
Securing Aptos Framework with Formal Verification
Junkil Park �

Aptos Labs, Santa Clara, CA, USA
Teng Zhang �

Aptos Labs, Santa Clara, CA, USA

Wolfgang Grieskamp �

Aptos Labs, Santa Clara, CA, USA
Meng Xu �

University of Waterloo, Canada

Gerardo Di Giacomo �

Aptos Labs, Santa Clara, CA, USA
Kundu Chen �

MoveBit, Hong Kong

Yi Lu �

Bitslab, Singapore, Singapore
Robert Chen �

OtterSec, USA

Abstract
The Aptos Framework is a collection of smart contracts written in the Move language that define
standard and common on-chain actions for the Aptos Network. As the security and safety of the
Aptos Framework is of utmost importance, it has continuously undergone rigorous testing and
comprehensive auditing. To further increase the level of assurance, we have formally verified its
security and correctness. This involves identifying critical security requirements for each module,
creating formal specifications, and subsequently verifying them using the Move Prover. To the best
of our knowledge, this represents one of the first instances of formal verification being applied on
such a large scale in a smart contract framework. This paper discusses how this rigorous e�ort
ensures a high level of quality assurance for the Aptos Framework.

2012 ACM Subject Classification Software and its engineering æ Formal software verification

Keywords and phrases Formal verification, Smart contracts, Aptos Network, The Move language,
The Move Prover

Digital Object Identifier 10.4230/OASIcs.FMBC.2024.9

1 Introduction

The Aptos Network [1] is a safe, scalable, and upgradeable layer-1 blockchain with built-in
support for the Move language designed for fast and secure transaction execution. The
Aptos Framework1, similar to an operating system for a computer, serves as the foundational
platform for the Aptos Network, defining its core functionalities, managing on-chain resources,
and o�ering a standardized environment for the development of user smart contracts. It
comprises a suite of Move smart contract modules that define standard and common on-chain
actions for the Aptos Network, such as prologue and epilogue of transactions, the staking
mechanism, and Aptos Digital Asset Standard. It is imperative to ensure the correctness and
security of the Aptos Framework because the unexpected behavior of such foundational Move
modules could cause substantial asset loss or disrupt the normal functioning of the network.
For this reason, the Aptos Framework has continuously undergone rigorous testing and
comprehensive auditing. To further increase the level of assurance, we have formally verified
its security and correctness against formal specifications derived from our comprehensive
and systematic methodology. We identified critical security requirements for each module
and created formal specifications for large parts of the Aptos Framework, which were then
verified with the Move Prover.2

1 https://github.com/aptos-labs/aptos-core/tree/fmbc-24/aptos-move/framework
2 Notice that a preliminary summary of this paper has been published on Medium [2]

© Junkil Park, Teng Zhang, Wolfgang Grieskamp, Meng Xu, Gerardo Di Giacomo, Kundu Chen, Yi Lu,
and Robert Chen;
licensed under Creative Commons License CC-BY 4.0

5th International Workshop on Formal Methods for Blockchains (FMBC 2024).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 9; pp. 9:1–9:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

9:2 Securing Aptos Framework with Formal Verification

This rigorous approach has significantly enhanced the security and correctness assurance
of the Aptos Framework. For instance, block_prologue is a critical Move function since it
is executed at the beginning of each block. More importantly, block_prologue should never
abort because any abort will e�ectively halt the network by preventing it from generating new
blocks. As part of the liveness assurance of Aptos Network, we formally proved the absence
of abort in block_prologue, despite that this function involves complex execution across 96
Move functions in 22 di�erent Move modules. During this process, we identified and fixed
some potential arithmetic overflows that may potentially trigger an abort in block_prologue
(e.g., the calculate_rewards_amount function in the stake module).

Moreover, specifications form an integral part of the Aptos Framework documentation,
which is in fact automatically generated based on the specifications and hence, provides an
unambiguous and detailed account of the expected behavior for each function and module.
Finally, integrating the Move Prover into the Continuous Integration (CI) process significantly
reduces the time and cost associated with code auditing – once the specifications are pinned
down, problematic code changes will likely trigger verification failure in the CI before manual
auditing happens.

This paper will explain how we have secured the Aptos Framework through formal
verification using the Move Prover. Section 2 introduces the Move language, Move Prover,
and Aptos Framework. In Section 3, we will explain our methodology to verification of the
Aptos Framework. Section 4 will discuss important findings and lessons learned from this
e�ort. After describing the related work in Section 5, we will conclude in Section 6.

2 Background

2.1 Move as A Programming Language for Smart Contracts
The Aptos Network natively supports Move as its smart contract language. A Move program
is essentially a sequence of updates that try to evolve a global persistent memory state, which
we just call the (global) memory. Similar to other blockchains, updates are a series of atomic
transactions. All runtime errors result in a transaction abort, which does not change the
blockchain state except to transfer some currency (“gas”) from the account that sent the
transaction to pay for the cost of executing the transaction.

The global memory is organized as a collection of resources described by Move structures
(i.e., data types). A resource in memory is indexed by a Ètype, addressÍ pair. An address
is a unique identifier in the Aptos Network that typically represents the address of a user
account. For instance, the expression exists<Coin<USD>>(addr) will be true if there is a
value of type Coin<USD> stored at addr. As seen in this example, Move uses type generics,
and working with generic functions and types is rather idiomatic for Move.

