations.
[12] Thurston H. Y. Dang, Petros Maniatis, and DavidWagner. 2017. Oscar: A Practical

Page-Permissions-Based Scheme for Thwarting Dangling Pointers. In USENIX
Security. Vancouver, Canada.

[13] Daniel Teuchert, Cornelius Aschermann, Tommaso Frassetto, Tigist Abera. 2018.
Use after free in File#initilialize_copy.

[14] Thomas Dullien. 2017. Weird Machines, Exploitability, and Provable Unex-
ploitability. IEEE Trans. on Emerging Topics in Computing (2017).

[15] Márton Erdős, Sam Ainsworth, and Timothy M. Jones. 2022. MineSweeper: A
“Clean Sweep” for Drop-in Use-after-Free Prevention. Association for Comput-
ing Machinery, New York, NY, USA, 212–225. https://doi.org/10.1145/3503222.
3507712

[16] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. 2020. PTAuth: Tempo-
ral Memory Safety via Robust Points-to Authentication.

[17] Nathaniel Filardo, Brett F Gutstein, John Woodruff, Sam Ainsworth, Lucian
Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala, Alexander
Richardson, John Baldwin, David Chisnall, Jessica Clark, Khilan Gudka, Alexandre
Joannou, A. Theodore Markettos, Alfredo Massinghi, Robert M Norton, Michael
Roe, Peter Sewell, Stacey Son, Timothy M Jones, Simon W Moore, Peter G Neu-
mann, and Robert N M Watson. 2020. Cornucopia: Temporal Safety for CHERI
Heaps. In IEEE S&P. 608–625.

[18] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. 1999. A Theory of
Type Qualifiers. In PLDI.

[19] Free Software Foundation, Inc. 2024. The GNU Allocator.
[20] Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2022. DangZero:

Efficient Use-After-Free Detection via Direct Page Table Access. In ACM CCS.
Association for Computing Machinery, New York, NY, USA.

[21] Hanno Böck. 2017. use after free with malformed input file in
yasm_intnum_destroy().

[22] David R. Hanson. 1980. A Portable Storage Management System for The ICON
Programming Language. Software: Practice and Experience.

[23] Mohannad Ismail, Andrew Quach, Christopher Jelesnianski, Yeongjin Jang, and
Changwoo Min. 2022. Tightly Seal Your Sensitive Pointers with PACTight.

[24] John Leitch. 2015. array.fromstring Use After Free.
[25] Moshe Kol. 2023. Racing Against the Lock: Exploiting Spinlock UAF in the

Android Kernel. In OffensiveCon.
[26] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long

Lu, and Wenke Lee. 2021. Preventing Use-after-free with Dangling Pointers
Nullification. In NDSS.

[27] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying Liu, and
Chao Zhang. 2022. PACMem: Enforcing Spatial and Temporal Memory Safety via
ARMPointer Authentication. InACMCCS. Association for ComputingMachinery,
New York, NY, USA.

[28] Hao Ling, Heqing Huang, Chengpeng Wang, Yuandao Cai, and Charles Zhang.
2024. GIANTSAN: Efficient Memory Sanitization with Segment Folding. In
ASPLOS. Association for Computing Machinery, New York, NY, USA.

[29] Linux Foundation. 2024. mmap(2) - Linux manual page.
[30] Beichen Liu, Pierre Olivier, and Binoy Ravindran. 2019. SlimGuard: A Secure and

Memory-Efficient Heap Allocator. In MiddleWare. Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3361525.3361532

[31] LLVM Project. 2024. X86CallingConv.td.
[32] Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call

Targets with Multi-Layer Type Analysis. In ACM CCS. Association for Computing
Machinery, New York, NY, USA, 1867–1881.

[33] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive
Kernel Memory Initialization to Eliminate Data Leakages. In CCS.

[34] Manh Nguyen. [n. d.]. UAF Fuzzing Benchmark.
[35] National Vulnerability Database. 2015. CVE-2015-6831.
[36] National Vulnerability Database. 2015. CVE-2015-6835.
[37] National Vulnerability Database. 2018. CVE-2018-11496.
[38] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-

weight dynamic binary instrumentation. In PLDI.
[39] Gene Novark and Emery D Berger. 2010. DieHarder: Securing The Heap. In ACM

CCS. Association for Computing Machinery, New York, NY, USA.
[40] OffSec Services Limited. 2024. Exploit Database - Exploits for Penetration Testers,

Researchers, and Ethical Hackers.
[41] Chanyoung Park and Hyungon Moon. 2024. Efficient Use-After-Free Prevention

with Opportunistic Page-Level Sweeping. In NDSS.
[42] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry

Vyukov. 2012. AddressSanitizer: a fast address sanity checker. In USENIX ATC.
[43] M. Sharir. 1981. A strong-connectivity algorithm and its applications in data flow

analysis. Computers & Mathematics with Applications.
[44] Zekun Shen and Brendan Dolan-Gavitt. 2020. HeapExpo: Pinpointing Promoted

Pointers to Prevent Use-After-Free Vulnerabilities. In ACSAC.
[45] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunheung Paek.

