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Abstract

Bugs in the Linux eBPF verifier may cause it to mistakenly ac-
cept unsafe eBPF programs or reject safe ones, causing either
security or usability issues. While prior works on fuzzing
the eBPF verifier have been effective, their bug oracles only
hint at the existence of bugs indirectly (e.g., when a memory
error occurs in downstream execution) instead of showing
the root cause, confining them to uncover a narrow range of
security bugs only with no detection of usability issues.

In this paper, we propose SPECCHECK, a specification-based
oracle integrated with our fuzzer VERITAS, to detect a wide
range of bugs in the eBPF verifier. SPECCHECK encodes eBPF
instruction semantics and safety properties as a specification
and turns the claim of whether a concrete eBPF program
is safe into checking the satisfiability of the correspond-
ing safety constraints, which can be reasoned automatically
without abstraction. The output from the oracle will be cross-
checked with the eBPF verifier for any discrepancies. Using
SPECCHECK, VERITAS uncovered 13 bugs in the Linux eBPF
verifier, including severe bugs that can cause privilege es-
calation or information leakage, as well as bugs that cause
frustration in even experienced kernel developers.

1 Introduction

Kernel extensions are critical components of modern operat-
ing systems that allow developers to extend the kernel with
custom functionality. eBPF is one such framework that al-
lows developers to extend the Linux kernel [15] safely. eBPF,
at its core, relies on static verification to ensure the safety of
eBPF-based extensions (i.e., eBPF programs). The eBPF veri-
fier validates every program before execution, thereby pre-
venting unsafe operations that could compromise the kernel.
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This role becomes even more critical with the widespread in-
dustrial deployment of eBPF-based extensions. For instance,
servers at Meta each execute over 50 eBPF programs [21],
underscoring the extensive reliance on these extensions in
large-scale deployments. To ensure the safety of such pro-
grams, the Linux eBPF verifier statically checks each eBPF
program against a set of safety conditions the kernel expects
(e.g., in-bounds memory access) using a heuristic algorithm
that combines domain abstraction [22] and execution path
enumeration.

Unfortunately, the eBPF verifier contains bugs that either
reject safe eBPF programs (usability issues) or accept unsafe
ones (security issues). Specifically, rejecting safe eBPF pro-
grams imposes significant overhead on developers, who must
spend time debugging the correct code while struggling to
understand the subtleties in the verifier [3]; or, accepting un-
safe eBPF programs imposes security risks, such as privilege
escalation [6] and information leakage [7].

As the bugs in the verifier can lead to critical issues, we
need a deeper understanding of the current verifier design
to develop effective approaches for detecting and fixing
bugs. We identify four primary root causes of eBPF veri-
fier bugs. First, abstract interpretation in the eBPF verifier is
imprecise—over-approximating eBPF program states—hence,
rejecting safe programs (RCI). Second, safety checks, imple-
mented incrementally with new features (e.g., new instruc-
tions or kernel functions) by different developers can be
inconsistent, either too conservative or too relaxed (RC2).
Furthermore, even with the required informal documenta-
tion of safety properties—actually absent, developers still
make implementation mistakes (RC3), especially in optimiza-
tion heuristics (RC4). Overall, RC1-3 can cause safe eBPF
programs to be rejected, while RC3 and RC4 allow accepting
the unsafe eBPF programs, thereby raising critical concerns.

Existing works have focused on finding a subset of bugs
in RC3 and RC4, with less attention on RC1 and RC2. For in-
stance, existing formal verification works specifically verify
the functional correctness of a single component. Agni [39],
for example, targets the range analysis component to rule out
range-specific bugs (RC3). Automated testing, on the other
hand, relies on specific runtime patterns, such as memory
sanitizer KASAN [27, 37] or integer range discrepancies be-
tween the verifier’s approximated states and eBPF program
runtime states [26, 36], to detect issues in RC3 and RC4.
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In this paper, we take a rather holistic approach to nip the
identified root causes in their bud. We introduce the fuzzing
framework VERITAS, which utilizes the specification-based
oracle SPECCHECK that identifies eBPF verifier bugs based
on the aforementioned root causes (RC1-RC4). Specifically,
SpEcCHECK systematically specifies eBPF instruction seman-
tics (especially the dynamic type system) and five safety prop-
erties of eBPF programs guaranteed by the eBPF VM. The
specification is further encoded as pre- and post-conditions
of each instruction using axiomatic notations, which is ex-
tensible as adding new instructions or kernel functions is
simply to extend the specification with the new pre- and
post-conditions. Moreover, SPECCHECK leverages the specifi-
cation to verify the safety of an eBPF program through SMT
solvers, ensuring the trackability of failed conditions and the
oracle as precise as the SMT solvers.

VERITAS found 15 new bugs in total, indicating its bug-
finding effectiveness. Some bugs can cause severe security
consequences, such as privilege escalation to root and infor-
mation leaks capable of bypassing KASLR, or usability issues
that cost eBPF developers hours to debug. 12 bugs have been
acknowledged, and eight of them have already been fixed.

Summary. This paper makes the following contributions:

e Specification of eBPF instruction semantics and
safety properties: We systematically analyzed the eBPF
VM to specify its instruction semantics, particularly its
type system, and the safety properties it guarantees. This
provides the community with a deeper understanding of
the eBPF VM, facilitating the further development of the
eBPF-based extension system.

e A specification-based oracle for holistic detection
of eBPF verifier bugs: We present the specification-
based checker SPECCHECK and integrate it into our fuzzer
VERITAS, enabling the automatic and comprehensive de-
tection of various types of bugs in the eBPF verifier.

¢ Finding severe bugs: VERITAS uncovered bugs that can
lead to severe security vulnerabilities, such as privilege
escalation and information leaks, as well as significant
usability issues for developers.

VERITAS is publicly available at https://github.com/rs3lab/
veritas.

2 Background and Motivation

We introduce the basics of the eBPF virtual machine (VM)
and illustrate four Linux eBPF verifier bugs uncovered by
VERITAS to highlight the limitations of existing works.