A Move package consists of a set of modules. Each module defines a set of Move
functions. These functions update the global memory and may emit events. The execution
of these functions can abort explicitly because of an abort instruction (failure of an assert)
or implicitly because of a runtime error such as an out-of-bounds vector read or integer
overflows. For instance, the coin module provides the foundation for coins on Aptos. As one
of the core public APIs defined in it, the function deposit is shown in Listing 1:
1. checks whether the coin with type CoinType is registered under the recipient’s account

with the address account_addr;
2. retrieves a mutable reference to the corresponding resource CoinStore from the account;
3. if the store is not frozen, deposits the input coin to the CoinStore by calling the merge

function and emits an Deposit event.

J. Park et al. 9:3

If the function executes successfully, the borrowed global resource CoinStore in
account_addr will be updated after the transaction is committed. Otherwise, the transaction
will abort without any changes to the global memory.

Listing 1 The deposit function of the coin module.
public fun deposit <CoinType >(

account_addr :address ,
coin:Coin <CoinType >

) acquires CoinStore {
assert !(

is_account_registered <CoinType >(account_addr),
error :: not_found (ECOIN_STORE_NOT_PUBLISHED)

);
let coin_store = borrow_global_mut <CoinStore <CoinType >>(account_addr);
assert !(! coin_store .frozen , error :: permission_denied (EFROZEN));
event :: emit(

Deposit <CoinType > { account : account_addr , amount : coin.value }
);
merge (& mut coin_store .coin , coin);

}

2.2 Move Prover
The Move Prover (MVP for short) [21] is a formal verification tool for smart contracts that
are written in the Move language. The Move language is tightly coupled and integrated
with MVP because they have been developed and are evolving together. Move features an
expressive specification language designed to define the intended behaviors of a Move smart
contract. The architecture of MVP is shown in Figure 1. Move code (with the specification) is
given as input to the tool chain, which produces two artifacts: an abstract syntax tree (AST)
of the specifications, and the generated bytecode. They are merged into a unified object
model and input to the Prover Compiler. After a series of bytecode transformations such
as reference elimination, specification instrumentation and monomorphization, Boogie [14]
IR is generated which is further lowered into the SMT language and subsequently fed to
an SMT solver such as Z3 [6] or CVC5 [18]. MVP checks whether the code satisfies the
user-given specification for all possible program variable assignments. If not, MVP generates
a counterexample, that is an assignment to program variables such that the specification
does not hold. The Move Prover takes great care of translating the counter-example back
into the Move representation, hiding the intrinsic details of the SMT solver. MVP is fast
and reliable [8], and can be used routinely during smart contract development, making the
experience of running MVP similar to the experience of running compilers, linters, type
checkers, and other development tools.

2.3 Move Specification Language
The Move specification language allows developers to specify the properties of their smart
contracts, leveraging MVP to guarantee they behave as specified without adding any runtime
cost on-chain. In the specification language, developers can provide pre- and post-conditions
for functions, which include conditions over input parameters and global memory. Developers
may also provide invariants over data structures as well as the contents of the global memory.
The language also supports universal and existential quantification over bounded domains,
such as the indices of a vector, as well as e�ectively unbounded domains, such as memory
addresses and integers (e.g., forall a: address: P(a), and exists i: u64: Q(i), for
some predicates P and Q). While quantifiers can render the verification problem undecidable

FMBC 2024

9:4 Securing Aptos Framework with Formal Verification

Figure 1 Architecture of the Move Prover.

and lead to timeout or an “unknown” response from SMT solvers, they o�er a practical
advantage: they allow for a more direct formalization of various properties, enhancing the
clarity of specifications.

As an example, the spec block in Listing 2 shows the specification of the deposit function
described in Section 2.1, which is the mathematical representation of the expected behavior
of the function. Two aborts_if clauses specify that the function aborts if and only if at least
one of the following conditions are satisfied: (1) the CoinStore resource for the coin with the
type CoinType does not exist under the account account_addr; (2) the CoinStore resource
is frozen. The ensures clause specifies that the value of the coin stored under account_addr
is increased by the value of the input coin after execution. MVP guarantees that function
implementation satisfies this specification for all input values and all coin types. MVP ’s
formal verification contrasts with testing, where a single test case only covers a specific
instance of input and coin type. Moreover, once a specification for MVP is defined, it enables
MVP to automatically check the specification thereafter (through CI). This automation
significantly reduces the costs associated with repetitive manual audits for every modification
of the smart contract.

Listing 2 The spec of the deposit function.
spec deposit <CoinType >(

account_addr : address ,
coin: Coin <CoinType >

) {
aborts_if !exists <CoinStore <CoinType >>(account_addr);
aborts_if global <CoinStore <CoinType >>(account_addr). frozen ;
ensures global <CoinStore <CoinType >>(account_addr)).coin.value ==

old(global <CoinStore <CoinType >>(account_addr)).coin.value +
coin.value;

}

2.4 Aptos Framework
The Aptos Framework defines standard actions performed on-chain. For instance, the genesis
module defines operations to be executed during genesis such as initializing the core account
and core modules on chain. The block_prologue function in the block module defines the
actions to execute before each transaction, updating the current block’s metadata and the
on-chain performance scores of validators. Beyond system-related actions, the framework
establishes standards for coins and staking, math libraries, e�cient data structures (e.g.,

J. Park et al. 9:5

smart vectors which adapt depending on their size), and cryptographic algorithms (e.g.,
ed25519). Given its essential role in the Aptos Network, security and safety of the framework
are of utmost importance: bugs can cause network disruptions or lead to significant financial
losses. We conducted thorough testing and auditing of the Aptos Framework, however, it is
well-known that these measures cannot guarantee the complete absence of bugs [7]. Formal
verification, in contrast, can provide rigorous proofs of critical properties. In the next section,
we will present how to apply this technique e�ectively to the Aptos Framework.