2019. CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-
after-free in Legacy C/C++. In NDSS.

[46] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping Liu. 2018.
Guarder: A Tunable Secure Allocator. In USENIX Security.

[47] Alexander Sotirov. 2007. Heap Feng Shui in Javascript. In Black Hat Europe.
[48] Standard Performance Evaluation Corporation. 2017. SPEC 2017.
[49] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal

War in Memory. In IEEE S&P.
[50] The Apache Software Foundation. 2023. Apache HTTP Server Documentation:

ab - Apache HTTP Server Benchmarking Tool.
[51] Tristan Ravitch. 2023. whole program llvm.
[52] Erik van der Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos, and Cristiano

Giuffrida. 2018. Type-After-Type: Practical and Complete Type-Safe Memory
Reuse. In ACSAC.

[53] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan:
Scalable Use-after-Free Detection. In EuroSys.

[54] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. In IEEE S&P.

[55] Brian Wickman, Hong Hu, Insu Yun, DaeHee Jang, JungWon Lim, Sanidhya
Kashyap, and Taesoo Kim. 2021. Preventing Use-After-Free Attacks with Fast
Forward Allocation. In USENIX Security.

[56] Carter Yagemann, Simon P Chung, Brendan Saltaformaggio, and Wenke Lee.
2023. PUMM: Preventing Use-After-Free Using Execution Unit Partitioning. In
USENIX Security.

[57] Yves Younan. 2015. FreeSentry: protecting against use-after-free vulnerabilities
due to dangling pointers. In NDSS.

[58] Jie Zhou, John Criswell, and Michael Hicks. 2023. Fat Pointers for Temporal
Memory Safety of C. Proc. ACM Program. Lang.

https://www.blazeinfosec.com/post/never-ending-problems-aslr-linux/
https://doi.org/10.5281/zenodo.5878832
https://github.com/daanx/mimalloc-bench
https://github.com/mruby/mruby/issues/4001
https://doi.org/10.1145/3503222.3507712
https://doi.org/10.1145/3503222.3507712
https://github.com/yasm/yasm/issues/91
https://github.com/yasm/yasm/issues/91
https://bugs.python.org/issue24613
https://doi.org/10.1145/3361525.3361532
https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/X86/X86CallingConv.td
https://github.com/strongcourage/uafbench
https://www.spec.org/cpu2017/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/travitch/whole-program-llvm

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ruizhe Wang, Meng Xu, and N. Asokan

A Appendix

A.1 Code Example

This appendix is removed due to the page limitation. Please refer
to our full appendix.

A.2 Instruction Insertion Summary

The number of LLVM IR instructions instrumented at different code
locations are summarized in Table 2.

Table 2: Number of instructions inserted for call, invoke, and for

duplicating the invoke nodes. In the call graph, we use “branch node” to
denote a node with more than one incoming edges and “iterative node” to
denote a node that has at least one outgoing edge annotated in dashes (i.e.,
the call site is in a loop). We note that a branch node can potentially also be
an iterative node. In this case, both groups of instructions will be inserted.

Code location Call Invoke

SCC inbound edges 1 2
SCC inner edges 9 13
SCC outbound edges 16 22

Iterative node 6 12
Branch node 6 20
malloc call site 12 20

Duplicated invoke node 2*calls in the same bracket

Briefly, following is a summary of instructions added:
• For an SCC inbound edge, instructions are inserted after the call
site to clear 𝑠 .
• For an intra-SCC edge, instructions are inserted before and after
the call site to update 𝑠 .
• For an SCC outbound edge instructions are inserted before the
call to compute ℎ (which is rID) and clear 𝑠 .
• For an iterative node, instructions are inserted before and after
the call to maintain nID.
• For a branch node, instructions are inserted before and after the
call to maintain nID.
• For a malloc call site, instructions are inserted before the call to
encode rID and nID into the size parameter.

Additionally, if a function is called with exception handling (via
the invoke instruction in LLVM), additional instructions need to be
inserted to handle the unwind branch and to duplicate the execution
logic to make it compatible with SeMalloc. We refer the readers
to §A.5 for details.

A.3 Formal Analysis

This appendix is removed due to the page limitation. Please refer
to our full appendix.