2.1 eBPF Virtual Machine and Verifier

Basics. The eBPF VM is a register-based architecture with
its dedicated eBPF Instruction Set Architecture (ISA) [9],
designed to execute kernel extensions for system tracing,

security enforcement, and network processing. It has ten
general-purpose 64-bit registers (R9-R9) and one read-only
stack frame pointer register (R10), pointing to a fixed-size
stack memory region private to each eBPF VM, similar to
the rbp register on x86-64. The eBPF VM also provides other
types of special-purpose memory regions to interact with the
kernel and userspace. Programs running inside the eBPF VM
include an entry function (i.e., main function) and optionally,
auxiliary functions (i.e., pseudo functions). Each function is
a finite sequence of eBPF instructions [9].

The Linux eBPF verifier. The goal of the Linux eBPF ver-
ifier is to ensure that an untrusted eBPF program is “safe”
to execute in kernel space. While we defer the discussion
of safety requirements to §3.3, in a nutshell, an eBPF pro-
gram cannot access arbitrary kernel data structures nor cause
hangs, panics, or resource leaks.

To achieve this, the eBPF verifier implements an algo-
rithm that preserves some safety properties. The algorithm
comprises some form of abstract interpretation [22] with ex-
ecution path enumeration commonly found in symbolic exe-
cution (e.g., KLEE [19]). Specifically, it first performs control
flow graph validation to preclude infinite loops and recursion,
and subsequently enumerates all program paths. For each
path, the verifier simulates the execution of every instruc-
tion, tracks the state change of registers and memory regions,
and checks that even over-approximated execution states
(e.g., integers approximated with wider possible ranges) are
still safe. Moreover, it prunes execution paths heuristically
to reduce path explosion and improve verification efficiency.

Upon passing verification, eBPF programs are attached to
specific kernel hooks to be executed either by the interpreter
or as JIT-compiled machine code. In both cases, the safety
checks done by the static verifier are not repeated at runtime.

2.2 Issues with the Linux eBPF Verifier

We now discuss the four root causes (RC) that the current
verifier suffers from.

uint32_t array[11];
// x is aligned to 4 bytes
// x 1is initialized with a value loaded from a context field
uint32_t x = ctx_value;
uint32_t res;
// Bound the range of x
if (x >= 0 && x < 11) {
res = compute_value();
array[x] = res; // Rejected
}
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Figure 1. A bug caused by imprecise abstract interpretation and
found by VERITAS took a sched-ext developer hours to debug.

RC1: Imprecision caused by state abstraction. Even in
the best-case scenario, where all contributors to the Linux
eBPF verifier have a shared and complete understanding of
safety properties, and the implementation is flawless, the
eBPF verifier can still reject safe eBPF programs due to the
inherent conservative approximation of execution states.
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Figure 1 shows such a case discovered by VERIiTAS. The
example program declares a 44-byte local array (array) and
a 32-bit variable x, which is at a 4-byte aligned address and
initialized to an unknown value read from a field in a context
memory region. The range of x is then bounded to safely
index into array (line 7). Subsequently, array[x] is assigned
the return value of a pseudo function compute_value (line 9).
However, the verifier rejects this program, incorrectly de-
termining that x could exceed the array bounds despite the
earlier bounds check.

The root cause lies in the “intended” abstract interpreta-
tion design of not propagating the numerical range state
from registers to memory regions that are not 8-byte aligned.
Therefore, when x is loaded from memory into a register
r1 and undergoes a bounds check (line 7), the verifier does
not propagate the range information to the 4-byte aligned
stack data. Later, r1 and its maintained range information is
overwritten when computing res. When x is subsequently
reloaded into register (line 9), the verifier has no record of its
previously established bounds, causing it to conservatively
assume x could be out of bounds and incorrectly rejecting
the program. This creates a bad experience as reported by
frustrated sched-ext [12] developers after our discovery.

1 int “ptrl = ptr;
2 atomic_and(&ptrl, 1); // Success: & between 1 and ptr in &ptrl
3 ptr & 1; // Failed : & between 1 and ptr

Figure 2. Inconsistent safety constraints in bitwise operation

RC2: inconsistent safety rules. Ideally, participants in
the eBPF ecosystem should share the same and complete
understanding of safety properties. However, in reality, such
systematic knowledge is nonexistent. The safety of eBPF
programs is more like folklore knowledge imprecisely de-
scribed in natural languages (e.g., mailing lists[4], code com-
ments [11] and selftests [13]), and safety checks in the ver-
ifier are often implemented incrementally as the eBPF ISA
expands (e.g., new instructions and kernel functions). As dif-
ferent developers offer individual and uncoordinated under-
standing of safety rules, inconsistent safety checks—checks
that are more conservative or relaxed than similar counter-
parts without a clear justification—are not uncommon.

As shown in Figure 2, a regular bitwise AND and an
atomic AND on a pointer yield inconsistent verification re-
sults, confusing eBPF application developers. Since both
operations pose the same security risk (potential pointer
leakage, see §3.3) with no additional safety concerns, they
should be treated consistently. For privileged users who are
allowed to leak pointers, both variants should be permitted
to maximize programming flexibility.

RC3: incorrect implementation. Besides inconsistent
safety notions, the implementation is rarely perfect. Devel-
opers might implement an incomplete or even wrong set
of safety rules, which can cause either safe eBPF programs

struct bpf_iter_num it;
// memory data pointing by map_val is controlled by users.
int *map_val = ...;

bpf_iter_num new(&it, 0, 3);

// Correct one: while (bpf_iter_num_next(&it)) {}

while (bpf_iter_num_next((struct bpf_iter_num *)map_val)) {}
bpf_iter_num_destroy(&it);
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Figure 3. A bug that misses type checks found by VERITAS.

being rejected or unsafe eBPF programs being accepted, due
to missing specifications for required safety rules.

Figure 3 illustrates a bug where the verifier fails to
type check properly. The program declares a number
enumeration structure with start and end fields defin-
ing a range [0-3). The program then calls the kernel
function bpf_iter_num_next in a loop to iterate over the
range. bpf_iter_num_next expects the enumeration struc-
ture to reside on the stack; allocating memory dynami-
cally within the function to maintain it would degrade
performance in latency-critical eBPF contexts. Internally,
bpf_iter_num_next takes the enumeration structure, returns
the current start value, and increments the start value by
1. It returns null when start equals end. However, due to
missing type checks in the verifier, the program can pass any
arbitrary memory pointer (e.g., a map pointer) as the argu-
ment instead of a valid enumeration structure. For example,
a user can modify data in mapped memory from userspace
during runtime, potentially causing the eBPF program to
loop infinitely, leading to a hang in kernel space.

