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ABSTRACT

Manual confirmation of static analysis reports is a daunting task.
This is due to both the large number of warnings and the high
density of false positives among them. Fuzzing techniques have
been proposed to verify static analysis warnings. However, a major
limitation is that fuzzing thewhole project to reach all static analysis
warnings is not feasible. This can take several days and exponential
machine time to increase code coverage linearly.

Therefore, we propose FuzzSlice, a novel framework that au-
tomatically prunes possible false positives among static analysis
warnings. Unlike prior work that mostly focuses on confirming true
positives among static analysis warnings, which inevitably requires
end-to-end fuzzing, FuzzSlice focuses on ruling out potential false
positives, which are the majority in static analysis reports. The
key insight that we base our work on is that a warning that does
not yield a crash when fuzzed at the function level in a given time
budget is a possible false positive. To achieve this, FuzzSlice first
aims to generate compilable code slices at the function level. Then,
FuzzSlice fuzzes these code slices instead of the entire binary to
prune possible false positives. FuzzSlice is also unlikely to misclas-
sify a true bug as a false positive because the crashing input can be
reproduced by a fuzzer at the function level as well. We evaluate
FuzzSlice on the Juliet synthetic dataset and real-world complex
C projects: openssl, tmux and openssh-portable. Our evaluation
shows that the ground truth in the Juliet dataset had 864 false posi-
tives which were all detected by FuzzSlice. For the open-source
repositories, we were able to get the developers from two of these
open-source repositories to independently label these warnings.
FuzzSlice automatically identifies 33 out of 53 false positives con-
firmed by developers in these two repositories. This implies that
FuzzSlice can reduce the number of false positives by 62.26% in
the open-source repositories and by 100% in the Juliet dataset.

1 INTRODUCTION

Static analysis tools report errors in the source code of a program
without executing it. These tools enable the discovery of vulnera-
bilities in the early stages of software development. However, they
suffer frommajor issues. First, an overwhelming number of bugs are
suggested by these tools, making it hard for a software developer
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to verify them, which can also lead a software development team
to ignore the static analysis report [1, 2]. Second, a static analysis
tool may lack the knowledge of how data flows through the system,
the dependencies and software architecture [3, 4]. Therefore, many
of the bugs turn out to be false positives [4–7]. Such false positives
produced by static analysis tools are a significant barrier to the
wide-scale adoption of these tools [8, 9].

Fuzzing is a popular software testing technique that involves
supplying arbitrary or randomized input to a computer program
with the objective of uncovering unexpected behaviors, including
crashes. Prior work in fuzz testing has largely focused on identifying
true positives in static analysis reports. For example, Böhme et al.
utilized directed grey box fuzzers to direct fuzzing towards a target
location [10]. Other techniques use dynamic symbolic execution to
verify static analysis reports [11]. However, the drawback of such
approaches is the time budget and computational power required
to reach all static analysis warnings [12]. In this paper, we propose
FuzzSlice, an approach that aims to prune false positives produced
by static analysis tools. The novelty of FuzzSlice is twofold:

• Conceptual Innovation: While several other techniques
(e.g., [10, 13–15]) aim at identifying true positives in static
analysis warnings, FuzzSlice is optimized towards prun-
ing possible false positives in a given program. Instead of
fuzzing the entire program from the main function, Fuz-
zSlice only fuzzes the function containing the warning
to prune possible false positives. FuzzSlice hinges on the
novel idea that a flagged code fragment (represented as a
warning) executed at least once at the function level and
not yielding a crash in a given time budget is a possible
false positive.

• Technical Innovation (close-to-warning fuzzing): Un-
like typical methods that reduce fuzzing cost by indepen-
dently fuzzing modules and libraries [16–19], FuzzSlice
focuses on generating compiled slices that encompass the
warning location detected by a static analysis tool.

FuzzSlice generates and fuzzes a separate binary for each warn-
ing, which facilitates the coverage of most warnings with reduced
computational cost (under 5 minutes of fuzzing). Finally, FuzzSlice
is unlikely to misclassify a true bug as a false positive because the
crashing input can be reproduced by a fuzzer at the function level.
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We evaluate FuzzSlice on four diverse repositories comprising
one synthetic and three open-source datasets that have been re-
ported to contain buffer overflow vulnerabilities. Our evaluation
shows that the ground truth in the synthetic Juliet dataset has
864 false positives which were all confirmed by FuzzSlice. For
open-source repositories, we found 143 possible false positives
among 265 warnings. We reached out to developers from two of
these open-source repositories (tmux and openssh-portable) to la-
bel these warnings. FuzzSlice automatically identifies 33 possible
false positives out of 53 false positives confirmed by developers in
these two repositories.

In summary, this paper makes the following contributions:
• We introduce FuzzSlice, a novel design built upon the

insight that warnings fuzzed at the function level and not
resulting in crashes within a reasonable time budget are
possible false positives.

• FuzzSlice efficiently identifies possible false positives in
static analysis reports by: (1) automatically generating a
minimal compiled code slice for complex real world C code
encapsulating any arbitrary static analysis warning, and
(2) generating a fuzzing wrapper that performs type-based
input generation for the function enclosing the warning.

• We develop a prototype tool for FuzzSlice. The tool and
datasets along with the docker image are publicly avail-
able [20].

2 MOTIVATIONAL EXAMPLE

The goal of this study is to prune possible false positives efficiently.
In this section, we provide an example to motivate the FuzzSlice
approach. An example code of the openssl repository [21] in the
C language is shown in Listing 1. The code listing describes a
function (i.e., glue_strings) that joins an array of strings (the
function argument) into a single string (the return value). On line
10, the variable len is updated in a loop to hold the sum of the
length of all input array strings. On line 12, the variable ret is
dynamically allocated with a size of len+1. On line 16, the string is
joined together in pointer variable ret by iterating the pointer p
and copying each input string one by one.

1 /* Glue an array of strings together and return it as an

allocated string.

2 */

3 char *glue_strings(const char *list [])

4 {

5 size_t len = 0;

6 char *p, *ret;

7 int i;

8

9 for (i = 0; list[i] != NULL; i++)

10 len += strlen(list[i]);

11

12 if (!(ret = p = OPENSSL_malloc(len + 1)))

13 return NULL;

14

15 for (i = 0; list[i] != NULL; i++)

16 p += strlen(strcpy(p, list[i])); //False positive

17

18 return ret;

19 }

Listing 1: Code snippet from the openssl project flagged by

RATS as buffer overflow [22].

