
Research Report: Not All Move Specifications Are Created Equal
A Case Study on the Formally Verified Diem Payment Network

Meng Xu
University of Waterloo

Abstract—Software developers who are newly introduced to for-
mal verification often have subtle but distinct interpretations on
the roles of specifications (specs). Unsurprisingly, these different
interpretations affect the types of specs developers tend to write,
which, without coordination, can lead to fragmented assurance
guarantee and ultimately impairs the overall effectiveness of
the entire formal verification effort.

This paper is an experience report on rolling out a formal
verification system in a smart contract setting (where correctness
matters financially). In this process, we discover three popular
views about what “a spec is operationally” among experienced
industrial developers yet novice in formal methods: 1) specs are
contracts between implementation and functionalities conveyed
to end users; 2) specs are extensions to the type system; and
3) specs are definitions of high-level state machines.

While which interpretation is closer to the real purpose(s) of
specs is a judgement call, one important view is missing: some
specs are abstracting specs that lock in requirements or intention
(hence the more the better), some specs are proof assistance that
facilitates the refinement proof between implementation and
abstracting specs and hence, should be written on an as-need
basis; while other specs are denotational specs and do not add
assurance from a formal methods perspective. Absence this
distinction, it is easy to fall into a trap in formal verification
where specs accumulate but little assurance is added holistically.

1. Introduction

Smart contracts manage and operate on data stored over
a blockchain network. Such data is not only critical to
the functionalities of a smart contract, but can also be of
substantial monetary value when representing crypto assets.
Unfortunately, storing data with smart contracts does not
mean the data is safe. In just the past few years, crypto assets
worth millions of USD have been either locked in blockchain
with no availability to anyone, or stolen by malicious parties,
both due to subtle flaws in smart contracts [12], [13].

In light of these non-trivial financial losses, develop-
ing high-assurance (or even bug-free) smart contracts has
emerged as an exciting field for both researchers and practi-
tioners with formal verification background. In this context,
the essence of formal verification is to answer this question:
does a smart contract satisfy all intended requirements? This
question can be further decomposed into four sub-problems:

1 extracting explicit and implicit requirements extensively
from all potential stakeholders;

2 devising a set of specifications (specs) that formally and
fully captures the requirements and nothing more;

3 proving whether a concrete implementation (i.e., the code
of a smart contract) conforms to the specs; and

4 ensuring correctness of proofs produced in 3 , i.e.,
trustworthy verification with the smallest possible trust.

While much of the research effort has been focusing on
solving problems 1 requirement engineering [29], [50], 3
(semi-)automated verification [2], [4], [14], [17], [41], [43],
and 4 foundational correctness [1], [39], [52], problem 2
remains largely unattended: how to develop specs? More
precisely, how to write or review specs in a way that
maximizes return on investment (ROI)?

In other words, the consequences of a low quality set of
specs is exacerbated by the high costs of adopting formal
methods for assurance. After all, formal verification is still
an expensive and exotic approach due to the extra effort in
writing, proving, and maintaining specs—a task that usually
requires the support from a dedicated team of experts with
years of training and practice (including PhD degrees) in
formal methods [18], [19], [25], [28].

However, despite the high costs, more industries are
willing to pursue this route, with an expectation that formal
verification offers more assurance than other approaches
(e.g., property-based testing [21], fuzzing [53], or symbolic
execution [3]). This can be a dangerous assumption! While it
may be true that formally verified code are in better quality,
the assurance is not necessarily higher and the formally
verified “stamp” should not be blindly trusted without a
good understanding of what is really specified.

Take Figure 4 as a preview (details discussed in §3.1).
The set of specs (4b) merely shadows the imperative imple-
mentation (4a) with a declarative/functional notation without
abstraction. The code might be advertised as extensively spec-
ified with a 1:1 spec-to-code ratio and with formally verified
“stamp”, but the specs do not help distinguish the boundary
between trusted oracle and untrusted implementation. In fact,
the specs is still useful from an N-version programming [11]
perspective, i.e., spec and code writers are unlikely to make
the same mistake if they are indeed developed independently,
but this is not assurance from formal methods.

One way to avoid falling into this false assurance trap
is for the spec language to distinguish specs that abstract
the software system from specs that don’t (although they

might be useful in other ways). Auditors, regulators, or
whomever scrutinizing the correctness of the program should
only examine abstracting specs. Intuitively, if the system uses
abstraction so that N lines of scrutinized spec constrains
10N lines of untrusted implementation, then it is a 10x
return on the investment of writing or reviewing the spec.
In short, abstracting specs helps to improve ROI in formal
verification and should be promoted.

While the intuition of writing abstracting specs is trivial
amongst formal methods experts, in this research report, we
examine whether the same intuition is well-known in practice
through a case study of the Move language and the Diem
Payment Network (DPN) project [15]. In particular, we seek
to answer the following research questions:
RQ1: Are all specs from the Move spec language abstract-

ing? If not, what other purposes do they serve?
RQ2: Can a spec language be designed to distinguish

abstracting specs and other types of specs?
RQ3: How to apply the findings to guide future development

of specs at least in Move?
In short, DPN is a smart contract that aims to function as
a full-fledged and versatile payment/banking system with
capabilities of handling multiple currencies, account roles,
and rules for transactions. DPN was initially developed at
Meta and later open sourced in June 2019. The entire commit
history of how specs co-evolve with the implementation is
visible on GitHub [16]. At the time of writing, DPN has
accumulated 11,813 lines of code, including 8,372 lines of
specs, making a 7:5 code-to-spec ratio.

Through exemplary specs in DPN, we show that specs
that do not abstract the software system can be either
proof assistance, which should only be provided on an as-
needed basis to overcome practical limitations of automated
verification tools; or denotational specs, which only shadows
implementation details and should be discouraged (see §A
for reasons why these specs are termed denotational).

Following the co-evolution of code and spec in DPN
yields some interesting observations that may shed some
lights on how to (and how not to) design a spec language
and formal verification system that distinguishes abstracting
specs, proof assistance, and denotational specs:
1 Not all specs in DPN are equally important in providing

assurance. A core suite of specs (≈ 800 LoC) guard
the most critical safety properties (e.g., access control);
a small portion of specs (≈ 500 LoC) serve as proof
assistance to the core specs; while others, mostly pre- and
post-conditions for internal functions, merely shadow the
implementation and do not contribute to formal proof.

2 Consequently, despite being advertised as extensively
specified in several occasions [17], [32], [51], the 7:5 ratio
indicate neither completeness nor deficiencies of the spec.
In fact, such a ratio is hardly an objective measurement
on the usefulness of specs if the spec language does not
distinguish abstracting specs and proof assistance.

3 Specs in the early days of DPN are almost entirely
denotational in nature and are strongly coupled with
the implementation (e.g., spec and code change almost in
lock-step). The introduction of global invariants (details

in §5) changes the whole situation and is the key ingredi-
ent in the spec language that empowers it to differentiate
abstracting specs and denotational specs. In fact, global
invariants are fairly stable in DPN, indicating that they
are closer to capture requirements and intention.

4 Denotational specs can be useful in documentation and
property-based testing. In fact, documentation in DPN
is generated by MVP based on the specs [33] and the
executable (quantifier-free) fragment of specs is used as
properties in property-based testing [34].

In summary, we notice that “not all specs are abstracting the
system” is trivially known in the formal methods community
but can be lesser known outside the community. This research
report makes the following contributions to promote the
development of abstracting specs in Move community:
• A categorization of specs (abstracting spec, proof assis-

tance, and denotational spec) in the Move language based
on how they help boost assurance through verification.

• Highlight the importance that the spec language should
be designed to distinguish specs in different categories
and to promote the writing of abstracting specs.

• Showcase how to promote the development of abstracting
specs with concrete advice on the Move language.

In the rest of this research report, we first introduce different
types of specs available in DPN (§2) and dive into each
spec type to illustrate how industrial developers, especially
those without formal verification experience, perceive them
(§4, §3, §5). Through this, we show that despite various
interpretations about specs exist, one important view is
missing: some specs are abstracting specs that lock in
requirements or intention while others are denotational and
should only serve as proof assistance on an as-need basis.
Absent understanding that boundary, we show some anti-
patterns that fell into the trap of false assurance, while
interested readers may jump to §6 for a summary of how a
spec language can help highlight this missing view.