1 int funclQ {

2 uint64_t *victim_ptr;

3 // ptr @(r10-8) saves its own address
4 victim_ptr = (uint64_t *)&victim_ptr;
5 return 0;
6
7
8

int func2(Q {
uint64_t leaked_ptr; // Not initialized

9 ((char *)&leaked_ptr)[0] = 0;
10 // Bug: leaked_ptr becomes a readable 8-byte integer
11 // but its high 7 bytes are partial victim_ptr
12 return 0;
13 }
14 SEC("socket")
15 int leak_ptr(void *ctx) { funcl(); func2(Q); }

Figure 4. An erroneous optimization leads to data leakage.

RC4: erroneous optimization. Historically, a hot spot of
implementation errors is the optimizations in the verifier as
they increase the complexity of the verification algorithm
significantly. Hence, we assign a special tag to bugs caused by
optimizations and differentiate them from RC3. Specifically,
to improve verification efficiency, the verifier employs path
pruning via path equivalence checks. On encountering a
branch starting at instruction i, the verifier checks if it has
already verified this branch with a previous program state
Sy. If the current state S; can be subsumed by S; the verifier
skips re-verifying that branch. Essentially, the verifier only
attempts to unify register values, stack data, and other states
used in memory access instructions from S, with Sj.



VERITASs discovered a bug in path pruning. The verifier
implements a special behavior for programs with capability
CAP_PERFMON, which allows leaking kernel data to userspace.
When spilling an N-byte value to an uninitialized 8-byte
aligned stack address, it marks the remaining (8 — N) bytes
as known values. This allows more states to be unified for
pruning purposes. The bug arises when the verifier mistak-
enly applies this behavior to programs without CAP_PERFMON.
This can be exploited to leak kernel pointers, potentially
bypassing KASLR[2] and enabling more severe attacks.

Figure 4 demonstrates an exploit for this bug. The entry
function leak_ptr (line 15) first calls funcl, which saves a
stack address in victim_ptr at the top of the stack frame.
It then calls func2, which shares the same stack frame and
writes a single byte to leaked_ptr—a location residing in
the same eight-byte stack slot as victim_ptr. Due to the
verifier bug, although only one byte is written, the verifier
incorrectly marks the next 7 bytes as initialized integers.
These 7 bytes actually contain part of the pointer value stored
in victim_ptr. The program can then load these bytes as
integers and leak them to userspace.

2.3 Improving Assurance of eBPF Verifier

Given the importance of the Linux eBPF verifier, several
works try to improve its correctness, which can be broadly
categorized into three themes:

Formal verification aims to prove that the verifier con-
forms to a specific set of correctness specifications. For ex-
ample, several works [38, 39] proved the correctness of range
analysis. Despite its high assurance, formal verification of-
ten struggles to scale due to the verifier’s large (20K LoC)
and rapidly evolving codebase. This may explain the lack of
full-spectrum verification beyond range analysis.

Alternative designs with solid language-theoretic founda-
tion also exist. For instance, PREVAIL [24] seeks to capture
and unify ad-hoc safety rules in eBPF verifier and reimple-
ment them with a foundational framework such as abstract
interpretation. This means the alternative designs are typi-
cally more accurate with reasonable or even no performance
penalties. The major drawback, however, is that it will be
challenging for the alternative verifier to keep up with the
rapid evolution of the eBPF verifier.

Fuzzing [40] as one of the most effective bug-finding ap-
proaches has been applied on eBPF verifier [26, 27, 36, 37].
While coverage-guided fuzzing can be very effective in ex-
ploring different parts of the verifier, a fuzzer still needs a
bug oracle to decide when the eBPF verifier is erroneous,
and the design of an eBPF-specific bug oracle has been a
differentiating factor in prior works.

Bug oracles in prior works include memory sanitizer
KASAN [27, 37] and a reference monitor for scalar range in-
consistencies between verifier states and runtime states [26,
36]. These oracles, however, can detect only a subset of bugs

caused by RC3 and RC4 as many runtime errors (e.g., in-
formation leaks or type confusion) do not necessarily lead
to memory errors. These oracles also completely forgo the
chance of finding issues in RC1 and RC2 as eBPF programs
that fail verification will not even be executed.

2.4 Motivation and Insight

The unique characteristics of each theme drive us to consider
a holistic yet practical scheme to find all bug types listed
in §2.2. We present VERITAS, a fuzzing-based testing frame-
work with an oracle SPECCHECK, built on an extensible set
of specifications that encode constraints for eBPF programs.
SpEcCHECK employs automated reasoning to verify eBPF
programs against these specifications. If the verification re-
sult diverges from the eBPF verifier’s result, SPECCHECK flags
it as a bug. Importantly, we do not propose SPECCHECK as
a replacement for the in-production eBPF verifier. Rather,
SpPECCHECK serves as a precise and extensible testing oracle
at the cost of verification speed.

We first present the design of the specification-based oracle
(§3), SPECCHECK, which we later integrate into VERITAS (§4).

3 SpEcCCHECK: A Specification-based Oracle

VERITAS aims to identify eBPF verifier bugs holistically
through a specification-based oracle SPECCHECK, designed
with the following four goals in mind:

Goal 1: Precision. SPEcCHECK should accurately charac-
terize the set of safe eBPF programs by precisely specifying
program state and safety constraints. Any imprecision could
lead to false alarms when comparing results with the Linux
eBPF verifier, making it difficult to determine if the verifier
is functioning correctly.

Goal 2: Trackability. When facing an unsafe program,
SpEcCHECK must be able to pinpoint the root cause of safety
violations. That is, SPECCHECK can blame the specific instruc-
tion that violated the expected eBPF safety guarantees.
Goal 3: Extensibility. The eBPF ecosystem continu-
ously evolves with new instructions and helper functions.
SpECCHECK should be easily extended to model the new fea-
tures, enabling thorough testing of both new, existing com-
ponents, and their interplay in the eBPF verifier, without
requiring significant changes to the framework.