3 Formal Verification of the Aptos Framework

Formal verification has received significant attention in the blockchain industry due to
the critical importance of smart contract assurance [15, 19]. However, applying formal
verification to a smart contract framework is challenging, especially when it encompasses
tens of thousands of lines of code and undergoes constant evolution. Moreover, a formally
verified smart contract is only as correct as its specifications. Therefore, how to devise a
comprehensive set of specifications for large and evolving codebase is the key to maximize
the return on investment (ROI) in formal methods.

To address this challenge, we have adopted two approaches to devising specification
from distinct directions. First, we adopted a top-down approach, starting from high-level
requirements to detailed specifications. Inspired by prior work of the authors [10], we
established a traceability framework that enables the tracking of how high-level requirements
are tested, audited, and verified. The high-level requirements and the traceability information
are thoroughly documented within the Move spec files, including the links between high-level
requirements and their respective formal specs. This ensures that all critical safety properties
are covered in specifications with provenance. In addition, we pursued a bottom-up approach
– systematically deriving specifications from individual functions and modules. This approach
allowed us to uncover, verify, and document functional properties of the Aptos Framework.
This section explains this combined e�ort in more detail.

3.1 From Security Requirement to Verification
In collaboration with our audit firm, we identified critical security requirements for each
module within the Aptos Framework. These requirements were systematically documented
with details covering their definition, criticality, implementation approach, and enforcement
methods. The enforcement methods include audit, test, and, where appropriate, formal
verification. For each requirement that can be enforced by formal verification, we created
the corresponding formal specifications and verified them with MVP.

For example, a high-critical security requirement for the coin module is shown in Table 1.
It states that the supply of a coin can be changed only by certain operations, such as burn
and mint. This requirement is in place to ensure that coins cannot be created arbitrarily,
which could potentially result in significant financial loss. The implementation has been
audited manually, and the property has been further specified and verified.

Shown in Listing 3, this requirement is encoded as a post-condition to be applied to all
functions in the coin module except for the mint and burn functions.

Listing 3 Post condition to enforce the high-level requirement in Table 1.
spec module {

apply TotalSupplyNoChange <CoinType > to *<CoinType >
except mint , burn , burn_from ;

}

FMBC 2024

9:6 Securing Aptos Framework with Formal Verification

Table 1 A high-level requirement of the coin module.

No. Requirement Criticality Implementation Enforcement

4 The supply of a coin is
only a�ected by burn
and mint operations.

High Only mint and burn
operations on a coin

alter the total supply
of coins.

Formally verified in
TotalSupplyNoChange

The definition of the post-condition TotalSupplyNoChange is given in Listing 4. The
condition explicitly states that the supply value remains unchanged when comparing its
values before and after execution. It uses two concepts not seen so far: specification functions
which allow to work on state and appear in old(..) expressions, as well as specification
schemas which allow to group and later inject properties:

Listing 4 Definition of TotalSupplyNoChange.
spec fun supply <CoinType >(addr: address): u128 {

option :: spec_borrow (global <CoinType >(addr)). supply
}
spec schema TotalSupplyNoChange <CoinType > {

coin_type_address : address ;
ensures option :: is_some (global <CoinType >(coin_type_address)) ==> supply

(coin_address) == old(supply (coin_address))
}

We have authored the high-level requirements for over 40 modules, and most of the re-
quirements are formally verified (see Appendix A). We also integrated these high-level
requirement artifacts into the Aptos Framework reference documentation. Additionally,
we’ve implemented a traceability framework that establishes connections between high-level
requirements and their associated formal specifications, facilitating the mapping of formal
specifications back to their originating high-level requirements. For example, the high-level
requirements of the coin module can be found in the link3. For other modules, please see
Appendix A.

3.2 Systematic functional specification
By verifying high-level requirements, we ensure that the Aptos Framework satisfies the
critical security properties identified during the audit. It is also important to ensure the
functionally correct behavior of the Aptos Framework. To ensure functional correctness, we
have systematically inferred the specifications from the code and comments of Move functions
and modules through a thorough manual process. This involves examining each Move
function to identify its abort conditions and post-conditions. Additionally, we meticulously
examined every struct to determine its data invariants and, by synthesizing these findings,
also established global invariants for each module.

3.2.1 Abort conditions
aborts_if specifications cover important classes of properties, such as access control checks,
input validation, and state validation. Move functions are normally designed to abort
when they are called (1) by an account without permission, (2) with an input argu-
ment outside of an expected range, or (3) on an unexpected global state. For example,

3 https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/aptos-frame
work/doc/coin.md#high-level-req

J. Park et al. 9:7

in the Aptos Framework’s staking config contract, only the aptos_framework account
(i.e., 0x1) can call update_recurring_lockup_duration_secs. Also, the input parameter
new_recurring_lockup_duration_secs should be non-zero. It should be called only when
the resource StakingConfig is published under the aptos_framework address. These expec-
ted behaviors are captured by the specification in Listing 5.

