
Finding Specification Blind Spots via Fuzz Testing

Ru Ji
University of Waterloo

Meng Xu
University of Waterloo

Abstract—A formally verified program is only as correct as
its specifications (SPEC). But how to assure that the SPEC is
complete and free of loopholes? This paper presents FAST, short
for Fuzzing-Assisted Specification Testing, as a potential answer.
The key insight is to exploit and synergize the “redundancy”
and “diversity” in formally verified programs for cross-checking.
Specifically, within the same codebase, SPEC, implementation
(CODE), and test suites are all derived from the same set of
business requirements. Therefore, if some intention is captured
in CODE and test case but not in SPEC, this is a strong indication
that there is a blind spot in SPEC.

FAST examines the SPEC for incompleteness issues in an
automated way: it first locates SPEC gaps via mutation testing,
i.e., by checking whether a CODE variant conforms to the
original SPEC. If so, FAST further leverages the test suites to
infer whether the gap is introduced by intention or by mistake.
Depending on the codebase size, FAST may choose to generate
CODE variants in either an enumerative or evolutionary way.
FAST is applied to two open-source codebases that feature
formal verification and helps to confirm 13 and 21 blind spots
in their SPEC respectively. This highlights the prevalence of
SPEC incompleteness in real-world applications.

1. Introduction

Formal verification delivers high-assurance to computing
systems by mathematically checking the correctness of a pro-
gram, i.e., the behaviors of a program are fully confined by a
desired set of properties—the specifications—described with
a formal modeling language. Formal verification has seen
its adoption in hardware and software systems for decades.
Typical application scenarios include cases where errors may
lead to significant losses and irreversible consequences (e.g.,
in the field of aviation [13, 49, 66, 82]) or in cases when
the traditional rolling program upgrade model is not feasible
such as smart contracts on blockchains [1, 67].

Abstractly, applying formal verification to a computing
system can be decomposed into two (somewhat) orthogonal
processes: 1 developing a complete set of specifications for
the target system and 2 proving or disproving that the actual
implementation is in conformance with the specifications.
In this paper, we use SPEC as an abbreviation of the
specifications modeled in predicate calculus with symbolic
semantics and CODE to represent the actual implementation
in programming languages with concrete and executable
semantics. The formal verification process can then be

decomposed into 1 devising the SPEC and 2 checking
that SPEC ⊒ CODE (i.e., CODE conforms to SPEC).

Recent years have witnessed great progress on addressing
problem 2 as evident by the consistent stream of improve-
ments on automated theorem provers [15, 33, 64, 74, 93, 94],
while far less attention has been paid to problem 1 . This
can be a dangerous disparity—even a program is thoroughly
verified with a perfect verification toolchain, this program is
only as correct as its SPEC. Errors in the SPEC can be as bad,
if not worse, as errors in the CODE. One of the concerning
scenarios is unintended gaps in the SPEC. The gaps will create
verification blind spots in which the program behaviors are
unconstrained. In the worst case, there is nothing to prevent
a malicious developer from hiding backdoors and trojans
behind these blind spots [29, 30], and such malicious code
can survive regardless of how rigorous the verification is—
a single blind spot in the SPEC can easily undermine
months if not years of verification efforts.

The consequences of an incomplete set of SPEC is
exacerbated by the high costs of adopting formal methods.
As of now, formal verification is still an expensive technique
due to the extra effort of writing SPEC. In both case studies
covered in the paper (§4.1 and §5.1), the SPEC is not
developed by the team who originally write the CODE.
Instead, they are developed by a dedicated team of experts
with years of training and practice (including a PhD degree)
in formal methods. However, despite the high costs, the
industry is willing to pursue this route with an expectation
that formally verified programs have higher assurance. While
it is true that formally verified programs generally have higher
assurance, it is important to boost a general awareness that
the formally verified “stamp” should not be blindly trusted
without a good understanding of the completeness of the
SPEC in the first place.

Fortunately, gauging the completeness of SPEC is not a
new problem—it has received more attention in hardware
verification than software verification, likely because formal
methods have a longer history in hardware design. Most
of the existing solutions in hardware verification to detect
incompleteness in SPEC are based on mutation testing [28,
84], where a mutant is created by altering either the SPEC
or CODE and check if the mutant can be “killed”, i.e., the
mutated CODE or SPEC can be proved to be non-conformant
with the unmodified counterpart. As a result, any surviving
mutant raises a signal where the SPEC might be incomplete.

The mutation testing technique sheds light on how we
might find gaps in the SPEC of formally verified software sys-

tems. In particular, it is natural to research on 1 whether mu-
tation testing is readily applicable in the software verification
context; and 2 if not, what improvements should be applied
on conventional mutation testing. With an enhanced mutation
testing framework oriented towards software verification, we
can finally pursue our meta-quest: 3 is incompleteness issues
in SPEC prevalent in mature codebases?
In this paper, we seek to answer all questions raised above
with an integrated tool: FAST, short for Fuzzing-Assisted
Specification Testing. In particular, we first confirm that
adopting mutation testing in the software verification context
can be effective in uncovering SPEC gaps in our case studies—
a sizable basket of low-hanging fruits. However, in the face of
complicated programs, conventional mutation testing with a
random mutation strategy is less effective in finding “deeper”
and “more interesting” gaps in the SPEC.

To set the context for this paper, consider a procedure
in which we attempt to measure SPEC completeness by
producing a stream of CODE mutants and checking whether
these mutants can be “killed” by the original SPEC. There
are at least two challenges in this procedure:
• When a mutant passes the verification, how can we tell

that the gap in the SPEC is by intention or by mistake?
Even though the mutant passes the verification, it is still
possible that the CODE is meant to be written freely in the
unspecified part, which means the mutant does not indicate
an underlying mistake, and the SPEC is intentionally
abstract in this part of programming. Therefore, we need
a method that automatically categorizes whether a gap in
the SPEC is intentional or mistaken.

• How to produce a mutant that is more likely to
pass the verification? Brute-force enumeration of all
possible mutations in the CODE might work for simple
software/hardware systems (e.g., UART circuit [69]), but
such a practice can be futile in complicated software
programs with nearly infinite ways to mutate. We need a
systematic approach to produce “meaningful” mutants that
can pass verification in a reasonable amount of time.

To tell whether a gap in the SPEC is by intention
or by mistake, the fundamental insight is to exploit and
synergize the “redundancy” and “diversity” in formally
verified programs. To be exact, SPEC, CODE, and test
suites are all derived from the same set of requirements
but programmed with different mentalities: for example,
in different languages (or even programming paradigms),
asynchronously, with different evolution paths, and ideally
by different and independent teams. It is therefore less likely
that the three derivations will bear the same mistake. This
paves the way for finding errors in one component by cross-
comparing it against the other two. In fact, this principle is
already applied to check the correctness of CODE by both
running it against test suites and proving it against the SPEC.
In this paper, we show that the same procedures can be used
to check incompleteness in SPEC as well (and deficiencies
in test suites too, as by-products of our methods).

We further solve the mutant generation problem with an
evolution strategy adopted from modern software fuzzers.

The insight is to simulate the natural selection process by
allowing the mutant with higher “fitness” score to have more
chances of further mutations. In essence, each CODE mutant
is evaluated for “fitness” when verified against the SPEC
and only high-quality mutants survive and participate in
future rounds of mutation. In this way, all fuzzing efforts
are retained, and each generation of mutants gets closer to
the evolution goal—passing the verification. The “fitness”
metric can be as simple as the number of verification errors
triggered when verifying the CODE mutant against the SPEC.

Like most fuzz-based tools, FAST cannot guarantee the
absence of incompleteness issues in SPEC, but can be used
to boost confidence that there are no obvious loopholes in
SPEC. In other words, we see FAST as a cheap but effective
fortification on the financial and time investment on writing
SPEC and also the co-evolution of SPEC and CODE, such that
the accumulated formal verification effort can not be easily
undermined by unintended omissions by SPEC writers.
Summary - This paper makes the following contributions:
• Concept. We point out the “redundancy” and “diversity” of

SPEC, CODE, and test suites in formally verified programs
and exploit this redundancy to solve the problem of judging
whether a gap in the SPEC is intentional or mistaken by
inviting the test suites as a “referee”.

• Design. We enhance the conventional mutation testing
practices with an evolutionary feedback loop that guides
the production of high quality mutants. Like evolution,
each batch of new mutants are increasingly harder to be
“killed” by the SPEC until a surviving mutant is found.

• Impact. We found 13 and 21 blind spots in the SPEC for
DPN and S2N (two case studies in this paper, details will
be provided later), respectively. Our findings are concerning
and we hope this can be helpful in drawing attention to
the quality of SPEC in formally verified codebases.

2. Background and Related Work

In this section, we give a brief introduction to formal
verification and the SPEC incompleteness problem. We then
introduce and differentiate two stochastic testing methods—
mutation testing and fuzz testing—which are later combined
in our work. In light of the proliferation of research works
in mutation and fuzz testing, this section also serves as a
best-effort survey of related works with elaborations on how
FAST differ from them.

2.1. Formal verification

Formal methods have been widely used in hardware
and software systems such as CPU design (e.g., Intel
floating-point instructions [39]), cryptographic libraries (e.g.,
HACL* [98]), operating systems (e.g., seL4 [48]), compilers
(e.g., CompCert [53]), networking protocols (e.g., Amazon
S2N-TLS [80]), and more recently, smart contracts (e.g.,
the Diem Payment Network [2]), etc. In these applications,
formal verification provides arguably the highest level of

2

assurance anyone can claim to the safety and correctness of
these systems.

Despite the vast number of flavors in formal methods, in
general, applying verification to a system involves two (some-
what) orthogonal steps: 1 devising a set of specifications
(SPEC), often developed in an abstract logic language, to
describe the desired properties; and 2 developing verification
tools to reason about the relationship between the SPEC
and the target implementation (i.e., the CODE) that follows
concrete and even executable semantics [46].

While much attention has been paid to 2 —automated
verification tools—the effectiveness and practical value of
formal verification, however, is largely determined by the
quality of the SPEC that confines the behaviors of a system.
An ideal set of SPEC needs to be complete enough to capture
all intentions from stakeholders and yet abstract enough to
allow flexibility in implementation choices. For example, if
the requirement is sorting an array, the SPEC needs to be
complete enough to capture the semantics of sorting and yet
abstract enough to allow both the quick sort and merge sort
implementation to pass.

However, developing a high-quality set of SPEC is hard.
A set of SPEC that shadows the CODE is of little practical
value and only bloats the codebase, leading to both frictions
on CODE changes and higher maintenance costs. On the
other hand, if the SPEC is too abstract, it might fail to
capture some of the essential design requirements, leading
to potential vulnerabilities undetected in the CODE.

Unfortunately, despite the importance of SPEC, there are
limited research works that objectively measure its quality
other than using hand-tuned heuristics-based checklists [14,
54, 66]. This is in sheer contrast with the general perception
of test suites (e.g., unit tests or end-to-end tests). The de facto
standard to measure the quality of a test suite is code coverage
and this metric has reached consensus in the open-source
community. While this paper does not target at proposing a
quality measurement metric for the spec, our results highlight
the importance of such a metric and shed light on what can
be useful elements in this metric. i.e., SPEC coverage, or
more specifically, how a piece of code contribute to the
establishment of a property in the SPEC.

2.2. Automated function verification

While FAST can be applied to different flavors of formal
verification (e.g., protocol verification [40], state-machine
transitions [23, 63], etc.), in this paper, we focus on a specific
type of verification: functional correctness verification with
preconditions and postconditions, sometimes also known as
“design-by-contract” [61].