2. A Primer on Move and Its Spec Language

DPN is developed in Move [7], [36], a programming
language for writing safe smart contracts Move was ini-
tially developed for the Diem blockchain [15] but has
recently transitioned into an open-source community-backed
language and now powers several Layer-1 and Layer-2
blockchains [37]. The language features robust safety [42]
and formal verification at its core through its home-grown
verification tool Move Prover (MVP) [17]. MVP statically
verifies the correctness of Move smart contracts modeled
with the Move Specification Language (MSL) [35].
Language overview. Move is similar to Rust in look and
feel and shares important features such as strong typing (i.e.,
no static or dynamic casts), a linear type system [24], and
borrow semantics [26] which eliminates the complication on
memory modeling and pointer aliasing tracking—all making
formal verification easier on Move relative to C/C++. A
detailed description about the memory model in Move can
be found in §B. More importantly, Move builds-in an elegant

1 module 0x42::Demo {
2 // constants
3 const MIN_BALANCE: u64 = 5;
4 const MAX_BALANCE: u64 = 10000;
5

6 // user-defined data type
7 struct Account has key {
8 balance: u64,
9 }

10

11 // one entrypoint for a blockchain transaction
12 public entry fun transfer(
13 from: address, into: address, amount: u64
14) acquires Account {
15 // input validation
16 assert!(from != into);
17

18 // withdraw
19 let bal = &mut borrow_global_mut<Account>(from).balance;
20 assert!(*bal - MIN_BALANCE >= amount);
21 *bal = *bal - amount;
22

23 // deposit
24 let bal = &mut borrow_global_mut<Account>(into).balance;
25 assert!(MAX_BALANCE - *bal >= amount);
26 *bal = *bal + amount;
27 }
28

29 // syntactic sugars to improve spec readability
30 spec fun is_user(addr: address): bool {
31 exists<Account>(addr)
32 }
33

34 spec fun balance(addr: address): num {
35 global<Account>(addr).balance
36 }
37 }

(a) code

1 spec 0x42::Demo {
2 // unit spec on functions
3 spec transfer {
4 requires true;
5 aborts_if from == into;
6 aborts_if !is_user(from)
7 aborts_if !is_user(into);
8 aborts_if balance(from) - amount < MIN_BALANCE;
9 aborts_if balance(into) + amount > MAX_BALANCE;

10 ensures balance(from) == old(balance(from)) - amount;
11 ensures balance(into) == old(balance(into)) + amount;
12 }
13

14 // invariants on data types (DI)
15 spec Account { invariant balance > 0; }
16

17 // invariants on global states (SI)
18 invariant [state]
19 forall addr: address where is_user(addr):
20 MIN_BALANCE <= balance(addr) <= MAX_BALANCE;
21

22 // invariants on global state transitions (TI)
23 invariant [update]
24 exists from: address: (
25 is_user(from) && old(is_user(from)) &&
26 old(balance(from)) > balance(from)
27) ==> exists into: address: (
28 is_user(into) && old(is_user(into)) &&
29 balance(into) - old(balance(into)) ==
30 old(balance(from)) - balance(from) &&
31 forall rest: address
32 where rest != from && rest != into:
33 !old(is_user(rest)) ==> !is_user(rest) &&
34 old(is_user(rest)) ==>
35 (is_user(rest) && balance(rest) == old(balance(rest)))
36);
37 }

(b) spec1

Figure 1: A fully specified Move program for balance transfer between two accounts

data store model that boosts not only type safety but also
the expressiveness of specs: a persistent global state (G).

In fact, the concept of G is not an invention of Move
but a fundamental concept in virtually every blockchain that
involves consensus-backed data storage (e.g., the ledger in
Bitcoin [38]). A blockchain transaction calls into a smart
contract which evolves G in its code via a fixed set of pre-
defined primitives. Any runtime error results in aborting
the transaction and leaves G unchanged (except for gas
consumption). This is a programming model shared by, in
our observation, all smart contract programming languages
(e.g., Solidity, Vyper, Yul), including Move.

What is unique in Move is the organization of G. In
Move, G is a map:

G : (T, address)→ Optional<T>

which is indexed by a composition of both a data type T
defined in the program and an account address. The index is
mapped to a value which holds either an instance of T or a
None marker at the composite index. The complete semantics
of G and the operations on G can be found in §C. Briefly, G
can only be accessed via the following fixed set of primitives:
• exists<T>(address) → boolean: checks whether an

instance of type T exists at the given address.
• move_from<T>(address) → T: grabs ownership of the

instance of type T from the address (and hence G) to

the current calling context and leaves a None mark in G.
Aborts if the instance does not exist.

• move_to<T>(address, T): transfers ownership of the
instance of type T from the current calling context to the
address in G. Aborts if the instance already exists, as
required by linear typing.

• borrow_global<T>(address) → &T: temporary borrows
an immutable reference to the instance of type T at the
address in G in the current calling context. Aborts if the
instance does not exist. The type system ensures that the
reference does not become dangling (e.g., via move_from
or move_to) nor alias with any mutable reference.

• borrow_global_mut<T>(address) → &mut T: temporary
borrows a mutable reference to the instance of type T at
the address in G in the current calling context. Aborts
if the instance does not exist. The type system ensures
that the reference does not become dangling (e.g., via
move_from or move_to) nor alias with any other reference.
A Move smart contract can be highly modular and

developers are free to define their own data types, constants,
functions and encapsulate or compose them (including others’
libraries) in arbitrary ways as long as the code type checks.
Each transaction must starts from an entry function. This

1. Numbers and variables of numerical type in spec are represented as
mathematical integers (unlimited precision) instead of bit-vectors (fixed
size). Hence in spec, there is neither arithmetic overflow nor underflow.

is similar to the main function in conventional settings with
the exception that there might be multiple entry functions
in the same Move program.

A taste of Move programming can be found in Figure 1.
The example is a simple Move contract that defines an
Account type to hold balances and offers an entry function
transfer to manipulate data of this type. The smart contract
also comes with a complete suite of spec shown side-by-side.
Unit spec on functions. Functional spec is arguably the
most common form of specs in software verification (as it is
essentially a Hoare triple) and certainly takes the majority in
DPN. For these specs, the target scope is typically a single
function only. Therefore, they are also referred to as unit spec
in this research report, similar to the “unit” in unit tests. In
Move, a unit spec contracts a set of pre- and post-conditions
for a function f where each clause in the contract can be
semantically summarized into three categories:

• requires p: f can be called only when condition p is met.
This is essentially the precondition of f which has the
semantics of being asserted at every call site of f as well
as being assumed upon the entry of f .

• aborts_if p: f will abort when condition p is satisfied.
This is the first half of the postcondition of f .

• ensures p: p will hold if f ever reaches the end of its
execution (i.e., not hitting any aborting conditions). This
is the second half of the postcondition of f .

In unit spec, a predicate p might refer to function parameters,
return placeholders, and/or G but not the actual implemen-
tation (i.e., the function body). It is, however, possible to
use constructs that do not have counterparts in executable
semantics, such as universal (∀) and existential (∃) quantifiers
over unbounded domains. Line 3-12 in Figure 1b is a unit
spec sample for the transfer function.
Invariants on data types (DI). A DI expresses a well-
formedness property of a user-defined algebraic data type
(ADT). Any instance of this data type must satisfy this
property at any time in execution, unless the instance is
explicitly marked for a temporary mutation session (i.e., by
a mutable borrow &mut). In the mutable borrowing case,
the invariant is re-checked when the reference ceases to
exist (which is known statically). Line 15 in Figure 1b is
an illustrative DI which requires the account balance to be
non-zero. Syntactically, a DI is specified as:

• invariant p: while p can be expressed in first-order logic,
it can only refer to symbols visible in the ADT.

Invariants on global states (SI). The safety and correctness
of any smart contract is largely about whether the blockchain
persistent storage, represented by G, remain in desired and
consistent states before and after any transaction. Based
on this insight, Move comes with first-class support on
specifying what is a legal (or illegal) state for G in MSL.
Syntactically, a SI can be expressed in the following format:

• invariant [state] p: where p can only refer to G. p is
often universally quantified by ∀ a: address to allow a
predicate to apply on all accounts on the blockchain.

Line 18-20 in Figure 1b shows a SI which requires that all
registered accounts on the blockchain must have a balance
that falls within a legally required range. Note that this SI is
slightly different from a DI on the Account type (e.g., line
15) as the DI is enforced on every account instance, even a
temporary one that is not registered to G yet.
Invariants on global state transitions (TI). If we take
the view that a Move smart contract is a concretization of
an infinite number of communicating finite-state machines
(CFSM) in developers’ mind (or derived from business logic),
then SI provides only half of the finite-state machine (FSM)
spec — the nodes — and what is missing are the spec for
edges, i.e., under what condition a state transition is allowed.
This gap is filled by TI. Syntactically, a TI is specified as:

• invariant [update] p: where p can only refer to G.

Line 23-36 in Figure 1b shows a TI. While seemly convo-
luted, the TI states that if an account balance is deducted,
the exact same amount must be transferred to a different
account; in the meanwhile, all other accounts not involved
in this transaction should not be affected.
Verification process. Each function defined in the Move
program is a verification unit, and a Move program is verified
if all its defined functions are verified. To verify whether a
single function f conforms to the spec, MVP instruments the
unit spec (if any) associated with f as well as all relevant DI,
SI, and TI specs as assumptions and assertions in the function
and subsequently attempt to prove that none of the assertions
can be triggered. Internally, MVP runs the weakest liberal
precondition calculus [6] to reduce the instrumented function
into a first-order formula and invokes satisfiability modulo
theories (SMT) solvers to prove or disprove it. Interested
readers may refer to MVP [17] for a detailed explanation on
the verification process.

By default, unit specs are not compositional and veri-
fication of Move functions is not incremental. This means
if function f invokes function g in its code, verification of
function f will effectively inline the implementation of g,
even if g has its associated unit spec. Users of MVP may
request to inline the specs of g instead of its implementation
in order to make verification compositional and incremental,
but the request needs to be annotated explicitly.