Listing 5 Specification of update_recurring_lockup_duration_secs.
spec update_recurring_lockup_duration_secs (

aptos_framework : &signer ,
new_recurring_lockup_duration_secs : u64

){
aborts_if signer :: address_of (aptos_framework) != @aptos_framework ;
aborts_if new_recurring_lockup_duration_secs == 0;
aborts_if !exists < StakingConfig >(@aptos_framework);
...

}

Given this aborts_if specification, MVP verifies two things. First, it verifies that the
function indeed aborts when any one of the conditions holds. Second, MVP verifies that the
function does not abort on any other condition. This verification is important because it
allows developers to understand the complete set of conditions under which the function
can abort, thus the specifications also serve as precise documentation. Notice that abort
condition verification works very smoothly with MVP in practice, as finding a particular
program point that aborts is a simpler problem for the solver than general post-conditions.
In virtually any case we have encountered, a missed abort is quickly identified and pointed
to in the Move source.

For certain functions, it is critical that they do not abort. For instance, the
block_prologue function must never abort since it is executed with each block, and a
malfunction can bring the entire network down. The block prologue complex execution
involves 96 Move functions in 22 di�erent Move modules. We formally specified all these
modules and proved that the block prologue execution would never fail (or abort) in an
unexpected condition (see Appendix A). The top-level specification of this function can be
found in Listing 6, with some schemas included which contain further details. The clause
“aborts_if false” means that this function should never abort, which can be proven if
the requires conditions over the input and the global state hold. For instance, the third
requires condition says the proposer (one of the input arguments) of creating the block
must be either a reserved address (@vm_reserved) or an active validator, which needs to
be checked by retrieving a global resource in the stake module. It is worth noting that
this function is directly called by the VM, so conditions in the specification were manually
audited at the call site.

Listing 6 Specification of block_prologue.
spec block_prologue {

requires chain_status :: is_operating ();
requires system_addresses :: is_vm(vm);
requires proposer == @vm_reserved

|| stake :: spec_is_current_epoch_validator (proposer);
requires timestamp >= reconfiguration :: last_reconfiguration_time ();
requires (proposer == @vm_reserved)

==> (timestamp :: spec_now_microseconds () == timestamp);
requires (proposer != @vm_reserved)

==> (timestamp :: spec_now_microseconds () < timestamp);
requires exists <stake :: ValidatorFees >(@aptos_framework);
requires exists <CoinInfo <AptosCoin >>(@aptos_framework);

FMBC 2024

9:8 Securing Aptos Framework with Formal Verification

include transaction_fee ::
RequiresCollectedFeesPerValueLeqBlockAptosSupply ;

include staking_config :: StakingRewardsConfigRequirement ;
aborts_if false; // can never abort

}

3.2.2 Struct invariants
Struct invariants define the properties that the data within a struct must consistently satisfy.
When specifying the Aptos Framework, we observed many cases where the invariants of a
struct were implicitly present. These invariants were often documented within code comments
or manifested as assertion statements, and related functions were developed while observing
these implicit invariants. We have explicitly specified the invariants and verified them using
MVP. For example, the struct GasCurve (shown in Listing 7) represents a gas curve to be
used to adjust the global storage gas. It is an Eulerian approximation of an exponential curve.
The fields min_gas and max_gas are the minimum and maximum gas charges respectively,
and points is a vector of (x, y) pairs that represent the basis points of the curve where the
x-coordinate is the utilization ratio in the curve and y-coordinate is the utilization multiplier
in the curve.

Listing 7 Definition of GasCurve and Point.
struct GasCurve has copy , drop , store {

min_gas : u64 ,
max_gas : u64 ,
points : vector <Point >

}
struct Point has copy , drop , store {

x: u64 ,
y: u64

}

For each time period, the storage gas is recalculated by interpolation into the curve that
GasCurve defines. An implicit invariant of GasCurve was documented within code comments
to ensure correct linear interpolation. It says that every instance of GasCurve is well-formed,
representing a properly structured curve. Otherwise, interpolation becomes impossible,
leading to an abortion of the process. We formally specified the invariant to ensure it is
enforced consistently in all places. Listing 8 shows the specification of the invariant. For
each point instance, the (x,y) pair must not exceed the basis point denomination. For
each gas curve instance, 1) the minimum gas charge does not exceed the maximum gas
charge; 2) the maximum gas charge is capped by MAX_U64 scaled down by the basis point
denomination; and 3) the gas curve is a monotonically increasing function. MVP ensures that
those invariants hold everywhere in the code, that is, whenever of a value of the according
types is constructed or modified. It is worth mentioning that the storage gas recalculation is
part of the block_prologue execution path; thus, the data invariant of GasCurve plays an
important role in the block_prologue verification.