A.4 List of Supported Allocation APIs

SeMalloc supports the following allocation APIs: malloc, calloc,
realloc, memalign, pthread_memalign, and aligned_alloc.

A.5 Transformation for Function Call with

Exception Handling

In LLVM, regular function calls are represented with the call in-
struction. This instruction is similar to a regular function call in

high-level programming languages and does not encode exception
handling semantics. For calls that may throw an exception, LLVM
uses the invoke instruction.

Different from the call instruction that returns the control flow
to the next instruction, invoke terminates the control flow and
jumps to two destinations that contains the regular branch and the
exception handling branch (a.k.a., the unwind branch). If more than
one function calls are made in one exception-handling context (e.g.,
more than one functions calls in the same try block in C++), there
is still only one unwind branch that all invoke instructions will
jump to.

When making a regular call, nID is decreased after the call
returns. With the invoke instruction, nID needs to be decreased
in both destination branches. The unwind branch also needs to be
exclusive to each invoke as nID needs to be reduced with a different
value in different sites. To achieve this, we duplicate the unwind
branch and guarantee that each branch is only jumped from one
invoke instruction.

The unwind branch might contain 𝜙-instructions, whose return
value is dependent to the prior basic block the control flow jumped
from. To make the transformation compatible with this special in-
struction, we only duplicate the basic exception handling logic (first
half of the unwind basic block) and insert instructions to reduce
nID for the unwind branches here. We create a new basic block
only contains the second half of each branch, and all 𝜙-instructions
are in the newly created basic block.

Similarly, a invoke destination block can have incoming edges
from basic blocks that do not end with the invoke instruction. We
need to duplicate this destination block as well to avoid always
executing the inserted tracking instructions even this basic block is
not jumped from a invoke call site. We create a new basic block and
insert the SemaType tracking instructions here. We then replace
the invoke destination to this block and link this block with the old
destination, while update all 𝜙-instructions accordingly.

A.6 Additional Exploitation Case Studies

Python-24613. [24] This vulnerability resides in the logic of pars-
ing an array from a string and appending it to an existing array.
In the array.fromstring() method, the Python interpreter calls
realloc to guarantee that the allocated memory of the appended ar-
ray object is big enough, and calls memcpy to copy the data from the
string to the new array. However, if the array is appending itself, i.e,
the string and the array is the same object, realloc essentially frees
this object, and the subsequent memcpy copies the freed heap chunk
to the new object. An attacker can exploit this vulnerability by
racing to allocate objects filled with attacker-controlled malicious
data over the freed chunk, making this a type-C exploit (see §2.1).

In this exploit, both the dangling pointer and the target ob-
ject (i.e., the object that the attacker uses the dangling pointer
to read from) are allocated through array_fromstring→realloc.
array_fromstring is an exposed Python API that can be called di-
rectly in a Python script, and is only called by one other function,
array_new, which is also a Python API. All three allocators here
can differentiate these two call sequences, thus providing complete
protection for this vulnerability.

https://arxiv.org/abs/2402.03373
https://arxiv.org/abs/2402.03373

SeMalloc: Semantics-Informed Memory Allocator CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

CVE-2012-0469. [52] This vulnerability is in the indexedDBmodule
of Firefox. While a IDBKeyRange is freed, its reference is left in the
object table. The attacker can craft an object, for example, a vector
to reclaim the pointed space, and interpreting the crafted object
using the dangling pointer can cause arbitrary code execution. This
is a type-B exploit.

As this object can only be allocated by calling new to its con-
structor, Cling can stop the type confusion on the primary type,
provides a partial protection. SeMalloc and TypeAfterType can
further differentiate the source of the created IDBKeyRange object,
from serialized data or explicitly created in the JavaScript script,
thus providing complete protection for this vulnerability.

A.7 Implementation Details of The Allocation

Backend in SeMalloc

The heap allocator backend of SeMalloc is implemented using the
dlsym function and is a dynamic library that can be loaded by either
setting the LD_PRELOAD environment variable to replace the system
default memory allocator or direct linkage during compilation.

SeMallocmaintains a per-thread metadata that stores the status
of all blocks allocated in this thread. If a block not allocated in this
thread is freed, SeMalloc will atomically add this block to the free-
list of the thread that allocates it and defers the deallocation until
that thread handles a heap memory management operation. Other
than the free-list, for each thread SeMalloc maintains a global pool
for all one-time allocations, a lazy pool for all first-seen recurrent
allocations, several individual pools for each recurrent allocations,
and a map that used to locate the pool for each SemaType. The lazy
pool and global pool are pools for all size classes, while individual
pools contain a limited set of size classes (most of the time only
one) that have been used to save virtual memory address space.