In function verification, the SPEC target is typically the
CODE that constitute a single function and developers provide
pre- and post-conditions for the function body in the form
of SPEC predicates, which typically include conditions over
function parameters and/or environmental states that can be
referred to by the CODE in the function. The SPEC may
include constructs that do not have concrete executable
semantics, such as universal and existential quantification

1 fn add1(v: [int]) -> [int] {
2 for i in 0..len(v) {
3 v[i] = v[i] + 1;
4 }
5 return v;
6 } (a) CODE for add1

1 spec for fn add1 {
2 ensures forall
3 i in 0..len(result):
4 result[i] = v[i] + 1;
5 }

(b) SPEC for add1

Figure 1: Demonstration of potential incompleteness in SPEC

over unbounded domains. Although specified against a
single function, pre- and post-conditions are not limited
to establishing the correctness of one function only. They
contribute to the establishment of overall program correct-
ness as preconditions are verified at caller side such that
postconditions can be assumed after the call.

Recent years have seen a gradual adoption of many
function verification frameworks and broadly categorized,
they follows either automated deductive verification in which
the manual effort is limited to writing the SPEC only and the
proof obligation is fulfill automatically (e.g., SeaHorn [37],
Kani [3] VeriFast [43]), or interactive verification in which
both the SPEC and a majority of the proof needs to be
developed manually (e.g., HOL [35], Isabelle [92], Coq [42]).
It is worth highlighting that FAST requires a fully automated
process on checking whether a CODE mutant conforms to
SPEC. Therefore, FAST is only compatible with automated
deductive function verification systems.

Figure 1 is an illustration of function verification. In
this simple case, the developers’ intention, as correctly
implemented in the CODE, is to increment one for each
element in the vector. The SPEC for this function, as described
in the ensures postcondition, asserts that for each element
in the return vector, it gets incremented by one compared
with its counterpart in the input vector. The SPEC shows no
preconditions, as this function can be called from any state.
It is then the job of the verification tool to fuse the CODE
and SPEC into a proof obligation that can be discharged to
backend solvers (typically SMT solvers) to handle.

2.3. The completeness of specifications

While it is obvious that in Figure 1 the CODE conforms
to the SPEC, the SPEC, however, has a serious omission and
does not fully capture the developers’ intention. Imagine
if the add1 function is implemented differently, as shown
in Figure 2a, with an extra pop() after the original loop. The
current SPEC, which only checks whether the value of every
remaining element in the vector is increased by one, will still
pass under the code mutant—an undesirable behavior! The
complete spec is shown in Figure 2b with an extra ensures
clause which further restricts the ability for the add1 function
to modify the input vector. This missing ensures represents
an incompleteness issue of the original SPEC.

The example in Figure 1 and 2 highlights a lesser-known
view about formal verification—writing SPEC is essentially
another form of programming to capture the same require-
ment, just like writing CODE [68]. Therefore, if bugs are
commonly found in CODE, especially in large codebases, how
can we be assured that the SPEC is not “buggy”? The idea of
finding discrepancies between SPEC and CODE is known as

3

1 fn add1(v: [int]) -> [int] {
2 for i in 0..len(v) {
3 v[i] = v[i] + 1;
4 }
5 // mutation to the code
6 v.pop();
7 return v;
8 } (a) CODE mutant for add1

1 spec for fn add1 {
2 ensures forall
3 i in 0..len(result):
4 result[i] = v[i] + 1;
5 // missed post-condition
6 ensures
7 len(result) == len(v);
8 } (b) Complete SPEC for add1

Figure 2: Finding the gap in SPEC via CODE mutant

gauging the completeness of SPEC in the literature [79, 85],
and has received more attention in hardware (integrated
circuit in particular) verification than software verification,
likely due to the fact that formal methods have a longer
history in hardware design. A recent work uses an inductive
way to show the gap between the mathematical model
provided by formal methods and the actual system through
two case studies on embedded security architectures [7]. In
the hardware verification context, mutation testing is a more
popular way to gauge the incompleteness gap, as will be
described in §2.4,

2.4. Mutation testing

Although FAST draws inspiration from mutation testing
on hardware SPEC completeness, the idea of mutation testing
actually originated from the skepticism on the correctness
of software test suites. While the correctness of CODE is
guarded by tests, there is nothing to ensure that the test suite
itself is comprehensive enough. This is similar to the SPEC
incompleteness problem FAST aims to solve.

In a high-level description, mutation testing assesses the
quality of a test suite by applying mutations to a program
and checking if the test suite reacts differently with the
original CODE vs the CODE mutant [95]. Since its inception
in 1970s [9, 19, 38], mutation testing has been applied to
various use cases, as summarized below:
Completeness evaluation of different styles of tests. CODE
testing has multiple types/styles such as, unit testing [87],
integration testing [17, 36], end-to-end testing [73], etc.
These related works use mutation testing to check the quality
of different types of test suites. The general evaluation
process is to conduct random mutations on the CODE and
check to see if the mutant can be killed by any test case in
the test suite.

Another way to categorize the related works is by the
programming language in which CODE is implemented.
Mutation rules have been introduced into different languages
to test the effectiveness of the test suites (with a focus on unit
tests). Examples of language mutation include: C++ [18],
Java [57], Ruby [55]. Mutation testing can be used to
ensure the effectiveness of large applications developed with
multiple languages as well, such as web applications [77]
and Android applications [65]. In these works, the integration
and end-to-end tests are usually the subject of evaluation.

Mutation testing has also been used on programs that
do not have concrete execution semantics. For example,
several work targets mutation testing on finite-state machines

(FSMs) [27, 58] which are only tested via simulation. They
use a comprehensive checklist to select the mutation points.

FAST is similar to this line of research in terms of
producing valid CODE mutants. But FAST differs from
them not only in the evaluation target (i.e., SPEC vs tests)
but also in the way how FAST produces surviving CODE
mutants and checks the quality of a mutant.

Completeness evaluation of hardware SPEC. In the hard-
ware verification context, mutation testing has been used to
improve the completeness of hardware SPEC [30, 51, 86]. The
general process of mutation testing in hardware verification
is to inject specific functional transformations in circuit (i.e.,
the CODE) programmed in languages like VHDL or Verilog.
These programs (CODE mutants), are syntactically correct
but functionally incorrect. The mutants will be given to the
verifier together with the SPEC to see whether the mutated
implementation may still satisfy the SPEC.

FAST shares the same goal with this line of research: find-
ing gaps in SPEC. But FAST faces two more challenges:
1) judging whether a surviving CODE mutant signals an
intentional gap or a blind spot, and 2) producing surviving
mutants with a much larger domain of random mutations.
None of these problems are solved in the related works.

Mutation directly on SPEC. The earlier research work on
SPEC mutation [4, 45, 62, 83] considered CODE as a black-
box, and mutate the SPEC in order to find out incompleteness
in SPEC [10], There are some implementations on FSM-based
SPEC [16, 76].

FAST differs from this line of research in that FAST
mutates CODE instead of SPEC. SPEC are generally more
versatile than CODE. For example, SPEC can be declar-
ative, imperative, state-machines, etc, while CODE are
typically imperative with a common set of operators
such as binary operators. Therefore, the surveyed works
are applied in highly-specialized context while CODE
mutation-based framework like FAST has a higher chance
of being generalized to other formally verified systems.

Generic improvement. Last but not least, the final line
of related work focuses on improving the mutation testing
approach in general. For example, several works sought to
reduce the cost of mutation testing by selecting a subset of
mutants [11], applying selective mutations [60], or adopting
heuristics and search-based [96] mutant generation.

FAST is orthogonal to these lines of research while its
results can be integrated into FAST when applicable. We
leave some of the integration items as future work §7.

2.5. Evolution strategy in fuzzing

Fuzzing (also known as fuzz testing) is a software
testing scheme that checks the correctness of a program
by repeatedly generating random inputs and monitoring the
program executions for defects [59]. As the input space of
a program is (in most cases) too huge for an exhaustive
enumeration, strategically generating inputs that may bear a
higher chance of triggering a bug is crucial. For example, a
program that takes a string of bytes as input (such as XML

4

file parsers) has a (virtually) infinitely large input space and
there is no way to exhaustively enumerate it.

Mutation testing faces a similar problem. Even with a
medium-sized project, the number of potential CODE points
for mutation multiplied by the potential ways to mutate
each CODE point produces an extremely large search space.
Furthermore, compared with testing (i.e., concrete execution),
formal verification (i.e., abstract and symbolic execution) is
usually orders of magnitude slower. For example, the S2N
test suite finishes in seconds while the verification takes tens
of minutes. This slowness further limits the applicability of
exhaustive enumerations to small codebases only.

In modern fuzzing research, one way to deal with the
state exploration problem is to simulate the natural selection
process, with a combination of random mutation and survival
of the fittest. To be specific, in each mutation round, random
mutation is used to add more chance in exploring more path
that has not been explored. the survival of the fittest process
effectively ranks different seeds based on the feedback (e.g.,
code or path coverage in most fuzzing work), and gives the
seed with a higher ranking a better chance to generate inputs
for future rounds of testing.
Feedback loop. Evolutionary fuzzers use feedback from
each loop of fuzzing to discover over time the execution
state space of the program. Among all the building blocks
of a modern fuzzer (e.g., mutation rules, seed scheduling,
feedback mechanisms), the metric that provides an objective
evaluation on the seed quality is of paramount importance to
the effectiveness of a fuzzer. For example, the pioneer work
American Fuzzy Lop [97] is an evolutionary fuzzer which
uses code coverage to guide the process of seed generation.
It maintains a seed queue that stores all the seeds, including
the initial seeds chosen by the user as well as the ones that
are mutated from the existing seeds and cause the program
to reach new and unique execution states. This has inspired
a fleet of coverage-guided works [8, 32, 56, 78, 81, 88].

Similar to evolutionary fuzzers, FAST navigates itself
in a huge CODE mutant search space via a feedback
mechanism. However, existing CODE-coverage based
feedback is neither applicable in FAST nor can be easily
exposed from the backend solvers. FAST proposes its new
metric to evaluate a CODE mutant: the number and variety
of verification errors from the solver.

Language fuzzing. Fuzzing has been used on different
types of software systems as summarized by this survey [59].
One line of research that is especially related to FAST is
language fuzzing. Language fuzzing aims to find issues
with compilers or interpreters (e.g., virtual machines or JIT
engines). For example, Superion [91] is an AFL-based fuzzer
to find the bugs in XML and JavaScript engines. There
are also other works aiming at JavaScript engines [24, 75],
and Java language [44, 47]. Research works aiming at
optimizing the language fuzzing process has been proposed
as well. For example, generating the input mutant in a
more efficient way [21, 26], some other works use different
feedback patterns (e.g. code coverage) to guide the fuzzing
mutant[41, 72].

FAST is similar to this line of research as they share the
same target to mutate—CODE. However, existing works
have not taken the completeness problem of SPEC into
consideration. A smaller difference is that not all language
fuzzing tools need to produce valid and type-checked
CODE mutants, but this is a requirement for FAST.

3. The Tale of SPEC, CODE, and Tests

As demonstrated in the language fuzzing work (§2.5),
creating a diverse set of CODE mutants is not a challenge
for mutation testing. A more fundamental challenge is how
to judge whether a surviving mutant is “meaningful”. To
be specific, in the context of FAST, when a CODE mutant
passes the verification and signals a gap (e.g., Figure 2a),
how can we tell that the gap in the SPEC is by intention
or by mistake?

The insight behind FAST is to exploit and synergize the
“redundancy” and “diversity” in formally verified programs:
SPEC (from the spec team), CODE (from the dev team), and
test suites (from the QA team) are all derived from the same
set of requirements but programmed with totally different
mentalities. It is therefore unlikely that the three teams (spec,
dev, and QA) will make the same mistake. This paves the
way for finding errors in one component by cross-comparing
it against the other two. In fact, this principle is already
applied to check the correctness of CODE by both running
it against test suites and proving it against the SPEC. In this
section, we show that the same procedures can be used to
check incompleteness in SPEC as well (and deficiencies in
test suites too, as by-products of our methods).
Notations. To precisely describe how FAST solves the
problem, we first introduce some basic notations:

– We denote the SPEC to check as S, the CODE from devs
as C, and the tests from QA as T .

– We denote the refines-to relation as ⊒. By definition,
S ⊒ C as C verifies under S.

– We denote semantically equivalence as ≡. C ≡ C ′

means C behaves like C ′ in every observable way.
– Each test case t ∈ T is a concrete input for C and C

passes the test suite T , denoted as C ≻ T , if and only
if C passes every test case t.