Listing 8 Invariants of GasCurve and Point.
spec GasCurve {

invariant min_gas <= max_gas ;
invariant (len(points) > 0 ==> points [0].x > 0);
invariant forall i in 0.. len(points) - 1:

(points [i].x < points [i + 1].x && points [i].y <= points [i + 1].y);
invariant max_gas <= MAX_U64 / BASIS_POINT_DENOMINATION ;

}

J. Park et al. 9:9

spec Point {
invariant x <= BASIS_POINT_DENOMINATION ;
invariant y <= BASIS_POINT_DENOMINATION ;

}

3.2.3 Global invariants
Global invariants define the properties that the global state must consistently satisfy. Global
invariants appear as members of the module specification. They are expressed as conditions
over the global state that consist of Move resources published in the global memory space.
Global invariants are important properties because they specify and ensure the correctness of
the entire global state. Several global invariants have been inferred from some core modules
of the Aptos Framework. For instance, the stake module defines Aptos’ staking mechanism.
Listing 9 shows the struct definitions related to validators. The resource ValidatorSet
contains the configuration information for the active validators of the Aptos Network. In
the struct ValidatorConfig, the field validator_index field denotes the index within the
active validator set. Its value is updated following changes to the active validator set.

Listing 9 Struct definitions related to validators.
struct ValidatorSet has key {

active_validators : vector < ValidatorInfo >,
// other fields ...

}
struct ValidatorInfo has copy , store , drop {

addr: address ,
voting_power : u64 ,
config : ValidatorConfig ,

}
struct ValidatorConfig has key , copy , store , drop {

validator_index : u64 ,
// other fields ...

}

In the function update_stake_pool (shown in Listing 10), the field validator_index is
used to locate the corresponding validator’s performance (i.e., the number of successful pro-
posals) data entry in ValidatorPerformance. The function will abort if validator_index
is equal to or greater than the length of validators in ValidatorPerformance.

Listing 10 Definition of the function update_stake_pool.
fun update_stake_pool (

validator_perf : & ValidatorPerformance ,
pool_address : address ,
staking_config : & StakingConfig

) {
let validator_config = borrow_global < ValidatorConfig >(pool_address);
let cur_validator_perf = vector :: borrow (

& validator_perf .validators ,
validator_config . validator_index

);
// ...

}

To prove that update_stake_pool never aborts unexpectedly, it is necessary to establish
the fact that validator_index never holds a value that is out-of-bounds for validators
in ValidatorPerformance. Listing 11 shows the formal specification of the global in-
variant, which denotes the correct relation between the two resources ValidatorSet and
ValidatorPerformance in the global memory. The invariant says that if the resource

FMBC 2024

9:10 Securing Aptos Framework with Formal Verification

ValidatorSet exists, all values of the validator_index fields in ValidatorSet must be
smaller than the length of validators in ValidatorPerformance. Notice that this property
cannot be expressed by a data invariant since those must not depend on global memory, but
here, we indirectly index global memory by an address found in a ValidatorSet.

Listing 11 Global invariant on validators.
spec module {

invariant exists < ValidatorSet >(@aptos_framework) ==>
validator_set_is_valid ();

fun validator_set_is_valid (): bool {
let set = global < ValidatorSet >(@aptos_framework);
forall i in 0.. len(set. active_validators):

global < ValidatorConfig >(validators [i]. addr). validator_index <
len(global < ValidatorPerformance >(@aptos_framework). validators)

}
}

4 Discussion

In this section, we discuss the benefits of formal verification for enhancing the security of the
Aptos Framework, along with insights gained from this endeavor. Formal verification not only
establishes proofs for key properties of the Aptos Framework but also aids in identifying bugs
and issues. The process of writing formal specifications demands thorough code review, while
the analysis of counterexamples unveils nuanced program behaviors, enabling the detection of
certain bugs. Throughout the formal specification and verification process, numerous issues
were identified, including the aptos_governance::store_signer_cap example shown in
Listing 12.

Listing 12 Incorrect implementation of store_signer_cap.
public fun store_signer_cap (

aptos_framework : &signer ,
signer_address : address ,
signer_cap : SignerCapability ,

) acquires GovernanceResponsbility {
system_addresses :: assert_framework_reserved_address (

address_of (aptos_framework)
);
if (! exists < GovernanceResponsbility >(@aptos_framework)) {

move_to (aptos_framework , GovernanceResponsbility {
signer_caps : simple_map :: create <address , SignerCapability >()

});
};
let signer_caps = &mut borrow_global_mut < GovernanceResponsbility >(

@aptos_framework
). signer_caps ;
simple_map :: add(signer_caps , signer_address , signer_cap);

}

Listing 12 shows the incorrect version of the function prior to our correction, caused by a
subtle di�erence between the signer argument aptos_framework and the address constant
@aptos_framework. This function misbehaves when address_of(aptos_framework) di�ers
from @aptos_framework. While the address constant @aptos_framework is set to be 0
x1, the argument aptos_framework can represent any reserved address from 0x1 to 0xa
because the function checks if aptos_framework corresponds to one of these reserved

addresses. Consequently, the resource GovernanceResponsibility might be established
under address_of(aptos_framework), which might not align with @aptos_framework. This

J. Park et al. 9:11

discrepancy raises the possibility that the resource GovernanceResponsibility may not be
present under @aptos_framework, leading to the potential abort in borrow_global_mut<
GovernanceResponsibility>(@aptos_framework).