When a static analysis tool such as RATS [23] is run on this code
it flags line 16 as a possible heap buffer overflow. However, this
is clearly a false positive because the strcpy on line 16 can never
exceed the bounds of the allocated pointer ret. The reason behind
this is that the size of the allocated pointer ret will always be one
plus the length of all input strings. RATS is not capable of this kind
of value flow analysis for variable len. Therefore the tool cannot
be sure that line 16 will never cause a heap buffer overflow.

Fuzzing has become a popular solution for the verification of
static analysis reports. It is possible to compile the whole openssl
binary and guide the fuzzing toward line 16 in the code snippet from
the mainmethod. However, this often takes several days, many CPU
cycles and requires the help of appropriate fuzzing dictionaries. In
spite of this, there is no guarantee that the given static analysis
warning can be covered by fuzzing within a given time budget.

FuzzSlice is an approach that is primarily targeted toward false
positives in static analysis warnings. It takes advantage of the fact
that the function glue_strings in Listing 1 can be fuzzed directly
to identify it is a false positive. Given an arbitrary warning location,
it automatically constructs a function slice of the program, compiles
it including necessary dependencies, generates its own fuzzing
wrapper and fuzzes the function slice. When the function slice
is fuzzed on its own, the static warning on line 16 can be easily
reached. Let us assume that fuzzing this function slice gives no
crash on line 16. This implies that fuzzing from main will also
not result in a crash. This can be derived from the fact that caller
functions can only constrain the input to a given function through
the function arguments. On the other hand, if a crash is observed
on the static analysis warning line then we cannot comment on
it being an actual bug or a true positive. This is because a caller
function can invalidate the input that causes the observed crash in
the slice. FuzzSlice aims to prune all false positives within a static
analysis report similar to Listing 1.

3 FUZZSLICE APPROACH

We split our approach into two parts. First, we discuss the main de-
sign steps of FuzzSlice. Then, we discuss in detail how we achieve
each step.

3.1 Design

The core functionality of FuzzSlice is to decide whether a specific
static analysis warning is a possible false positive (and hence, can be
de-prioritized for manual triage). More formally, given a warning
𝑤 in a static analysis report for program 𝑃 , FuzzSlice examines𝑤
in three conceptual steps, namely (D1) Minimal Slice Creation; (D2)
Fuzzing Input Generation; and (D3) Warning Classification.

(D1) Minimal Slice Creation. First, we build an execution envi-
ronment that fully encloses𝑤 at the function level. This is called a
slice of the original program denoted by 𝑆 . Ideally, 𝑆 should have
the following properties:

(a) 𝑆 ⊆ 𝑃 , i.e., the slice should be smaller than the program
unless the program is just a single main function.

(b) Consider the function 𝐹 directly enclosing warning𝑤 . This
function must be part of the slice i.e., 𝐹 ⊂ 𝑆

2
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(c) Consider a function 𝐹2 which is called by a function 𝐹1
within slice 𝑆 (𝐹1 ⊂ 𝑆). In that case, 𝐹2 is also part of the
slice 𝑆 i.e., 𝐹2 ⊂ 𝑆 .

By definition of property (c), if a function 𝐹𝑘 is not called by any
function 𝐹𝑖 within 𝑆 then 𝐹𝑘 cannot be in 𝑆 . This implies that any
execution beginning from 𝐹 (the function enclosing the warning)
can never reach 𝐹𝑘 . Therefore the defined slice 𝑆 is a minimal slice
capturing execution environment related to warning𝑤 at the func-
tion level.

(D2) Fuzzing Input Generation. Next, FuzzSlice generates valid
and versatile inputs with the goal of testing the minimal slice 𝑆
comprehensively. FuzzSlice achieves this with randomly gener-
ated arguments used by the function 𝐹 which encloses the warning.
FuzzSlice performs type-based input generation and mutation, i.e.,
unlike AFL [24] or libfuzzer [25] which blindly mutates raw bytes,
the input generator in FuzzSlice recognizes the type of the argu-
ments, including struct pointers and mutate inputs based on typing
rules. This helps prevent early-termination by input sanitization
logic during the execution of F which improves both the efficiency
and effectiveness of fuzzing the slice.

(D3) Warning Classification. Finally, we decide whether𝑤 is a
possible false positive, i.e., based on fuzzing the minimal slice 𝑆 :

(a) If the fuzzer finds a concrete input 𝐼 that causes a dynamic
bug checker (e.g., ASAN) to report an issue on 𝑤 while
executing 𝑆 , it is possible that either this confirms𝑤 to be
a true positive (hence, higher priority for manual triage) or
that 𝐼 is an infeasible input which can never be generated
when executing from the ‘main‘ function.

(b) If the fuzzer cannot find an input that causes a dynamic
bug checker to complain about 𝑤 even after exhausting
its computation budget and executing𝑤 at least once, it is
possible that𝑤 is a false positive based on the fact that even
with a free-form search, the fuzzer cannot find an offending
input to trigger the warning.

Implementing the design steps above presents unique challenges.
We discuss how we tackle these challenges in the next section.

3.2 Proposed technique

In this section, we discuss the technical aspects of each of the design
components in the previous section. An overview of FuzzSlice
implementation is shown in Figure 1.

FuzzSlice is used when a software developer would like to val-
idate and prioritize a set of warnings from a static analysis tool.
FuzzSlice takes the following steps to rule out potential false alarms
in these static analysis warnings: (1) Build project and store build
commands; (2) Generate structural information of source code in
XML format; (3) Create a minimized compilable slice containing the
warning; (4) Generate fuzzing wrapper; and (5) Classify warnings
into possible false alarms (remaining are worth further investiga-
tion).

Along this process, step (1) and (2) are information collection
steps that aim to build a compiler-agnostic representation of the
program source code; while steps (3), (4), and (5) outline a concrete

implementation to achieve each of the three design goals (D1), (D2),
and (D3) respectively.

We first describe each step in detail using the code example in
Listing 1. Next, we walk through each step to show how the given
code example is finally classified by FuzzSlice to be a possible false
positive.

In the example of Listing 1, the static analysis tool flags the
strcpy on line 16 as a possible heap buffer overflow. FuzzSlice
currently uses two static analysis tools RATS [23] and Infer [26]
to generate static analysis reports. It is important to note that Fuz-
zSlice can use any static analysis tool in principle for this approach.

Step 1: Build the project and store build commands. In the first
step of our approach, FuzzSlice performs a build of the repository
using its native build system (usually make or cmake for C-based
projects). During the build process, FuzzSlice stores important
build information (e.g., include paths for header files, compiler
options, shared library locations, path to compiled file etc.), which
will be used later to compile minimized slice 𝑆 . FuzzSlice utilizes
Build EAR - a tool that generates a compilation database for a given
build process [27]. Build EAR stores build commands related to each
file in a JSON format. In our running example, the code snippet lies
in a file called driver.c. The build command of driver.c is stored
in JSON format in our example. FuzzSlice uses the generated JSON
files when compiling the code slice in Step 3.