Definition of a gap in SPEC. With these notations, we can
formally define what a “gap” stands for in SPEC:

– Suppose we are able to hire an independent team of
developers to work on the CODE and this new dev team
produces new code C ′ where (C ′ ̸≡ C)∧(S ⊒ C∧S ⊒
C ′). Then the semantic difference between C and C ′

(denoted as ∆C) indicates a gap in the SPEC.
– Symmetrically [50, 51], gaps in SPEC can be exposed

with an “alternative” spec team. Suppose we are able
to find another SPEC S′ such that (S′ ̸⊒ S) ∧ (S ⊒
C ∧ S′ ⊒ C). Then the difference between S and S′

(denoted as ∆S) represents a gap in the SPEC.
In the running example of Figure 1 and 2, C, S, and C ′ are
shown in Figure 1a, 1b, and 2a, respectively. It is easy to
observe that (C ′ ̸≡ C)∧ (S ⊒ C ∧S ⊒ C ′), and this signals
a gap in S.

5

Although it is possible to obtain C ′ or S′ by hiring
independent teams and to gauge ∆C and ∆S with expert
reviews, such a practice is neither cost-effective nor scalable.
This is where FAST fits into the picture. The mutation testing
component of FAST plays the roles of independent dev
and spec teams that produce C ′ and S′; while the gauging
component of FAST judges whether a ∆C or ∆S signals a
blind spot in the SPEC. In this paper, we focus on mutation
testing to create ∆C . More discussion on SPEC mutation can
be found in §7.
Definition of a meaningful gap in SPEC. With the definition
of a gap, how can FAST tell that the gap is inadvertently
introduced into the SPEC? On first thought, this seems to
be an unsolvable problem as SPEC are, by design, more
abstract than CODE. To illustrate, assume SPEC S requires
sorting the input but does not dictate a sorting algorithm.
Therefore, the CODE is free to use either quick sort (C) or
merge sort (C ′) to satisfy S, i.e., S ⊒ C ∧ S ⊒ C ′ signals
a gap in S. However, if gaps are indeed expected between
SPEC and CODE, how can we tell that a gap is by intention
or by mistake?

The solution is to invite the test suites (T) as an
independent “referee” to the “rally” between C and S. To
illustrate, in Figure 1, it is reasonable to expect that the add1
function will be accompanied by a unit test t ∈ T like the
following:

assert add1([0,1,2]) == [1,2,3];
While this test t is unlikely to be written with the intention
to block the code mutant C ′, C ′ will not pass this test case.
In formal notations, we have S ⊒ C ′ ∧ C ′ ̸≻ T . In other
words, the test suite (T) captures some valid intention that
is not captured in the SPEC (S)—a strong indication that the
gap in the SPEC is not intentional but more like a mistake.
Summary. There are only five possibilities after FAST
obtains a CODE mutant and runs it for testing and proving:

1 S ⊒ C ′∧C ′ ≻ T ∧T ̸⊥ ∆C =⇒ there is a gap in the
SPEC and this gap is intentional, as the test suites also
explicitly allow this behavior (by the clause T ̸⊥ ∆C).

2 S ⊒ C ′ ∧ C ′ ≻ T ∧ T ⊥ ∆C =⇒ there is a gap in
the SPEC and we cannot conclude whether the gap is
intentional or mistaken, as the test suites also fail to
capture this behavior (by the clause T ⊥ ∆C).

3 S ̸⊒ C ′∧C ′ ≻ T =⇒ the mutant is killed by the SPEC
but passes the test suite, indicating that there might be
incompleteness in the test suite.

4 S ⊒ C ′ ∧C ′ ̸≻ T =⇒ there is a gap in the SPEC and
this gap is mistaken as it misses an important property
that is captured even in concrete test cases.

5 S ̸⊒ C ′ ∧ C ′ ̸≻ T =⇒ the mutant is killed by the
SPEC and does not pass the test suite, this is expected
and does not raise a signal.

When a gap is exposed through CODE mutants, FAST is able
to infer the intention with the help of a robust test suite. If
FAST is unable to deduce the intention for a particular gap,
the gap represents some vacancy in the program semantics
where neither the SPEC nor test suites cover. In such a case,
FAST will report the gap to the users for manual analysis.

Level of manual effort When applied to an automated
deductive verification system, FAST can find SPEC gaps
automatically (case 4) while optional manual effort can
help uncover more insights on the result (in other cases).
• Case 1 and 2 : manual checking can confirm whether
S ⊒ C ′ is caused by an equivalent mutant, an intentional
gap in SPEC, or incompleteness in both SPEC and tests.

• Case 3 : manual checking can confirm whether S ̸⊒ C ′

is caused by out-of-sync proof hints (e.g., loop invariants)
or a genuine SPEC violation. The latter case signals
incompleteness in test suite, not SPEC.

• Case 4 : requires no manual effort to confirm a SPEC gap.
• Case 5 : C ′ ̸≻ T confirms C ′ is not an equivalent mutant.

Manual checking can help decide whether S ̸⊒ C ′ is
caused by missing manual proof hints (e.g., loop invariants)
or a genuine SPEC violation. The former case might hide
a gap in SPEC — this is a limitation of FAST.

4. Enumerative CODE Mutant Generation

With the SPEC gap classification problem solved in §3,
the next road blocker of porting mutation testing into the
software verification context is CODE mutant generation,
i.e., how to produce a CODE mutant that may pass the
verification under the original SPEC. In this section, we
describe an enumerative strategy which is more suitable for
small and simple codebases but is already effective enough
to find shallow gaps in SPEC even for mature codebases. We
describe a more sophisticated CODE mutation generation
strategy which is more suitable for large and complex
codebases in §5. It is important to emphasize here that
in both strategies, when verifying the mutated code against
SPEC, FAST will check the overall verification result instead
of whether the modified function passes verification or not.
Type-preserving mutation. Recall that the goal of mutation
is to produce valid CODE mutants that should at least compile
and execute, otherwise, FAST won’t be able to even verify
and test the CODE mutant. This requires that whatever
mutation rule FAST applies to convert C to C ′, the rule must
respect the type system in which C is constructed. As a result,
in FAST, all mutation rules are type-preserving by design.
Table 1 show the list of mutation rules available in FAST
that are considered type-preserving in most programming
languages.

It is worth-noting that while the mutation rules in FAST
preserve typing information, FAST does not guarantee that
the CODE mutant must be semantically different from the
original CODE, i.e., C ′ ̸≡ C. For example, (a - a) * 2 will
always evaluate to zero regardless of which rule we use
to mutate the constant 2. However, in practice, such cases
are extremely rare (and are most likely to be eliminated
by compiler optimizations). The chances of producing a
semantically equivalent CODE mutant under these rules are
small and can be left to manual review after FAST have
found a surviving mutant. We observed one such case in our
experiments and presented it as a false positive case in §4.1.
Enumerative algorithm. Given the limited set of mutation
rules discussed in Table 1, for small codebases that do not

6

Category Mutation point Mutate into

1 Unary Neg - Drop the operator
2 Not ! Drop the operator

3

Binary

Add + One of -, *, /, %
4 Sub - One of +, *, /, %
5 Mul * One of +, -, /, %
6 Div / One of +, -, *, %
7 Mod % One of +, -, *, /

8

Bitwise

BitAnd & One of |, ˆ
9 BitOr | One of &, ˆ

10 BitXor ˆ One of &, |
11 Shl « One of »L, »A
12 LShr »L Shl «
13 AShr »A Shl «

14

Compare

Lt < One of <=, >=, >, ==, !=
15 Le <= One of <, >=, >, ==, !=
16 Ge >= One of <, <=, >, ==, !=
17 Gt > One of <, <=, >=, ==, !=

18 Equality Eq == !=

19 Neq != ==

20
Constant

<value> One of 0, 1, -1, MIN, MAX, etc.
21 <value> One of value+1, value-1, etc.
22 <value> A random value in range

23

Structure

<if-else> Swap the branches
24 <continue> break the loop
25 <break> continue the loop
26 ITE ?: Swap the operands

TABLE 1: Generic CODE mutation rules available in FAST

have many instructions in the original CODE, it might seem
feasible to even try all possible mutation strategies using an
algorithm described in algorithm 1.

Algorithm 1: Enumerative mutation testing
Input: Original CODE C, SPEC S, and test suite T
foreach Instruction I ∈ C do

if I has a mutation point then
foreach rule r to mutate I do

∆C ← apply(r, I) ;
C′ ← repackage(∆C , C) ;
Run C′ through verification and testing ;
Check which of the following applies:

1) S ⊒ C′ ∧ C′ ≻ T ∧ T ̸⊥ ∆C

2) S ⊒ C′ ∧ C′ ≻ T ∧ T ⊥ ∆C

3) S ̸⊒ C′ ∧ C′ ≻ T
4) S ⊒ C′ ∧ C′ ̸≻ T
5) S ̸⊒ C′ ∧ C′ ̸≻ T

Report cases 2 and 4
end

end
end

An exponential search space. Note that algorithm 1 can be
trivially extended to support the mutation of multiple CODE
locations at the same time, i.e., producing high-order CODE
mutant by mutating more than one instructions in the original
CODE. Essentially, this means that with an enumerative
approach, the search space is exponential to the number
of mutable locations in the CODE. We denote the number
of possible mutation locations in the CODE as n. For one

DPN

CODE

DPN

SPEC

Typing

Move Compiler

Move Prover

Final Report

Mutators

on source

code AST

AST Parsing

... other steps ...

Finalization

... other steps ...

Bytecode
(w/ mutation)

DPN

Test Suite

Testing

Result

Verification

Result

Figure 3: CODE mutation pass in the Move Prover pipeline

instruction, there can be multiple possible mutation locations:
operator, operand(s). Therefore, the search space will be 2n

where n ≥ I, I ∈ C. However, it is still debatable on the
effectiveness of high-order CODE mutants due to the coupling
effect (more details in §6). FAST found mixed evidence on
coupling effect in our case studies.

4.1. Case study: Diem Payment Network

Being a small yet critical smart contract, the Diem
Payment Network [2] is a perfect case study for FAST to
apply enumerative mutant generation strategy for finding
blind spots in its comprehensive SPEC system.
Applying FAST to DPN. Figure 3 shows how FAST is
applied to find SPEC blind spots on DPN. Briefly,
1) FAST first collects all possible mutation points in the DPN

core CODE by statically analyzing the Move source code
abstract syntax trees (ASTs) which are available in the
Move compilation pipeline.

2) FAST then iteratively goes over each mutation point and
follow the generic mutation rules in Table 1 to produce
CODE mutant. For constant mutations, CODE randomly
picks one of the three mutation rules listed in Table 1 to
get the mutation target. All CODE mutations are inserted
before typing step in the compiler to ensure that the CODE
mutant is indeed valid Move code which in theory, can
be developed by human developers.

3) With each CODE mutant generated, FAST passes it to the
prover along with the original SPEC and check for verifica-
tion results from the Move prover. The Move Prover will
report the verification status and a detailed explanation of
verification errors, i.e., which SPEC property is violated
on which line of CODE, if any.

Findings. FAST identified 404 CODE locations where
mutations can be applied—a number suitable for brute-force
enumeration. The true omissions are summarized in Table 2,
which is obtained by the following procedure:
- After enumerating each of the 404 CODE locations with

one random mutation, together with higher-order muta-
tions with a boundary of the number of mutation points
used in constructing higher-order mutant. The boundary
is set to 3 here. FAST reported 16 cases where the CODE
mutant survived the verification.