Listing 13 Specification of store_signer_cap.
spec store_signer_cap (

aptos_framework : &signer ,
signer_address : address ,
signer_cap : SignerCapability ,

) {
aborts_if ! system_addresses :: is_aptos_framework_address (

address_of (aptos_framework)
);
aborts_if ! system_addresses :: is_framework_reserved_address (

signer_address
);
let signer_caps = global < GovernanceResponsbility >(

@aptos_framework
). signer_caps ;
aborts_if exists < GovernanceResponsbility >(@aptos_framework) &&

simple_map :: spec_contains_key (signer_caps , signer_address);
ensures exists < GovernanceResponsbility >(@aptos_framework);

}

Listing 13 formally specifies the intended behavior of the function store_signer_cap,
which could not be verified against its incorrect version of the function. To resolve this, we
amended the code to ensure that aptos_framework matches the address @aptos_framework,
and that signer_address is indeed a reserved address.

Moreover, we have identified and defined various invariants within the modules, sig-
nificantly enhancing our understanding of their behaviors and their security implications.
This deeper insight has subsequently guided the refactoring and improvement of several
modules. For instance, the on_new_epoch function in the stake module initially had a
complex and lengthy while loop. In specifying the function, we divided this while loop
into two separate loops. This division not only simplified the writing of loop invariants
but also enhanced their readability and understandability. Furthermore, in the process of
specifying the calculate_reward_amount function, we identified multiple issues, including
overflow, rounding errors, and division by zero. To address these concerns, we refactored the
code to use higher precision u128 instead of u64 in the intermediate steps to avoid overflow,
performed division at the end to minimize rounding errors, and ensured the denominator
was non-zero before division to prevent division-by-zero errors. Listing 14 presents the
calculate_reward_amount post-refactoring.

Listing 14 the calculate_reward_amount function of the stake module.
fun calculate_rewards_amount (

stake_amount : u64 ,
num_successful_proposals : u64 ,
num_total_proposals : u64 ,
rewards_rate : u64 ,
rewards_rate_denominator : u64

): u64 {
let rewards_numerator = (stake_amount as u128) *

(rewards_rate as u128) * (num_successful_proposals as u128);
let rewards_denominator = (rewards_rate_denominator as u128) *

(num_total_proposals as u128);
if (rewards_denominator > 0) {

((rewards_numerator / rewards_denominator) as u64)
} else {

0
}

}

FMBC 2024

9:12 Securing Aptos Framework with Formal Verification

The specifications for the Aptos Framework developed in this work are also an important
component of the automatically generated reference documentation for the Aptos Framework,
o�ering a comprehensive and precise description of the expected behavior of each function and
module. This detailed documentation is vital to ongoing maintenance and quality assurance
e�orts. For example, the requires conditions specified for the block_prologue function,
as illustrated in Listing 6, serve as assumptions that cannot be verified directly because
the function is invoked by the VM, and VM verification falls outside the scope of MVP.
Nonetheless, these conditions clearly document all the assumptions for the VM regarding
invoking block_prologue, thus enabling a more streamlined and time-e�ective manual audit
process.

Here are some key lessons learned: adopting a top-down approach proved beneficial,
as it allowed us to grasp and establish high-level security requirements comprehensively,
ensuring no critical security aspect was overlooked. These high-level requirements serve
as an e�ective communication bridge between security experts and developers, proving
invaluable for future code maintenance. However, verifying high-level requirements alone can
be challenging without the support of local and global specifications, such as those provided
through aborts_if specs and data/global invariants. Therefore, a bottom-up approach
becomes essential for systematically developing these specifications. Moreover, integrating
MVP into the Continuous Integration (CI) testing process significantly reduces the necessity
for frequent audits with each contract modification. Consequently, formal verification has
e�ectively decreased both the time and cost associated with auditing.

We encountered several challenges in writing local and global specifications, particularly
due to the di�culties in writing loop invariants and timeouts with MVP. To overcome
these issues, we employed several abstraction methods: (1) modeling non-linear functions as
non-interpreted functions to facilitate verification of their callers; (2) applying loop unrolling
techniques for complex or nested loops to enable bounded checking; and (3) for functions
operating over large data domains like u128 (e.g., math128), we performed verification
within a smaller data domain such as u8. This strategy allowed for e�ective verification of
non-linear functions like max, min, mul_div, clamp, pow, floor_log2, sqrt, and ceil_div
within the domain of u8. However, there is more work to do specifically regarding loops
in Move programs, which we hope to avoid as much as possible and instead be replaced
by higher-order functions like foreach, map, fold and so on, which can then be specially
treated by MVP.

The verification artifacts for this work can be accessed online. Appendix A o�ers a
collection of annotated links to these artifacts. Also, Appendix B details the verification
results (e.g., the number of verification conditions and the execution time) and outlines the
steps for their reproduction.

5 Related Work

Many approaches have been applied to the verification of smart contracts; see e.g. the
surveys [15, 19]. [19] refers to at least two dozen systems for smart contract verification. It
distinguishes between contract and program level approaches. Our approach has aspects of
both: we address program level properties via pre/post conditions, and contract (“blockchain
state”) level properties via global invariants. Among the existing approaches, the Move
ecosystem is the first one where contract programming and specification language are fully
integrated, and the language is designed from the first principles influenced by verification.

J. Park et al. 9:13

Methodologically, Move and MVP are thereby closer to systems like Dafny [13], or the older
Spec# system [3], where instead of adding a specification approach posterior to an existing
language, it is part of it from the beginning.