3. Unit Spec as Implementation Contract

The purpose of unit spec is to unambiguously pin down
the semantics for a function in some program logic such that
current implementation and future changes to this function
can be mechanically checked to ensure that they don’t deviate
from the semantics pinned-down by the spec (and the logic).
Ideally, a unit spec is a mathematical way of stating a contract:
this function does X and only X . As introduced in §2, X is
expressed in the forms of pre- and post-conditions. However,
the current Move unit spec is not expressive enough to fully
specify the “only X” part, which will be discussed in §7.2.

Unit spec is arguably the most basic type of spec in soft-
ware verification and, in certain spec systems, the only type

of spec supported (e.g., NatSpec [47] and SMTChecker [48]
in Solidity). Unsurprisingly, unit spec contributes the largest
number of LoC (over 90%) in DPN. However, in this report,
we argue that unit specs alone offer very limited assurance
from a formal method perspective, unless the specs:

I contract a user-facing interface, or
II confine implementation to a set of possibilities, or

III serve as an indispensable element in establishing a
proof of refinement2 from abstracting specs.

Consequently, merely counting LoC for specs or highlighting
the spec-to-code ratio indicate neither success nor failure of
the formal verification effort. A formal verification system
should help distinguish unit specs that fall in different cate-
gories mentioned above from specs that are only denotational.
Based on this, we can (1) promote the writing of specs in
categories I and II (which increase assurance brought by
formal verification), (2) check that specs in category III is
only written when absolutely needed, and (3) discourage the
writing of denotational specs. Counting LoC for specs in
categories I and II will have practical values after the spec
language can highlight this distinction.

3.1. Empirical Evidence from DPN

We support our claims with empirical examples from the
DPN codebase. We acknowledge that the interpretation of
these code snippets, especially on the usefulness of specs in
these examples, is subjective, and we plan to substantiate
our claims with more objective evidence, such as rigorously
designed user studies, in follow-up work.
Category-I specs. The Move spec language (MSL) actually
does not differentiate user-facing interfaces and internal func-
tions. The Move language does. As briefly discussed in §2,
all end-user facing interfaces are marked as “public entry”
while library interfaces intended for external application
developers are marked as “public”. Therefore, unit specs
for these external-facing functions can be considered as
Category-I which provides assurance if the implementation
is proved to be a refinement of the specs.

Figure 1 contains a Category-I spec which is the unit spec
for the transfer function (line 3–12 in Figure 1b). The unit
spec, together with the function type signature, contracts the
semantics of the transfer function with end users. Ideally,
this unit spec should not even be changed without notifying
the users (or other stakeholders) in advance.
Category-II specs. Besides external-facing interfaces, de-
velopers might also want to make contracts with internal
sub-teams, community contributors, or future team members
on concrete implementation details. The unit specs supporting
these contracts belong to Category-II. However, this might
be the most ambiguous category in unit spec as it is usually
a judgement call on whether is it worthwhile to pin down
the semantics of an internal function with unit specs.

2. Program refinement is the verifiable transformation of an abstract (high-
level) formal spec into a concrete (low-level) executable program. Proving
the refinement is essentially producing a proof to show that the refined
program conforms to the abstract spec in all aspects, i.e., all properties
listed in spec hold in the program.

Unfortunately, in MSL, unit specs on internal or private
functions share the same syntax with unit specs on public
functions. Therefore, it is hard to quantify how many unit
specs in DPN are truly contracting an internal function
without interviewing the developers.

With that said, MSL does have constructs that can
help identify Category-II specs: [abstract] and [concrete]
annotations in the conditions of unit specs. Figure 2 presents
an example on how these annotations can be used. In
this example, the implementation (the error_code function
in Figure 2a) is an encoder for error code that merges the
category and reason identifier uniquely. The unit spec for
this function, however, comes in two flavors:
• the [concrete] ensures clause is used when verifying the

function body, and this essentially pins down the actual
encoding mechanism ⟨left shift by 8 then sum⟩; while

• the [abstract] ensures clause is used in the callers of
error_code in lieu of inlining the function body. This
abstract property essentially describes the high-level re-
quirement only via an axiom without dictating the actual
encoding scheme. In other words, a different encoding
scheme, ⟨left shift by 16 then sum⟩, will still refine the
[abstract] ensures but not the [concrete] ensures.

The fact that both [abstract] and [concrete] exist is a
strong indicator that the developer intends to pin down some
or all implementation details in this function.

1 fun error_code(category: u8, reason: u8): u64 {
2 (category as u64) + (reason as u64 << 8)
3 }

(a) code
1 spec error_code {
2 ensures [concrete] result == category + (reason * 256);
3 ensures [abstract] result == spec_error(category, reason);
4 }
5

6 // axiomatized uninterpreted function
7 spec fun spec_error(category: u8, reason: u8): u64;
8

9 // declarative definition for the `spec_error` function
10 axiom forall c1: u8, c2: u8, r1: u8, r2: u8:
11 (c1 != c2 || r1 != r2) ==>
12 spec_error(c1, r1) != spec_error(c2, r2);

(b) spec

Figure 2: An illustration of implementation confinement spec

Category-III specs. Unit specs in this category are function
summaries with abstraction, and the purpose of abstraction
is to enable compositional verification of other specs, such
as specs in Category-I and II or data, state, and transition
invariants §2. Operationally, the unit spec allows the caller
to embed an abstract semantics of a callee function with
intentional omissions on irrelevant implementation details
(e.g., whether sorting is done with quick sort or merge
sort). This is not only useful but necessary when the
implementation is too complex to inline for verification.

A typical usage of proof assistance is the axiomatization
of cryptographic primitives, as shown in Figure 3. Without
this modeling, it will be extremely hard if not impossible to
verify any properties that involve encrypt() or decrypt().
This justifies the necessity of the specs in this example.

1 fun encrypt(key: AESKey, data: vector<u8>): vector<u8> {
2 // ... implementation details redacted ...
3 }
4 spec encrypt {
5 ensures [abstract] result == spec_encrypt(key, data);
6 }
7

8 fun decrypt(key: AESKey, data: vector<u8>): vector<u8> {
9 // ... implementation details redacted ...

10 }
11 spec decrypt {
12 ensures [abstract] result == spec_decrypt(key, data);
13 }
14

15 // axiomatized uninterpreted functions
16 spec fun spec_encrypt(key: AESKey, data: vector<u8>): vector<u8>;
17 spec fun spec_decrypt(key: AESKey, data: vector<u8>): vector<u8>;
18

19 axiom forall key: AESKey, data: vector<u8>:
20 spec_decrypt(key, spec_encrypt(key, data)) == data;

Figure 3: An illustration of proof assistance specs

In contrast, Figure 2 which showcases a Category-II
unit specs via the [concrete] clause, might not be an
example of proof assistance specs, despite the fact that
it also has an [abstract] clause. The reason is that the
implementation (Figure 2a) is relatively simple; thus an
automated verifier might still be able to verify properties
involving error_code() without the abstraction this function.
Denotational specs that shadow implementation. From
a formal verification perspective, this is the type of specs
that passively shadow the imperative implementation with
side effects (e.g., memory and the global storage G) with a
functional language in which every operation is pure (e.g.,
with explicit modeling for memory and G).

Figure 4 presents an example of denotational unit specs
that are almost 1:1 shadow of the code. In this example, the
spec for the outer function foo is effectively stating that:
• foo will abort whenever callee run_foo aborts; and
• foo returns exactly what run_foo returns.
This is not contracting how foo should behave to external
users. Instead, it simply exposes and dictates internal imple-
mentation details, i.e., foo calls an internal function run_foo.
And yet, unit specs in like this create an “illusion” that the
functions are comprehensively specified and verified.

And yet, with a large investment on specs, what is the
assurance we get in return? Do unit specs actually serve the
purpose of contracting with current and future developers
and actively challenging their implementation? Or are they
just passively describing what the code is doing? Obviously,
a mirror, even in formal terms, does not add much assurance.

These denotational unit specs are in fact, counted in the
spec-to-code ratio in DPN (5:7) and other formally verified
smart contracts as well. For example, the Ethereum 2.0
Deposit Contract [40] advertises a 5:3 ratio—even more
specs than code. Note that even writing such denotational
spec is equally if not more costly than writing code, as
developing in an exotic spec language like MSL usually
require a dedicated consulting team with years if not decades
of experience in formal methods to bootstrap and maintain.
Such a team is way more costly than a dev or QA team.