Original source code can have complex structures such as func-
tions which are generated dynamically using macros or prepro-
cessor directives that allow multiple definitions of a function for
different operating systems. To alleviate this, we use the first stage
of compilation to preprocess the source code files. This is necessary
because it makes the code easier for minimization while generating
code slices in later steps. The preprocessed files are similar to origi-
nal source code but stripped of all comments, have inline macros
substituted, and preprocessor directives like #ifdef removed. We
achieve this step by adding some flags to the compilation process
(e.g., “-save-temps” flag). In the example of our running case in
Listing 1, only the comment gets stripped after preprocessing.

Step 2: Generate structural information of source code in

XML format. In this step, we aim to label AST-like high-level
structural information within the entire project repository. This
AST-like information will be used to search for code sections that
represent relevant functions to add to minimized slice 𝑆 in the next
step. To achieve this, we use srcML, a tool that provides an XML
format for structural information of source code [28]. It is light-
weight and highly scalable. Also, the output of srcML (XML-format)
makes it easier when parsing and searching for C references (func-
tions or variables) while constructing minimized compilable slice.
FuzzSlice obtains the srcML of the preprocessed files (obtained
in Step 1). The XML produced by srcML labels individual nodes
that represent source code components (e.g., functions, declaration
statements, for loops etc.). At the end of this step, we have XML
equivalent of source code with all high level structural information
labelled, which we use in Step 3.

Step 3: Constructing minimized compilable code slice. In this
step, FuzzSlice obtains a compilable code slice that contains a given

3
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Figure 1: Overview of the FuzzSlice technique.

Algorithm 1Minimal Slice Creation
1: Input: Function F containing the warning
2: Output: Slice S
3: procedure Slice(Dependency F)
4: file← EnclosingFile(𝐹 )
5: filesrcML← GetSrcML(𝑓 𝑖𝑙𝑒)
6:
7: queue← F ⊲ File level breadth-first search
8: for each 𝑐 ∈ 𝑞𝑢𝑒𝑢𝑒 do
9: if 𝑐 ∈ GetFunctions(𝑓 𝑖𝑙𝑒𝑠𝑟𝑐𝑀𝐿) then
10: S← S ∪ c
11: queue← queue ∪ GetCallees(𝑐, 𝑓 𝑖𝑙𝑒𝑠𝑟𝑐𝑀𝐿)
12: Pop c from queue
13: end if

14: end for

15:
16: 𝑒𝑥𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 ← 𝐶𝑜𝑚𝑝𝑖𝑙𝑒𝑆𝑙𝑖𝑐𝑒 (𝑆) ⊲ Recursion
17: for each 𝑐 ∈ 𝑒𝑥𝑡𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 do
18: Slice(c)
19: end for

20: end procedure

warning, i.e., the code slice that FuzzSlice generates comprises the
entire function that encapsulates the warning and its dependencies
in the same file as well as in other files. In the design section, we de-
fined dependencies as function callees. In this section, we generalize
the concept of dependency to a reference that includes functions,
structs, or global variables required for successful code slice compi-
lation. In our running example, OPENSSL_malloc is a dependency
of the function glue_strings. The function glue_string exists
in a file called driver.c while its dependency OPENSSL_malloc
exists in another file called alloc.c in the openssl project.

Within the design section, we discussed properties (a), (b) and
(c) of minimized slices in (D1). Here we enforce these different
properties of the minimized slice. To enforce these properties, we
utilize the stored build commands (from Step 1) and source code
srcML outputs (from Step 2).

First, we enforce property (b) of the minimized slice in the design
section (D1) by identifying the function 𝐹 enclosing the warning
and adding it to slice 𝑆 . For our example in Figure 1, the enclosing
function is glue_strings which can be identified by parsing the
srcML. This function is the first function added to the code slice.

Now, we try to enforce properties (a) and (c) in (D1) while cre-
ating minimized slice 𝑆 . We recursively identify all other depen-
dencies required by the function enclosing the warning in all files
across the repository. We collect all the required dependencies (in-
cluding callee functions) automatically over several iterations using
compiler logs. To achieve that, we perform the following steps: (1)
code minimization within the file, (2) Attempt to compile; if unsuc-
cessful - identify other files containing the missing dependencies
(3) Recurse until compilation in step (2) succeeds. We describe the
pseudocode of our steps in algorithm 1. We explain the pseudocode
as we describe each step in detail.

(1) Code minimization within a file. In this step, we retain all depen-
dencies needed by a given function (e.g., glue_strings) within its
file. To do this, we obtain the file containing the required function
which initially is the file containing the warning. We automatically
recurse the callees of the given function in a breadth-first search
manner. We use srcML labelled nodes (from Step 2) to identify func-
tion calls within the given file. These dependencies are retained
during the minimization process. Finally, we filter unused depen-
dencies (not covered by the breadth-first search) which are not
relevant to the code slice that FuzzSlice is trying to create in this
file. We shall henceforth call this file the minimized file. Lines 4-14
in algorithm 1 create the minimized file through a breadth-first
search before adding to the slice 𝑆 . For the code in listing 1, the file

4
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to be minimized is driver.c. Only the function glue_strings is
retained within driver.c.

(2) Attempt to compile. We use the compile commands (stored by
Build EAR in Step 2) for the given minimized file. Using these com-
pile commands, we attempt to compile and obtain the object files.
In the case that the compilation is successful, the compilable code
slice is ready for the next step (i.e., generating a fuzzing wrapper).
If the build fails, we automatically parse the compiler error logs
to identify missing references. These missing references can be
external dependencies in other files that we have not minimized
yet. This step is shown in line 16 in algorithm 1, where the external
dependencies are obtained from the compiler logs. In our running
example, OPENSSL_malloc is a missing reference thrown as an error
by the compiler as shown in Listing 2. Hence, FuzzSlice searches
for this reference among other files in the srcML representation of
the repository and locates it in another file alloc.c.

1 driver.c:12:19: error: implicit declaration of

function 'OPENSSL_malloc' is invalid

2 if (!(ret = p = OPENSSL_malloc(len + 1)))

Listing 2: Compiler error requesting additional references.

(3) Recurse until compilation succeeds. Previously, we attempted to
compile the minimized file. Only when we fail, we recurse over new
required references. In our running example, OPENSSL_malloc is
the new required reference and alloc.c is the new file that must
be minimized. This recursion step is shown in lines 17-19 in al-
gorithm 1. We repeat (1) with OPENSSL_malloc as the required
function and alloc.c as the file to be minimized. After this recur-
sion, our running example will become a compilable code slice.

