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Abstract. Attacks on heap memory are ever-increasing. Existing entropy-
based secure memory allocators can provide statistical defenses against
various heap-based exploits, including use-after-free (UAF). However,
although UAF mitigation is in scope, such allocators are not tailored to
detect failed UAF attempts. Consequently, an attacker can beat entropy-
based protection by repeating the same attack, possibly in combination
with heap spraying, to improve their chance of success further.
We introduce S2malloc, aiming to enhance UAF-attempt detection
without compromising other security guarantees or introducing significant
overhead. S2malloc consists of three new constructs in the secure alloca-
tor design space: free block canaries (FBC) to detect UAF attempts,
random in-block offset (RIO) to stop the attacker from accurately
overwriting the victim object, and random bag layout (RBL) to
impede attackers from estimating the block size based on its address.
We show that S2malloc can detect UAF attempts with a reasonable
probability and is practical, with only a 2.8% CPU overhead on PARSEC
and an 11.5% CPU overhead on SPEC.

Keywords: Secure Memory Allocator · Use-After-Free.

1 Introduction

Heap-related vulnerabilities are severe and common threats that can be leveraged
to launch attacks resulting in arbitrary code execution or information leakage.
Heap overflow, double and invalid free, and use-after-free (UAF) are among
the most common types of these vulnerabilities. According to the Common
Vulnerabilities and Exposures (CVEs) report of 2022, they were ranked 19th,
11th, and 7th in terms of bug prevalence [25].

Secure memory allocators play a crucial role in defending against heap ex-
ploitations. They can be broadly categorized into two types: entropy-based generic
allocators, which use randomness to enhance security, and UAF-mitigating allo-
cators, which specifically target UAF vulnerabilities.

UAF occurs when a previously freed memory block is used to store data. It
receives special attention in secure allocator design due to its prevalence and the
powerful exploitation primitives (e.g., arbitrary read/write) it enables. Chromium
has reported that more than a third of its security issues are related to UAF,
which is more prevalent than other types of memory errors combined [36]. Prior



works have demonstrated that effective UAF mitigation is not only possible
but can be achieved in several ways, such as tracking and nullifying pointers on
de-allocation (e.g., MarkUs [2]), forward-only allocation (e.g., FFmalloc [41]), and
context-based allocation (e.g., Cling [3]). However, these approaches also have
drawbacks, such as substantial CPU overheads (e.g., about 40% for MarkUs),
downgraded protection in edge cases (e.g., same-context UAF is still possible
with Cling), or new attack vectors exposed due to complexity in implementation
(e.g., FFmalloc) albeit preventable.

Entropy-based heap allocation is another way to mitigate UAF exploits. Al-
locators in this theme share one limitation: probabilistic protection. However,
the relaxed security requirement also enables them to protect most, if not all,
common heap vulnerabilities with simpler and binary-compatible designs. Specif-
ically on UAF mitigation, entropy-based memory allocators typically use delayed
free-lists [30,20] to prevent the same memory block from being immediately
reallocated after being freed. Attackers now face a moving target even when they
obtain a dangling pointer, as they have less confidence in knowing when this
pointer becomes valid again and/or which object it might point to.

While achieving relatively low CPU overhead, especially compared with UAF-
mitigating allocators (details in §2), existing entropy-based allocators still face
the challenge of entropy loss, further compromising the probabilistic protection.
To illustrate how entropy loss can occur: 1) an attacker could control multiple
dangling pointers via heap spraying, increasing the chance of corrupting a target
object through one of the dangling pointers; 2) an attacker could infer block size
or type based on pointer addresses; 3) an attacker could retry the same attack
repetitively if a failed attempt only causes silent failure (more details in §3).

To overcome these challenges, we propose S2malloc, an allocator that
reduces entropy loss by detecting UAF attempts with low CPU and memory over-
head on par with state-of-the-art entropy-based memory allocators. S2malloc
achieves its promises by combining several new realizations of existing concepts:
randomized in-slot offset (RIO), free-block canary (FBC), and random
bag layout (RBL). RIO mitigates UAF attacks by allocating blocks with
random offsets, obstructing the attacker from locating the target field in a data
structure. FBC puts cryptographically secure canaries in free blocks to detect
illegal writes, turning a failed UAF exploitation attempt into a clear signal. RBL
organizes blocks of the same size range using sub-bags. Only blocks within the
same memory page are guaranteed to be in the same sub-bag.

Summary. We claim the following contributions:

– We analyze current entropy-based allocators in real-world UAF attack scenarios
and show their protection is weaker than claimed (§3).

– We present S2malloc, a drop-in solution that addresses the above weaknesses
while protecting against other commonly observed heap memory vulnerabilities.
S2malloc does not require special hardware, program recompilation, or
elevated privileges and works on x86 and AARCH (§4).

– Through various real-world CVEs and benchmarks, we show that S2malloc
can successfully detect all attacks (§5) while incurring 2.8% CPU overhead and
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27% memory overhead on the PARSEC benchmark and 11.5% CPU overhead
and 37% memory overhead on the SPEC benchmark (§6).

Both the software artifact and an extended version of the paper are available. In
the extended version, we 1) discuss the implementation details more thoroughly, 2)
document finer-grained evaluation results, and 3) provide a more formal analysis
on the security of S2malloc.

2 Background and Related Work

2.1 Entropy-based allocators

Entropy-based heap allocators strive to protect against almost all heap-based
exploits mentioned above by minimizing the attacker’s success rate. Ideally, the
success rate should be low enough to deter attackers from trying to attack the
system. However, as demonstrated in Guarder [30], practical implementations
face limitations in memory and computation resources.