Goal 4: Reasonability. The specification underlying
SpECCHECK must be amenable to formal reasoning, enabling
us to prove higher-level properties (e.g., in the form of lem-
mas/theorems) that the specification should enforce.

3.1 Overview of SPECCHECK

To achieve these goals, SPECCHECK is built around two com-
ponents: 1) The operational semantics and constraints on
alignments and operations that the eBPF specification man-
dates for each eBPF instruction [9] (including kernel func-
tions). We augment this operational semantics with dynamic



types and the corresponding typing rules to track the type of
values manipulated by the eBPF VM. We aim for precision by
avoiding abstraction where possible (§3.2). 2) A set of safety
constraints for each eBPF instruction derived systematically
to ensure five safety properties (§3.3).

These components are specified using per-instruction and
pure functions (§3.4). This approach directly supports ex-
tensibility, as incorporating a new instruction only requires
adding its corresponding pre- and post-conditions, and rea-
sonability, as the use of pure functions facilitates reasoning.

More importantly, these specifications enable SPECCHECK
to turn the question of “Is a given eBPF program safe?” into
proof obligations that can be discharged to automated theo-
rem provers, e.g., satisfiability modulo theories (SMT) solvers.
By encoding all dynamic checks performed in the semantics
into SMT formulae, SPECCHECK avoids any form of approx-
imation, achieving a high degree of precision, bounded pri-
marily by the capabilities of the underlying solver to solve
the verification obligations.

Furthermore, when SPECCHECK fails an eBPF program
verification, the SMT solver’s counterexample can be used
by SPECCHECK to identify the specific constraints that were
violated, directly providing trackability.

3.2 eBPF Semantic Specification

SpecCHECK encodes the semantics of eBPF instructions with
their operational semantics and constraints as defined in the
eBPF ISA [9]. The semantics is augmented with a dynamic
type system, characterizing how types are updated by each
instruction. We provide detailed definitions of terms and
dynamic typing rules in the appendix.

Terms. An eBPF program consists of a sequence of instruc-
tions (see Figure 12 in the appendix)—categorized as arith-
metic, data handling, memory, and control flow operations—
each of which takes immediates or registers as operands.

Types. SPECCHECK defines a dynamic type system that as-
sociates a data type with its value, as shown below.

datatype ETYPEV =
| Uninit
| Scalar(kind: Kinds, val: bv64)
| PtrType(r: MemRegion, memid: nat, off: bv64)
| PtrOrNullType(r: MemRegion, memid: nat, off: bv64)

Uninit denotes uninitialized data. After initialization,
data can exist in one of three forms: a Scalar(kind, val)
representing an integer value (1 to 8 bytes) anno-
tated with its semantic kind; a non-null pointer
PtrType(r, memid, off); or a potentially null pointer
PtrOrNullType(r, memid, off). As memory in the eBPF
VM is discontiguous, we model it as multiple memory
regions. Each region is uniquely identified by a triple (r,
memid, off), where r denotes the region type (e.g., stack or

packet), memid identifies the specific region within that type,
and off specifies the byte-level offset within the region.

Model. SPEcCHECK models the eBPF VM as a state machine,
in which an eBPF program is comprised of functions, each
containing a sequence of instructions that operate on reg-
isters and separate memory regions. SPECCHECK tracks the
state (i.e., value and type) of registers and memory bytes,
along with memory access permissions (e.g., no access, read-
only, and read-write) and other states (e.g., the meta infor-
mation of maps), forming the execution context.

Registers r@-r9 and the stack memory region are general-
purpose, capable of storing any data type. In contrast, register
r10 and other memory regions are special-purpose and fixed
to specific and unchanging types. These memory regions
are either raw memory, where all data is of type scalar, or
structured memory with fields of type scalar or pointer.
For instance, context memory containing socket buffer data
is structured with the __sk__buff kernel structure. Notably,
since pointers are eight bytes, a pointer stored in memory
indicates that all 8 bytes starting at the address must be
marked with PtrType or PtrOrNullType.

Initial context. Initially, r1 and r10 represent the base ad-
dress of the context and stack memory, respectively. Thus,
their typed values are set to PtrType(stack, 0, 0) and
PtrType(context, 0, 0).Other registers and memory loca-
tions are initialized as follows: Registers and stack slots are
all initialized to uninit, while other memory bytes are ini-
tialized with their predefined types—either scalar, PtrType,
or PtrOrNullType—based on their intended purpose.

We now describe SPECCHECK’s type rules, key instruc-

tion semantics, and semantic constraints, which every eBPF
program must satisfy.
Arithmetic instructions. These operations fall into two
categories: single operand (e.g., bitwise negation) and dou-
ble operand (e.g., addition). The semantics of arithmetic in-
structions align with those of other ISAs, except for special
cases like division-by-zero or modulo-by-zero. For example,
division-by-zero is allowed and returns zero.

In SpECCHECK’s dynamic type system, unary arithmetic
instructions—bit manipulations—always update the type of
dst register as Scalar. Double-operand instructions behave
the same, except in specific cases. When adding or sub-
tracting a Scalar to/from a PtrType, or adding a PtrType
to Scalar, the destination register is set to PtrType.

Data handling operations. Data handling includes 64-bit
mov and loads. mov instructions copy data between registers
or from an immediate to a register, while loads place 64-bit
constants (PtrType or Scalar) into registers. 64-bit mov and
load update the destination register with the source type,
while others change the destination register’s type to Scalar.
Memory operations. eBPF supports 1, 2, 4, and 8-byte gen-
eral loads and stores with 4/8-byte atomic memory opera-
tions. Such operations typically require size-aligned memory



accesses. SPECCHECK enforces strict type rules for memory
operations to prevent pointer corruption, including partial
pointer loads or overwrites.

Rather than tracking all memory slots, SPECCHECK en-
forces two key constraints: accesses to general-purpose mem-
ory regions (i.e., stack) must be size-aligned, and structured
memory regions access must be size-aligned and contained
within a single field. This approach leverages observations
that the eBPF LLVM compiler performs stack spills at size-
aligned offsets and structured memory fields are all size-
aligned, allowing the checker to track pointers by examining
only 8-byte aligned memory blocks. Additionally, atomic
memory operations are restricted to concurrently accessed
memory regions (i.e., maps), while other memory regions,
like the stack, being local to single program instances, do
not require atomic operations.