By the end of this step, we obtain all references within multiple
minimized files required for the function enclosing the warning 𝐹 .
This is the minimized slice 𝑆 described in the design section. Addi-
tionally, we have also successfully compiled these files. Finally, we
have a list of object files which will be linked along with a fuzzing
wrapper in the next step.

Step 4: Generate fuzzing wrapper. In this step, we generate a
fuzzing wrapper tailored to each function that contains a given
static analysis warning. This step aims to generate versatile inputs
to fuzz the minimized slice 𝑆 according to (D2). We require a fuzzing
wrapper which is a piece of code that will correctly initialize the
arguments to this function and all its fields (based on type) so that
we can reach the warning through fuzzing.

To create the fuzzing wrapper, we write a Python script that
looks at the argument type and initializes it correctly depending
on the argument type. For primitive C types (eg. char, int, bool,
double etc.), the fuzzing wrapper handles each case in a unique way
that appropriately fuzzes them. Within our example, the function
glue_strings has only one function argument char** list (list
of strings) that needs to be fuzzed. The generated fuzzing wrapper
for the example is shown in Figure 3. It has two inputs Fuzz_Data
which is the fuzzing bytes and Fuzz_Size which is the length of
these fuzzing bytes. The fuzzing wrapper uses these fuzzing bytes
to randomly initialize the argument list. For this purpose on line
7 the first few fuzz bytes are read which is used to split the fuzz

bytes into chunks on line 10. The wrapper then iterates in a for
loop allocating all the strings on line 16 and copying the fuzz bytes
on line 18. This fuzzed function argument list is then passed to
the function glue_strings.

There can also be other cases where user-defined structs or
objects are passed as arguments to the function to be fuzzed. These
objects can have their own fields which must be correctly initialized.
In this case, we use GDB - a debugger for C [29] to resolve the object
into the C primitive types automatically. In the fuzzing wrapper,
FuzzSlice initializes the fields appropriately within the object and
finally fuzzes only the primitive types.

FuzzSlice has now generated a fuzzing wrapper for the code
slice that finally calls the function enclosing the warning. Once
the fuzzing wrapper is in place, the fuzzing wrapper is compiled.
Then all the object files from Step 3 and the fuzzing wrapper are
linked together using the link commands from Build EAR stored
in Step 1. We then use ASAN [30] as an oracle which crashes the
program during stack and heap buffer overflows during the fuzzing
process. At the end of this step, we have a compiled binary ready to
be fuzzed. We then use libfuzzer [25] for the purpose of fuzzing.

1 int LLVMFuzzerTestOneInput(uint8_t* Fuzz_Data, size_t

Fuzz_Size)

2 {

3 uint8_t * pos = Fuzz_Data;

4 // Use fuzz bytes to find no. of strings

5 char **list;

6 size_t num_ptr;

7 memcpy(num_ptr, pos, sizeof(size_t));

8 num_ptr = 1 + abs(num_ptr) % Fuzz_Size;

9 // Find length of each string from fuzz bytes

10 size_t str_size = Fuzz_Size/num_ptr;

11 // Allocate pointers first

12 list = malloc(num_ptr * sizeof(char*));

13 for (int i=0; i< num_ptr; i++ )

14 {

15 // Allocate string

16 list[i]= malloc(str_size);

17 // Copy fuzzed characters

18 memcpy(list[i], pos, str_size);

19 pos += str_size;

20 }

21 // Call target function

22 glue_strings(list);

23 //Free allocated variables after this

24 }

Listing 3: Fuzzing wrapper.

Step 5: Classify warnings. This step is aimed at tackling the
classification of the warnings after fuzzing the minimal slice 𝑆 (D3).
At this stage of our approach, each static analysis warning has its
own binary which is compiled and linked. FuzzSlice fuzzes each
binary after which the llvm-coverage [25] is obtained to show the
number of times each line is executed during fuzzing. We classify
the output of fuzzing the binary in only one of four states as follows:
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(1) There is at least one crash/buffer overflow at warning loca-
tion - Crash (C)

(2) There is no crash/buffer overflow at the warning location,
but the line is executed - Possible False Positive (PFP)

(3) The warning line is not executed - Not Reachable (NR)
(4) The slice is not compiled - Not Compiled (NC)

When there is no crash or buffer overflow at the warning loca-
tion but the line is executed according to coverage, then we can
predict that the warning has a high chance of being a false positive.
This is because a caller of the function enclosing the warning can
only constrain the function argument values compared to the fuzzer.
However, in the case of a crash, we cannot confirm that the warning
is a true positive because the caller function may invalidate the
crashing input. Similarly, if a given line is not executed according to
coverage or if a code slice fails to compile, we cannot say anything
about the warning.

Novelty of the approach: The novelty of the FuzzSlice approach
lies in its ability to generate compiled slices for fuzzing. This means
that for a static analysis warning anywhere in the repository, the
FuzzSlice framework automatically identifies the required depen-
dencies of the enclosing function, compiles, and links the slice with
the correct compiler options. We generate a unique binary aimed
at covering each warning. We believe this is a novel idea within
the FuzzSlice framework especially when combined with fuzzing
wrapper generation to prune possible false positives.

In the next section, we evaluate the FuzzSlice approach and
discuss resulting classes, with a focus on minimizing false positives.
FuzzSlice aims to assist developers in efficiently de-prioritizing
false positives without extensive manual effort.

4 EVALUATION

In this section, we evaluate our proposed approach. In particular, we
aim to answer the following research questions in our evaluation:

• RQ1.Howmany PFPs can FuzzSlice confirm on a synthetic
dataset?

• RQ2. How many PFPs can FuzzSlice confirm on a real-
world project dataset?
• RQ3. How does FuzzSlice perform in terms of coverage,

warning executions and compilation for PFP warnings?

In order to answer the above research questions, we first in-
troduce our evaluation setup in Section 4.1. Then, we present our
evaluation results of each research question in Section 4.2, Sec-
tion 4.3, and Section 4.4.

4.1 Evaluation Setup

In this section, we describe the static analysis tools and the bench-
marks used to evaluate FuzzSlice.

Static analysis tools. We use two static analysis tools, RATS [23]
and Infer [26]. RATS is an open-source tool that utilizes a vulnera-
bility database to flag similar code as a warning. RATS detects buffer
overflows and race conditions. The second tool Infer is developed
and used internally by Meta. Infer performs abstract interpretation
that reasons about mutations to computer memory to detect buffer

overflows and null dereferences. Both of these tools output warn-
ings at different severity levels. We use the "High" and "Medium"
severity of warnings for RATS and L1 and L2 severity of warnings
for Infer because they are the most faithful warnings for these
tools. Both static analysis tools provide the warning at the line level
within a given file. For our evaluation benchmark, we obtain two
sets of warnings, one from each tool.