Upon creation, each pool is allocated with a dedicated virtual
memory address range that all its memory will be allocated from.
For each sub pool of the global pool or the lazy pool, SeMalloc
allocates the block sequentially. For each individual pool, SeMalloc
maintains a free list as well and will allocate the head of the free
list if it is not empty. Otherwise, SeMalloc will also allocate the
mapped memory of this individual pool sequentially.

For each block, a 16-byte metadata is stored immediately before
the data. For huge block, it stores the block type (huge) and the
block size. For regular small blocks, it stores the block type (regular)
with one byte, the ID of the thread that allocates the block with
two bytes, the pointer to the pool that allocates the block with
eight bytes, and an offset if the block is allocated via memalign-like
functions to locate the start byte of the block chunk with four bytes.

When a malloc call comes, SeMalloc firstly check if the block
size is larger than the huge allocation threshold or not. If so,

SeMalloc uses mmap to allocate this block and sets the header. Oth-
erwise, SeMalloc takes the recurrent identifier. If it is not set,
SeMalloc will use the global pool to allocate this block. Other-
wise, SeMalloc will take SemaType and check if a block with it is
already allocated or not using the lazy pool. If so, SeMalloc can
confirm that this blocks with this SemaType is recurrently allocated
and will allocate an individual pool for all following allocations
with this SemaType. The map will be updated with this new entry
as well. Otherwise, the lazy pool will allocate this block.

When a free call comes, SeMalloc will firstly take the header of
the pointed block to check if it is a huge block or not If so, SeMalloc
uses munmap to deallocate this block. Otherwise, SeMalloc will
check the thread id and put it to the corresponding free list if this
block is not allocated in this thread. If the block is allocated in this
thread, SeMalloc then takes the pool pointer. If the pool is a global
pool or lazy pool, SeMalloc will release the taken memory to the
operation system by calling madvise. However, this virtual memory
address will not going to allocated to any blocks again. If the pool
is an individual pool, SeMalloc will put this block to the pool’s
free list, recycling it for another block with the same SemaType.
Memory leakage. In ??, we use the third to the last column to list
memory leakage caused by SeMalloc. We show that programs not
using memory-allocating external libraries have negligible memory
leakage.

A.8 List of Failed Tests and Influences on the

Average Overheads

This appendix is removed due to the page limitation. Please refer
to our full appendix.

A.9 Run-time and Memory Overhead Details of

Each Benchmark Test

This appendix is removed due to the page limitation. Please refer
to our full appendix.

A.10 Maximum Working Set Size (WSS) of Each

Benchmark Test

This appendix is removed due to the page limitation. Please refer
to our full appendix.

A.11 Recurrent Allocation Statistics on PARSEC

and SPEC Tests

This appendix is removed due to the page limitation. Please refer
to our full appendix.

https://arxiv.org/abs/2402.03373
https://arxiv.org/abs/2402.03373
https://arxiv.org/abs/2402.03373
https://arxiv.org/abs/2402.03373

	Abstract
	1 Introduction
	2 A Mini SoK on UAF
	2.1 Exploiting UAF Vulnerabilities
	2.2 Mitigating UAF Vulnerabilities
	2.3 A Reflection on Semantics And Type

	3 Capture Semantics with SemaType
	3.1 Defining SemaType
	3.2 Cyclic Control-flow Structures
	3.3 SemaType Representation
	3.4 Alternative: Path-sensitivity

	4 SemaType-based Heap Allocation
	4.1 Overview
	4.2 Call Graph Construction
	4.3 Edge Weight Assignment
	4.4 SCC Stack Pointers Aggregation
	4.5 Parameter Encoding
	4.6 Heap Allocator Backend

	5 Security Analysis
	5.1 Qualitative Analysis
	5.2 Empirical Check on Real-world Exploits

	6 Performance Evaluation
	6.1 Evaluation Setup
	6.2 Macro Benchmarks
	6.3 Micro Benchmarks
	6.4 Performance on Real-world Programs

	7 On Recurrent Allocations
	8 Concluding Remarks
	References
	A Appendix
	A.1 Code Example
	A.2 Instruction Insertion Summary
	A.3 Formal Analysis
	A.4 List of Supported Allocation APIs
	A.5 Transformation for Function Call with Exception Handling
	A.6 Additional Exploitation Case Studies
	A.7 Implementation Details of The Allocation Backend in SeMalloc
	A.8 List of Failed Tests and Influences on the Average Overheads
	A.9 Run-time and Memory Overhead Details of Each Benchmark Test
	A.10 Maximum Working Set Size (WSS) of Each Benchmark Test
	A.11 Recurrent Allocation Statistics on PARSEC and SPEC Tests