In a mature software verification system, the lifting of an

1 public fun foo(
2 val: u64, addr: address
3) {
4 assert!(
5 exists<S>(addr),
6 errors::not_published
7);
8 run_foo(
9 val,

10 borrow_global_mut<S>(addr)
11);
12 }
13

14 fun run_foo(
15 val: u64, s: &mut S
16) {
17 assert!(
18 val <= 100 && val >= s.val,
19 errors::invalid_argument
20);
21 s.val = val;
22 }

(a) Code

1 spec schema RunFooAbortsIf {
2 val: u64;
3 s: S;
4 aborts_if val > 100;
5 aborts_if val < s.val;
6 }
7 spec schema RunFooEnsures {
8 val: u64;
9 s: S;

10 ensures s.val = val;
11 }
12 spec foo_internal {
13 include RunFooAbortsIf;
14 include RunFooEnsures;
15 }
16 spec foo {
17 aborts_if !exists<S>(addr);
18 include RunFooAbortsIf
19 {s: global<S>(addr)};
20 include RunFooEnsures
21 {s: global<S>(addr)};
22 }

(b) Spec

Figure 4: An illustration of denotational specs

imperative implementation to a pure functional denotation
should be automated by a compiler, transpiler, or more
commonly referred in the verification toolchain, verification
condition generator (VCGen), provided the semantics of
the underlying programming language is complete. With all
the criticism, we acknowledge that denotational unit specs
can be useful and even crucial in the bootstrapping phase
of applying formal verification to a project, as manually
lifted code reduces the burden on VCGen. Based on GitHub
commits, this seems to be true in the DPN case. What is
omitted, however, is the removal of the scaffolding after the
verification system enters a mature stage.

3.2. Alternative Views

The categorization of unit specs presented in §3.1 takes a
narrow view on the assurance brought by unit specs. In fact, it
only examines whether a unit spec abstracts (Category-I and
II) or helps to abstract (Category-III) the implementation. In
practice, more specifically, in the DPN project, stakeholders
typically have alternative understandings on the assurance
provided by unit specs.
View 1: a unit spec is exhaustive unit testing, i.e., a suite of
unit tests that achieves perfect coverage in whatever possible
metric. More importantly, when checked into a continuous
integration (CI) system, a unit test effectively pins down a
very small fraction of the semantics for the target function
f . This is evident by the fact that any change to f will be
re-tested by existing test cases and if there is a failure, either
the code change needs to be rejected or the failed test cases,
which indirectly serve as a contract of the agreed semantics,
needs to be updated. Similarly, when hooked with CI, if
any change to f causes the unit spec to fail, either the code
change is problematic or the spec needs to be updated.
View 2: a unit spec is multi-version programming, Formal
specs typically require a declarative way of programming
which is hopefully different from the imperative code. There-
fore, even if bugs can occur in both code and spec, these bugs

are unlikely to manifest in the same way. In other words,
unit specs of the same functionality provide security through
diversity by supplying a “diversified” set of semantics of the
same feature. Therefore, a discrepancy between code and
spec typically signals a fundamental problem and provokes
a deep discussion. This represents assurance brought by
N-version programming [11] and specs written with this
mindset usually change with code in lockstep.
View 3: a unit spec is documentation in precise terms,
especially for external users (including auditors) as clauses
in the spec exhaustively enumerate all possible failures this
function may run into and the associated conditions. The
post-conditions also clear room for any unintended side
effects. Compared with the type signatures, unit specs are a
stronger form of binding agreements between the users and
the developers, especially for compatibility checking. In fact,
in DPN, the document generator indeed includes specs by
default for external users’ consumption.

4. DI as Type System Extensions

Among all flavors of specs in MSL (see §2), invariants
over data types are perhaps the most friendly type of specs
for developers who do not have much experience on formal
verification. This is partially facilitated by the fact that Move
enforces a very restrictive, strong, and static type system [42],
i.e., the type information for all variables is known at compile-
time and a variable cannot change its type in any way at
runtime. In this regard, a data invariant (DI) is an extension
to an object type by enabling the user to further restrain the
set of possible values an object can have during execution.

This is evident in line 15 of Figure 1b. This DI can be
viewed as filling a gap in the type system that there is no
primitive type such as a NonZeroU64, although it is unwise
to expect such a primitive type in any practical type system.

4.1. Expressiveness of DI

DI in MSL is effectively a refinement type system [22]
and is more expressive and customizable than type systems
in most mainstream programming languages (e.g., C++, C#,
Java, or Rust) in at least three ways:
Cross-field relation. A DI can specify, in theory, arbitrarily
complex relations across multiple fields of a data structure or
an ADT. As demonstrated in the crafted example in Figure 5a,
the DI for the SumIsConst data type requires that the sum
of its fields a and b are always 100 and whether a or b is
larger is decided by the boolean field c.
Use of quantifiers. Quantifiers in first-order logic can
be used in DI, as demonstrated in Figure 5b, where a
mathematical set is modeled after the built-in vector type.
This is indeed how an unordered set is modeled in DPN.
Temporary violations. In MSL, a DI targeting a data
type T does not apply to a mutable reference of T (i.e.,
&mut T). This is intentional, as Move does not support atomic
updates to multiple fields. Therefore, temporary violations

of the DI are permitted. The DI, however, will be re-
checked once the mutable reference reaches end-of-life and
the modifications have all been written back to the owned
variable. This is shown in example Figure 5c where the
invariants (in Figure 5a) are temporarily violated in lines
6–8 but are re-checked in line 9. Conceptually, the scope of
the mutable reference (p in this example) marks a critical
section within which the DI associated with the data type
can be violated temporarily.

1 struct SumIsConst {
2 a: u64,
3 b: u64,
4 c: bool,
5 }
6 spec SumIsConst {
7 invariant c ==> (a >= b);
8 invariant !c ==> (b >= a);
9 invariant a + b == 100;

10 }

(a) DI on multiple fields3

1 struct Set<T> {
2 members: vector<T>,
3 }
4 spec Set {
5 invariant forall
6 i in 0..len(members),
7 j in 0..len(members):
8 (members[i] == members[j])
9 ==> (i == j);

10 }

(b) DI with quantifiers

1 public fun swap(
2 mut arg: SumIsConst
3): SumIsConst {
4 let s = &mut arg;
5 let t = s.a;
6 s.a = s.b;
7 s.b = t;
8 s.c = !s.c;
9 // s reaches end-of-life

10 input
11 }
12 spec swap {
13 ensures
14 result.c == !arg.c;
15 }

(c) Merge DI and unit spec

1 spec swap {
2 requires
3 arg.a + arg.b == 100 &&
4 arg.c ==> (arg.a >= arg.b) &&
5 !arg.c ==> (arg.b >= arg.a);
6 ensures
7 result.a + result.b == 100 &&
8 result.c ==> (
9 result.a >= result.b

10) &&
11 !result.c ==> (
12 result.b >= result.a
13);
14 ensures result.c == !arg.c;
15 }

(d) Equivalent unit spec without DI

Figure 5: Examples showing the expressiveness of DI

4.2. Assurance from DI

It is of no doubt that DI can help reduce the lines of
specs written. To illustrate, with DI specified in Figure 5a,
the unit spec for the swap() function is as simple as a
single ensures clause (see Figure 5c); while expressing the
same semantics without DI will be much more involved as
shown in Figure 5d, with an extra pair of pre- and post-
condition clauses to confine the input and return value,
respectively. More importantly, duplications of SumIsConst-
related specs grow linearly with the number of occasions in
which SumIsConst instances are involved.

However, expressiveness and spec-reuse do not imply
assurance. DI can help shape better code but this effect can
be explained by at least two reasons:
• formal verification: DI contracts user-facing data types or

other critical data types in the system;
• compile-time social coordination [9], DI enhances the type

system by explicitly capturing developers’ intention, such
as coding conventions, assumptions, or linting rules.

3. In Figure 5a, the first two invariants overlap when a == b. This
is intentional as this DI should permit both {a:50, b:50, c:true} and
{a:50, b:50, c:false}.

And the key question remains: do all DI specs add assurance
from a formal verification perspective (i.e., the more the
better)? If not, how to distinguish DI specs that provide
assurance from specs that provide coordination?

Categorization on the unit spec (see §3.1) can shed lights
in answering this question. Briefly, we consider the DI to
provide formal verification assurance if the DI
• targets a data type that appears in the function signature

(i.e., argument and return types) of an external-facing
interface (i.e., public and public entry);

• targets a data type that appears in a unit spec of category-I,
II, or III — the DI may be needed to prove refinement.

• targets a data type that may be persisted into the blockchain
state (i.e., G). Such data types are marked with either
the key or store ability in the Move language (e.g.,
struct Account in Figure 1).

In all other cases, the DI targets an ephemeral data type
which is used only in the internal processing of a blockchain
transaction and is oblivious to both users and the blockchain
state. Such DI specs are considered providing social coordi-
nation than assurance.

5. SI and TI as State Machine Building Blocks

Global invariants are the most recent addition to MSL
in terms of language constructs. These specs are introduced
based on the insight that the correctness of a blockchain
system is not only about each individual transaction (which
can be specified using unit specs), but also about the
correctness of the entire blockchain state (G), which can be
evolved in arbitrary ways depending on the implementation.
Ensuring that data persisted in G is always in integral states
and remain integral through state transitions is the goal
for state invariants (SI) and state transition invariants (TI),
respectively, as both specify directly over G.

5.1. Expressiveness of SI And TI

Unlike unit spec which is attached to a concrete imple-
mentation (§3) or DI which is attached to a concrete data
type (§4), SI and TI are high-level specs that are oblivious
to most of the implementation details. The only details SI
and TI need to be aware of are user-defined data types that
may appear in G. Such data types are clearly marked by the
key or store ability modifier in their declarations.