In contrast to other approaches that only focus on specific vulnerability patterns [5, 16, 17,
20], MVP o�ers a universal specification language. We support universal quantification over
arbitrary memory content as well as global invariants. For comparison, the SMT Checker for
Solidity [9, 11, 12] does not support quantifiers, because it interprets programming language
constructs (requires and assert statements) as specifications and has no dedicated specification
language. While in Solidity, one can simulate aspects of global invariants using modifiers by
attaching pre/post conditions, this is not the same as our invariants, which are guaranteed
to hold independent of whether a user may or (accidentally) may not attach a modifier.
Moreover, our invariants are optimized to be evaluated only when necessary.

The Certora verifier [4] is a formal verification tool for Solidity smart contracts which
has expressiveness comparable to that of MVP. However, because Move bytecode is fully
typed and of a higher abstraction level than EVM bytecode, the verification task of Certora
becomes substantially more challenging compared to MVP. This complexity could potentially
render MVP more user-friendly and accessible for application.

6 Conclusion

To ensure the highest standards of quality and security within the Aptos Network, we have
rigorously applied formal verification techniques to the Aptos Framework. We thoroughly
documented high-level security requirements. Subsequently, we specified each aspect of the
Aptos Framework, function-by-function, until most of the high-level security requirements
and functional properties were eventually formally verified. During this process, we also
found and fixed bugs and usability issues within MVP, thus benefiting all Aptos developers.
This combined work gives the Aptos Framework a high level of quality assurance and, to
the best of our knowledge, represents one of the first large-scale smart contract verification.
Looking ahead, Aptos Labs plans to maintain and evolve the verification work as well as
improve MVP itself. This e�ort aims to ensure the tool stays available for developers and
auditors in the Aptos ecosystem, thereby enhancing software quality in the smart contract
domain.

References
1 Aptos. The Aptos Blockchain. https://aptos.dev/aptos-white-paper, 2022.
2 Aptos Labs, MoveBit, and OtterSec. Securing the Aptos Framework through formal verification.

https://medium.com/aptoslabs/securing-the-aptos-framework-through-formal-verif
ication-14124d1ed660, 2024.

3 Mike Barnett, Robert DeLine, Manuel Fähndrich, Bart Jacobs, K. Rustan M. Leino, Wolfram
Schulte, and Herman Venter. The Spec# Programming System: Challenges and Directions,
pages 144–152. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. doi:10.1007/978-3-5
40-69149-5_16.

4 Certora. Certora Prover Documentation. https://docs.certora.com/en/latest/index.htm
l, 2022.

5 ConsenSys. Mythril Classic: Security analysis tool for Ethereum smart contracts. URL:
https://github.com/skylightcyber/mythril-classic.

6 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an e�cient SMT solver. In TACAS,
volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

FMBC 2024

9:14 Securing Aptos Framework with Formal Verification

7 E. W. Dijkstra. On the Reliability of Programs, pages 359–370. Association for Computing
Machinery, New York, NY, USA, 1 edition, 2022. doi:10.1145/3544585.3544608.

8 David L. Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, and Jingyi Emma
Zhong. Fast and reliable formal verification of smart contracts with the move prover (extended
version). CoRR, abs/2110.08362, 2021. arXiv:2110.08362.

9 Ethereum Foundation. Solidity documentation, 2018. URL: http://solidity.readthedocs
.io.

10 Wolfgang Grieskamp, Nicolas Kicillof, Keith Stobie, and Víctor A. Braberman. Model-based
quality assurance of protocol documentation: tools and methodology. Softw. Test. Verification
Reliab., 21(1):55–71, 2011. doi:10.1002/STVR.427.

11 Ákos Hajdu and Dejan Jovanovic. solc-verify: A modular verifier for solidity smart contracts.
CoRR, abs/1907.04262, 2019.

12 Ákos Hajdu and Dejan Jovanovic. SMT-Friendly Formalization of the Solidity Memory Model.
In ESOP, volume 12075 of Lecture Notes in Computer Science, pages 224–250. Springer, 2020.

13 K. M. Leino. Accessible software verification with dafny. IEEE Software, 34(06):94–97,
November 2017. doi:10.1109/MS.2017.4121212.

14 K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate verification language:
Design and logical encoding. In Javier Esparza and Rupak Majumdar, editors, TACAS, pages
312–327, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

15 Jing Liu and Zhentian Liu. A survey on security verification of blockchain smart contracts.
IEEE Access, 7:77894–77904, 2019.

16 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In ACM Conference on Computer and Communications Security, pages
254–269. ACM, 2016.

17 Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding the
greedy, prodigal, and suicidal contracts at scale. In ACSAC, pages 653–663. ACM, 2018.

18 The CVC Team. CVC5. URL: https://github.com/cvc5/cvc5.
19 Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A survey of smart contract

formal specification and verification. CoRR, abs/2008.02712, 2020. arXiv:2008.02712.
20 Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli,

and Martin T. Vechev. Securify: Practical security analysis of smart contracts. In ACM
Conference on Computer and Communications Security, pages 67–82. ACM, 2018.

21 Jingyi Emma Zhong, Kevin Cheang, Shaz Qadeer, Wolfgang Grieskamp, Sam Blackshear,
Junkil Park, Yoni Zohar, Clark Barrett, and David L. Dill. The Move Prover. In Shuvendu K.
Lahiri and Chao Wang, editors, Computer Aided Verification, pages 137–150. Springer Inter-
national Publishing, 2020.