7

File Name Function Name Mutation Point Mutation Rule Test C §3 Details

1 DiemAccount.move epilogue_common Constant 1 Fail ✓ 4 Case 1
2 DiemAccount.move make_account Constant u16::MAX Fail∗ ✓ 4
3 DualAttestation.move initialize Constant += 1 Fail∗ ✓ 4
4 AccountLimits.move publish_window Constant += 1 Pass × 2
5 AccountLimits.move current_time Constant 1 Pass × 2
6 CSRN.move force_expire Add Sub Fail ✓ 4
7 CSRN.move shift_window_right Constant += 1 Pass × 2
8 Diem.move register_currency Constant 0 Pass × 2 Case 2
9 DiemConfig.move emit_genesis_reconfiguration_event Constant += 1 Fail∗ ✓ 4
10 DiemSystem.move initialize_validator_set Constant 1 Fail ✓ 4
11 DiemTimestamp.move set_time_has_started Constant /= 2 Fail ✓ 4
12 SlidingNonce.move publish Constant += 1 Pass × 2
13 XUS.move initialize Constant *= 2 Fail∗ ✓ 4

14 AccountLimits.move can_withdraw_and_update_window Ge Gt Pass × 2 Case 3
15 DiemAccount.move writeset_epilogue Constant 1 Pass ✓ 1 Case 4
16 DiemAccount.move writeset_epilogue Constant 1 Pass ✓ 1 Case 4

TABLE 2: Findings on the DPN case study. Issues 1-13 are reported and fixed while 14-16 are confirmed to have no harm.

- Among the 16 surviving CODE mutants, 8 mutants failed
the tests, including 4 mutants that passed the tests in its
original setup but failed after an automated re-genesis-
and-test infrastructure was later landed in the codebase
(marked as "Fail∗" in Table 2). 8 mutants passed the tests
unconditionally, out of which 3 are covered by test cases.

- After analyzing all 16 cases, we confirmed 13 cases to
be true omissions with SPEC fixed in pull request 1, 2, 3.
The remaining 3 are false positives (explained later).

Sample reports. We present two true omissions, the false
positive case, and the intended gap for readers’ information.

Case 1: SPEC omission signaled by a test failure.
In the following snippet, the original code will add the
sequence_number with 1 at the end of this function. FAST
mutated the constant 1 to be 0 and observed that the CODE
mutant still passed the verification.
1 // code snippet in DiemAccount.move
2 fun epilogue_common<Token>(account: &signer)
3 acquires DiemAccount {
4 let sender = Signer::address_of(account);
5 let sender_account =
6 borrow_global_mut<DiemAccount>(sender);
7 sender_account.sequence_number =
8 sender_account.sequence_number + 1;
9 //! ^

10 //! mut: 1 -> 0;
11 }

However, the unit test failed because increasing the sequence
number in the users’ account is monitored by the following
snippet of code in the unit test:
1 assert_eq!(sender_seq_num + 1, updated_sender.sequence_number());

In other words, this case obeys the pattern S ⊒ C ′∧C ′ ̸≻ T ,
which is a clear signal that some intention failed to be
captured in the SPEC. In fact, this is a serious loophole. It is
a security requirement to increment the sequence number in
the user’s account after each transaction is sent, otherwise,
the account can be vulnerable to replay attacks! The fix for
this loop is to add an extra ensures clause in the SPEC, as
shown below:
1 spec epilogue_common{
2 //... redacted ...
3 //! fix: added missing ensures
4 ensures

5 global<DiemAccount>(account).sequence_number
6 == old(global<DiemAccount>(account).sequence_number) + 1;
7 }

Case 2: SPEC omission confirmed manually. In the code
snippet below, FAST mutated the parameter that controls the
exchange rate to the Diem coin when registering USD coin
and yet this mutant managed to pass both verification and
testing. This was a surprise as the stability of Diem coin
is a core business requirement. However, later we noticed
that the exchange rate is not used in DPN due to historical
reasons.
1 // code snippet in XUS.move
2 fun initialize(dr_account: &signer, tc_account: &signer) {
3 Diem::register_SCS_currency<XUS>(...,
4 /* exchange rate = 1:1 */ FixedPoint32::new(1, 1)
5 //! ^
6 //! mut: ^ 1 -> 0;
7)
8 // ... redacted ...
9 }

The fix is to add an extra ensures clause in the USD coin
registration function.

Case 3: false positive due to semantic equivalence. While
applying mutation rules in Table 1 will likely distort the
semantics of the CODE, there might still be a small chance
that a semantically equivalent CODE mutant can be produced,
as shown in the following snippet.
1 // code snippet in AccountLimits.move
2 fun can_withdraw_and_update_window<CoinType>(
3 amount: u64,
4 sending: &mut Window<CoinType>,
5) {
6 // ... redacted ...
7 sending.tracked_balance =
8 if (amount >= sending.traced_balance) { 0 }
9 //! ^^

10 //! mut: >= -> > (i.e., greater than)
11 else { sending.tracked_balance - amount };
12 // ... redacted ...
13 }

Although the mutant (with >= mutated into >) passed the
verification, it does not imply a gap in the SPEC. In fact,
the mutant is semantically equivalent to the original CODE:
when amount == sending.tracked_balance, the difference
between them is 0, therefore, it does not matter whether the
difference is calculated in the then or else branch.

8

https://github.com/diem/diem/pull/10152
https://github.com/diem/diem/pull/10176
https://github.com/diem/diem/pull/10178

Case 4: intended gap in SPEC. Our manual analysis also
revealed an intended gap in the SPEC, as shown below:
1 // code snippet of DiemAccount.move
2 fun writeset_epilogue(account: signer, sequence_number: u64) {
3 epilogue_common<XUS>(account, sequence_number, 0, 0, 0);
4 //! ^ ^
5 //! mut 1: 0 -> 1
6 //! mut 2: 0 -> 1
7 }
8 fun epilogue_common<Token>(
9 account: &signer, sequence_number: u64,

10 gas_price: u64, max_gas_units: u64, gas_units_remaining: u64
11) {
12 let fee_amount = gas_price * max_gas_units;
13 if (fee_amount > 0) {
14 // ... redacted ...
15 assert!(/* some condition P to abort */);
16 }
17 }
18

19 spec epilogue_common{
20 // ... redacted ...
21 aborts_if
22 (gas_price * max_gas_units > 0) && (/* some condition P */)
23 }

Notice the two parameters (gas_price and max_gas_units)
in the parameter list of function prologue_common. Both the
test and SPEC require the product of the two parameters
to be 0, but there are no specific requirements for the two
parameters separately. As a result, mutating either of them
from 0 to 1 has no effect on both testing and verification.
This example (which maps to two reports by FAST) follows
the pattern S ⊒ C ′∧C ′ ≻ T∧T ̸⊥ ∆C . As a result, although
both CODE mutants pass verification, they are considered to
be an intended gap in SPEC.

5. Evolutionary CODE Mutant Generation

As shown in §4.1, the enumerative CODE mutant gen-
eration strategy works well for small codebases, however,
when facing a larger codebase, enumerating all the possible
CODE mutants is not a preferable approach as the number
of possible mutants grow exponentially with the size of the
codebase. Therefore, we need a strategy that can produce
CODE mutants that are inherently more likely to pass the
verification than random guessing.

To navigate the search space for surviving CODE mu-
tant, FAST incorporates an evolutionary process in mutant
generation, inspired by the effectiveness of coverage-guided
fuzzers. In conventional fuzzing, unexpected inputs are fed
to a program with the hope of triggering unsafe behaviors
in the program. In FAST, the “unexpected” inputs are CODE
mutants C ′ and “unsafe” behavior is defined when C ′ passes
verification, i.e., S ⊒ C ′. Although C ′ passing the test suite
is also “unsafe” (as they signal gaps in the test suite), they are
by-products and the focus of the mutator is still to produce
CODE mutants that pass the verification.

Like every genetic algorithm, FAST needs to answer two
questions in its design: 1 what to mutate in one evolution
round and 2 which mutant “fits” the environment and thus,
should be given more opportunities to generate future seeds.
Mutation points. The solution to 1 is to pre-collect
potential mutation points in the CODE before evolution starts.
In this information collection step, FAST scans the given

CODE from beginning to end and matches every instruction
with the possible mutation patterns defined in Table 1. Similar
to the enumerative approach (§4), the mutation rules must
preserve typing information after the transformation.
“Fitness” evaluation. The solution to 2 is SPEC coverage,
a simple metric to measure how far the mutant is from
its evolution goal—passing the verification. In FAST, SPEC
coverage is measured by the verification errors triggered
by a CODE mutant. For each CODE mutant that fails the
verification, FAST expects a report from the verifier to
describe the failure. The report can be as simple as a binary
pass/fail signal or a list of tuples (X,Y, Z) each contains a
record on SPEC X fails on CODE location Y due to reason
Z. Of course, the more verbose the information, the better it
is for FAST to measure the “fitness” of a mutant. Fortunately,
in practice, most formal verification tools can give a very
detailed explanation of a verification error, some even include
counterexamples that can be concretely executed to pinpoint
the error.

Intuitively, CODE mutants that reduce verification errors
reported in the “parent” mutant (i.e., a strict subset of errors)
will be considered as “fit” and should be used to seed more
mutants. Similarly, CODE mutants that uncover previously
unknown verification errors are considered as increasing
SPEC coverage, and hence, will be given more chances to
mutate because this opens more diversity for evolution.

Each CODE mutant that is considered “fit” is assigned
an initial score which is inversely related to two factors: 1)
how many verification errors remain and 2) how long is the
mutation trace. For the same set of verification errors, FAST
favors the smaller mutant (i.e., smaller edit distance from
the original CODE).
Seed scheduling. While the “fitness” evaluation decides
whether a new CODE mutant should be considered as a seed
for future rounds of mutation, FAST also needs to adjust the
scores of the parent seed of this mutant. In general, FAST
will reward the parent seed if the new mutant is “fitting” and
penalize the parent seed if the new mutant is “boring”. A
mutant is “boring” if it neither expands the SPEC coverage
nor fixes any verification error in the parent seed.
Overall fuzzing process. Figure 4 shows the evolutionary
CODE mutant generation strategy in FAST. FAST maintains
a seed pool to keep track of seeds that can be used for future
mutation rounds. All seeds in the seed pool are ordered
by their score. Each evolution round starts with the seed
selection process which is essentially temporarily popping
the seed with the highest score out of the seed pool. Then,
an additional mutation step is applied to the selected seed
and the new CODE mutant is sent for verification and testing.

• If the verification passes, depending on the results from
the test suites, FAST will signal whether this CODE
mutant signals an intentional or unintentional gap in
the SPEC (or mark it as an inconclusive case).

• If the verification fails, FAST evaluate the “fitness” of
the new CODE mutant and save a new seed if it “fit”.
FAST will also update the score of the parent seed and
put it back into the seed pool as well.

9

Code

Mutation

Verification
(Symbolic Execution)

Testing
(Concrete Execution)

On Failure

Feedback Mechanism

The gap is

Inconclusive

By design

By mistake...

Random

Mutants

Seed

Pool

 - +

Instruct

Original

Code

Code

Mutant

Coverage analysis based on

error message

On Success

S ⊒ C' ∧ C' ≻ T ∧ T ⊥̸ ∆C

S ⊒ C' ∧ C' ≻ T ∧ T ⊥ ∆C

S ⊒ C' ∧ C' ⊁ T

Figure 4: The architecture of evolutionary mutation generation in FAST

S2N

CODE

S2N

SPEC

Type Check

LLVM Backend SAW Verifier

Final Report

Mutators

for LLVM

IR format

 IR Loading

... other steps ...

LLVM IR
(w/ mutation)

S2N

Test Suite

Testing

Result

Verification

Result

Clang Frontend

LLVM IR
(original)

Figure 5: S2N Mutation Architecture

It is worth mentioning that unlike conventional fuzzing which
can be jump-started from a seed pool with many test cases, at
the very beginning, the seed pool in FAST has one seed only,
which is the original CODE without any mutations. FAST
gives this genesis seed a sufficiently high score to quickly
populate a large number of single-mutation seeds in the pool.
But after the bootstrapping period, this genesis seed is no
different from other seeds in FAST’s point of view.