BIBOP. State-of-the-art entropy-based allocators typically build on the Big
Bag of Pages (BIBOP) [16] mechanism with various security enhancements.
BIBOP-style allocators allocate blocks of the same size class together using one
or more continuous memory pages and pre-emptively allocate sub-pools for each
size class. Each sub-pool is divided into several slots pre-emptively, and each
allocated object takes one slot. A slot is not further divided or merged so that
memory fragmentation can occur only within a slot. For a long-running program,
blocks from newly mapped pages continue to be added to the pools until the
program reaches a steady state, after which most allocations and deallocations
involve existing blocks only. No performance degradation will happen as the
program executes. A bitmap monitors the status of each slot and can be used to
defend against double or invalid frees. Bag metadata is stored separately to avoid
metadata-based attacks [29], and UAF only occurs within the same size class.

Extended secure features. Prior works[27,30,20] have introduced a diverse
set of security enhancements over the basic BIBOP-style allocation, including:

– Guard page: A guard page is a single-page virtual memory block not mapped
to physical memory. Therefore, any attempt to dereference an address in a
guard page triggers a segmentation fault. Guard pages can be placed after
each bag or randomly within bags to protect against out-of-bound accesses.

– Heap canary : This is a small object set to a secure value and placed at the end
of each slot. Heap overflow can be detected if the canary value is modified.

– Random allocation: This guarantees that slots within each bag are not allocated
sequentially (i.e., linear allocations). Instead, each allocated slot is randomly
chosen from at least r free slots (where r is the entropy).

2.2 UAF-mitigating allocators

UAF-mitigating allocators specialize in UAF-protection only and can be broadly
categorized into the following types:
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A Pointer validation on dereference [39,11,42]: i.e., checks whether a pointer is
valid and safe for a read/write operation upon dereference.

B Pointer invalidation on free [13,8,28,12,41]: i.e., whenever free is called on a
pointer, it revokes its capability to access the associated virtual address.

C Memory sweeping [18,2,10]: i.e., checks all pointers stored in memory and
either actively removes all dangling pointers or reuses a freed memory chunk
with the assurance that no dangling pointer to this freed chunk exists.

D Context-based allocation [3,38,9]: i.e., permits the re-allocation of freed memory
chunks only to objects allocated in the same “context.”

Not all UAF-mitigating allocators are drop-in replacements of the system mem-
ory allocator, as some of them require recompilation of the protected pro-
grams [3,38,40], special hardware [12], or kernel modifications [13].

Security guarantee. UAF-mitigating allocators in categories A, B, and C can
eliminate all UAF exploits (hence complete mitigation), although some of them
might incur large overheads or require customized kernel or hardware. Context-
based allocators (category D), first proposed in [9] as a heap-safety property,
typically run faster but offer incomplete protection. For example, Cling [3] defines
the allocation context based on the two innermost return addresses on the call
stack when malloc is invoked. Suppose two memory allocations occur in the
same context; in this case, the object allocated the second time may occupy
the same memory chunk allocated the first time (if the first object is freed).
TypeAfterType [38] defines the allocation context based on object types (e.g.,
the type int passed in malloc(sizeof(int)), and objects may be reallocated on
freed memory chunks originating from the same allocation context. In summary,
UAF is still possible in context-based allocators.

However, unlike entropy-based allocators (including S2malloc), which also
mitigate UAF imperfectly, the protection from context-based allocators is deter-
ministic. Specifically, if the dangling pointer and the target object are allocated
in different contexts, there is zero chance of success in corrupting the target
object, regardless of the attackers’ strategies. On the other hand, context-based
allocators provide no protection if the dangling pointer and the target object fall
in the same context. Entropy-based allocators provide probabilistic protection in
both cases. We will discuss the implications via CVEs in §5.3.
Porting for UAF-write defense only. Allocators that instrument runtime
checks for pointer validity (i.e., category A) can opt to trade protections of
UAF-read attacks for performance by checking the pointer validity on write
accesses only. In fact, as reported in [31], only 5% to 25% of memory accesses are
write accesses in the SPEC 2017 benchmark, indicating a potential reduction in
overhead for category-A allocators. On the other hand, for allocators in categories
B, C, and D, splitting UAF-read and UAF-write protection is inherently hard as
their designs do not differentiate between read and write accesses.

2.3 Widely deployed secure allocators

Secure allocators have been adopted in industrial codebases as well. Scudo [22] is
a solution from LLVM [21] that balances security and performance and supports
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random allocation and delayed free-list (the latter is disabled by default), a subset
of security features provided by entropy-based allocators [30,20]. Hardened -
malloc [15] is the default allocator of GrapheneOS [14], a privacy and security-
focused Android-based OS. Hardened malloc incorporates all security features
discussed in §2.1 and focuses on UAF-write protections. Similar to other entropy-
based allocators, Hardened malloc suffers from reduced randomness. It also incurs
increased overheads for larger blocks, which limits its use scenarios.

3 Motivation

While effective in defending against various heap exploits, entropy-based allocators
are not ideally suited to protect against UAF attacks. Specifically, easy-to-identify
blind spots exist that drastically reduce the efficacy of defending UAF using
random allocation and increase attackers’ confidence in launching a successful
attack without trying to predict the next allocation slot.

3.1 Adversary model

We assume that the attacker can analyze the source code and binary executable
to determine the implementation details of the target program, including vulnera-
bilities and other relevant information, such as the size and layout of critical data
structures. We also assume that the attacker can identify when a victim object
is allocated or de-allocated and is aware that the target runs with S2malloc.

We assume that the underlying OS kernel and hardware are trusted, and
an attacker cannot utilize a data leakage channel, such as /proc/$pid/maps, to
discover the location of the heap allocator’s metadata. The attacker cannot
compromise the random number generator, nor can they take control of the heap
allocator. Exploiting bugs of the allocator itself is out of scope. These assumptions
are similar to that of other entropy-based allocators [30,20].