Based on the above semantics and constraints, we now
list the type rules that SPECCHECK enforces for memory op-
erations below:

e load: 8-byte memory loads from the memory slots with
the same type « set the destination registers as a. Other
loads set the destination registers to Scalar.

e store: Memory regions are modeled with either mutable
types (i.e., stack) or immutable types (e.g., context). For
stack, 8-byte stores replace the slot types with the source
register’s type. For stores smaller than 8 bytes: if the orig-
inal 8-byte slot contained a pointer type, all 8 bytes are
converted to Scalar to prevent partial pointer corruption.
Otherwise, only the targeted bytes are marked as Scalar.
For memory regions with immutable types, SPECCHECK
ensures slot types are compatible with the source register
type—pointers can be stored as scalars, but not vice versa.

e Atomic operations: Maps—memory regions with the im-
mutable type Scalar—are the only areas where atomic
operations apply currently. Thus, their memory slot types
remain unchanged and the register holding loaded data is
always Scalar type.

Control flow operations. SPECCHECK executes instruc-
tions sequentially, except for jumps, function calls, and exits.
Jumps transfer control within a function, either uncondi-
tionally or based on comparison results. They generally do
not change data types with one exception: comparisons (==
and !=) between a PtrOrNullType and a Scalar with value
0, which changes the former to either PtrType (non-null) or
Scalar with value 0 (null). Direct function calls pass up to
five arguments via caller-saved registers r1-r5, while r6-r9
are callee-saved. For kernel function calls, argument types
are validated against the function type declarations upon
entry, while other registers are set to Uninit. On function re-
turn, r® holds the return value, whose value range and type
are constrained by program types to ensure correct interpre-
tation at the attachment point. For instance, the 33 program

types (grouped into nine categories) each have defined re-
turn value constraints. After a function returns, callee-saved
registers are restored, while caller-saved registers and callee
stack slots are set to Uninit.

3.3 eBPF Safety Specification

SpECCHECK derives safety properties through a top-down
approach based on the CIA (Confidentiality, Integrity, and
Availability) triad security model [35]. This systematic ap-
proach leads us to define three key aspects of safety:

e Availability: Unrestricted eBPF programs can compro-
mise kernel availability in several ways: causing kernel
crashes through memory errors, blocking kernel threads
indefinitely, and depleting system resources through non-
terminating execution or improper resource management.
To protect kernel availability, we define three safety prop-
erties: control flow safety (SP1), memory safety (SP2), and
resource safety (SP3).

o Integrity: Kernel integrity requires that eBPF programs
do not modify unauthorized data—namely 1) kernel mem-
ory outside the eBPF VM and 2) eBPF registers or memory
locations that are read-only or inaccessible. Formally, ex-
ecuting an instruction insn on a state o—satisfying the
safety requirements for insn—guarantees that unautho-
rized data (Dy,) remain unchanged between ¢ and the
resulting state o”.

Yinsn, o, o’. (safe(o, insn) A o i o) = o Do o,
This integrity definition entails two safety properties:
memory safety (SP2) and VM integrity (SP4).

¢ Confidentiality: eBPF programs running in the kernel
context have access to sensitive kernel data, such as kernel
pointers, information retrieved through kernel functions,
and data in sensitive memory regions (e.g., packets and con-
texts). These sensitive information must never be leaked
to unprivileged users. Otherwise, attackers can exploit
them to exfiltrate private data or escalate privileges with
the help of other kernel vulnerabilities [7]. Therefore, the
confidentiality (non-leakage) of the sensitive data becomes
critical and we formally define it below.

Y insn, 01, 03, 01, 0,. (safe(ay, insn) A safe(os, insn) A

insn U,
= 0;) = o0~ 0

o1 L’Z{Gz/\(fl m—S;lO'{/\O'z
Specifically, we partition the eBPF VM state into two dis-
joint domains: high-security Uy, (sensitive data) and low-
security Uy (all other data). Only the low-security domain
is observable to unprivileged users via public channels.
Based on this, given any two states o; and o3 that are safe
to execute an instruction insn, if their data in the low-
security domain Uy is equal, the resulting states preserve
the equivalence in the domain Uy. Intuitively, this ensures



that no high-security information flows to low-security
data, preventing leakage. This yields safety property SP5.

Overall, we define an eBPF program as safe if it satisfies the
global control-flow safety and each of its instructions is safe
regarding other safety properties SP2 to SP5.

We now detail the control-flow safety property and each
per-instruction safety property separately.

SP1: Control flow safety. eBPF programs must termi-
nate in finite time—in terms of the number of instructions
executed—with an explicit exit instruction. Any execution
of a program can have a maximum of 1M instructions for
privileged users and 4096 instructions for unprivileged users.
This ensures execution control returns properly to the kernel
and prevents denial-of-service attacks, which could other-
wise be launched through resource exhaustion.

SP2: Memory safety. SPECCHECK models only discrete
eBPF VM memory regions, so any unmodeled memory lies
outside the VM. These unmodeled memory can be accessed
either through out-of-bounds VM memory access or via
kernel functions. In our specification, safety for unmodeled
memory when accessed via kernel functions is out of scope.
Such accesses pose the same risks as general kernel code,
especially, some kernel functions are wrappers around na-
tive Linux functions. Thus, regulating eBPF behaviors in this
context is unnecessary unless the entire Linux kernel is for-
mally verified as memory-safe. Therefore, memory errors
on unmodeled memory can only occur due to out-of-bounds
eBPF VM memory access.

Based on the aforementioned memory modeling, we en-
force three key memory safety constraints: First, any derefer-
enced pointer must be non-null, which is verified by checking
if the pointer’s type is PtrType before memory operations.
Second, memory accesses must be within bounds and have
valid permissions. Memory regions in eBPF VM either have
fixed or dynamic bounds. The above conditions apply to
regions with fixed bounds (e.g., stack) and dynamic regions
(e.g., packet) where memory bounds are determined dynam-
ically through pointer comparisons, such as between the
packet and its end pointer packet_end. In contrast, other dy-
namic regions (e.g., buffer) depend on runtime checks. Third,
to ensure temporal memory safety—preventing issues like
use-after-free and double-free—we track the state of memory
dynamically allocated through kernel functions. All related
kernel functions are required to check the memory state
before operations and update it afterward.