Datasets. We use two datasets to evaluate FuzzSlice. We are in-
terested in pruning false positive buffer overflow warnings in both
datasets. First, we use a synthetic benchmark called Juliet test
suite [31]. We run FuzzSlice on Juliet test suite v1.2 for C/C++,
which is a benchmark created by the US National Security Agency
(NSA) specifically for assessing the capabilities of static analysis
tools. The benchmark labels each possible warning location with
comments to indicate that the warnings are true or false positives.

Second, we evaluate FuzzSlice on three real world open-source
repositories, namely, openssl, tmux, and openssh-portable [21, 32, 33].
The selected packages for evaluation represent various domains.
Openssl is a robust, commercial-grade toolkit for the Transport
Layer Security (TLS) protocol. Tmux is an open-source multiplexer
for Unix-like operating systems. Using tmux, multiple terminal ses-
sions can be accessed in a single window. Openssh is the primary
connectivity tool for remote connectivity through ssh protocol
eliminating eavesdropping and hijacking. Table 1 presents descrip-
tive statistics on the selected packages. The data shows that these
repositories are actively maintained and have a large number of
lines of code. The following are the git versions of each repository
used for the analysis: openssl (894f2166ef), tmux (70ff8cfe), and
openssh-portable (5f93c483).

In selecting datasets for our evaluation, we opted to consider
both synthetic and open-source repositories. Our reasoning for con-
sidering both synthetic and open-source repositories stems from
the observation that synthetic benchmarks, such as Juliet, tend to
yield a higher ratio of true positives to false positives, making them
an effective means of assessing the performance of FuzzSlice on
a large number of true positives. Additionally, a synthetic dataset
provides ground truth, which can be used to objectively evaluate
the effectiveness of FuzzSlice. In contrast, static analysis warnings
obtained from open-source repositories are likely skewed toward
false positives. Hence, we believe that by considering both synthetic
benchmarks and open-source repositories, we can obtain a more
comprehensive and reliable evaluation of FuzzSlice performance.

FuzzSlice Configuration. To evaluate the warnings produced
by the static analysis tools, we subject each warning to a fuzzing
process lasting five minutes. Our fuzzing procedure was conducted
on a Headless Server equipped with a powerful hardware configu-
ration consisting of 64 cores of Intel Xeon Gold 6226R processors,
operating at a speed of 3.900GHz, and 128GB of RAM on Ubuntu
20.04 LTS. It is worth noting that certain warning locations may
only be compilable on specific operating systems as defined by
preprocessor directives. As a result, FuzzSlice may not be able
to generate a compilable code slice for these warning locations
due to the lack of build information. Therefore, we excluded such
warnings from our analysis.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

FuzzSlice: Pruning False Positives in Static Analysis Warnings through Function-Level Fuzzing ICSE 2024, April 2024, Lisbon, Portugal

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Statistics on the three project repositories in our

benchmark.

Repository Lines of code Latest commit

openssl 450,982 29/03/2023
tmux 106,528 15/03/2023
openssh-portable 60,387 29/03/2023

Table 2: FuzzSlice performance on Juliet test suite.

Ground Truth Total PFP C NR NC
True positive 1,059 20 1,039 0 0
False positive 864 864 0 0 0

Total 1,923 884 1,039 0 0

4.2 RQ1: Juliet Test Suite

The goal of evaluating FuzzSlice on a synthetic data set (which
provides ground truth) is to validate the following foundational
insights behind FuzzSlice- a false alarm by a static analysis tool
should not be flagged by the dynamic checker in FuzzSlice while
a true bug can and is likely to be caught by the dynamic checker in
FuzzSlice as well.

Our evaluation involved the use of version 1.2 of the Juliet test
suite, which provides ground truth for all static analysis warnings,
thereby facilitating their classification as either true or false posi-
tives. We run RATS and Infer over the Juliet dataset, resulting in a
total of 1,923 unique static warnings which comprises of 864 false
positives and 1,059 true positives. Subsequently, these warnings
were subjected to fuzzing using FuzzSlice.

Table 2 shows that FuzzSlice identified all of the 864 false pos-
itives within the static analysis warnings. It is worth noting that
FuzzSlice was able to execute all of the warning lines classified as
false positives without observing any crashes. This suggests that
FuzzSlice has the potential to effectively prune false positives in a
static analysis report.

In addition, FuzzSlice was able to compile and execute all of the
static analysis warnings, including 1,059 true positives that suggest
possible buffer overflow vulnerabilities. Of the total 1,059 warnings
labelled as true positives, indicating a possible buffer overflow at
the warning line number, FuzzSlice was able to crash the warn-
ing line in 1,039 cases. However, there were only 20 instances in
which FuzzSlice was unable to crash the warning line due to the
involvement of global variables. In these 20 instances, FuzzSlice
wrongly classified them as false positives. Since FuzzSlice does
not currently fuzz these global variables, default values with which
they are initialized were used instead. We discuss more about this
in Section 6.

Summary of RQ1: We find that FuzzSlice is able to compile
minimized slices for all warnings in the Juliet dataset. Out of
864 false positive warnings in the Juliet dataset, FuzzSlice
confirms all of them by executing the warning without ob-
serving any crashes.

Table 3: FuzzSlice performance on the three studied open

source repositories.

Repository Tool Total PFP C NR NC

openssl RATS 30 21 1 8 0
Infer 163 88 18 45 12

tmux RATS 5 4 1 0 0
Infer 18 6 2 10 0

openssh-portable RATS 20 6 2 10 2
Infer 29 18 1 3 7

Total 265 143 25 76 21

4.3 RQ2: Real-world Dataset Verified by

Developers

We evaluate FuzzSlice on real-world open source projects with
the goal of assessing practicality of FuzzSlice in handling large
codebases. We also would like to see if developers agree with the
labelling provided by FuzzSlice.

We evaluate FuzzSlice on three popular open-source reposito-
ries: openssl, openssh-portable and tmux [21, 32, 33]. Our results
are presented in Table 3. As shown in the table, FuzzSlice was able
to prune 143 instances of possible false positives (PFP) (54%) out
of 265 warnings. This means that FuzzSlice executed 143 static
analysis warnings without any observed crashes at the warning
location. Additionally, FuzzSlice detected 25 crashes (9.4%) at the
warning location out of the 265 warnings. It should be noted that
these crashes may be false positives if the callers of the enclosing
function invalidate the crashing inputs. However, these warnings
can still be useful for developers to prioritize for further manual
triage. Lastly, we point out that FuzzSlice detected 76 warnings
that were not reachable, and encountered 21 warnings (8%) for
which it could not generate a compiled slice. The relatively low
number of not compiled cases (i.e., 21) is a testament to FuzzSlice
ability to minimize complex code with features such as macros,
function pointers, and structs. This demonstrates that FuzzSlice is
capable of minimizing and compiling a wide range of real-world,
complex C code. We delve into the reasons behind the not reachable
and not compiled cases in Section 6.