We allow attackers to use any existing heap feng-shui [32] technique (e.g., heap
spray) to prepare or manipulate heap layout to facilitate UAF exploits. Attackers
can retry an exploit if previous attempts fail silently. These assumptions make
our adversary model more robust than those assumed in entropy-based allocators
and on par with the adversary models in UAF-mitigating allocators [2,41].

3.2 Challenge 1: entropy loss

Entropy-based allocators thwart UAF by avoiding instant memory reuse, as
that makes where a new object is allocated more predictable. However, if 1) the
attacker can continue to retry the attack when the previous trial fails, or 2) heap
memory can be spoofed with either dangling pointers or victim objects, it is
guaranteed that the attack would eventually succeed without the victim’s notice.

Figure 1 is an example, abstracted from mRuby issue 4001 [34], a UAF
vulnerability in the Ruby compiler. The function mrb_io_initialize_copy is
called when opening a file. It first frees the existing data pointer of the copy
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1 mrb_io_initialize_copy(mrb_state *mrb, mrb_value copy) {
2 mrb_value orig;
3 struct mrb_io *fptr_copy, *fptr_orig;
4 fptr_copy = (struct mrb_io *)DATA_PTR(copy);
5 if (fptr_copy != NULL) {
6 mrb_free(mrb, fptr_copy);
7 }
8 fptr_copy = (struct mrb_io *)mrb_io_alloc(mrb);
9 fptr_orig = io_get_open_fptr(mrb, orig);

10 DATA_PTR(copy) = fptr_copy;
11 }

Fig. 1: Example UAF attack based on mRuby issue 4001 [34].

object (DATA_PTR(copy)) (line 7) and allocates a new object to it (line 9 and 11).
If an invalid argument is given, calling io_get_open_fptr will throw an exception
(line 10), causing an early return, which makes DATA_PTR(copy) a dangling pointer.
The attacker can then close the file in Ruby, which will set the first word of the
pointed memory to INF. If a string object takes this memory, its length will be
overwritten to INF, enabling arbitrary memory reads and writes.

In the above scenario, random (i.e., non-sequential) allocation or delayed
free-lists available in existing entropy-based allocators [27,30,20] merely increase
the attack difficulty: as long as the attacker can wait, the memory chunk referred
to by the dangling pointer will eventually be reallocated, allowing the UAF
exploit to proceed after some delay. Furthermore, the entropy diminishes if an
attacker can repeat the same attack without penalty (e.g., when a failed attempt
does not crash the target program or trigger attention). Similarly, if attackers can
spray the heap with either dangling pointers of victim objects, the probability of
success increases significantly.

This UAF exploit strategy motivates us to design an allocator that 1) actively
searches for UAF attempts and raises signals if evidence is found and 2) stops the
attacker from locating critical information in memory even if the attacker manages
to obtain a dangling pointer. In this example, we can stop the attacker from
locating the string length deterministically even if the attacker manages to obtain
a dangling pointer for a string object initially pointed to by DATA_PTR(copy). In
addition, any attempts to write to unallocated memory will be detected with a
high probability. If an attacker attempts to spray the heap with arbitrary write to
increase success rates, we can raise a signal on or even before the UAF happens.

3.3 Challenge 2: information leak

Existing entropy-based allocators [30,20] create a memory pool for each block size
range, resulting in the leakage of block size via their address, possibly revealing
the victim program’s internal state to the attacker. For example, each BIBOP
bag is assigned an 8GB virtual memory pool in SlimGuard [20]. Any objects
belonging to this bag will be allocated from this pool. As a result, obtaining a
known-sized block will be sufficient to infer the size of any blocks sharing the
upper 32-bit address. Further, block addresses in Guarder [30]are size-aligned,
allowing the attacker to infer the block size based on its address. For example, a
block with an address value ending with 0x10 is of size 1 to 16 bytes, and a block
with an address value ending with 0x300 is highly likely of size 129 to 256 bytes.
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We mitigate this threat by dividing bags into sub-bags, limiting the size
leakage only if the attacker-controlled block resides in the same sub-bag as the
victim block. Furthermore, we assign random guard pages within sub-bags to
make their boundaries unpredictable.

4 Design and Implementation

4.1 Architectural overview

At its core, S2malloc adopts BIBOP to manage memory blocks. Figure 2
shows an overview of S2malloc. S2malloc maintains per-thread metadata
( A ) stored in a memory chunk requested directly from the kernel. Huge blocks
are obtained or released from the OS directly ( B ) and stored using a linked
list. Small objects are maintained using bags, claiming memory indirectly from
a segregated memory pool ( C ). Each regular bag maintains the metadata of
blocks of a size range, including the number of free slots and a list of sub-bags.
We take sub-bag as the basic unit of a group of slots (§4.3).

The data field points to a memory chunk requested from the memory pool to
store the objects allocated to this sub-bag. The bitmap indicates whether the
current slot is taken or not. If the current slot is taken, the offset table cell stores
an offset indicating where the data stored in the bag starts (§4.2). Otherwise,
the slot is free, and the offset table stores the location of the FBC (§4.5).

When a free() call is received by S2malloc (step 1 → 2 ), S2malloc
checks whether: (1) the bitmap indicates the current block is taken; (2) the offset
stored in the offset table matches with the freed pointer address; and (3) the
canary value is not modified. If all checks pass, the block will be freed: the bitmap
cell will be set to free, and an FBC will be put at a random location in the
current block. The offset table will be updated to store the location of the FBC.

When a malloc() call is received (step 2 → 3 ), S2malloc randomly selects
one free block of the corresponding size and checks the FBC of current and
nearby free blocks. A random offset will be generated, indicating where the data
starts within the block, and the offset table will be updated accordingly. The
heap canary will be set after the last data byte of the current block, and the
bitmap will be updated. This example assumes that each block stores at most 7
bytes of data. The heap canary is initially set to the 9th byte as the offset is one
and then set to the 10th after reallocation as the offset is changed to two.