5.1. Case study: AWS TLS implementation

An ideal showcase for evolutionary mutation testing is a
codebase that is sophisticated enough (such that enumeration
of mutations is not feasible) and yet extensively specified
(such that gaps in SPEC are relatively rare). S2N, Amazon’s
home-grown TLS implementation, is a good candidate.
Applying FAST to S2N. While Figure 4 shows the overall
fuzzing process implemented in FAST, Figure 5 shows how
FAST is applied to find SPEC blind spots on S2N from the
point of view of a single fuzzing round. Briefly,
1) FAST first collects all possible mutation points in S2N

CODE. While it is doable at the C AST level, FAST
chooses to statically analyze the LLVM IR which is
obtained by compiling and linking together all relevant C
source code. This is primarily for convenience reasons.

2) However instead of iteratively going over all mutation
points to produce CODE mutant, FAST adopts the evolu-

tionary scheme described in Figure 4 by rewarding CODE
mutants that are more likely to succeed (i.e., pass the
verification) in future rounds of mutations.

3) With each CODE mutant generated, FAST passes it to SAW
(the verifier) along with the original SPEC and check for
verification results. SAW will report the verification status
and a detailed explanation of verification errors, i.e., which
SPEC property in SPEC is violated and its reason.

Findings. FAST identified 6772 CODE locations where
mutations can be applied—making brute-force enumeration
infeasible, especially consider the possibilities of high-order
mutants. Therefore, the best way to explore the search space
is via evolutionary mutation. In particular, FAST starts with
an empty seed (i.e., the original CODE) in the seed pool and
on each fuzzing round, it chooses whether to replace the
mutation on one CODE location (denoted as retrial mutants)
or append a mutation to a new CODE location (i.e., creating
high-order mutants). We ran FAST for 72 hours, we got a total
of 348 surviving CODE mutants that passed the verification,
out of which 12 are retrial mutants, 9 are high-order mutants,
and the majority (327) are mutants obtained by applying
mutation on a single CODE location in one trial.

Among these surviving mutants, we manually sampled
22 for initial analysis, with a prioritization on mutants that
caused test case failures. Out of the 22 cases, 15 triggered
test failures and we confirm that they all signal a loophole in
the SPEC. The remaining 7 CODE mutants passed test suite,
out of which 6 have no coverage on the mutation point and
the one with coverage is confirmed to be an intended gap
in the SPEC (with details explained later). These findings
are summarized in Table 3. We have reported all findings to
the development team of S2N with acknowledgment and are
currently waiting for their patching (see our initial reporting
for more samples other than the case studies shown here).

Sample reports. A surviving CODE mutant must be in one
of the following categories: 1) one mutation trial on a single
CODE location, 2) multiple mutation trials on a single CODE
location, and 3) mutations on multiple CODE locations. We
showcase a sample in each category as well as provide a
detailed explanation for the intended gap FAST found.

10

https://mesquite-train-690.notion.site/Missing-specs-in-s2n-tls-90e3e6221e8b42ce84c788491cdc2a3f

File Name Function Name Mutation Point Mutation Rule Test C §3 Details

1 s2n_drbg.c s2n_drbg_bits Sub Add Fail ✓ 4
2 s2n_handshake_io.c s2n_validate_ems_status Constant 1 Fail ✓ 4
3 s2n_socket.c s2n_socket_write_uncork Constant -= 1 Pass × 2
4 s2n_handshake_io.c s2n_generate_new_client_session_id If-Else Swap Fail ✓ 4
5 s2n_drbg.c s2n_drbg_mix Add Sub Fail ✓ 4
6 s2n_handshake_io.c s2n_conn_set_handshake_type Not Drop Pass × 2 Case 1
7 s2n_socket.c s2n_socket_write_uncork Eq Neq Fail ✓ 4
8 s2n_socket.c s2n_socket_was_corked Neq Eq Pass × 2

9 s2n_handshake_type.c s2n_handshake_type_set_tls12_flag BitOr BitAnd → BitXor Pass × 2 Case 2
10 s2n_drbg.c s2n_drbg_bits Gt Eq → Neq Fail ✓ 4
11 s2n_drbg.c s2n_drbg_instantiate Lt Ge → Eq → Le Fail ✓ 4
12 s2n_drbg.c s2n_drbg_mix_in_entropy 0 +=1 → set MAX → set -1 Fail ✓ 4
13 s2n_drbg.c s2n_drbg_update 16 /=2 → +=1 → *=2 Fail ✓ 4
14 s2n_drbg.c s2n_drbg_generate 49 /=3 → set MAX Fail ✓ 4
15 s2n_drbg.c s2n_drbg_seed Gt Le → Ge Pass × 2
16 s2n_random.c s2n_get_random_data 0 -=2 → set 2 Fail ✓ 4

17 s2n_blob.c s2n_blob_zero BitXor + If-Else BitOr + Swap Pass × 2 Case 3
18 s2n_blob.c s2n_blob_validate Constant + Shl set 1 + AShr Fail ✓ 4
19 s2n_drbg.c s2n_drbg_block_encrypt Constant + If-Else set -1 + Swap Fail ✓ 4

20 s2n_socket.c s2n_socket_was_corked Sub Add Fail ✓ 4
s2n_socket.c s2n_socket_write_cork If-Else Swap

21 s2n_fork_detection.c s2n_get_fork_generation_number Constant /= 3 Fail ✓ 4
s2n_socket.c s2n_socket_was_corked Sub Add

22 s2n_handshake_io.c s2n_conn_set_tls13_handshake_type Constant 0 Pass ✓ 1 Case 4

TABLE 3: The sampled results from in the S2N case study. All reports have been submitted to the S2N development team.

Case 1: single location single mutation. In the following
snippet, FAST obtained a surviving CODE mutant by negating
one of the predicates in a if condition.
1 // a simplified code snippet in s2n_handshake_io.c
2 int s2n_conn_set_handshake_type(struct s2n_connection *conn) {
3 // ...redacted...
4 if ((
5 conn->mode == S2N_SERVER &&
6 conn->status_type == S2N_STATUS_REQUEST_OCSP &&
7 conn->handshake_params.our_chain_and_key &&
8 #! ^^
9 #! mut: negate this condition, i.e., replace it into below

10 #! ’conn->handshake_params.our_chain_and_key == NULL’
11 conn->handshake_params.our_chain_and_key->ocsp_status.size > 0
12) || s2n_server_sent_ocsp(conn)) {
13 s2n_handshake_type_set_tls12_flag(conn, OCSP_STATUS));
14 }
15 return S2N_SUCCESS;
16 }

The mutant passes both verification and testing. After investi-
gation, we found out that this gap is caused by the fact that the
value our_chain_and_key is neither monitored in the SPEC
nor in test. FAST therefore identified it as a S ⊒ C ′∧C ′ ̸≻ T
case. A closer examination of the code revealed that this
is a dangerous modification: in the CODE mutant, should
execution ever reaches this if-statement, it is guaranteed that
the program will crash due to a null-pointer dereference.
This at least violates one of the high-level guarantees that
there should be no memory errors in the S2N codebase and
yet neither test nor SPEC covers it.

Case 2: single location with multiple mutation trials. In
the snippet below, We observed that FAST first attempted
to mutate operator |= to &=. Although this attempt failed,
FAST was able to discover new verification errors which
allows the seed to have further mutations. In the next round

of mutation, FAST replaced |= with ˆ=. This CODE mutant
passed both verification and testing.
1 S2N_RESULT s2n_handshake_type_set_tls12_flag(
2 struct s2n_connection *conn,
3 s2n_tls12_handshake_type_flag flag)
4 {
5 // ... redacted ...
6 conn->handshake.handshake_type |= flag;
7 #! ^^
8 #! mut trial 1: |= -> &= // fail verification
9 #! mut trial 2: |= -> ^= // pass verification

10 // ... redacted ...
11 }

During investigation, noticed that the SPEC attempts to
confine the possible values of handshake_type, as shown
below:
1 // a redacted spec for the function being verified
2 conn_set_pre_tls13_handshake_type : connection -> connection
3 conn_set_pre_tls13_handshake_type conn = conn’
4 where conn’ = {handshake = handshake’, /* redacted */}
5 (handshake’ : handshake) = {
6 handshake_type = handshake_type’
7 /* redacted */
8 }
9 handshake_type’ =

10 NEGOTIATED || full_handshake ||
11 perfect_forward_secrecy || ocsp_status || ...;

When the operator is mutated to &=, the result of
conn->handshake.handshake_type can be 0 (e.g., when
conn->handshake.handshake_type == 0). But 0 is not al-
lowed by SPEC, hence the verification failure. However, when
the operator is mutated to ˆ=, all the possible results are
included in the SPEC. interestingly, the counterpart function
for TLS 1.3 does not suffer from this incompleteness issue.

Case 3: mutations on multiple CODE locations. In the
snippet shown below, FAST applied two mutations on dif-
ferent CODE locations. The net effect of the two mutations

11

is essentially marking the precondition to be uncondition-
ally true. The mutant passes both verification and testing.
However, applying any single mutation led to verification
failure.
1 int s2n_blob_zero(struct s2n_blob *b) {
2 POSIX_PRECONDITION(s2n_blob_validate(b));
3 #! ^^^^^^^^^^^^^^^^^^^^
4 #! mut (net effect) s2n_blob_validate(b) -> TRUE
5 POSIX_CHECKED_MEMSET(b->data, 0, MAX(b->allocated, b->size));
6 POSIX_POSTCONDITION(s2n_blob_validate(b));
7 return S2N_SUCCESS;
8 }
9

10 // with POSIX_PRECONDITION pre-unrolled.
11 int s2n_blob_zero(struct s2n_blob *b) {
12 S2N_RESULT result = s2n_blob_validate(b);
13 if (result ^ 1) {
14 #! ^
15 #! mut 1: ^ -> | (bit-or) // fail verification
16 #! mut 2: swap the if-else branches // pass verification
17 return S2N_FAILURE;
18 } else {
19 POSIX_CHECKED_MEMSET(b->data, 0, MAX(b->allocated, b->size));
20 POSIX_POSTCONDITION(s2n_blob_validate(b));
21 return S2N_SUCCESS;
22 }
23 }

In fact, it is surprising that the verification can even pass
without the precondition requiring the input blob to be valid.

Case 4: an intended gap. The intended gap can be
illustrated with the following code snippet with mutation
done by FAST inlined:
1 static S2N_RESULT
2 s2n_conn_set_tls13_handshake_type(struct s2n_connection *conn) {
3 // ... redacted ...
4 if (conn->psk_params.chosen_psk == NULL) {
5 // The constant FULL_HANDSHAKE bears value 2
6 s2n_handshake_type_set_flag(conn, FULL_HANDSHAKE);
7 #! ^^^^^^^^^^^^^^
8 #! mut: FULL_HANDSHAKE -> 3
9 #! i.e. FULL_HANDSHAKE -> FULL_HANDSHAKE | NEGOTIATED

10 }
11 // ... redacted ...
12 return S2N_RESULT_OK;
13 }

By mutating the constant FULL_HANDSHAKE (aliased to integer
2) to 3, the new CODE still passes the full suite of verification
and tests. Upon further investigation, we notice the definition
of the s2n_handshake_type_flag is an enum in C language:
1 typedef enum {
2 INITIAL = 0,
3 NEGOTIATED = 1,
4 FULL_HANDSHAKE = 2,
5 CLIENT_AUTH = 4,
6 NO_CLIENT_CERT = 8,
7 } s2n_handshake_type_flag;

Hence, logically, after mutation, the new CODE is setting the
flag to be FULL_HANDSHAKE | NEGOTIATED.

S2N indeed has a dedicated SPEC for this function (shown
below) which explicitly allows the NEGOTIATED flag to be
either set or unset. which explains why this is an intended
gap explicitly allowed in the SPEC.
1 // a redacted spec for the function being verified
2 conn_set_tls13_handshake_type : connection -> connection
3 conn_set_tls13_handshake_type conn = conn’
4 where conn’ = {handshake = handshake’, /* redacted */ }
5 (handshake’ : handshake) = {
6 handshake_type = handshake_type’,
7 /* redacted */
8 }
9 handshake_type’ = NEGOTIATED || full_handshake

10 || /* redacted */

11 full_handshake = if conn.chosen_psk_null
12 then FULL_HANDSHAKE
13 else 0
14 // spec for other fields are redacted

6. Extra Evaluations

While the effectiveness and practicality of FAST is
evaluated on the two real-world case studies (§4.1 and §5.1),
in this section, we highlight some extra statistics that may
help justify the key design choices of FAST.
Effectiveness of test suite. We evaluate the effectiveness
of using test suite as a referee in categorizing a gap found
in SPEC, i.e., whether the gap is by intention or by mistake.
The evaluation is based on the mutants that successfully
pass the verification in both codebases, and the test suites
we used here are the unit tests, integration tests, as well as
end-to-end tests available in the codebase.