Verification by developers. Since there is no readily available
ground truth for the warnings in the open-source repositories we
studied, we reach out to core developers across all three repositories
to obtain a ground truth on these warnings. We are also interested
to see if developers agree with the labelling provided by FuzzSlice.

To achieve this, we first parse the git logs on the files containing
the warnings we obtained from the three repositories. Specifically,
we identify the developers who modified these warning lines the
most along with their email IDs. We then send emails to three
developers (one from each repository) and received responses from
all three developers. The developers of tmux and openssh-portable
agreed to collaborate with us. However the developer of openssl
let us know that they would be unable to collaborate with us as it
would take time away from their core development work.

We provide each developer with the static analysis warning
reports we obtained earlier from both RATS and Infer, and then
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Table 4: Developer labels of warnings from the three open

source repositories.

Repository FuzzSlice label Total Developer label
FP TP Ambiguous

tmux
PFP 10 9 0 1
C 3 1 0 2
NR 10 3 1 6

openssh-portable
PFP 24 24 0 0
C 3 3 0 0
NR 13 13 0 0

ask them to review each static analysis warning and classify it as a
True Positive (actual warning), False Positive (not a vulnerability),
or ambiguous (if they are uncertain about it). We also give the
developers the option to provide a reason for their decision.

It is worth noting that we opted not to send the warnings that
were not compiled by our approach to the developers, as we recog-
nized that such warnings would not contribute towards the analysis
and could potentially waste the valuable time of open-source devel-
opers. Furthermore, we refrain from sharing the results obtained
from FuzzSlice, as this could potentially bias the opinion of de-
velopers when classifying the warnings, and thereby introduce an
unwanted element of subjectivity into the analysis. Finally, it is im-
portant to note that for the openssh-portable project, the developer
identified by our git log approach had invited another developer,
as both were heavily involved in implementing the code flagged by
these static analysis tools.

We present the results of our developer label analysis in Table 4.
The table shows the labels assigned to the warnings by FuzzSlice
(on the left side) and the labels assigned by the developers (on the
top side). As shown in Table 4, the openssh-portable developers
were able to confirm that all the possible false positives detected
by FuzzSlice across both static analysis tools were indeed false
positives. This outcome highlights the accuracy and reliability of
our approach. Table 4 also reveals that the developer from tmux
was able to confirm that 9 out of the 10 possible false positives
detected by FuzzSlice were indeed false positives. However, for
the remaining warnings, the developer labeled them as ambiguous
because they reported that such cases require a precise call stack
to analyze the warning further, as multiple callers can call the
function. Overall, our analysis shows that the developers’ labels
largely matched with the FuzzSlice classification of warnings as
PFPs.

Table 4 also reveals that the developers within the tmux reposi-
tory labelled 9 warnings as ambiguous because they lacked suffi-
cient context within large encryption-related functions. Interest-
ingly, of these 9 ambiguouswarnings, FuzzSlice labelled 6warnings
as unreachable. This is due to the inability of FuzzSlice to trigger
the warnings within these large functions after 5 minutes of fuzzing,
partially indicating agreement between ambiguous and not reach-
able warnings in the tmux repository. Furthermore, the developer
from tmux reported one warning with undefined behavior, which
could potentially result in a buffer overflow. However, FuzzSlice
was unable to execute that warning within tmux and classified it
as not reachable.

Table 5: Evolution of possible false positives over time.

Repository # PFP (3 years ago) # persistant PFP

openssl 55 55
tmux 11 8
openssh-portable 20 20

For most warnings that were labeled as false positives in tmux
and openssh-portable, the developer supported their label with a
rationale. For example, the developers reported that in most false
positives, the arguments passed to libc functions are within the
correct bounds. Also, they mentioned that the index variable could
not exceed buffer size within several loops. In other cases, bounds
checking happens close to the warning, which prevents buffer over-
flow from occurring. Finally, developers in openssh-portable also
mentioned that they use third-party library calls from OpenBSD
that are known to be completely safe.

Summary of RQ2: We find that FuzzSlice is able to com-
pile minimized slices for 244 out of 265 warnings in the 3
open source repositories. In the tmux and openssh-portable
repositories, FuzzSlice was able to identify 33 out of 53 false
positives confirmed by the developers.

4.4 RQ3: Coverage, Warning Executions and

Compilation of FuzzSlice

Sections 4.2 and 4.3 presents the overall effectiveness of FuzzSlice
with both synthetic and real-world case studies. In this section, we
seek to provide a better understanding of FuzzSlice from more
fine-grained aspects. Specifically, we examine FuzzSlice from three
perspectives: coverage, number of executions on warning, and com-
pile time.

Coverage. Code coverage is important to analyze because it indi-
cates howmuch of the code within a given minimized code slice has
been exercised during the fuzzing process. A higher code coverage
means that more parts of the code have been exercised, which in
turn increases the chances of confirming both true bugs and false
alarms in static analysis reports.

We first evaluate the code coverage of the PFP code slices. Note
that we obtain the coverage of the minimized slice in Step 5 of
Section 3.2. The ratio of the number of lines that are executed to the
total number of lines is the code coverage percentage. Figure 2(a)
shows the code slice coverage across the examined benchmarks.
Note that this coverage is the coverage within the constructed
code slice, not the coverage over the entire repository. Among
the four datasets we examined, openssh and juliet showed the
highest code coverage, with a median of 100%. tmux was not far
behind, with a median of 84% code coverage. However, in the case
of openssl, the median code coverage is close to 30%, which is
lower than other repositories. In fact, this is because some static
analysis warnings in openssl are within functions that exercise
whole modules within openssl, creating larger slices, which require
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            Figure (a). Coverage
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   Figure (c). Compile time

Figure 2: Coverage, number of executions on warning and compile time of minimized code slices.

extra time to achieve better coverage (recall that we limit the fuzzing
time to five minutes).

We also compute the slice size in the form of the total number
of lines of code in the minimized slice (LOC). A higher slice size
usually implies more dependencies needed to compile the function
enclosing the warning. Overall, we find that the size of slices varies
depending on the examined project dataset and dependencies of the
function enclosing the warning. For example, a minimized slice in
the tmux project has a median of 7,691 LOC. However, the number
is much lower for juliet, openssh, and openssl. The slice sizes (on
median) in these projects are 58, 495, and 431, respectively.