4.2 Randomized in-slot offset (RIO)

In S2malloc, an object is stored with a random offset p, and the first p bytes of
the assigned slot will be left empty. After the slot is freed and allocated to another
object, the offset p will be re-computed. Thus, the relative offset between these
two objects cannot be accurately predicted, and attackers cannot reuse a dangling
pointer to read or write the newly allocated object with predictable alignment.
This design aligns with the BIBOP concept and does not cause fragmentation
within large memory chunks.
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Fig. 2: Overview of S2malloc with an example of free and malloc. A , B , and C
show three S2malloc segments, stored in segregated memory. 1 , 2 , and 3 show how
an allocated bag slot is freed and then allocated.

We define k to be the RIO entropy. For each bag with blocks of b bytes,
e = b/k bytes are not used to take data, and each block can take at most b− e
bytes of data. We refer to these extra bytes as entropy bytes.

Suppose this block is malloc-ed with an object of s bytes (s < b− e). Before
this block is allocated, p ∈ (0, b− s) is computed to decide the starting byte of
the data object. p is 16-byte aligned following the minimum default alignment of
GNU C implementation [37]. It is compatible with special data structures, such
as atomic structs which must be aligned with registers and cache lines. The offset
of each block will be stored separately in an offset table.

4.3 Random bag layout (RBL)

As with existing secure allocators, S2malloc employs BIBOP to manage small-
size blocks. Blocks larger than 64KB are mapped and unmapped directly from
the OS and are managed using a linked list. Smaller blocks are further classified
as small, medium, and large blocks to decrease the number of size classes. Small
bags contain blocks smaller or equal to 1KB, and a bag is created every 16 bytes
(16 bytes granularity). Medium bags contain blocks within the range of 1KB
and 8KB with a granularity of 512 bytes; large bags contain blocks within the
range of 8KB and 64KB with a granularity of 4KB.

S2malloc does not link block sizes to block addresses. Instead of allocating
a dedicated virtual memory pool for each bag (as shown in prior works [30,20]),
we create a single virtual memory address pool for all bags. We further divide
each bag into sub-bags, each containing 256 slots. Each bag creates new sub-bags
upon need, and a newly created sub-bag will request corresponding memory from
the pool. We use a bump pointer to track the available memory in the pool and
sequentially allocate pool memory to sub-bags.
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Secure Guard Rand. Segre. Heap Ptr UAF UAF Overheads
Allocators Pages Alloc. MD Canary Inval. Mitigate Detect Memory Runtime

DieHarder Y Y Y N N G# N 21.3% 2.1%
Guarde Y Y Y Y N G# N 58.1% 2.4%

SlimGuard Y N N Y N G# N 22.5% 4.4%

S2malloc Y Y Y Y N  High prob. 26.8% 2.8%

MarkUs N N N N Y  N 13.0%∗ 42.9%∗

FFmalloc N N N N Y  Y 50.5%∗ 33.1%∗

Table 1: Overview of existing secure memory allocators and S2malloc to illustrate how
S2malloc fills the gap (MD: metadata, G#: One-shot attack only,  : Repeated/spray
attacks). Overheads are measured on PARSEC [5], detailed in §6. Overheads of MarkUs
and FFmalloc (numbers marked with ∗) are reported in [41] instead of measured by us.

S2malloc randomly inserts guard pages within sub-bags to thwart overflow,
spraying, and random pointer access. This makes memory pool allocation even
less predictable. S2malloc does not leak the block size unless both a known
and a victim block reside on the same memory page. Adjacent blocks may not
be within the same sub-bag, and RIO guarantees block start addresses cannot
be deterministically predicted. On the contrary, two blocks will likely be in the
same size range in SlimGuard if their address difference is smaller than 8GB.

4.4 Hardening heap canaries

A canary is a small data block placed after the allocated memory to detect
overflow. It was initially introduced in StackGuard [6] to protect the stack and
has been adopted to protect the heap [26]. The canary is set to a specific value
when a memory slot is allocated. This value is checked when the slot is freed,
and memory overflow is detected if the canary value changes.

However, in previous entropy-based allocators, this value is set to be either
globally identical [30] or bound with slots [20] so that a knowledgeable attacker
can trivially break. We follow the previous secure canary designs to use the
secure MAC of the memory address as the canary [19,24]. Specifically, we take
the CMAC-AES-128 encrypted block address as the canary implemented using
AES-NI [17] (on x86) or Neon [4] (on AARCH) to keep the canary confidential
and compact. Even if the attacker learns a canary value, they can only use it
to break the current object or any further objects allocated to this slot with
the same RIO. In S2malloc, we put a ι-byte canary immediately after the last
data-storage byte in the allocated slot (i.e., the (p+b−e)th byte), and the canary
will be checked upon free.

4.5 Free block canaries (FBC)

Existing entropy-based allocators defend against UAF-write attacks by statis-
tically avoiding allocating a victim object in a block pointed to by a dangling
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pointer. Although a failed attack attempt only modifies a free block without
causing any harm, it is not detectable either, and given that the same attack can
be retried, the attacker will eventually succeed.

To detect such attempts, we put a canary of length c, also computed using
CMAC-AES-128, in each free block. Its value is checked before the block is
allocated and will be reset after it is freed. We also check the FBC of d nearby
blocks to improve the detection rate. FBC guarantees that accessing a freed
block is not risk-free. We detail its protection rate in §5. In Figure 2, we further
illustrate how the two kinds of canaries (FBC and regular heap canary) are set
and cleared when an allocated block is freed and then allocated again.