Table 2 shows the overall result in DPN. For all 16
cases which we report, FAST is able to automatically judge
whether a gap in the SPEC is intentional or mistaken in
10 cases (8 blind spots and 2 intentional gaps), showing
a 62.5% automation rate on gap categorization. Table 3
shows the 22 cases we investigated in S2N-TLS. FAST is
able to automatically categorize SPEC gaps in 16 of them,
showing a 72.7% automation rate. Based on these results, it
is reasonable to conclude that using test suite as a referee
for SPEC incompleteness judgment is feasible.
Coupling effect. Coupling effect has a non-neglectable
influence on the usefulness of producing higher-order mutant
in FAST. Coupling effect came to researchers’ notice shortly
after the appearance of mutation testing [19]. The idea is that
mutants can be limited to simple one-hop changes without
impairing much on the overall effectiveness. This is because
complex faults can be decoupled to simple faults in such
a way that a test data set that detects all simple faults in a
program will detect most complex faults. Coupling effect
has got both empirical [70] and theoretical [89, 90] support.

Based on the result in the case studies, we do observe that
coupling effect has an impact on the usefulness of generating
high-order mutants in FAST. Given the relatively small size
of the DPN codebase, we indeed attempted to enumerate
all two-CODE-location mutants in the DPN but this exercise
yielded no new findings, hence, making a strong indication
that high-order mutants might be of limited value in small
codebases. The S2N results are more encouraging: while the
majority of surviving CODE mutants are still single-location
mutations, we start to observe CODE mutants that must rely
on two or more mutations to survive and usually signals
a more interesting gap. We expect that coupling effect is
stronger in small codebases while high-order mutations are
more useful in medium to large codebases.
Effectiveness of evolution. Figure 6 shows the accumulated
number of surviving mutants found by FAST as evolutionary
mutation testing continues to run on S2N. All experiments
are performed on a server running Ubuntu 20.04 with an
Intel Xeon E7-8870 (2.40GHz CPU) with 80 cores and 1 TB
RAM. Consistent with conventional fuzzing, in FAST, the

12

4 6 8 10 12 14 16 18
Time Stamp (log2(second))

0

50

100

150

200

250

300

Nu
m

be
r o

f S
ur

vi
vi

ng
 M

ut
an

ts

Figure 6: Seed Distribution

rate of producing new surviving CODE mutants decreases
gradually over time until reaching a saturation point.

7. Discussion and Future Work

Mutating SPEC. FAST finds gaps in the SPEC by keeping
the SPEC intact and mutating the CODE. Symmetrically, and
also proved in theory [50, 51], we can find the same gaps
by keeping the CODE unmodified and mutating the SPEC.
In fact, as discussed in §2.4, the initial works on applying
mutation testing into a formal verification context mainly
focuses on mutating the expressions in the SPEC [10, 45, 71].

However, the symmetry of CODE and SPEC mutation
only applies to finding gaps in the SPEC and does not apply
to the process of judging whether the gap is intentional or
mistaken. In FAST, we can categorize the gap by simply
running the tests against the CODE mutant. But for SPEC
mutants, running tests is futile as the CODE is unmodified.
This is the primary reason why FAST does not adopt the
SPEC mutation approach.

The solution to extend the symmetry into the gap
categorization process is SPEC embedding, i.e., embedding
SPEC at proper CODE locations, denoted as CS . Given that
CS is executable, we can run any SPEC mutant CS′ against
the test suit T and check whether CS′ passes T . Note that
in this case, the gap in the SPEC is considered mistaken if
CS′ ≻ T and intentional if the test fails. And yet, even with
the symmetry extended, embedding logic is written in a more
expressive language into CODE has its own set of challenges
(e.g., unrolling existential and universal quantifiers).
Coverage tooling for SPEC completeness It is worth noting
that while mutation testing is initially proposed to gauge
the completeness of the test suite, it is rarely considered a
mainstream approach for this purpose. What is more popular
now is various CODE coverage metrics, usually presented
in terms of line coverage, instruction coverage, or branch
coverage. Paranoid maintainers of open-source projects may
even require that any new CODE needs to be accompanied
by test cases to maintain a high ratio of CODE coverage in
the codebase. As a result, the community has accumulated

a sufficient set of tooling for CODE coverage measurement
and reporting.

In a no-so-surprising contrast, to the best of our knowl-
edge, there is no such tooling to measure CODE coverage for
SPEC. It is not hard to imagine that such coverage tracking
tools will be extremely challenging to build. Every CODE
snippet seems to participate in the proving of some SPEC
properties based on how the verification problems are handled
in state-of-the-art verifiers [5, 12, 31, 52], and it is hard to
untangle the complicated logical formula. However, despite
the technical challenges, we believe that such tooling is
necessary when formal verification gains enough traction
and we hope that the findings from FAST can serve as a
weak call to build coverage tracking tooling tailored for
SPEC among the community.
The applicability of FAST FAST is applicable to a formally
verified software when two conditions are met: 1) the
verification system is fully automated, and 2) FAST can
modify some form of CODE representation (e.g. LLVM
IR). Therefore, besides the SAW toolchain, FAST is also
compatible with combinations like LLVM + SeaHorn, LLVM
+ Kani (for Rust) etc. For adapting FAST to new verification
systems, e.g., CBMC, a new mutator is required because
CBMC has its own version of language IR.

The general applicability of FAST is limited at the
moment, as formal verification is yet to be a standard
industrial practice (unlike testing), hence the lack of SPEC
components in most software. However, we believe formal
methods will gain traction and now is the perfect time to
build the necessary tools to warn about potential defects in
SPEC before its too late.
Causes of missing SPEC gaps by FAST FAST cannot
find all potential gaps in SPEC for at least two reasons:
First, the mutant evolution approach is inherently incomplete.
Similar to why fuzzing cannot find all bugs in a software,
the evolutionary mutation strategy cannot produce CODE
mutants that uncover all gaps in SPEC— the search space is
too large to enumerate. Second, as discussed in §3, certain
SPEC gaps require manual effort to confirm, especially in
case 5 where the CODE mutant fails verification — manual
effort is needed to check whether the verification failure is
caused by out-of-sync proof hints (which hides a SPEC gap)
or a genuine SPEC violation.

8. Conclusion

In this paper, we present FAST, a tool for exposing
incompleteness issues in formal SPEC. FAST shows how the
“re-dundancy” and “diversity” in formally verified programs
(SPEC, CODE, and test suites) can be synergized for cross-
checking and provides concrete designs and implementations
for SPEC blind spots detection via enumerative and evolution-
ary mutation testing. We applied FAST to DPN and S2N and
confirmed 13 and 21 blind spots in their SPEC respectively.
This highlights the prevalence of SPEC incompleteness in
real-world applications. We hope the findings from FAST can
serve as a weak call to draw more attention on measuring and
ensuring the quality of SPEC in formally verified codebases.

13

References

[1] Tesnim Abdellatif and Kei-Léo Brousmiche. Formal Verifi-
cation of Smart Contracts Based on Users and Blockchain
Behaviors Models. In Proceedings of the 9th IFIP Interna-
tional Conference on New Technologies, Mobility and Security
(NTMS), Paris, France, February 2018.

[2] Diem Association. Diem. https://www.diem.com/, 2022.
[3] Vytautas Astrauskas, Aurel Bílỳ, Jonáš Fiala, Zachary

Grannan, Christoph Matheja, Peter Müller, Federico Poli, and
Alexander J Summers. The prusti project: Formal verification
for rust. In Proceedings of the 22th NASA Formal Methods
Symposium (NFM), Pasadena, CA, May 2022.

[4] Emine G Aydal, Richard F Paige, Mark Utting, and Jim
Woodcock. Putting formal specifications under the magnifying
glass: Model-based testing for validation. In Proceedings of the
2nd International Conference on Software Testing, Verification,
and Validation (ICST), Denver, CO, April 2009.

[5] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart
Jacobs, and K Rustan M Leino. Boogie: A Modular Reusable
Verifier for Object-oriented Programs. In Proceedings of the
2005 International Symposium on Formal Methods for Com-
ponents and Objects (FMCO), Amsterdam, The Netherlands,
August 2005.

[6] Sam Blackshear, Evan Cheng, David L Dill, Victor Gao,
Ben Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer,
Dario Russi Rain, Stephane Sezer, et al. Move: A language
with programmable resources. Libra Assoc, 2019.

[7] Marton Bognar, Jo Van Bulck, and Frank Piessens. Mind the
gap: Studying the insecurity of provably secure embedded
trusted execution architectures. In Proceedings of the 43rd
IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2020.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based Greybox Fuzzing as Markov Chain. In
Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, October
2016.

[9] Tim Budd and Fred Sayward. Users guide to the pilot mutation
system. Yale University, New Haven, Connecticut, Technique
Report, 114, 1977.

[10] Timothy A Budd and Ajei S Gopal. Program testing by
specification mutation. Computer languages, 10(1):63–73,
1985.

[11] Timothy Alan Budd. Mutation Analysis of Program Test Data.
Yale University, 1980.

[12] Kyle Carter, Adam Foltzer, Joe Hendrix, Brian Huffman, and
Aaron Tomb. SAW: The Software Analysis Workbench. In
Proceedings of the 21st European symposium on programming
(ESOP), Pittsburgh, PA, March 2013.

[13] Bharvi Chhaya, Shafagh Jafer, and Umut Durak. Formal veri-
fication of simulation scenarios in aviation scenario definition
language (asdl). Aerospace, 5(1):10, 2018.

[14] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap,
András Pataricza, and Dániel Varró. VIATRA-visual Auto-
mated Transformations for Formal Verification and Validation
of UML Models. Washington, D.C., September 2017.

[15] de Moura, Leonardo and Bjørner, Nikolaj. Z3: An efficient smt
solver. In Proceedings of the 14th International Conference
on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), Budapest, Hungary, March–April 2008.
[16] Simone Do Rocio Senger De Souza, Jose Carlos Maldonado,

Sandra Camargo Pinto Ferraz Fabbri, and Wanderley Lopes
De Souza. Mutation testing applied to estelle specifications.
Software Quality Journal, 8(4):285–301, 1999.

[17] Marcio Eduardo Delamaro, Jose Carlos Maldonado, and
Aditya P Mathur. Integration Testing Using Interface Mu-
tation. In Proceedings of the 7th International Symposium
on Software Reliability Engineering (ISSRE), New York, NY,
November 1996.

[18] Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Francisco
Palomo-Lozano, Antonio García-Domínguez, and Juan José
Domínguez-Jiménez. Assessment of class mutation operators
for c++ with the mucpp mutation system. Information and
Software Technology, 81:169–184, 2017.

[19] Richard A DeMillo, Richard J Lipton, and Frederick G
Sayward. Hints on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, 1978.

[20] Morgan Deters, Andrew Reynolds, Tim King, Clark Barrett,
and Cesare Tinelli. A tour of cvc4: How it works, and how to
use it. In Proceedings of the 2014 International Conference
on Formal Methods in Computer-Aided Design (FMCAD),
Lausanne, Switzerland, October 2014.

[21] Kyle Dewey, Jared Roesch, and Ben Hardekopf. Language
Fuzzing Using Constraint Logic Programming. In Proceedings
of the 29th IEEE/ACM International Conference on Automated
Software Engineering (ASE), Vasteras Sweden, September
2014.

[22] David Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer,
Meng Xu, and Emma Zhong. Fast and Reliable Formal
Verification of Smart Contracts with the Move Prover. In
Proceedings of the 28th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), Munich, Germany, April 2022.