Further recall from §2 that in Move, the blockchain state,
G, is essentially a map indexed by both address and type,
most SI and TI specs will be universally or existentially
quantified over address to indicate that the invariant applies
generically to all addresses, as shown in both Figure 1b
and Figure 6b. But still, it is possible to write unquantified
expressions in SI or TI. For example, the following SI
specifies that block time starts after genesis is done:
1 invariant [state] exists<Genesis>(@ROOT) ==> exists<Time>(@ROOT);

In general, in MSL, SI and TI expressions are allowed
to refer to any and multiple addresses or data types, as long
as the data types may appear in G. Generic types will be

monomorphized to concrete types by VCGen in the context
when they become relevant. In addition, TI expressions are
allowed to use the old(..) operator to retrieve a snapshot
of G in pre-state, i.e., before the transaction. In short, any
first-order logic properties about G can be expressed with
SI or TI, making such specs extremely expressive.
Relationship with unit specs. As higher-level spec facilities,
any SI and TI can refine to clauses in unit specs. One
refinement algorithm is that every SI is translated to an
assumption at the beginning of a public entry function (f)
and an assertion at the end of f—an induction proof; while
every TI is translated to an assertion at the end of f with
old(..) capturing the pre-state G before the transaction.

It is, however, sometimes desirable that SI and TI are
asserted more frequently during the execution of a transaction.
For example, if f calls another function a during the
execution, it might be useful to check that an SI/TI holds
before and after a. This is function-level granularity and is
the default granularity of enforcing SI in MVP. An alternative
is to enforce an SI/TI after every instruction that may modify
the G covered in the SI/TI spec. This is the finest granularity
which is also how TI is enforced in MVP.
Relationship with DI. SI or TI cannot be refined to DI and
vice versa. SI can be similar to DI in the simplest cases, when
a type T only appears in G and the SI invariant inv about T
is universally quantified over address. However, even in this
simple case, inv is only applicable when G[(address, T)]
is involved; while a DI over T is applicable whenever a
variable of type T is involved. On the other hand, invariants
in SI can involve multiple addresses (quantified or constant)
across multiple types—these are not the concerns for DI.

5.2. The Essence of SI And TI

While the operational semantics of SI and TI are intuitive
and publicly documented [17], [35], the rationale and the
entity modeled by SI and TI are not. State abstractly, SI
and TI are used to formally define an infinite number
of communicating finite-state machines (CFSM) that
collectively operate over a common G.

Specifically, a single FSM is associated with one address
and operates over a slice of the global storage owned by this
address, denoted as G[(*, address)] where * represents
all data types stored under this slice. Given that G can host
an infinite number of addresses in theory, there will be an
infinite number of FSMs. A transaction that updates the
states of one FSM (e.g., the foo() function in Figure 4a)
can be modeled by a state transition within the FSM; while
a transaction that updates the states of multiple addresses
(e.g., the transfer() function in Figure 1a) can be modeled
by involved FSMs first updates its states locally and then
communicating with each other to synchronize their updates.

In this view, the expressiveness of SI and TI can be
leveraged to define the states and state transitions of the
infinite number of CFSMs, respectively. More specifically,

• SI defines the nodes (i.e., legal and illegal states) of each
FSM associated with an address as well as the relations
among the values of the nodes, represented as
SI predicate(G[(a1, T1)],G[(a2, T2)], . . .): bool

• TI defines the edges (i.e., legal and illegal state transitions)
of each FSM associated with an address as well as the
relations among the values of the edges, represented as:
TI predicate(∆G[(a1, T1)],∆G[(a2, T2)], . . .): bool

To illustrate how SI and TI can define an FSM, Figure 4
is a simple example without cross-FSM communications.
The FSM associated with each individual address will be
identical and is shown in Figure 6, which is defined by
the SI and TI in Figure 1b. As evident by the comparison,
the FSM spec is significantly more succinct, elegant, and
readable than the unit specs equivalent. The running example
in Figure 1 is slightly more complicated as it does involve
FSMs communicating upon state update. More specifically,
as required by the TI, the reduction of balance in one
Account should be match the increase of balance in a different
Account. This relation is captured in Figure 7 in the dashed
line between the two state transitions of two FSMs. In
particular, the TI requires that the change of balances (∆)
in these two state transitions should be equal.

val ≤ 100

val ≥ old(val)

(a) FSM

1 invariant [state] forall addr: address
2 where exists<S>(addr):
3 global<S>(addr).val <= 100;
4

5 invariant [update] forall addr: address
6 where exists<S>(addr):
7 global<S>(addr).val >= old(global<S>(addr)).val;

(b) Spec

Figure 6: Intended FSM and its specs for code in Figure 4

The type system that might be used to reason about SI
and TI specs is dependent multi-party session types over
an infinite number of parties, which is not defined to the
best of our knowledge, although the ingredients of such a
type system (dependent session type [49], multi-party session
type [45], and infinite session type [23]) have been studied.
We leave the integration of ingredients into future work.

5.3. Assurance from SI And TI

In this section, we ask the same question as we asked
for unit specs and DI: do SI and TI specs provide assurance
from a formal verification perspective (and hence, the more
the better)? We are leaning towards a positive answer to this
question: SI and TI provide assurance unconditionally and
hence, should be encouraged or prioritized when specifying
a Move-based smart contract.

Our answer is based on three empirical reasons:
• For smart contracts, the blockchain storage G is the only

way to persist states. Therefore, any implementation of
the smart contract can be abstracted as a series of infinite
CFSMs operating over G. And the fact that SI and TI can
directly specify the CFSMs indicates that they can be an
optimal way to abstract and contract the implementation.

• In addition, on most blockchains, storing information in
G incurs costs, and these costs force developers to keep
only critical information on the chain. Hence, the design
of data types that can be stored on-chain are closer to
capture core and abstracted states of the implementation.

• As evident empirically in DPN, SI and TI are used to
capture the most critical safety requirements such as the
access control scheme [8].

However, it is worth-noting that SI and TI might not be
always feasible in formal verification systems beyond smart
contracts, as G might not be readily defined. For example,
for programs written in C/C++ or Rust, G (which could
be heap or filesystem) needs to be explicitly marked and
defined before SI and TI can be applicable.

6. Summary

We summarize the answers to the key question raised
in §1: how to write specs in a way that maximizes ROI?
Generic answer. Developers should be encouraged to
write specs that abstracts the underlying systems. Specs
of the proof assistance nature should be developed on an
as-need basis (e.g., when automated verification fails) while
denotational specs should be avoided.
Practical answers specific to Move. Among the three types
of specs discussed in this research report:
• SI and TI should be encouraged as these specs target the

CFSM directly and hence have the chance to abstract the
most number of lines in code.

• Unit specs of the following types should be encouraged:
– contracting a user-facing interface (i.e., a public or
public entry function), or

– confining the implementation to a set of possibilities
(i.e., with [concrete] annotated clauses), or

– assisting the refinement proof for other abstracting specs
(i.e., with [abstract] annotated clauses).

• DI should be encouraged when it targets a data type that
– appears in the function signature of a user-facing inter-

face (i.e., a public or public entry function), or
– appears in a unit spec of interest (listed above), or
– can be persisted into the blockchain state (i.e., G), as

marked by the key or store ability modifier.

7. Future Work

We have several ongoing and future work planned to
bring this research report into a full academic paper.

7.1. Surveying More Formal Verification Systems

This research report is written based on one case study:
DPN developed in Move and verified by MVP. Although
we believe that the lessons from DPN would generalize to
other systems and other verification languages, supporting
evidence is missing. We are currently surveying the following
software verification systems: (1) Frama-C, (2) Software
Analysis Workbench (SAW), (3) TLA+, (4) KeY, (5) Prusti,

. . . MIN ≤ Account.balance ≤ MAX

balance > old(balance)

balance < old(balance)

FSM i

MIN ≤ Account.balance ≤ MAX

balance > old(balance)

balance < old(balance)

FSM j

. . . MIN ≤ Account.balance ≤ MAX

balance > old(balance)

balance < old(balance)

FSM n

. . .

Figure 7: CFSMs of the smart contract example in Figure 1a. (1) Each G[(*,address)], i.e., a slice of global storage owned by one
address, can be modeled as an FSM (e.g., FSM i, j, and n). These FSMs are defined by the SI in 1b. (2) Different FSMs “communicate”
and “synchronize” their state updates (the dashed line between FSM i and j). The synchronized state update is defined by the TI in 1b

(6) NatSpec and SMTChecker for Solidity, and (7) Certora
Prover; with a goal of understanding how their spec language
is designed, especially on differentiating abstracting specs,
proof assistance, and denotational specs. We also plan to
substantiate our recommended practices in spec language
design (§6) with objective and well-designed user studies.

7.2. On The Completeness of Specs

Even a program is thoroughly verified with a perfect
verification toolchain, this program is only as correct as its
spec. But how can we be sure that the spec is correct or at
least complete? More specifically, are all important aspects
encoded in the implementation covered in the specs?

Unfortunately, the Move spec language provides inad-
equate guarantee on completeness. As discussed in §3, a
Move unit spec aims to be a mathematical object representing
this function does X and only X , but is unfortunately
incomplete in confining the only X part. This make it easy
to (inadvertently) introduce “gaps” in the specs.