Initially, in S2malloc, we create the memory pool using the mmap system
call with the ANON flag, and all allocated memories are initialized to zero in the
Linux environment. We take this advantage and use the zeros as the initial FBC
to avoid additional CPU and memory usage for unallocated blocks. We also use
the whole slot as the canary with improved security. As encrypted canaries may
be more costly than zeroing out memory, S2malloc chooses to zero out small
blocks and checks the whole block before it is allocated to a new object, bringing
both security and computation benefits.

4.6 Summary and comparison

Table 1 summarizes S2malloc and state-of-the-art secure allocators along the
two defense lines closely related to S2malloc (as discussed in §2.1 and §2.2).

S2malloc is an entropy-based allocator. It has nearly identical heap ex-
ploitation protection features except for UAF protection compared with existing
works [27,30,20]. S2malloc provides a much more robust security assurance in
the presence of UAF vulnerabilities. In particular, S2malloc addresses the two
entropy-loss cases (discussed in §3.2 and §3.3) with RIO (§4.2) and RBL (§4.3),
respectively, and hence, providing much higher effectiveness on UAF mitigation.
In addition, S2malloc is designed to monitor the integrity of the heap actively
and watch for UAF attempts, including heap spraying practices that aim to
prepare the heap data and layout for UAF exploits. S2malloc achieves this
through a synergy of regular heap canaries(§4.4) and FBC (§4.5). Consequently,
S2malloc provides a robust security guarantee and cannot be easily evaded.

Table 1 also shows a sheer contrast between entropy-based allocators and
allocators specialized in complete UAF-mitigation. Notably, although providing
a complete mitigation guarantee toward UAF, allocators in this line [2,41] might
impair program efficiency significantly and are less suitable for deployment in
time-sensitive use cases. In contrast, as will be presented in §6, S2malloc incurs
a considerably lower overhead, which is typical for entropy-based allocators,
making S2malloc practical and deployable on production systems if the end-
user can tolerate a marginal chance of protection failure (less than 10% in the
default setting of S2malloc, discussed in §5).
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5 Security Evaluation

5.1 Formal analysis

To mathematically model how S2malloc provides defense against UAF, we
make the following assumptions for the attacker and target program (which are
consistent with our adversary model in §3.1):
1 The goal of the attacker is to modify the victim field, a sensitive field (e.g.,

a function pointer or an is_admin flag) in a specific type of object, a.k.a., a
victim object, via memory writes over a dangling pointer (i.e., UAF-writes).

2 The attacker can obtain a dangling pointer through a bug in the program at
any point of time during execution.

3 The program repetitively allocates and frees the type of objects targeted by
the attacker (i.e., victim objects) during its execution. However, we do not
assume that each victim object is freed before the next victim is allocated.

4 The attacker can either indirectly monitor or directly control the allocations
of victim objects, i.e., the attacker knows when a victim object is allocated,
but does not know the address of the allocation.

5 Any memory writes through the dangling pointer is conducted after the
victim object is allocated.

6 If the intended sensitive field of a victim object is overridden, the attack
succeeds; otherwise, the program continues, allowing the attacker to repeat
the exploitation effort unless detected by S2malloc (condition 7 ).

7 S2malloc checks FBCs on each heap allocation and detects the attack if
any FBC is modified.

To simplify the illustration, we assume that the above execution logic is the only
code logic that involves heap management. Below, we introduce two simple and
yet realistic strategies a reasonable attacker might consider:

S1: Repeat UAF-writes through the same dangling pointer. Suppose an
attacker is confident that the memory block pointed to by the dangling pointer is
not taken by a long-living irrelevant object. In that case, the attacker may prefer
to keep reusing that dangling pointer for future attack attempts and hope that a
victim object is allocated in that block.

S2: Repeat UAF-writes with freshly obtained dangling pointers. Sup-
pose an attacker worries that irrelevant objects can be long-lasting (i.e., holding
a block that may be allocated to victim objects). In that case, the attacker may
prefer to use a fresh dangling pointer per each attempt. However, we note that
this is only an attack strategy, and we assume that there is no heap allocation
other than victim objects.

For each scenario above, we discuss the rates of whether the attacker adopts
the heap spray technique separately, introducing four scenarios in total. We refer
readers to our full paper for an extended discussion.

5.2 Illustrate the protection rates

We take the mRuby issue 4001 (Figure 1) as an example and show how its
protection rate is computed. The size of object mrb_io is 16 bytes, and the

11

https://arxiv.org/abs/2402.01894


Attack Strategy 1 Attack Strategy 2

round 1 5 10 50 100 500 1 5 10 50 100 500

pprotection 1.4% 4.1% 7.4% 28% 43% 64% 0.8% 12% 37% 95% 95% 95%
pattack 1.2% 2.6% 4.4% 15% 24% 35% 1.2% 2.6% 4.0% 5.5% 5.5% 5.5%

Table 2: Protection and attack success rates of attack rounds in mRuby issue 4001
using the two strategies.

Vulnerability Attack pattern [30] [27] [20] S2malloc [38] [3]

CVE-2015-6831 DP → Write G# # #  # #
CVE-2015-6834 DP → Write G# # #  # #
CVE-2015-6835 DP → Write G# # #  # #
CVE-2015-6835 DP → Write → sleep # # #  # #
CVE-2020-24346 DP → Write # # #  # #
Python-91153 DP → Write # # #  ■ #
mruby-4001 DP → Write # # #  ■ ■
CVE-2022-22620 DP → Read # H# # ⊚• # #

Table 3: Summary of how different memory allocators defend against eight exploita-
tion techniques on seven vulnerabilities. Vanilla BIBOP allocator and Scudo [22] are
vulnerable to all attacks and behave similarly to Guarder [30] (DP: dangling pointer,
#: no defense, G#: detect at the end of execution, H#: defense via zero-out,  : detect via
FBC change, ⊚• : non-deterministic leak (RIO), ■: thwart the exploitation ability).

attacker’s goal in each run is to overwrite 4 bytes of it. With the default settings
(r = 256, s = 32 to store a 16-byte object), the attack success rate of each trial
is approximately 0.002, and the probability of overwriting FBC in a free block is
approximately 0.16. In Table 2, we show how the rates change as the number of
attack rounds goes up. The attack is 64% likely to be detected if the attacker
adopts the first attack strategy and 95% likely to be detected using the second
strategy after running it 500 times.