[23] Nicolas Dilley and Julien Lange. Automated Verification of
Go Programs via Bounded Model Checking. In Proceedings
of the 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE), Melbourne, Austrailia, November
2021.

[24] Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle
Zeng, Alexandros Kapravelos, Gail-Joon Ahn, Tiffany Bao,
Ruoyu Wang, Adam Doupé, et al. Favocado: Fuzzing the
Binding Code of JavaScript Engines Using Semantically
Correct Test Cases. In Proceedings of the 2021 Annual
Network and Distributed System Security Symposium (NDSS),
San Diego, CA, February 2021.

[25] Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman,
Dylan McNamee, and Aaron Tomb. Constructing Semantic
Models of Programs with the Software Analysis Workbench.
In Proceedings of the 8th Working Conference on Verified
Software: Theories, Tools, and Experiments (VSTTE), Toronto,
Canada, July 2016.

[26] Martin Eberlein, Yannic Noller, Thomas Vogel, and Lars
Grunske. Evolutionary Grammar-based Fuzzing. In Proceed-
ings of the 12th International Symposium on Search Based
Software Engineering (SSBSE), Bari, Italy, October 2020.

[27] Sandra Camargo Pinto Ferraz Fabbri, Jose Carlos Maldonado,
Tatiana Sugeta, and Paulo Cesar Masiero. Mutation Testing
Applied to Validate Specifications Based on Statecharts. In
Proceedings of the 10th International Symposium on Software
Reliability Engineering (ISSRE), Boca Raton, FL, November

14

https://www.diem.com/

1999.
[28] Nicole Fern and Kwang-Ting Cheng. Detecting Hardware

Trojans in Unspecified Functionality Using Mutation Test-
ing. In Proceedings of the 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Austin, TX,
November 2015.

[29] Nicole Fern and Kwang-Ting Cheng. Mining Mutation Testing
Simulation Ttraces for Security and Testbench Debugging. In
Proceedings of the 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), Irvine, CA, November
2017.

[30] Nicole Fern and Kwang-Ting Cheng. Evaluating Assertion Set
Completeness to Expose Hardware Trojans and Verification
Blindspots. In Proceedings of the 2019 Design, Automation
and Test in Europe Conference and Exhibition (DATE),
Florence, Italy, March 2019.

[31] Jean-Christophe Filliâtre and Andrei Paskevich. Why3—where
Programs Meet Provers. In Proceedings of the 22nd European
symposium on programming (ESOP), Rome, Italy, March
2013.

[32] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc
Heuse. {AFL++}: Combining Incremental Steps of Fuzzing
Research. In Proceedings of the 14th USENIX Workshop on
Offensive Technologies (WOOT), Boston, MA, August 2020.

[33] Mathias Fleury. Optimizing a Verified SAT Solver. In
Proceedings of the 11th NASA Formal Methods Symposium
(NFM), Houston, TX, May 2019.

[34] Galois. What4: New library to help developers build verifica-
tion and program analysis tools. https://github.com/GaloisInc/
what4, 2022.

[35] Michael JC Gordon. Hol: A proof generating system for
higher-order logic. In VLSI specification, verification and
synthesis, pages 73–128. Springer, 1988.

[36] Mark Grechanik and Gurudev Devanla. Mutation Integration
Testing. In Proceedings of the 2016 IEEE International
Conference on Software Quality, Reliability and Security
(QRS), Vienna, Austria, August 2016.

[37] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and
Jorge A Navas. The seahorn verification framework. In
Proceedings of the 27th International Conference on Computer
Aided Verification (CAV), Snowbird, UT, July 2015.

[38] Richard G. Hamlet. Testing programs with the aid of a
compiler. IEEE transactions on software engineering, (4):279–
290, 1977.

[39] John Harrison. Formal Verification at Intel. In Proceedings of
the 18thACM/IEEE Symposium on Logic in Computer Science
(LICS), Ottawa, Canada, June 2003.

[40] Katharina Hofer-Schmitz and Branka Stojanović. Towards
formal verification of iot protocols: A review. Computer
Networks, 174:107233, 2020.

[41] Zhijian Huang and Yongjun Wang. Jdriver: Automatic driver
cclass generation for afl-based java fuzzing tools. Symmetry,
10(10):460, 2018.

[42] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The
coq proof assistant a tutorial. Rapport Technique, 178, 1997.

[43] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels,
Willem Penninckx, and Frank Piessens. Verifast: A powerful,
sound, predictable, fast verifier for c and java. NASA Formal
Methods, 6617:41–55, 2011.

[44] Karthick Jayaraman, David Harvison, Vijay Ganesh, and
Adam Kiezun. jFuzz: A concolic Whitebox Fuzzer for Java.
In Proceedings of the 1st NASA Formal Methods Symposium
(NFM), Moffett Field, CA, April 2009.

[45] Yue Jia and Mark Harman. An analysis and survey of
the development of mutation testing. IEEE transactions on
software engineering, 37(5):649–678, 2010.

[46] Christoph Kern and Mark R Greenstreet. Formal verification
in hardware design: a survey. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 4(2):123–193,
1999.

[47] Rody Kersten, Kasper Luckow, and Corina S Păsăreanu.
POSTER: AFL-based Fuzzing for Java with Kelinci. In
Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, TX, October–
November 2017.

[48] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe,
Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. SeL4:
Formal Verification of an OS Kernel. In Proceedings of
the 22nd ACM Symposium on Operating Systems Principles
(SOSP), Big Sky, MT, October 2009.

[49] John C Knight. Software Challenges in Aviation Systems. In
Proceedings of the 21st International Conference on Computer
Safety, Reliability, and Security (SAFECOMP), Catania, Italy,
September 2002.

[50] Orna Kupferman, Wenchao Li, and Sanjit A. Seshia. A Theory
of Mutations with Applications to Vacuity, Coverage, and
Fault Tolerance. In Proceedings of the 2008 International
Conference on Formal Methods in Computer-Aided Design
(FMCAD), Portland, ON, November 2008.

[51] Orna Kupferman, Wenchao Li, and Sanjit A. Seshia. On
the Duality between Vacuity and Coverage. Technical Re-
port UCB/EECS-2008-26, EECS Department, University of
California, Berkeley, March 2008.

[52] K Rustan M Leino. Dafny: An Automatic Program Verifier
for Functional Correctness. In Proceedings of the 16th
International Conference on Logic for Programming Artificial
Intelligence and Reasoning (LPAR), Dakar, Senegal, April
2010.

[53] Xavier Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, 2009.

[54] Nancy Leveson. Completeness in Formal Specification Lan-
guage Design for Process-control Systems. In Proceedings of
the 2000 Workshop on Formal Methods in Software Practice
(FMSP), Portland, OR, August 2000.

[55] Nan Li, Michael West, Anthony Escalona, and Vinicius HS
Durelli. Mutation Testing in Practice Using Ruby. In Proceed-
ings of the 8th IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), Graz,
Austria, April 2015.

[56] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han
Lee, Yu Song, and Raheem Beyah. {MOPT}: Optimized
Mutation Scheduling for Fuzzers. In Proceedings of the 28th
USENIX Security Symposium (Security), Santa Clara, CA,
August 2019.

[57] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. Mujava: an
automated class mutation system. Software Testing, Verifica-
tion and Reliability, 15(2):97–133, 2005.

[58] José Carlos Maldonado, Márcio Eduardo Delamaro, San-

15

https://github.com/GaloisInc/what4
https://github.com/GaloisInc/what4

dra CPF Fabbri, Adenilso da Silva Simão, Tatiana Sugeta, Auri
Marcelo Rizzo Vincenzi, and Paulo Cesar Masiero. Proteum:
A family of tools to support specification and program testing
based on mutation. In Mutation testing for the new century,
pages 113–116. Springer, 2001.

[59] Valentin JM Manès, HyungSeok Han, Choongwoo Han,
Sang Kil Cha, Manuel Egele, Edward J Schwartz, and
Maverick Woo. The art, science, and engineering of fuzzing:
A survey. IEEE Transactions on Software Engineering,
47(11):2312–2331, 2019.

[60] Pedro Reales Mateo and Macario Polo Usaola. Reducing
mutation costs through uncovered mutants. Software Testing,
Verification and Reliability, 25(5-7):464–489, 2015.

[61] Bertrand Meyer. Applying ’design by contract’. Computer,
25(10):40–51, 1992.

[62] Tim Miller and Paul Strooper. A framework and tool sup-
port for the systematic testing of model-based specifications.
ACM Transactions on Software Engineering and Methodology
(TOSEM), 12(4):409–439, 2003.

[63] Felipe R Monteiro, Mikhail R Gadelha, and Lucas C Cordeiro.
Model checking c++ programs. Software Testing, Verification
and Reliability, 32(1):e1793, 2022.

[64] Federico Mora, Murphy Berzish, Mitja Kulczynski, Dirk
Nowotka, and Vijay Ganesh. Z3str4: A Multi-armed String
Solver. In Proceedings of the 24th International Symposium
on Formal Methods (FM), Beijng, China, November 2021.

[65] Kevin Moran, Michele Tufano, Carlos Bernal-Cárdenas, Mario
Linares-Vásquez, Gabriele Bavota, Christopher Vendome,
Massimiliano Di Penta, and Denys Poshyvanyk. Mdroid+: A
Mutation Testing Framework for Android. In Proceedings of
the 40th International Conference on Software Engineering:
Companion (ICSE-Companion), Gothenburg, Sweden, May–
June 2018.

[66] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie
Wiels, and Benjamin Monate. Testing or formal verification:
Do-178c alternatives and industrial experience. IEEE software,
30(3):50–57, 2013.

[67] Yvonne Murray and David A Anisi. Survey of Formal
Verification Methods for Smart Contracts on Blockchain. In
Proceedings of the 10th IFIP International Conference on
New Technologies, Mobility and Security (NTMS), Canary
Island, Spain, February 2019.

[68] Lee Naish. Specification= Program+ Types. In Proceedings of
the 7th International Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS),
Pune, India, December 1987.

[69] J Norhuzaimin and HH Maimun. The Design of High
Speed UART. In Proceedings of the 2005 IEEE Asia-Pacific
Conference on Applied Electromagnetics (APACE), Johor
Bahru, Malaysia, December 2005.

[70] A Jefferson Offutt. Investigations of the software testing
coupling effect. ACM Transactions on Software Engineering
and Methodology (TOSEM), 1(1):5–20, 1992.

[71] Vadim Okun. Specification Mutation for Test Generation and
Analysis. University of Maryland, Baltimore County, 2004.

[72] Rohan Padhye, Caroline Lemieux, and Koushik Sen. JQF:
Coverage-guided Property-based Testing in Java. In Proceed-
ings of the International Symposium on Software Testing and
Analysis (ISSTA), San Jose, CA, July 2019.

[73] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves

Le Traon, and Mark Harman. Mutation testing advances: an
analysis and survey. In Advances in Computers, volume 112,
pages 275–378. Elsevier, 2019.

[74] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhen-
dong Su. Generative type-aware mutation for testing smt
solvers. Proceedings of the ACM on Programming Languages,
5(OOPSLA):1–19, 2021.

[75] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo
Kim. Fuzzing Javascript Engines with Aspect-preserving
Mutation. In Proceedings of the 41st IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May
2020.

[76] Pinto Ferraz Fabbri, S.C. and Delamaro, M.E. and Maldonado,
J.C. and Masiero, P.C. Mutation Analysis Testing for Finite
State Machines. In Proceedings of the 5th International
Symposium on Software Reliability Engineering (ISSRE),
Monterey, CA, November 1994.

[77] Upsorn Praphamontripong and Jeff Offutt. Applying Mutation
Testing to Web Applications. In Proceedings of the 3rd IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), Paris, France, April 2010.

[78] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar,
Cristiano Giuffrida, and Herbert Bos. VUzzer: Application-
aware Evolutionary Fuzzing. In Proceedings of the 2017
Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2017.