SP3: Resource safety. Resource safety ensures that all dy-
namically allocated resources are properly released before
program termination. Specifically, before allowing program
termination, SPECCHECK checks that all dynamically allo-
cated memory has been freed and all acquired resources
(such as locks) have been released by examining the pro-
gram’s resource tracking state.

SP4: VM invariant/integrity. The eBPF VM enforces this
invariant by making register r10 read-only, prohibiting any
instructions from writing to it as a destination register.
SP5: VM data safety. SpECCHECK ensures data safety by
adopting the capability model. In particular, kernel functions
that retrieve sensitive information and sensitive memory
regions are only allowed for specific program types, which
require capabilities (e.g., CAP_PERFMON) to upload. Without
these capabilities, SPECCHECK enforces the following data
safety properties to protect the sensitive data (i.e., pointers
and uninitialized data).

First, it prohibits programs from reading data with the type
Uninit, as it may contain private kernel data that was not
erased. Second, it prohibits programs from storing pointers
in public channels, such as map memory regions and helper
calls that write to userspace memory. Still, eBPF programs
can convert pointers (PtrType and PtrOrNullType) to scalars
using arithmetic, memory, and call operations, potentially
leaking these scalars to userspace. For instance, a bitwise
or on a pointer converts it to a scalar according to the type
rules described in §3.2. SPECCHECK prevents such leaks by
strengthening type rules that convert pointers to scalars.

o Arithmetic instructions. Arithmetic operations that take
pointers but produce scalars are all disallowed.

o Data handling operations. Instructions that are not 64-bit
mov and load and operate on pointers, are prohibited.

o Memory operations. The type rules in §3.2 allow converting
pointers to scalars by loading or storing pointers smaller
than 8 bytes. Such type transitions are prohibited to avoid
kernel pointer leakage.

e Control flow operations. Jump instructions do not suffer
from unsafe type conversions. Meanwhile, call instructions
that pass arguments with pointer types to scalar parame-
ters are already prevented in the defined type rules.

In addition, side channels can arise from two sources: (1)
comparisons between pointers and scalars, and (2) specu-
lative execution. To prevent information leakage through
pointer-scalar comparisons, we prohibit such comparisons
in both general jump instructions and atomic compare-and-
exchange operations. But we allow PtrOrNullType to be com-
pared with the scalar value 0 in equal/non-equal jumps to
check if a pointer is null. For speculative execution side
channels, we assume that the eBPF VM can rewrite pro-
grams with appropriate mitigations. Thus, we do not impose
additional constraints on eBPF programs for this case.
Discussion of safety property completeness and sound-
ness. The five safety properties outlined above are derived
practically using a top-down approach, and the Linux eBPF
verifier developer confirmed that they genuinely reflect the
verifier’s intended guarantees. We have verified that the en-
coded safety properties SP1-SP5 ensure the aforementioned



confidentiality and integrity definition. Any omission of
these properties breaks the proofs. We are also actively work-
ing on a formal definition for availability, the last component
of CIA, while empirical validation shows SpecCheck’s prac-
tical soundness regarding availability: (1) all corresponding
upstream self-tests pass, (2) all historical bugs are caught,
and (3) no false alarms after 3 months of fuzzing. More im-
portantly, these properties are sufficient to identify known bug
types within our bug-finding scope.

3.4 Specification Encoding

We adopt Dafny as our specification language, which has
native support for encoding specifications, such as pre-
conditions, post-conditions, pure functions/predicates, and
lemmas. Moreover, the Dafny verifier can track violated con-
straints when these conditions fail, enhancing the debugging
and refinement process.

Concretely, we define the eBPF VM state (e.g., memory
and registers) as an immutable datatype. The specification of
each instruction is implemented as a side-effect-free Dafny
function, similar to a predicate but capable of returning val-
ues beyond just booleans. Per-instruction Dafny function
takes an eBPF VM state as well as an instruction and re-
turns a produced new state. Safety properties are encoded
as functions’ pre-conditions, while function bodies express
instruction semantics.

We encode each instruction’s specification based on its
operational semantics from the ISA [9], the semantic con-
straints and type rules in §3.2, and safety properties in §3.3.
For kernel functions whose semantics are not detailed in
the ISA, we extract both operational semantics (e.g., return
values) and semantic constraints (e.g., spin_lock requires
no already held locks) from their kernel implementations.
To prevent encoding errors in safe properties (e.g., missing
safety properties), we map each safety property with its cor-
responding semantic component: 1) SP2 (memory safety)
with memory read/write/allocation/release semantics, 2) SP3
(resource safety) with program termination semantics, 3) SP4
(VM integrity) with register write semantics, and 4) SP5 (data
safety) for all instruction semantics. Using the mapping, we
can identify the necessary safety properties of each instruc-
tion by matching its semantic with the safety properties’
semantic component.

Figure 5 illustrates the encoding of the 32-bit bitwise nega-
tion instruction neg32. Line 3 checks if the instruction is
neg32 as defined in our terms. The semantics of neg32 in-
volves register write, thus having the VM invariant SP4 and
the data safety property SP5 as preconditions. SP4 requires
the modified register (dst) must not be the read-only regis-
ter R10. SP5 enforces this instruction to compute on scalar
data if the privilege is missing, avoid leaking pointers or
uninitialized values. If the safety properties hold, accord-
ing to the type rule, the type of destination register transits
to scalar. Further, the instruction semantic regarding data

1 function neg32(s: State, insn: Instruction) : State

2 // Pre-conditions

3 requires exists dst, src_imm ::

4 insn == ARITHUNARY(dst, NEG32)

5 requires insn.dst != R10 // SP4
6 requires get_reg_tv(s, insn.dst) != Uninit // SP5
7 requires !s.cfg.allow_ptr_leak ==> is_scalar(s, insn.dst)
8 {

9 // Instruction semantics

10 var dst_val := get_reg_arith_val(s, insn.dst);