5.3 Defending against real-world CVEs

In this section, we compare how S2malloc, Guarder, DieHarder, SlimGuard,
Cling, and TypeAfterType perform in defending against seven UAF vulnerabilities.
We select these vulnerabilities based on the following criteria:
– The vulnerabilities target the Linux platform and can be mitigated in the user

space (i.e., not a Linux kernel bug);
– The vulnerabilities can be deterministically triggered (i.e., not racy);
– Public exploits for these vulnerabilities are available and the exploit breaks the

program information integrity (i.e., not just causing DoS).
Out of the seven vulnerabilities, six are UAF-write bugs and one (CVE-

2022-22620) is a UAF-read only bug. We also found seven exploits against these
vulnerabilities (two exploits for CVE-2015-6835 with different attack patterns). All
CVEs except Python-91153 and mruby-4001 can cause arbitrary code execution
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(ACE) if properly exploited. However, a powerful attack (e.g., ACE by overriding
a function pointer) can succeed when the target object is precisely allocated to a
freed memory chunk that is still referred to by a dangling pointer1. S2malloc
can mitigate attacks by reducing the chance that a target object is referred to by
a dangling pointer. Evaluation results of the eight exploits are in Table 3.

Entropy-based allocators. S2malloc can thwart all UAF-write attacks
evaluated, Guarder can detect three exploits by recognizing double-free attempts,
but DieHarder and SlimGuard fail to thwart these exploits. For the UAF-read
attack, S2malloc uses RIO to stop the attacker from reusing the memory chunk
with accurate object alignment, causing the data read by the dangling pointer
to be not sensible. DieHarder zeros out the memory after it is freed, which is
effective if the attacker tries to over-read a freed block.

Context-based allocators. While we expect context-based allocators to
demonstrate strong and stable protection, some of the exploits, unfortunately,
hit on certain blind spots in Cling and TypeAfterType by accident.

In the case of Cling, if both the dangling pointer and the target object (i.e.,
the object an attacker hope to corrupt) are allocated through the same multi-layer
function call sequence, they are considered to fall under the same allocation
context, causing the target object to be possibly accessed by the dangling pointer.
We will illustrate this limitation through the CVE-2015-6835 case study presented
later. In fact, all examined CVEs, except mruby-4001, hit this limitation of Cling.
Cling mitigates mruby-4001 by limiting the attacker to target objects of type
mrb_io, which prevents the attacker from creating a powerful attack primitive.

TypeAfterType can unpack malloc wrappers with an arbitrary number of
layers until it finds a sizeof(T) in the function argument, and an ID i is given
to each allocation site of T. The tuple (i,T) makes the allocation context, and all
memory allocations through this call sequence will be allocated from a memory
pool dedicated to this context. However, if the dangling pointer and the target
object share the same context in an exploit, UAF can still occur. We will illustrate
this limitation through the CVE-2015-6835 case study. TypeAfterType mitigates
Python-91153 by limiting the target object to be a reallocated string, and
mruby-4001 by limiting the target object to be an mrb_io.

Case study: CVE-2015-6835. This CVE is a UAF bug in the PHP session
deserializer, which reconstructs a session from a serialized string. (see Figure 7
in the extended version for simplified code snippets to illustrate this CVE and
its exploit in details). An attacker can exploit this vulnerability to control a
dangling pointer to a freed zval object. This is possible as the return value (a

1 An attacker may attack blindly, e.g., overriding a code pointer through the dangling
pointer regardless of whether it points to a target object or not. This will have three
consequences: 1) corrupting FBC, which may cause the attack to be detected upon
future mallocs, 2) overwriting a wrong field due to RIO which may cause the program
to enter a weird state (e.g., crash), 3) a successful attack. If the program can be
recovered from a weird state automatically (e.g., crash resilience), the attacker can
retry the same attack and eventually case 1 or case 3 will occur. However, without
the probabilistic detection on UAF attempts by S2malloc, only case 3 will occur.
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zval pointer) of php_var_unserialize is freed in its caller without noticing that
the same pointer might also be stored in a global variable SESSION_VARS.

The zval type, unfortunately, is a reference-counting wrapper over nearly all
other objects involved in the PHP engine (see Figure 4 in the extended version for
the type definition of zval). Therefore, an attacker might corrupt any zval object
that may be reallocated to the freed slot. They can simply uses the echo(..)
function to dump a newly allocated zval in the freed memory.

1) Protection from entropy-based allocators. S2malloc checks FBC on every
malloc(). In this exploit, when the attacker tries to use the dangling pointer in
zend_echo_handler, its refcount field is increased, causing the FBC to be modified.
This enables S2malloc to detect the UAF attempt when the corrupted slot
or a nearby slot is about to be reallocated. If the refcount change does not
corrupt FBC (simulated by disabling the FBC check) and this corrupted block
is reallocated, S2malloc can still stop the exploit as RIO causes misalignment
between the dangling pointer and new object, causing the type field to have value
UNKNOWN and prevents echo printing.

Guarder and DieHarder try to mitigate this attack by random allocation:
hoping the new object will not be referred to by a dangling pointer. However, our
experiment shows that Guarder fails if the attacker re-runs the attack multiple
times or spray the heap with victim objects. SlimGuard fails to provide protections
as it always allocates the most recently freed objects to the program. It does
not implement the claimed random allocation feature and does not have any
other security features that could detect UAF. DieHarder zeros out the memory
chunk that stops information leakage of the freed zval, but it cannot prevent an
attacker to corrupt the newly allocated zval over the freed chunk.