[79] Martin Schickel, Volker Nimbler, Martin Braun, and Hans
Eveking. An efficient synthesis method for property-based
design in formal verification: On consistency and completeness
of property-sets. In Advances in Design and Specification
Languages for Embedded Systems, pages 179–196. Springer,
2007.

[80] Steve Schmidt. Introducing s2n-tls, a new open source
tls implementation. https://aws.amazon.com/blogs/security/
introducing-s2n-a-new-open-source-tls-implementation/,
2022.

[81] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik,
Sebastian Schinzel, and Thorsten Holz. {kAFL}:{Hardware-
Assisted} Feedback Fuzzing for {OS} Kernels. In Proceedings
of the 26th USENIX Security Symposium (Security), Vancouver,
Canada, August 2017.

[82] Jean Souyris, Virginie Wiels, David Delmas, and Hervé
Delseny. Formal Verification of Avionics Software Products.
In Proceedings of the 16th International Symposium on Formal
Methods (FM), Eindhoven, Netherlands, November 2009.

[83] Tatiana Sugeta, José Carlos Maldonado, and W Eric Wong.
Mutation testing applied to validate sdl specifications. In
Proceedings of the 2004 IEEE Congress on Evolutionary
Computation (CEC), Oxford, UK, March 2004.

[84] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. Formal Ver-
ification of Neural Network Controlled Autonomous Systems.
In Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, Montreal, Canada,
April 2019.

[85] Serdar Tasiran and Kurt Keutzer. Coverage metrics for
functional validation of hardware designs. IEEE Design &
Test of Computers, 18(4):36–45, 2001.

[86] Patrice Vado, Yvon Savaria, Yannick Zoccarato, and Chantal
Robach. A Methodology for Validating Digital Circuits
with Mutation Testing. In Proceedings of the 2000 IEEE

16

https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/

International Symposium on Circuits and Systems (ISCAS),
Geneva, Switzerland, May 2000.

[87] Auri Marcelo Rizzo Vincenzi, José Carlos Maldonado,
Ellen Francine Barbosa, and Márcio Eduardo Delamaro.
Unit and integration testing strategies for c programs using
mutation-based criteria. In Mutation testing for the new
century, pages 45–45. Springer, 2001.

[88] Dmitry Vyukov. Syzkaller, 2015.
[89] KS How Tai Wah. Fault coupling in finite bijective functions.

Software Testing, Verification and Reliability, 5(1):3–47, 1995.
[90] KS How Tai Wah. A theoretical study of fault coupling.

Software testing, verification and reliability, 10(1):3–45, 2000.
[91] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion:

Grammar-aware Greybox Fuzzing. In Proceedings of the 41th
International Conference on Software Engineering (ICSE),
Montreal, Canada, May 2019.

[92] Makarius Wenzel, Lawrence C Paulson, and Tobias Nipkow.
The isabelle framework. In International Conference on
Theorem Proving in Higher Order Logics, pages 33–38.
Springer, 2008.

[93] Dominik Winterer, Chengyu Zhang, and Zhendong Su. On
the unusual effectiveness of type-aware operator mutations for
testing smt solvers. Proc. ACM Program. Lang., 4(OOPSLA),
nov 2020.

[94] Dominik Winterer, Chengyu Zhang, and Zhendong Su. Val-
idating SMT Solvers via Semantic Fusion. In Proceedings
of the 2020 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), New YorkNY,
June 2020.

[95] W Eric Wong. Mutation Testing for the New Century,
volume 24. Springer Science & Business Media, 2001.

[96] Baowen Xu, Xiaoyuan Xie, Liang Shi, and Changhai Nie.
Application of genetic algorithms in software testing. In
Advances in Machine Learning Applications in Software
Engineering, pages 287–317. IGI Global, 2007.

[97] Michal Zalewski. American fuzzy lop, 2017.
[98] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan

Protzenko, and Benjamin Beurdouche. HACL*: A Verified
Modern Cryptographic Library. In Proceedings of the 24th
ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, October–November 2017.

Appendix

We provide more background information on the two case
studies covered in §4.1 and §5.1 respectively as well as a
discussion on how loop invariants might have an impact on
FAST in automatically confirming gaps in SPEC.

1. Background on Diem Payment System

The Move programming language. Move [6] is a pro-
gramming language developed for smart contracts by Meta
although it has transitioned into a community-backed project
now. The language features formal verification at its core
through its home-grown verification tool Move Prover [22],
which statically verifies the correctness of Move smart
contracts modeled with the Move Specification Language.

Move

Parser

Move

Compiler
Move Code

Spec AST

Bytecode

Move Model Prover

Compiler

Boogie

Z3/CVC4

SMT Solver

SMT Model
Diagnosis

Boogie

Result

Analyzer

UNSAT

SAT

Figure 7: Move Prover architecture and workflow

The Move Prover. The architecture of the Move Prover
is shown in Figure 7. Move CODE and SPEC are treated as
input to the prover. The source code will be compiled into
bytecode and the SPEC will be parsed into AST. Two parts
will then go through a pipeline of merging and transformation
and finally be compiled into Boogie [5], the intermediate
verification language. The verification conditions in Boogie
format will then be translated into SMT format which can
be solved by SMT solver such as Z3 [15] or CVC4 [20].
The Diem Payment Network (DPN). DPN is the first major
client of Move and Move Prover. The smart contract aims
to function as a full-fledged and versatile payment/banking
system with capabilities of handling multiple currencies,
account roles, and rules for transactions. The DPN features a
7:5 CODE-SPEC ratio (with around 2,000 lines of core CODE
in Move) which shows how the codebase is extensively
specified. Most importantly, formal verification on DPN
is fully automated and runs continuously with unit and
integration tests, all in the open on GitHub—making DPN
a perfect case study to test the effectiveness of FAST. The
CI test coverage for DPN is 73%.

2. Background on AWS TLS Implementation

About S2N. Amazon S2N-TLS [80] is a C99 implementation
of the TLS/SSL protocols. The previous de facto reference
implementation contains more than 500,000 lines of code
with at least 70,000 of those involved in processing TLS.
In contrast, S2N implements the TLS protocol with less
than 32,000 lines of code. Most of the implementations,
including both the cryptographic primitives (e.g., HMAC)
and the protocol itself (e.g., TLS handshake), are specified
using SAW script [25]. The SAW toolchain is responsible
for proving that the CODE conforms to the SPEC. The CI
test code coverage rate for s2n-tls is 89.87%.
About SAW Software Analysis Workbench (SAW) is an
industrial verification tool designed to prove equivalence
properties between abstract SPEC and concrete CODE. The
architecture of SAW is shown in Figure 8. It takes functions
in LLVM IR as well as SAW-script to bridge the IR and the
verification toolchain. If a function has an associated Cryptol
SPEC, it will also be symbolically executed. The function
terms and SPEC terms will be proven to be equivalent using
What4 [34] behind the scenes.

17

LLVM IR

CFG

Decompile

Compiled Code

x86 Binary

· Sets memory

· Identifies Cryptol /

function mapping

· Contains rewrites

Symbolic

Execution

Verification of

Equivalence

Divided into

 functions
SAW-core

SAW-

Script Cryptol

Symbolic

Execution

SAW-core

Function term

Specification term

Rewrite

Rewritten function and

specification terms

What4

Figure 8: SAW architecture and workflow

3. Loop Invariants

FAST requires an automated deductive verification system
to be the verifier and trusts its capacity in proving (or
disproving) that an arbitrary CODE mutant conforms to the
SPEC. In reality, deductive verifiers are often less capable
than expected and might give up on solving complicated
puzzles. A prominent example is proving post conditions for
a function with loops in its control flow, as shown in Figure 9.

Instrumenting loop invariants is a typical approach to
overcome this challenge. Effectively, loop invariants serve
as hints to the automated prover and guides it to the proving
of function postconditions. The drawback of adding loop
invariants is that the proof hints are tightly coupled with the
CODE and if the CODE changes, e.g., via mutation by FAST,
the mutant C ′ might still satisfy the postconditions but the
prover won’t be able to draw the same conclusion due to
out-of-sync loop invariants.

In other words, although C ′ appears to be S ̸⊒ C ′∧C ′ ̸≻
T (case 5 in §3), it might actually be case 4 S ⊒ C ′∧C ′ ̸≻
T should the loop invariants be updated; i.e., SPEC misses
an incompleteness in the SPEC although the chance of FAST
producing an equivalent CODE mutant is low.

In fact, whether FAST is missing issues in the SPEC also
depends on whether loop invariants, being more coupled
with CODE, should be considered as SPEC or implementation
details. As far as the authors know, there is no definite answer
to this question and we are open to all views on this subject.

One data point we can offer is that loop invariants
are indeed considered as SPEC by the DPN team as these
invariants are not only hints to proving postconditions (as
shown in Figure 9) but also contracts that need to be
implemented in the loop body. In FAST, we actually had
a mutation on line 43 from i = i + 1 to i = i + 2 and
as expected, this causes failure in both the verification and
testing. The rationale from the DPN team is that, should the
loop be converted to a recursive function, loop invariants
automatically become pre- and post-conditions (i.e., SPEC)
for the converted function. Therefore, a failing loop invariant
signals a robust SPEC.

1 fun add_members_internal<T: copy>(
2 members: &mut vector<T>,
3 to_add: &vector<T>,
4): bool {
5 let num_to_add = Vector::length(to_add);
6 let num_existing = Vector::length(members);
7

8 let i = 0;
9 while ({

10 spec {
11 invariant i <= num_to_add;
12

13 // the set can never reduce in size
14 invariant len(members) >= len(old(members));
15

16 // the current set maintains the uniqueness of the elements
17 invariant forall j in 0..len(members), k in 0..len(members):
18 members[j] == members[k] ==> j == k;
19

20 // the left-split of the current set is exactly the same as
21 // the original set
22 invariant forall j in 0..len(old(members)):
23 members[j] == old(members)[j];
24

25 // all elements in the the right-split of the current set is
26 // from the `to_add` vector
27 invariant forall j in len(old(members))..len(members):
28 contains(to_add[0..i], members[j]);
29

30 // the current set includes everything in `to_add` seen so far
31 invariant forall j in 0..i: contains(members, to_add[j]);
32

33 // having no new members means that all elements in the `to_add`
34 // vector seen so far are already in the existing set (vice versa)
35 invariant len(members) == len(old(members)) <==>
36 (forall j in 0..i: contains(old(members), to_add[j]));
37 };
38 (i < num_to_add)
39 }) {
40 let entry = Vector::borrow(to_add, i);
41 if (!Vector::contains(members, entry)) {
42 Vector::push_back(members, *entry);
43 };
44 i = i + 1;
45 };
46

47 Vector::length(members) > num_existing
48 }
49 spec add_members_internal {
50 // function never aborts
51 aborts_if false;
52

53 // everything in the `to_add` vector must be in the updated set
54 ensures forall e in to_add: contains(members, e);
55

56 // everything in the old set must remain in the updated set
57 ensures forall e in old(members): contains(members, e);
58

59 // everything in the updated set must come from either the old set
60 // or the `to_add` vector
61 ensures forall e in members:
62 (contains(old(members), e) || contains(to_add, e));
63

64 // returns whether a new element is added to the set
65 ensures result == (exists e in to_add: !contains(old(members), e));
66 }

Figure 9: A Move function with loop invariants

An alternative approach in automated deductive verifi-
cation to solve the complexity caused by loops is bounded
model checking (BMC) which unroll loops to a certain depth,
at the expense of completeness. A BMC-style verifier is
compatible with FAST as the verifier can prove (or disprove)
whether an arbitrary CODE mutant conforms to the SPEC.

18

	Introduction
	Background and Related Work
	Formal verification
	Automated function verification
	The completeness of specifications
	Mutation testing
	Evolution strategy in fuzzing

	The Tale of spec, code, and Tests
	Enumerative code Mutant Generation
	Case study: Diem Payment Network

	Evolutionary code Mutant Generation
	Case study: AWS TLS implementation

	Extra Evaluations
	Discussion and Future Work
	Conclusion
	Appendix
	Background on Diem Payment System
	Background on AWS TLS Implementation
	Loop Invariants