11 var new_val := bvnot32(dst_val);

12 var new_tv := Scalar(Normal, new_val);

13

14 // Return a copy of state s with reg dst set to new_tv
15 new_state(s, insn.dst, new_tv)

16 }

Figure 5. The encoded specification of instruction neg32, which
flips a 32-bit value in the register dst. Safety properties are specified
as pre-conditions, whereas the instruction semantics are defined
within the function body.

value is encoded with the negation operation on the input
value (i.e., bvnot32). Specifically, SPECCHECK does not di-
rectly model absolute addresses for values of type PtrType
or PtrOrNullType. Instead, a pointer is represented as a triple
(r, memid, off). We introduce an uninterpreted function—a
function without a body—that maps each region to its un-
known base address; thus, the absolute address of a pointer
is its base plus the offset. Since the concrete memory layout
is unknown, we constrain the base in the post-conditions of
that uninterpreted function to keep the ranges of memory
regions pairwise disjoint.

4 Marrying Specification with Fuzzing

With the encoded specification—per-instruction semantics
and safety properties—defined in Dafny (§3), the next step is
to turn SPECCHECK into a bug oracle that can be integrated
with fuzzers, which is the focus of this section. In particular,
we show how to verify whether a concrete eBPF program
is safe or not via shallow embedding [25] and present the
complete fuzzing workflow in §4.2.

4.1 Shallow Embedding

Shallow embedding maps components of a source language S
to corresponding elements of a target language D. This paper
maps eBPF instructions to Dafny. Algorithm 1 outlines the
embedding procedure. The algorithm performs a depth-first
traversal of the program’s control flow graph, mapping each
instruction to its corresponding method in the specification
(line 5). During traversal, the algorithm handles control flow
instructions specially: (1) For unconditional jumps, it jumps
to the target instruction. For conditional jumps, it explores
both the fallthrough path and the jump target path; (2) For
pseudo function calls, it inlines them and jumps to the call
entry and saves the location of the next instruction; (3) On the
exit instruction, it restores any saved locations to explore
remaining paths. The embedding procedure itself performs
control flow validation, complementing the checks done by



Algorithm 1: The embedding process in SPECCHECK

1 function Embed(insns, limit)

2 insnStack, idx, output « [],0,""

3 while idx < limit do

4 insn = insn[idx]

5 output+ = ISA2Method(insn)

6 if UncondJmp(insn) then

7 ‘ idx = JmpTarget(insn)

8 else if CondJmp(insn) then

9 PushInsn(insnStack, JmpTarget(insn))

10 idx =idx+1

1 else if PseudoCall(insn) then

> Inline pseudo calls

12 Pushlnsn(insnStack, nextInsn)

13 idx = FunEntry(insn)

14 else if Exit(insn) then

15 if Empty(insnStack) then

16 ‘ break > Break at the last instruction

17 else

18 ‘ idx = Poplnsn(insnStack)

19 else

20 ‘ idx = idx+1

21 return output

1 // 1 sO := init_state(cfg);

2 r2 = *(u64 *)(rl +0) 2 sl := load(s®, MEMLD(R2, R1, 0, ));
3 r3 =2 3 s2 := mov(sl, DATAMOVIMM(R3, 2, ));
4 r2 %= r3 4 s3 := mod(s2, ARITHBINREG(R2, R3, ));
5 // 5 s4 := jeq(s3, CONDIJMPIMM(R2, 0, ));
6 if r2 == 0 goto L1 6 if (!s4.jmp_res) {

7 e 7 ...

8 call map_lookup_elem 8 s5 := map_lookup_elem(s4');

9 Ll: 9 exit(s5);
10 exit 10 } else { exit(s4); }

(a) eBPF assembly code. (b) Dafny code embedding eBPF.

Figure 6. The Dafny program shown in (b) is the embedding of the
eBPF program in (a), which is in the form of eBPF assembly code.
Each instruction in (a) is line-by-line mapped to (b). For brevity, we
omit keywords (e.g., var) and partial instruction fragments.

the Dafny verifier. For loops, the algorithm uses bounded
unrolling to ensure termination.

Figure 6 illustrates the shallow embedding approach,
where eBPF assembly code is mapped line-by-line to the
corresponding Dafny method invocations. For example, the
instruction (line 2) loads a 64-bit value from the start of the
context memory region (pointed to by register r1) into reg-
ister r2 and is embedded as a call to Dafny’s load function.
Similarly, conditional jumps are embedded as if combined
with appropriate comparison function calls in Dafny.

4.2 Overall Fuzzing Workflow

In this subsection, we present the integration of SPECCHECK
as a testing oracle within the VERITAS fuzzing framework.
Figure 7 shows the workflow of VERITAS. Initially, the
syntax-based generator produces test cases following the
eBPF ISA. Further, the executor runs test cases through

eBPF verifier ——
syntax-based generator — 4 result

B]
OLC executor

eBPF program # *?

9 \B oracle %

Dafny program

T

shallow embedding Dafny verifier

specification-based checker: SpecCheck

Figure 7. VERITAS overview. The generator produces syntax-valid
eBPF programs as test cases. Further, the eBPF verifier takes them
to verify their safety (@). Simultaneously, our checker (SPECCHECK)
embeds these test cases into Dafny programs based on our specifi-
cation (@) and check their safety (@) through the Dafny verifier,
which serves as an oracle. Finally, a difference between the eBPF
verifier result and the SPECCHECK oracle indicates a bug (@).

the eBPF verifier, which outputs the verification result, ei-
ther accepting or rejecting programs (step @). Simultane-
ously, VERITAS uses SPECCHECK to independently validate
the safety of the test cases against specifications encoded in
Dafny. This involves embedding eBPF programs in Dafny
(step @) and running the Dafny verifier to ensure they com-
ply with the specifications (step @). Any discrepancy be-
tween the results of the eBPF verifier and SPECCHECK in-
dicates a bug in the eBPF verifier (step @). Specifically, a
discrepancy arises when (1) programs deemed safe by the
eBPF verifier are flagged unsafe by SPECCHECK, (2) the re-
verse occurs, or (3) both reject the program but cite different
safety violations. In the third case, while the eBPF verifier’s
final verdict on the program’s safety is correct, its subpro-
grams may reveal incorrect verification results, belonging to
one of the first two cases.