Frequency of warning hit.We analyze the frequency with which
the warning line was executed for PFP. By examining the number
of executions for a warning line, we gain valuable insights into the
likelihood that the warning may be a false positive. If a warning
line is executed frequently without triggering a crash, this strongly
suggests that it may not be indicative of an actual vulnerability. This
is because the number of executions is closely tied to the diversity
of input values evaluated by the fuzzer. This information can be
obtained through the coverage information which is collected for
fuzzing anyway. This allows us to track the number of times a given
line of code is executed during testing.

Figure 2(b) presents the median number of executions for PFP
warnings across each benchmark on a logarithmic scale. Our anal-
ysis reveals that the median PFP warning was executed approxi-
mately 72.3 million times for juliet benchmark, 72.4 million times
for openssl benchmark, 223 times for tmux benchmark, and 563
thousand times for openssh benchmark, respectively. The execu-
tions on the warning vary depending on the warning location in
the code, e.g., if they are surrounded by guard conditions, within
for loops, etc. Our examination of code coverage and the num-
ber of executions on warning lines without crashes indicates that
many of these warnings may indeed be false positives. The high
levels of code coverage and the number of executions strongly indi-
cate that these warnings do not correspond to actual vulnerabilities.

Performance. To further assess the runtime performance of Fuz-
zSlice, we conduct an evaluation of the time taken to generate the

minimized code slices. Specifically, we measured the time required
by FuzzSlice to create and compile each complete minimized slice
for every warning. Figure 2(c) presents boxplots of the compile time
in FuzzSlice for each benchmark. Our analysis reveals that code
slices can be compiled within a range of 1.51-7.93 seconds. Notably,
we did observe some outliers in the case of openssl, where func-
tions belonging to multiple modules were searched and compiled,
resulting in compile times of up to 80 seconds. However, overall,
our results indicate that FuzzSlice is fast at constructing minimized
code slices across all datasets.

Overall, these findings show that FuzzSlice is an effective tool
for pruning possible false positives in static analysis warnings. By
quickly generating minimized code slices, FuzzSlice can help de-
velopers and security professionals prune and mitigate PFP more
efficiently. The process of constructing these slices takes on aver-
age less than 8 seconds, making FuzzSlice a valuable automatic
approach for optimizing manual triage efforts.

Summary of RQ3: The median minimized slice coverage
of FuzzSlice across all 3 repositories for PFPs is 92.26%. The
median execution on PFP warnings across all 3 repositories is
69.87 million times. FuzzSlice is also able to compile minimal
slices for most warnings under 8 seconds.

5 RETROSPECTIVE ANALYSIS OF PFP

Although we were unable to obtain a ground truth for openssl from
its developers, we can still evaluate the accuracy of FuzzSlice by
analyzing the evolution of PFP detected over time. This technique
was inspired by the work of Di Penta et al. [34] and Aloraini et
al. [35], who observed that warnings that persist in the same code
for long periods without being removed are possible false positives.
The basic idea of the technique is that if a warning persists in the
same code segment across multiple versions of the software and
over a long time, then it is less likely to be a genuine vulnerability
as it was not considered worth removing under any circumstances.

To provide a comprehensive evaluation of our approach, we
conduct an analysis not only on the openssl repository, but also
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on the two other open-source repositories included in our evalu-
ation. Specifically, we consider a version of each repository that
was 3 years old (i.e., the latest commit was made before January
1st, 2020), with the following git versions: openssl (5f95fbf399),
tmux (566ab9aa), and openssh-portable (c4b2664b). We run RATS
and Infer on these older versions of the repositories to flag buffer
overflow warnings, and then use the FuzzSlice technique to prune
all possible false positives (PFP) among these warnings. Next, we
attempt to match these warnings with warnings in a more recent
version of the repository. Specifically, we focus on the following
two criteria: (i) the static analysis warning line in the older version
(before 3 years) is identified as a possible false positive through
FuzzSlice technique, and (ii) the warning line is still flagged by the
respective static analysis tool in a recent version of the repository.

Table 5 presents the results of the evolution of the examined
warnings. The results indicate that for the openssl repository, all
of the possible false positives are still flagged by the static analysis
tool after 3 years. This suggests that there is a high likelihood
that all of these warnings are indeed false positives. Similarly, for
the tmux repository, 8 out of 11 PFP are still flagged after 3 years.
In the case of openssh-portable, all 20 warnings matched both
criteria. These findings support the efficacy of our approach in
pruning false positives in static analysis warnings, and highlight
the importance of considering the longevity and persistence of
warnings in assessing their validity. These results also indicate
that FuzzSlice has the potential to help developers to deprioritize
several such warnings for manual triage.

We found that in three cases, warnings that were identified as
false positives in the 3-year-old version of the repository could not
be matched to any warnings in the recent version. This occurred
because, in two out of three cases, the code containing the warning
had been deleted from the repository. The commits involved in
deleting such code were not related to buffer overflow bugs. In the
remaining case, the warning line had been modified, resulting in
the static analysis warning being removed. This was due to a new
feature in tmux that replaced internal representation of strings from
UTF-8 to wide characters which modified the library call involved
in this warning.

6 LIMITATIONS AND FUTUREWORK

In Section 4, we report that we obtained 21 outlier cases that were
not compiled. This was mainly due to the fact that FuzzSlice relies
on srcML to parse C code. SrcML may misparse code and produce
incorrect XML output. For example, srcML cannot correctly label
code that contains inline assembly language within openssl. This is
because srcML uses a grammar to parse the code and inline assem-
bly language is not integrated into this grammar. As a result, errors
in the srcML output can lead to required dependencies not being
resolved and the slice not being created. Despite these limitations
of srcML, it has been adopted by several previous works [36, 37].

Also, we reported that 76 warnings were not reachable, meaning
that the line could not be executed. This can be due to certain
constraints on input, the requirement of external files, etc. Several
of these cases, especially in openssl and openssh-portable, contain
function pointers as arguments within the code slice. However,
FuzzSlice currently does not fuzz function pointers. A possible

way to address this limitation in future work is by first identifying
all functions with matching signatures and return values that can be
assigned to the function pointer. Future work should also consider
using a more efficient approach to refine indirect call targets [38].

Another limitation of FuzzSlice is related to fuzzing global vari-
ables. Currently, FuzzSlice only provides a default initialization
for global variables and does not mutate them, which led to the
misclassification of 20 cases in the Juliet test suite as possible false
positives. However, despite not mutating function pointers and
global variables, FuzzSlice is still capable of minimizing code that
requires these components in their minimized slice.