Figure 8 is a representative example to illustrate “gaps”
in unit specs. The S1 version of the add1 spec seems very
benign and is likely to be the output of someone who just
started writing spec. But it has a serious gap, as illustrated
by the fact that both C1 and C2 of the add1 implementation
verifies against S1! The complete spec is in fact given in S2.

1 // C1 -- correct
2 fun add1(v: &mut vector<u64>) {
3 for i in 0..len(v) {
4 v[i] = v[i] + 1;
5 }
6 }
7

8 // C2 -- w/ backdoor
9 fun add1(v: &mut vector<u64>) {

10 for i in 0..len(v) {
11 v[i] = v[i] + 1;
12 }
13 // secret backdoor
14 vector::pop(v);
15 }

1 // S1 -- incomplete
2 spec add1 {
3 ensures forall
4 i in 0..len(v):
5 v[i] = old(v)[i] + 1;
6 }
7

8 // S2 -- complete
9 spec add1 {

10 ensures forall
11 i in 0..len(v):
12 v[i] = old(v)[i] + 1;
13 ensures len(v) ==
14 len(old(v));
15 }

Figure 8: An illustration of incompleteness in the spec

A gap in the spec can create verification blind spots in
which the behavior of the function is unconstrained. In the
worst case, there is nothing to prevent a malicious developer
from hiding backdoors behind these blind spots, and yet,

such malicious code can survive regardless of how rigorous
the verification is — a single blind spot in the spec can
easily undermine months if not years of verification efforts.

However, it is worth-noting that this is not a problem
unique to Move-based smart contracts, but a potential threat
to other formally verified systems as well, including but not
limited to Amazon s2n [46], seL4 [27], CompCert [31], etc.

The incompleteness issue is not unique to specs as well:
test suites also need a quantitative measurement for its quality
and the generally accepted metric is code coverage (e.g., line
or branch coverage). Paranoid maintainers may even require
that any new code contribution needs to be accompanied by
test cases to maintain a high coverage ratio.
Observation. In a contrast to testing, to the best of our
knowledge, there is no tooling to measure coverage for
specs: i.e., which lines of code are covered (and confined)
by which spec. Given the way how the verification conditions
are generated in modern provers [5], [10], [20], [30], how
to untangle the complicated logical formula is a technical
challenge. And yet, we believe that such tooling is necessary
when formal verification gains enough traction.
Potential solutions. Based on the disparity that searching
for a proof can be hard but verifying a proof is easy
(relatively), proof-carrying code (PCC) [39] promises that a
straightforward verifier can be designed to efficiently verify
properties about the code via a formal proof embedded in the
code. In the context of Move, having a PCC compiler can
help lower all kinds of specs in the Move formal verification
system (unit specs, DI, SI, and TI) into a new type system
that can be checked by a lightweight verifier before the
execution of Move code.

On the first look, the problem PCC aims to solve
is orthogonal to spec incompleteness as the verifier will
still accept a proof to an incomplete spec. However, a
mechanically-verifiable proof enables data flow analysis on
the proof itself. The analysis can determine which variables
contribute to the establishment of claimed properties, and
more importantly, which variables do not participate in the
proof — the latter signals potential gaps in the specs.

Foundational proof-carrying code (FPCC) further min-
imizes the trust on the verifier and mandates the language
semantics to be encoded as part of the proof as well. The
no-other-effects policy can be encoded into FPCC as part
of the language semantics. This effectively allows the proof

to claim non-interference like if this instruction updates
variable X , no other variables will be updated; and the
verifier will accept it. In other words, FPCC can provide the

“only X” part that is currently missing in Move unit specs.

7.3. Expanding Scope for SI and TI

Applicability in Rust. Although SI and TI (specs organized
around a global state G) are incepted in the Move language,
they can be powerful constructs for verifying programs
written in other language too. For example, in safe Rust
which is strongly and statically typed, the collection of all
global variables in the program can be represented as G.
Taking immutable or mutable references of a global variable
can hence be modeled as borrow_global<T>(variable)
and borrow_global_mut<T>(variable) operations in Move,
hinting that writing SI and TI specs around global variables
might be feasible in safe Rust.
Relevance to separation logic. Separation logic [44] is
not (explicitly) used in the specification and verification of
Move programs. This is due to two reasons:
• The entire global state (G) is partitioned by type, i.e.,
G[(T1,*)] and G[(T2,*)] are disjoint as long as T1 and
T2 are not the same type; and

• Borrow semantics apply to each type-based slice of G.
For example, if function a borrows or modifies G[(T,*)]
and a calls b, b is not allowed to operate on G[(T,*)].

As a result, SI and TI specs about disjoint slices of G
are naturally composable. However, in system programming
languages like C, C++, or Java, even if we can partition the
global heap by type, each slice G[(T,*)] can be referred to
by multiple alive pointers that may refer to any slot in the
slice, e.g., G[(T,address1)] and G[(T,address2)] with no
guarantee of address1 != address2. Therefore, to port SI
and TI to these languages, we might need to express and
verify SI and TI around G[(T,*)] with separation logic.
Inference. In addition, SI and TI also open new doors for
spec inference. For example, in a Move program, invariants
over G can be inferred by statically extracting, aggregating,
and abstracting all operations on G. Such invariants might
also be mined based on runtime analytics, e.g., via a replay
of historical or fuzzing-generated transactions.

8. Conclusion

In this paper, we introduce three types of specs available
in the Move language and argue that not all spec are equally
important in providing assurance. We further suggest a
practical way on writing specs that yield a higher ROI by
prioritizing specs that abstract the system (see §6). Despite
that, each type of spec has its own conceptual goals and a
formal verification system should consciously combine all of
them to maximize the assurance provided by the spec suite.

9. Acknowledgment

I would like to thank the entire Move and DPN team for
their comments, inspiration, and continued support. This

research report is essentially a summarization of years-
long discussions happened in the MVP development team,
with a non-exhaustive list of members including Wolfgang
Grieskamp, David Dill, Junkil Park, Teng Zhang, Shaz
Qadeer, Emma Zhong, and Sam Blackshear.

I would also like to pay special thanks to Jon Howell for
the inspirational feedback on drawing a boundary between
trusted text (spec) and untrusted text (code), the paper
shepherd Michael Clark for the time and guidance during
the revision process, and the anonymous reviewers for their
insightful feedback (e.g., on PCC and FPCC).

This research was funded by research gifts from Meta,
Aptos Foundation, Sui Foundation, and Amazon.

References

[1] Andrew W. Appel. Foundational Proof-Carrying Code. In Proceedings
16th Annual IEEE Symposium on Logic in Computer Science, Boston,
MA, jun 2001.

[2] Andrew W. Appel. Verified Software Toolchain. In Programming
Languages and Systems, Berlin, Heidelberg, 2011.

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-
trescu, and Irene Finocchi. A survey of Symbolic Execution Tech-
niques. ACM Computing Surveys (CSUR), 51(3), 2018.

[4] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A
Versatile and Industrial-Strength SMT Solver. In Proceedings of
the 28th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Munich, Germany,
April 2022.

[5] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K Rustan M Leino. Boogie: A Modular Reusable Verifier for
Object-oriented Programs. In Proceedings of the 2005 International
Symposium on Formal Methods for Components and Objects (FMCO),
Amsterdam, The Netherlands, August 2005.

[6] Mike Barnett and K. Rustan M. Leino. Weakest-Precondition of
Unstructured Programs. In Proceedings of the 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE), sep 2005.

[7] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer,
Todd Nowacki, Alistair Pott, Shaz Qadeer, Rain, Dario Russi, Stephane
Sezer, Tim Zakian, and Runtian Zhou. Move: A Language With
Programmable Resources. https://diem-developers-components.netlify.
app/papers/diem-move-a-language-with-programmable-resources/
2020-05-26.pdf, 2020.

[8] Sam Blackshear, Tim Zakian, and Junkil Park. DIP-2: Diem Roles
and Permissions. https://github.com/diem/dip/blob/main/dips/dip-2.md,
2020.

[9] Zac Burns. Compile-Time Social Coordination. https://2021.rustconf.
com/talks/compile-time-social-coordination, 2021.

[10] Kyle Carter, Adam Foltzer, Joe Hendrix, Brian Huffman, and Aaron
Tomb. SAW: The Software Analysis Workbench. In Proceedings of
the 21st European symposium on programming (ESOP), Pittsburgh,
PA, March 2013.

[11] Liming Chen and Algirdas Avizienis. N-Version Programming: A
Fault-tolerance Approach to Reliability of Software Operation. In
Proceedings of the 8th IEEE International Symposium on Fault-
Tolerant Computing (FTCS-8), 1978.

[12] Concourse Open Community. DeFi Pulse. https://defipulse.com/,
2022.

[13] CryptoSec Group. Documented Timeline of DeFi Exploits. https:
//cryptosec.info/defi-hacks/, 2022.

[14] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In Proceedings of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
Budapest, Hungary, March–April 2008.

[15] Diem Association. Diem White Paper v2.0. https://www.diem.com/
en-us/white-paper/, 2020.

[16] Diem Association. Diem Core GitHub Page. https://github.com/diem/
diem, 2023.

[17] David Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng
Xu, and Emma Zhong. Fast and Reliable Formal Verification of
Smart Contracts with the Move Prover. In Proceedings of the 28th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Munich, Germany, April 2022.