2) Protection from context-based allocators. In this exploit, both the dangling
pointer and the target object (i.e., the object the attacker wish to dump infor-
mation via zend_echo_handler) are allocated by the the same multi-layer malloc
wrapper: php_var_unserialize→emalloc→malloc. This is critical to understand
why Cling and TypeAfterType fail to mitigate this exploit.

For Cling, this malloc wrapper implies that the allocation of many zval
objects will be sharing the same context (measured by the two innermost return
addresses on the call stack). This leaves the dangling pointer plenty of candidate
objects to refer to after several rounds of deserialization in PHP. TypeAfterType
can inline malloc wrappers but the inlining stops at php_var_unserialize because
it sees the sizeof(zval) argument in emalloc and hence, will allocate all zval
objects originating from this malloc wrapper from the same pool. Unfortunately,
the dangling pointer is also allocated this way, enabling UAF among the dangling
pointer to other zval objects as well.

Summary. The combination of random allocation and delayed free-list provided
by previous entropy-based allocators focus on one-time attacks only, Hence,
repeating the same attack is a simple yet effective solution to undermine their
protection. Context-based allocators, on the other hand, might fail to detect UAF
among objects allocated of the same context. While these results highlight the
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effectiveness of S2malloc, we note that information leakage through corrupted
pointers might diminish this guarantee, which is discussed in §7.

6 Performance Evaluation

To evaluate its performance, we align with previous works [13,2,30,20] that run
S2malloc on macro, micro, and real-world programs, covering computation-
heavy, memory-heavy, real-world simulating, and dedicated memory allocator
benchmarks. We also analyze how different parameter values influence it.

Experiment setup. Experiments are performed on both x86 and AARCH
servers for macro benchmarks. Others are only on the x86 server. The x86 server is
configured with 160-core 2.40GHz Intel CPUs (x86 architecture) with 1TB system
memory. We set up the AARCH server on Amazon Web Service (AWS) using the
im4gn.4xlarge machine with 16 vCPU cores and 64 GB memory. Benchmarks are
measured in the Docker environment with Debian 11 on both machines, and they
are used exclusively for this evaluation task. We note that benchmarking within
a Docker container only introduce negligible overheads [23]. We measure the
overheads using the GNU time binary and setting the LD_PRELOAD environment
variable to substitute the system default allocator.

We obtain SlimGuard, Guarder, and DieHarder from their GitHub repository.
To provide a fair result, we reduce the allocation entropy bit of Guarder to
eight (same as the default value of SlimGuard and S2malloc). We also disable
DieHarder from zeroing out freed blocks (slightly accelerates DieHarder).

S2malloc is measured with the settings of checking two nearby blocks
(d = 2), 10% random guard page, and taking 1/4 of the block size as random
offset entropy (e = 0.25b). We zero out blocks smaller than a memory page (4096
bytes) and take the whole block as FBC. For blocks larger than a memory page,
we set an 8-byte FBC (c = 8) in the corresponding blocks. We set the heap canary
length to be one byte (ι = 1) following the design of SlimGuard and Guarder.
All reported times and memory usage are normalized using the baseline (glibc)
output. We use geometric averages to compute average overheads and report the
means of five runs. We note that the standard deviations are minimal.

6.1 Macro benchmarks

PARSEC. We use the PARSEC3 [5] benchmark. We exclude three network
tests and one test (x264) that fails to be compiled in the baseline scenario, and
only report the results of the remaining 12 benchmarks. Additionally, we exclude
“raytrace” from execution for the AARCH server as it cannot be compiled.

SPEC CPU2017. We use SPEC CPU2017 [33] version 1.1.9. We report the
results of 12 C/C++-only tests.

Results. On the AARCH machine, we exclude Guarder from analysis, noticing
that Guarder relies on AES-NI [17], , which is not available on AARCH machines.

For the SPEC benchmark, on the x86 machine, S2malloc introduces 11.5%
run-time overhead, smaller than two allocators – SlimGuard and DieHarder-
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Run-time Overhead Memory Overhead

x86 AARCH x86 AARCH

SPEC PARSEC SPEC PARSEC SPEC PARSEC SPEC PARSEC

S2malloc 12% 2.8% 16% 1.8% 37% 27% 38% 28%
SlimGuard 17% 4.4% 7.7% 2.6% 57% 23% 57% 24%
DieHarder 31% 2.1% - 2.5% 59% 21% - 21%
Guarder 3.5% 2.4% - - 56% 58% - -

Table 4: Normalized overheads on SPEC and PARSEC benchmarks.

Run-time
Overhead

Memory
Overhead

S2malloc 189% 343%
SlimGuard 298% 250%
DieHarder 229% 92%
Guarder 56% 980%

Table 5: Normalized run-time and
memory overheads of running mimalloc-
benchmark.

∆ Memory
Overhead

∆ Run-time
Overhead

0 Nearby -0.05% -0.42%
4 Nearby -0.13% +0.4%
4B Random N -12.35% -0.33%
12B Random N +68.23% +0.73%
50% Entropy +9.57% +0.49%

Table 6: Normalized overhead changes
compared with the default settings.

and the least memory overhead at 37.4%. On the AARCH machine, S2malloc
introduces a similar 15.5% run-time overhead, larger than the SlimGuard since
SlimGuard fails to run tests with frequent heap memory management operations.
Running the PARSEC benchmark gives similar results, with smaller memory
and run-time overheads.

6.2 Micro benchmarks

To further understand the overheads, we investigate its performance using
mimalloc-bench [7], composed of real-world and calibrated programs that fre-
quently allocate and free heap memory. Results are shown in Table 5.