A Verification Artifacts

This section overviews the artifacts of this verification work. The Aptos Framework consists
of three Move packages such as

move-stdlib: the common standard library of vanilla Move,
aptos-stdlib: the Aptos-specific standard library,
aptos-framework: the Aptos’ standard modules for coin, staking, voting, and other
operations

We’ve specified and verified all three Move packages. The Move modules and specs can be
found via the following permanent links:

move-stdlib modules and specs:
(modules) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-m
ove/framework/move-stdlib/doc/overview.md#module-index

J. Park et al. 9:15

(specs) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-mov
e/framework/move-stdlib/doc/overview.md#specification-index

aptos-stdlib modules and specs:
(modules) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-m
ove/framework/aptos-stdlib/doc/overview.md#module-index
(specs) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-mov
e/framework/aptos-stdlib/doc/overview.md#specification-index

aptos-framework modules and specs:
(modules) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-m
ove/framework/aptos-framework/doc/overview.md#module-index
(specs) https://github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-mov
e/framework/aptos-framework/doc/overview.md#specification-index

Moreover, the high-level security requirement document is an important artifact of this
verification work. The high-level security requirements are presented in the markdown table
formats within the Aptos Framework’s reference documentation, including hyperlinks to
the relevant formal specifications, facilitating requirement traceability. All the high-level
security requirements of aptos-framework can be accessed through this index: https:
//github.com/aptos-labs/aptos-core/blob/fmbc-24/aptos-move/framework/apto
s-framework/doc/overview.md#high-level-security-requirement-index. Please
note that if the browser does not automatically navigate to the item linked from the index
pages above, refreshing your browser should resolve the issue and direct you to the correct
item.

The Aptos Framework is open-source and accessible on GitHub. Each module in move
-stdlib and its spec is contained in a single Move source file .move, while aptos-stdlib
and aptos-framework define modules in .move and their specs in .spec.move separately.
The source code of Move modules and specs can be found at the following link:

move-stdlib: https://github.com/aptos-labs/aptos-core/tree/fmbc-24/apto
s-move/framework/move-stdlib/sources
aptos-stdlib: https://github.com/aptos-labs/aptos-core/tree/fmbc-24/apto
s-move/framework/aptos-stdlib/sources
aptos-framework: https://github.com/aptos-labs/aptos-core/tree/fmbc-24/ap
tos-move/framework/aptos-framework/sources

B Reproducing the Verification Result

This section explains how to reproduce the verification result. The steps are summarized as
follows:

1. Install Aptos CLI. The Move Prover (MVP) is integrated in the Aptos CLI4, a command
line tool for developing, debugging, deploying and operating on the Aptos Network. To
install the Aptos CLI, please refer to https://aptos.dev/tools/aptos-cli/install
-cli/.

2. Clone the aptos-core repository. aptos-core contains the core components of the
Aptos Network including the Aptos Framework and their specs. Please use the following
command to download the snapshot of the repository made for this paper: git clone --
branch fmbc-24 git@github.com:aptos-labs/aptos-core.git

4 https://aptos.dev/tools/aptos-cli/

FMBC 2024

9:16 Securing Aptos Framework with Formal Verification

3. Install the dependencies of MVP. MVP requires the backend verification tools such as Z3
and Boogie. To install all the dependencies that MVP needs, please run the command
./script/dev_setup -ytp in the aptos-core directory, and execute the environment
command in .profile to properly set the environment variables such as Z3_EXE and
BOOGIE_EXE.

4. Run MVP. To prove the aptos-framework package, please go to the aptos-move
/framework/aptos-framework directory and run aptos move prove (aptos-move/
framework/move-stdlib for move-stdlib and aptos-move/framework/aptos-stdlib
for aptos-stdlib).

Listing 15 shows the verification result that has been performed on a Apple M1 Max
machine with 64 GB of memory.

Listing 15 The verification result.
The verification result for move - stdlib

[INFO] preparing module 0x1:: BCS
...
[INFO] preparing module 0x1:: string
[INFO] transforming bytecode
[INFO] generating verification conditions
[INFO] 138 verification conditions
[INFO] running solver
[INFO] 0.049s build , 0.023s trafo , 0.013s gen , 2.027s verify , total 2.113

s
Success

The verification result for aptos - stdlib

[INFO] preparing module 0x1:: bls12381_algebra
...
[INFO] preparing module 0x1:: smart_vector
[INFO] transforming bytecode
[INFO] generating verification conditions
[INFO] 338 verification conditions
[INFO] running solver
[INFO] 0.204s build , 0.124s trafo , 0.045s gen , 18.347 s verify , total

18.721 s
Success

The verification result for aptos - framework

[INFO] preparing module 0x1:: system_addresses
...
[INFO] preparing module 0x1:: staking_proxy
[INFO] transforming bytecode
[INFO] generating verification conditions
[INFO] 525 verification conditions
[INFO] running solver
[INFO] 0.735s build , 0.636s trafo , 0.193s gen , 84.024 s verify , total

85.589 s
Success

Notice the number of verification conditions prompted for each of those commands corresponds
to one function (if generic, one instantiation) and all its pre/post conditions, injected
invariants, and properties inlined in the code (e.g. loop invariants).