[18] Michael Felderer, Dilian Gurov, Marieke Huisman, Björn Lisper, and
Rupert Schlick. Formal Methods in Industrial Practice - Bridging
the Gap (Track Summary). In Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice, Rhodes,
Greece, October 2018.

[19] Alessio Ferrari and Maurice H. Ter Beek. Formal Methods in Railways:
A Systematic Mapping Study. ACM Computing Surveys, 55(4), nov
2022.

[20] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where
Programs Meet Provers. In Proceedings of the 22nd European
symposium on programming (ESOP), Rome, Italy, March 2013.

[21] George Fink and Matt Bishop. Property-Based Testing: A New Ap-
proach to Testing for Assurance. ACM SIGSOFT Software Engineering
Notes, 22(4), 1997.

[22] Tim Freeman and Frank Pfenning. Refinement Types for ML. In
Proceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation (PLDI), 1991.

[23] Simon J. Gay, Diogo Poças, and Vasco T. Vasconcelos. The Different
Shades of Infinite Session Types. In Foundations of Software Science
and Computation Structures, apr 2022.

[24] Jean-Yves Girard. Linear Logic. Theoretical computer science, 50(1),
1987.

[25] Mario Gleirscher and Diego Marmsoler. Formal methods in dependable
systems engineering: a survey of professionals from Europe and North
America. Empirical Software Engineering, 25(6), 2020.

[26] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek
Dreyer. RustBelt: Securing the Foundations of the Rust Programming
Language. In Proceedings of the 44th ACM Symposium on Principles
of Programming Languages (POPL), Paris, France, January 2017.

[27] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, et al. SeL4: Formal Verification
of an OS Kernel. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP), Big Sky, MT, October 2009.

[28] Tomas Kulik, Brijesh Dongol, Peter Gorm Larsen, Hugo Daniel
Macedo, Steve Schneider, Peter W. V. Tran-Jørgensen, and James
Woodcock. A Survey of Practical Formal Methods for Security.
Formal Aspects of Computing, 34(1), jul 2022.

[29] Phillip A. Laplante and Mohamad Kassab, editors. Requirements
Engineering for Software and Systems. Auerbach Publications, New
York, NY, 4th edition, 2022.

[30] K Rustan M Leino. Dafny: An Automatic Program Verifier for
Functional Correctness. In Proceedings of the 16th International
Conference on Logic for Programming Artificial Intelligence and
Reasoning (LPAR), Dakar, Senegal, April 2010.

[31] Xavier Leroy. Formal Verification of a Realistic Compiler. Communi-
cations of the ACM, 52(7), July 2009.

[32] Libra Engineering Team. Libra Core roadmap #3. https://www.diem.
com/en-us/blog/libra-core-roadmap-3/, 2020.

[33] Move Core Team. Documentation Generator. https://github.com/diem/
diem/blob/latest/language/move-prover/doc/user/docgen.md, 2021.

[34] Move Core Team. Move Executable Specifications. https://github.com/
move-language/move/tree/main/language/move-prover/interpreter,
2021.

[35] Move Core Team. Move Specification Language.
https://github.com/move-language/move/blob/main/language/
move-prover/doc/user/spec-lang.md, 2022.

[36] Move Core Team. The Move Book. https://move-language.github.io/
move/, 2022.

[37] Move Core Team. Awesome Move. https://github.com/MystenLabs/
awesome-move, 2023.

[38] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, 2008.

[39] George C. Necula. Proof-Carrying Code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), Paris, France, 1997.

[40] Daejun Park, Yi Zhang, and Grigore Rosu. End-to-End Formal
Verification of Ethereum 2.0 Deposit Smart Contract. In Proceedings
of the 32nd International Conference on Computer Aided Verification
(CAV), Los Angeles, CA, July 2020.

[41] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore
Roşu. A Formal Verification Tool for Ethereum VM Bytecode. In
Proceedings of the 26th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), Lake Buena Vista, FL, November
2018.

[42] Marco Patrignani and Sam Blackshear. Robust Safety for Move.
https://arxiv.org/abs/2110.05043, 2021.

[43] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. VerX: Safety Verification of Smart
Contracts. In Proceedings of the 41st IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2020.

[44] John C. Reynolds. Separation Logic: A Logic for Shared Mutable
Data Structures. In Proceedings of the 17thAnnual IEEE Symposium
on Logic in Computer Science (LICS), Copenhagen, Denmark, June
2002.

[45] Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session
types revisited. In Proceedings of the 46th ACM Symposium on
Principles of Programming Languages (POPL), Cascais, Portugal,
January 2019.

[46] Steve Schmidt. Introducing s2n-tls, a New Open Source
TLS Implementation. https://aws.amazon.com/blogs/security/
introducing-s2n-a-new-open-source-tls-implementation/, 2022.

[47] The Solidity Authors. NatSpec Format. https://docs.soliditylang.org/
en/latest/natspec-format.html, 2024.

[48] The Solidity Authors. SMTChecker and Formal Verification. https:
//docs.soliditylang.org/en/latest/smtchecker.html, 2024.

[49] Bernardo Toninho, Luı́s Caires, and Frank Pfenning. Dependent
Session Types via Intuitionistic Linear Type Theory. In Proceedings
of the 13th International ACM SIGPLAN Symposium on Principles
and Practices of Declarative Programming (PPDP), 07 2011.

[50] Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J. Letsholo,
Muideen A. Ajagbe, Erol-Valeriu Chioasca, and Riza T. Batista-
Navarro. Natural Language Processing for Requirements Engineering:
A Systematic Mapping Study. ACM Computing Surveys, 54(3), apr
2021.

[51] Jingyi Emma Zhong, Kevin Cheang, Shaz Qadeer, Wolfgang
Grieskamp, Sam Blackshear, Junkil Park, Yoni Zohar, Clark Barrett,
and David L. Dill. The Move Prover. In Proceedings of the 32nd
International Conference on Computer Aided Verification (CAV), Los
Angeles, CA, July 2020.

[52] Litao Zhou, Jianxing Qin, Qinshi Wang, Andrew W. Appel, and
Qinxiang Cao. VST-A: A Foundationally Sound Annotation Verifier.
Proceedings of the ACM Programming Languages, 8(POPL), jan 2024.

[53] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:
A Survey for Roadmap. ACM Computing Surveys (CSUR), 54(11s),
2022.

Appendix

1. Rationale for Calling Specs Denotational

We first clarify the adjectives terms related to semantics:
• Both operational and denotational semantics are both

about a programming language (e.g., the Move language
in this research report).

• Axiomatic semantics are about the intended behaviors of
the program itself. The program can be implemented in
any language while the axiomatic semantics is expressed
within some program logic (e.g., first-order logic).

In terms of Move, its operational semantics is defined
by the interpreter (called Move VM). For example, the
operational semantics of the move_from<T>(addr) primitive
can be sketched in the following algorithm:

Algorithm 1: Operational semantics of move_from
Input: addr: address
Input: T: TypeName
Input: global_state: HashMap<address,Account>,

where Account is HashMap<TypeName,Bytes>
Output: program aborts or

an object of type T and new global_state
1 if global_state.has_address(addr) then
2 let account ← global_state.get(addr);
3 if account.has_type(T) then
4 let data ← account.get(T);
5 account.delete(T);
6 return cast_to_type(data, T)
7 with side-effect of updating global_state;
8 else
9 abort!

10 else
11 abort!

The denotational semantics of Move is (implicitly)
hardcoded in MVP as part of the VCGen process. More
specifically, VCGen translates every Move statement and
expression into an SMT representation that encodes the
semantics. Take, again, the move_from<T>(addr) built-in as
an example, the denotational semantics of this primitive is
encoded in SMT format as shown in Figure 9.

As a result, the spec in Figure 10 is considered redundant
and is the same symbolic representation of the move_from
semantics expressed in the glsspec language. In other words,
writing the spec for move_from_wrap is just repeating the
denotational semantics of move_from primitive in MSL.
Hence we call this type of spec denotational spec.

1 (set-logic ALL)
2

3 ; Account address is modeled as an suninterpreted sort
4 (declare-sort Address 0)
5

6 ; Parameter `T` in `move_from<T>` can be monomorphized to either
7 ; - a concrete type, or
8 ; - another type parameter (e.g., of the calling function)
9 ; We show the second case in this modeling as it is more generic

10 (declare-sort T 0)
11

12 ; Global state sliced by `T` is modeled as an SMT array that
13 ; - maps from `Address` to an `Option<T>` where
14 ; - `none` means object does not exist, while
15 ; - `some` means object exists and can be accessed by `val`
16 ; - the SMT array has `none` as the default value
17 (declare-datatype Option (
18 (none)
19 (some (val T))
20))
21

22 ; A compact datatype to represent the result of `move_from`
23 ; - `abort` means the execution terminates abruptly and
24 ; both the return value and state will be undefined
25 ; - `finish` means the execution finishes and will define
26 ; both the return value (`ret`) and global state (`state`)
27 (declare-datatype MoveFromResult (
28 (abort)
29 (finish (ret T) (state (Array Address Option)))
30))
31

32 ; Semantics of `move_from` can be encoded as an SMT function
33 (define-fun move_from
34 ; domain and codomain
35 (
36 (stat (Array Address Option))
37 (addr Address)
38) MoveFromResult
39

40 ; rule
41 (match (select stat addr) (
42 ; abort when address does not exist
43 (none abort)
44 ; return the value and an updated global state
45 ((some val) (finish
46 val
47 (store stat addr none) ; array extensionality
48))
49))
50)

Figure 9: Denotational semantics of move_from

1 fn move_from_wrap<T>(addr: address): T {
2 move_from<T>(addr)
3 }
4 spec move_from_wrap {
5 aborts_if !exists<T>(addr);
6 ensures result == old(global)<T>(addr);
7 ensures !exists<T>(addr);
8 ensures forall a: address:
9 a != addr => global<T>(a) == old(global)<T>(a);

10 }

Figure 10: Denotational specs wrapping around move_from

Generally speaking, MVP has denotational encoding of
each Move statement and expression, including the call
instruction that transfers control flow into another function.
So another example of a denotational spec is Figure 4

As shown in this example, through the use of
include RunFooAbortsIf and include RunFooAbortsIf in
the spec, we encoded the semantics that function foo calls
run_foo. This spec is, again, denotating the meaning of a
function call in the foo function.