All secure memory allocators incur larger overheads compared to running
real-world (see §6.3) or general-purpose benchmarks as mimalloc-bench tests
operate the heap memory in a biased frequent way, and some tests (e.g., ”leanN”
generates the largest run-time overhead with S2malloc) count the CPU ticks
instead of seconds of finishing each call.

We take one test, glibc-simple, originally from glibc-bench [1], to further
investigate the two most common heap object management functions – malloc()
and free(). The test times the execution of allocating and freeing a large number
of blocks of a given size. We modify the benchmark and monitor the execution time
of calling malloc() and free() separately. To investigate the time consumption
of different sizes, we vary the block size S to be 16B, 128B, and 1KB and change
the number of allocated blocks N correspondingly so that the total allocation size

16



16B
malloc

128B
malloc

1KB
malloc

16B
free

128B
free

1KB
free

0
200
400
600
800

Ti
m

e 
(n

se
cs

) S2malloc
S2malloc(w/o aes)
SlimGuard

DieHarder
Guarder

Fig. 3: Execution times of glibc-simple.

Nginx Lighttpd Redis
Throughput Memory p50 Throughput Memory p50 Throughput Memory

S2malloc 9705 7867 56 11050 9425 44 218460 44689
Guarder 9496 13724 52 11146 11088 44 221245 46545
SlimGuard 6159 4935 81 11153 6428 44 219986 47398
DieHarder 8769 7396 57 11128 13626 44 221734 52419
Glibc 9564 3400 52 10742 5069 44 218156 50909

Table 7: Real-world programs’ memory usage (KB) and throughput (requests/second).

(N * S) is always 1000 MB following the benchmark design of SlimGuard [20].
Results are presented in Figure 3, and is the average of 100 runs.

Generally, S2malloc takes more time to execute malloc() than other com-
pared allocators and takes less time to execute free() than DieHarder but longer
time than Guarder and SlimGuard. However, a significant overhead comes with
our cryptographically secure canary implementation, which all allocators should
adopt. Although using hardware acceleration, the canary value is computed in
each malloc() and free() call, introducing a nonnegligible computation tax. After
disabling this feature and using a fixed value as the canary, following Guarder’s
implementation, the execution time of both calls is close to other allocators,
and the increased overhead is expected as S2malloc introduces extra security
guarantees. For example, in 16B malloc and free calls, S2malloc is 31% and
26% slower than SlimGuard respectively.

6.3 Performance on real-world programs

To evaluate the performance of S2malloc in real-world environments, we run
Nginx (1.18.0), Lighttpd (1.4.71), and Redis (7.2.1) on the x86 machine. We use
ApacheBench (ab) [35] 2.3 to test the throughput and delays using the Nginx
default root page of 613 bytes as the requested page to minimize the I/O times.
We send 500 concurrent requests, which reaches the maximum capacity of our
server. On Redis, we use the same settings as mimalloc-bench [7]. Results are
in Table 7. Applying S2malloc on these programs results in minimal throughput
influence (even better throughput on Nginx and Redis). Running S2malloc
delays the request response time on Nginx but not Lighttpd. Applying all
compared allocators increases memory consumption.

6.4 Influence with different parameters

In addition to the default settings, we also measure how different parameters,
namely, nearby checking range, random offset entropy, and RIO entropy, influence
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the run-time and memory overheads. We take 0 and 4 blocks for the nearby
checking range compared to the default setting: 2. We take 4 bytes and 12 bytes
for the random allocation entropy compared to the default 8 bytes. For random
offset entropy, we reserve 50% of the block size for RIO compared to the default
25%. Table 6 shows how different parameters influence the overheads.

Changing the nearby checking range does not introduce observable differences
in the memory overhead. The introduced delta is likely due to server fluctuations.
Using a larger nearby checking range introduces a greater run-time overhead, as
S2malloc needs to compute and check more canary values. A larger random
allocation entropy or RIO introduces larger memory and run-time overheads.

7 Discussion

Limited UAF-read protection. An attacker can always read through a
dangling pointer (unless the page is unmapped) and none of the entropy-based
allocators, including S2malloc, can prevent this. S2malloc mitigates UAF-
read exploits based on the assumption that the attacker cannot distinguish
memory content stored in target data fields from the content stored in other data
fields. However, in the scenario where the target object contains a field that the
attacker could craft, e.g., a marker value such as 0xdeadbeef, the target field can
be located by probing the marker via UAF read(s). Mitigation of UAF-read
exploits can be achieved completely with allocators in categories A, B, C, and
partially with allocators in category D (see §2.2).
Increasing canary checking frequency. As the core of detecting invalid UAF
writes, S2malloc checks the nearby canaries when a block is freed. While this
design could virtually cover all memory slots for a program with frequent heap
operations, UAF attack attempts cannot be detected if there is no malloc call
that triggers S2malloc to check FBC. Executing FBC checks in other memory
operations (e.g., free) is one option to increase checking frequency. Another
option is to integrate FBC checks into program logic. Both options require a
careful balance between checking frequency (i.e., security) and overhead.

8 Conclusion

While statistically effective against all common heap exploitation techniques,
state-of-the-art entropy-based heap allocators are not tailored to actively detect
unsuccessful exploitation attempts. As a result, to beat a randomization-based
moving-target scheme, an attacker can simply launch the same attack repeatedly,
potentially with heap spraying, until success.

In this paper, we present S2malloc to fill the gap of exploitation attempt
detection without compromising security and performance. In particular, we
introduce three novel primitives to the design space of heap allocators: random
in-block offset (RIO), free block canaries (FBC), and random bag layout (RBL).
Combined with conventional BIBOP-style random allocation and heap canaries,
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S2malloc can maintain at least the same level of protection against other heap
exploitations (e.g., overflows) and yet still achieves 69% and 96% protection
rate in two attack scenarios, respectively, against UAF exploitation attempts
targeting a 64 bytes object, while only incurs marginal performance overhead,
making S2malloc practical to even production systems.
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