Future work: fuzzing global variables. In this work, we limit our
techniques to provide a default initialization for global variables.
One potential extension for future work is to identify all global vari-
ables involved in the minimized slice and mutate them within the
fuzzing wrapper in a similar way as function argument mutation.
Future work: finer-grained slicing. An interesting direction to
explore would be to further reduce the size of the program slice for
fuzzing. In FuzzSlice, the entire function enclosing the vulnerability
is considered for fuzzing. As future work, we plan to construct intra-
function slices that minimally enclose the static analysis warning
(both in terms of control-flow and data-flow). This can further ease
the cost of fuzzing in pruning possible false positives.
Future work: supporting a diverse set of static analysis tools.

Similar to related work [10, 39], we illustrate FuzzSlice on a specific
bug pattern: buffer overflow vulnerabilities. However, the concept
of FuzzSlice can be extended to support static analysis tools that
target different types of bugs, including but not limited to integer
overflow, null-pointer dereference, use-after-free, dead code elimi-
nation, and even semantic and logic bugs. To facilitate false alarm
filtering on these types of bugs, we only need to replace the oracle
that detects the violation at runtime (e.g., UBSAN is an oracle for
integer overflows [40]) within the FuzzSlice framework.

7 RELATEDWORK

A common approach to fuzzing has been to fuzz independent sub-
modules, drivers or libraries separately. There is a rich literature
focused on fuzzing independent libraries such as Transport Layer
Security (TLS), deep learning, C/C++ libraries [16–18]. For example,
Corina et al. [41] proposed fuzzing for kernel drivers effectively
finding bugs within them. FuzzSlice differs from such approaches
since it involves fuzzing at the function level for any arbitrary
warning location, aiming to prune possible false positives.

There exists a rich literature on directing fuzzing towards a given
location [10, 14, 42–45]. The core idea behind such methods is to
mutate inputs that are closer to reaching the target location. The
main difference between FuzzSlice and directed fuzzing is that
FuzzSlice does not use main method as the entrypoint. Instead,
FuzzSlice creates the minimal slice enclosing the warning first and
then we confine the state space exploration within the slice. In fact,
their techniques to direct input mutation towards a certain location
are orthogonal to our approach and can be used as a complementary
technique within FuzzSlice.

Fuzzing has been applied to binary-level code slices as well. For
instance, Chen et al. [19] implemented fuzzing on independent code
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snippets extracted from real-time operating systems (RTOS) bina-
ries. In contrast, FuzzSlice takes a different approach by creating
code slices at the source code level instead of the binary level. By
generating fully compiled slices, FuzzSlice identifies possible false
positives in static analysis reports, eliminating the need to deal
with unstable fuzzing caused by incomplete context.

The work closest to FuzzSlice utilizes symbolic execution. For
example, Engler et al. [46] proposed the idea of under-constrained
symbolic execution (UC-KLEE). UC-KLEE takes an arbitrary func-
tion and symbolically executes it without initializing any of its
data structures and without doing any environment setup, with the
goal of finding quality bugs in drivers within the Linux operating
system. While program slicing helps to reduce the search space of
symbolic execution, UC-KLEE still suffers from other sources of
path explosion and imprecision such as unbounded loops, pointer
arithmetic, memory modeling, and invocation of library functions.
FuzzSlice, on the other hand, is a dynamic analysis tool at its core
and does not suffer from the above-mentioned limitations. Instead,
FuzzSlice is subject to a different set of limitations such as code
coverage and effectiveness of mutation strategies.

Kallingal et al. [47] generate code slices aimed at identifying true
bugs through the Helium framework. Helium can work only with
certain static analysis tools - those that can provide a list of several
statements leading to a given warning. In the Helium approach, the
slice considered is a least common ancestor subtree of the parse
tree over the full path leading to the warning. FuzzSlice on the
other hand does not make any assumptions about the static analysis
tool and does not rely on the accuracy of the static analysis tool in
reporting paths leading to a warning. Additionally, since FuzzSlice
aims to only prune false positives, the framework can disregard
most of the program and directly fuzz only the function enclosing
the warning. Furthermore, Kallingal et al. mention they are able to
compile 68.5% of their code fragments. Since FuzzSlice compiles a
smaller slice containing the enclosing function and its dependencies
it compiled 244 out of 265 slices (92%) in open-source repositories
and all the slices (100%) in the Juliet test suite. Such statistics from
both works highlight the difficulty of generating compilable slices
relevant to a warning and prove that the task is not trivial.

A plethora of work proposed approaches that utilized machine
learning to reduce false positives in static analysis tools [48–51].
Hanam et al. [50] create a feature vector based on code characteris-
tics at the site of each warning. The technique leverages machine
learning techniques to build an actionable alert prediction model.
Yedida et al. [51] proposed locally adjusting decision boundaries
of models for actionable warnings to improve overall performance.
FuzzSlice differs from such machine learning-based works since it
actually dynamically executes the program to classify the warning.

Recent techniques such as [52–55] focused on improvements in
automatic fuzzing driver generation, which is orthogonal to the
FuzzSlice approach. FuzzSlice can benefit from the recent state
of the art in this area. Tip et al. [56] surveyed algorithmic aspects
of program slicing techniques. However, in FuzzSlice, the slice
must also be compiled and linked into an executable with the cor-
rect compiler options, which requires storing relevant information
of the build system. This increases the complexity of the slicing
component within the FuzzSlice framework.

8 CONCLUSION

This paper introduces FuzzSlice, a framework that automates the
pruning of false positives from static analysis tool warnings. We
achieve this by fuzzing warnings at the function level, as it identi-
fies non-crashing fuzzed warnings as potential false positives. The
framework employs two steps: (1) creating a minimal compiled
code slice containing any warning and (2) generating a fuzzing
wrapper that performs type-based input generation for the enclos-
ing function. Evaluation on synthetic and real-world C codebases
demonstrates FuzzSlice’s effectiveness. In the synthetic Juliet test
suite, FuzzSlice identifies all 864 false positives (100%). In open-
source repositories (tmux and openssh-portable), where developers
independently labeled warnings from the static analysis tools, Fuz-
zSlice identifies 33 potential false positives out of the 53 confirmed
by developers (62.2%). Thus, FuzzSlice substantially reduces the
effort required for developers to examine warnings. Additionally,
in the Juliet test suite, 20 of the 884 possible false positives de-
tected by FuzzSlice were actually true positives (2.2%). We were
able to confirm that the incorrect classification in the Juliet test
suite was due to our inability to fuzz global variables. In tmux and
openssh-portable, of the 34 warnings we determined as possible
false positives, 33 were confirmed as false positives by the devel-
opers, and 1 case was deemed as ambiguous (2.9%). These results
validate the key insight of the FuzzSlice framework that a warning
that does not yield a crash when fuzzed at the function level in a
given time budget is a possible false positive.
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