In summary: denotational spec is the symbolic represen-
tation of function semantics that the MVP can derive itself
translated and expressed in the spec language. Hence, it
brings no additional information (e.g., abstraction, assump-
tion, domain knowledge, etc) into the verification process.

2. Memory Model And Reference Elimination

In Move, the reference system is based on borrow
semantics [26] as in the Rust language:
• The initial borrow must come from either a global memory

or a local variable on stack (both referred to as root of
borrow from now on).

• For local variables (e.g., x), one can create immutable
references (&x) and mutable references (&mut x).

• For global memories, the references can be created via
the borrow_global and borrow_global_mut built-ins.

• Given a reference to a whole struct x, field borrowing can
occur via &x.f and &mut x.f.

• Similarly, with a reference to a vector v, element borrowing
occurs via native functions Vector::borrow(v,i) and
Vector::borrow_mut(v, i).

Move provides the following guarantees, which are enforced
by the borrow checker as part of the type system in Move:
• For any roots of borrow, there can be either exactly

one mutable reference or n immutable references, no
other combinations are allowed. Enforcing this rule is
similar to enforcing the borrow semantics in Rust, except
for global memories, which do not exist in Rust. For
global memories, this rule is enforced via the acquires
annotations. Using Figure 1a as an example, function
transfer acquires the Account global location, therefore,
transfer is prohibited from calling any other function that
might also borrow or modify the Account global memory.

• The lifetime of references to data on the stack cannot
exceed the lifetime of the stack itself. This includes global
memories borrowed inside a function as well — a reference
to a global memory cannot be returned from the function,
neither in whole nor in parts.

These properties effectively permit the elimination of ref-
erences from a Move program, eliminating need to reason
about aliasing.
Immutable references. Immutable references are replaced
by values. An example of the transformation is shown below.
1 fun select_f(s: &S): &T { &s.f }

⇝⇝⇝
1 fun select_f_with_ref_elimination(s: S): T { s.f }

Notably, when executing a Move program, immutable
references are important to avoid copies for performance and
to enforce ownership; however, for formal reasoning on Move
program correctness, the distinction between immutable
references and values is unimportant.
Mutable references. Each mutation of a root of borrow l
starts with an initial borrow for the whole data stored in this
location. This borrow creates a reference r. As long as r
is alive, Move code can either update its value (*r = v), or

derive a sub-reference (r’ = &mut r.f). The mutation ends
when r (and the derived r’, if any) go out of scope.

The borrow checker guarantees that during the mutation
of data in l, no other reference to same data in l can co-exist.
Hence, it is impossible for other Move code to test whether
the value has mutated while the reference is held.

These semantics allow mutable references to be handled
via read-update-write cycles. One can create a copy of the
data in l and perform a sequence of mutation steps which can
be represented as purely functional data updates. Once the
last reference for the data in l goes out of scope, the updated
value is written back to l. This converts an imperative
program with references into an imperative program which
only has state updates on global memory or variables on
the stack, with no aliasing. We illustrate the basics of this
approach by an example:
1 fun increment(x: &mut u64) { *x = *x + 1 }
2 fun update(s: &mut S) { increment(&mut s.f) }
3 fun caller(): S { let s = S{f: 0}; update(&mut s); s }

⇝⇝⇝
1 fun increment(x: Mutation<u64>): Mutation<u64> {
2 x[value = x.value + 1]
3 }
4 fun update(s: Mutation<S>): Mutation<S> {
5 let f = Mutation<u64> {
6 root: s.root,
7 path: s.path ++ FieldAccess(S.f),
8 value: s.f,
9 };

10 let f2 = increment(f);
11 s[value.f = f2.value]
12 }
13 fun caller(): S {
14 let s = S{f: 0};
15 let r = Mutation<S> {
16 root: LocalRoot(LocalIndex(s)),
17 path: [],
18 value: s,
19 };
20 r2 = update(r);
21 r2.value
22 }

The Mutation type is an SMT datatype modeled as:
1 (declare-sort Address 0)
2 (declare-sort T 0)
3

4 ; Identifiers for parameter, local variables, and fields
5 (declare-sort ParamIndex 0)
6 (declare-sort LocalIndex 0)
7 (declare-sort FieldAccess 0)
8

9 ; Roots of a mutation
10 (declare-datatype MutRoot (
11 (param (pidx ParamIndex))
12 (local (lidx LocalIndex))
13 (global (addr Address))
14))
15

16 ; A path segment of the borrow chain
17 (declare-datatype PathSegment (
18 (field (f FieldAccess))
19 (element (e Int))
20))
21

22 ; Mutation modeled as an SMT algebraic datatype
23 (declare-datatype Mutation (
24 (Mutation
25 (root MutRoot)
26 (path (Seq PathSegment))
27 (val T)
28)
29))

3. Semantics of Move Global State Operations

The semantics of Move operations around the global
state G can be modeled as SMT functions shown below.
- exists<T>(address) → boolean: checks whether an in-
stance of type T exists at the given address.

1 (define-fun exists
2 (
3 (stat (Array Address Option))
4 (addr Address)
5) Bool
6 (= (select stat addr) none)
7)

Figure 11: Semantics of exists

- move_from<T>(address) → T: grabs ownership of the
instance of type T from the address (and hence G) to the
current calling context and leaves a None mark in G. Aborts
if the instance does not exist.

1 (declare-datatype MoveFromResult (
2 (abort)
3 (finish (ret T) (state (Array Address Option)))
4))
5 (define-fun move_from
6 (
7 (stat (Array Address Option))
8 (addr Address)
9) MoveFromResult

10 (match (select stat addr) (
11 (none abort)
12 ((some val) (finish
13 val
14 (store stat addr none) ; array extensionality
15))
16))
17)

Figure 12: Semantics of move_from

- move_to<T>(address, T): transfers ownership of the in-
stance of type T from the current calling context to the
address in G. Aborts if the instance already exists, as required
by linear typing.

1 (declare-datatype MoveToResult (
2 (abort)
3 (finish (state (Array Address Option)))
4))
5 (define-fun move_to
6 (
7 (stat (Array Address Option))
8 (addr Address)
9 (item T)

10) MoveToResult
11 (match (select stat addr) (
12 (none (finish (store stat addr (some item))))
13 ((some __) abort)
14))
15)

Figure 13: Semantics of move_to

- borrow_global<T>(address) → &T: temporary borrows an
immutable reference to the instance of type T at the address
in G in the current calling context. Aborts if the instance
does not exist. The type system ensures that the reference
does not become dangling (e.g., via move_from or move_to)
nor alias with any mutable reference. This enables reference

elimination (see §B for details) and hence the return value
from borrow_global from MVP’s perspective is just a value
of type T.

1 (declare-datatype BorrowGlobalResult (
2 (abort)
3 (finish (ret T) (state (Array Address Option)))
4))
5 (define-fun borrow_global
6 (
7 (stat (Array Address Option))
8 (addr Address)
9) BorrowGlobalResult

10 (match (select stat addr) (
11 (none abort)
12 ((some val) (finish val stat))
13))
14)

Figure 14: Semantics of borrow_global

- borrow_global_mut<T>(address) → &mut T: temporary
borrows a mutable reference to the instance of type T at
the address in G in the current calling context. Aborts if the
instance does not exist. The type system ensures that the
reference does not become dangling (e.g., via move_from or
move_to) nor alias with any other reference. This enables
reference elimination (see §B for details) and hence the return
value from borrow_global_mut from MVP’s perspective is
a Mutation parameterized by type T.

1 (declare-datatype BorrowGlobalMutResult (
2 (abort)
3 (finish
4 (ret Mutation)
5 (state (Array Address Option))
6)
7))
8 (define-fun borrow_global_mut
9 (

10 (stat (Array Address Option))
11 (addr Address)
12) BorrowGlobalMutResult
13 (match (select stat addr) (
14 (none abort)
15 ((some val) (finish
16 (Mutation
17 (global addr)
18 (as seq.empty (Seq PathSegment))
19 val
20)
21 stat
22))
23))
24)

Figure 15: Semantics of borrow_global_mut