The Dafny verifier relies on SMT solvers to determine if
the pre- and post-conditions hold. While SMT solvers are
precise, they can be computationally expensive and may even
timeout or become undecidable when faced with complex
or numerous constraints [18]. We use three key insights to
address the scalability challenge of SMT solvers.

Small test cases. Most eBPF verifier bugs can be triggered
by small, simple programs rather than large, complex ones.
Our evaluation in §6.1 shows that the proof-of-concept (PoC)
programs for existing eBPF verifier bugs are relatively small,
mostly containing only 1-30 instructions. This insight allows
us to configure our test case generator to focus on generat-
ing small programs, which reduces SMT-solving time while
maintaining effectiveness at finding bugs.

Incremental state sampling for fast verification. When
the eBPF verifier rejects a program, it identifies the unsafe
/ culprit instruction. To check if the rejection is correct,
we only need to verify the safety of that instruction rather
than checking the entire program. However, SPECCHECK still
needs information about the VM state immediately before
that instruction executes. We instrument the eBPF verifier



to generate VM states incrementally at configurable inter-
vals during its verification process. We then use the sampled
state closest to the culprit instruction as the initial state for
SpecCHECK. This sampling approach significantly improves
performance, as we demonstrate in §6.3.

Parallel verification for high throughput. To further
improve the fuzzing throughput on top of the above two so-
lutions, VERITAS runs the checker asynchronously from the
fuzzing loop and simultaneously on multiple test cases. Al-
though the insights help, 0.2% of tests still time out (see §6.1).
However, it is not a concern in fuzzing. If a test that might
trigger a bug times out, we simply skip it, as another solvable
test will likely reveal the same bug.

5 Implementation

We integrate VERITAS into Syzkaller [23] to leverage its exist-
ing fuzzing components (e.g., executor). The implementation
of each component in VERITAS is detailed below.

SpEcCHECK. The specification is encoded in Dafny [10]
with 2000 lines of code—roughly nine engineer weeks—and
the embedding procedure is implemented in 600 lines of C++.
SpEcCHECK models all 171 op-codes recorded in the eBPF ISA
RFC [9], except for deprecated instructions (e.g., BPF_IND),
which were introduced specifically to access packet data in
classic BPF. The remaining gap is in kernel helpers, where
we deliberately focus on the 50 most frequently used of
455 functions (= 11%). As writing kernel function specifi-
cations becomes increasingly labor-intensive and the eBPF
ecosystem expands, we are exploring scalable automation
techniques to efficiently generate the specification for kernel
functions with minimal manual effort.

eBPF program generator. The generator, written in 2,100
lines of C++ code, produces a random control graph with
vertices as basic blocks, iterates over each to generate syntax-
valid instructions adhering to basic safety rules (e.g., avoiding
r10 as a destination register), and records the program state
coarsely, including initialized registers and their types.

eBPF verifier state sampling. We patch the Linux kernel
to sample verifier state every N instructions, capturing reg-
isters, stack slots, and spin_lock statuses, without altering
verifier logic. The state is shared to userspace via debugfs.

6 Evaluation

We evaluate VERITAS on the Linux eBPF verifier to answer
the following research questions.

Q1. How effective and accurate is VERITAS in finding eBPF
verifier bugs? (§6.1)

Q2. How does SPECCHECK outperform other oracles? (§6.2)
Q3. What is the testing performance of VERITAS? (§6.3)

Q4. What is the required effort to extend the specification
for new instructions? (§6.4)

Experiment setup. We evaluate VERITAS on Ubuntu 22.04.4
LTS with a 224-core Intel(R) Xeon(R) Platinum 8276L proces-
sor and 754G memory. Each fuzzer instance runs in isolation
on the same 224-core server with 754 GB RAM to eliminate
resource bias. We use Dafny CLI V4.6.0 and Z3 V4.12.1 [8]
to verify embedded eBPF programs in Dafny.

6.1 Bug-Hunting Result

After running VERITAS intermittently for three months, it un-
covered 15 bugs: three cases where unsafe eBPF programs are
accepted, nine cases where safe eBPF programs are rejected,
one case where programs misusing atomic instructions on lo-
cal memory are accepted (bug #9, see analysis in §6.5), listed
in Table 1, as well as one memory bug and one undefined
behavior identified through KASAN and UBSAN in the verifier
itself, though the latter two are beyond the focus of the work.
These bugs, found despite extensive testing by maintainers
and prior research, underscore the incapability of existing or-
acles. We reported all 15 bugs, of which 12 are acknowledged.
The remaining three (bugs #10, #11, and #13) are usability
issues rooted in the core design limitations of the verifier.
These are typically considered low priority by developers
compared to security issues and eBPF ISA extensions and are
therefore often overlooked. We emphasize that VERITAS not
only identifies misimplementation bugs, but also highlights
existing design limitations, offering insights that improve
the verifier in the future. Eight bugs were fixed quickly. The
rest are pending resolution for two reasons: (1) some require
non-trivial code refactoring or new algorithms, which de-
mands significant development time, and (2) others represent
usability issues rather than security vulnerabilities, which
maintainers have prioritized lower in their roadmap. We are
actively collaborating with eBPF maintainers to develop and
submit patches for the outstanding issues.

Further, we summarize the characteristics of bugs below:

Critical consequences. New bugs can lead to severe security
attacks and usability issues. For example, bug #1 and #2 can
be exploited by users only with CAP_BPF to escalate into root
and leak kernel pointers, breaking KASLR. Moreover, bug #6
took a sched-ext developer hours to debug it.

Diverse culprit instructions. New bugs lie in the incorrect
verification of all instruction categories, e.g., arithmetic (bug
#7), data handling (bug #1), memory (bug #5), and control
flow operations (bug #2), demonstrating SPECCHECK is gen-
eral enough for finding bugs throughout the entire verifier.

Small-sized test cases. Test cases revealing new bugs are
as small as two instructions, as demonstrated by bugs #3, #5,
and #7. To validate that eBPF verifier bugs can be detected
with small test cases, we analyzed the size of various test
cases, including eBPF self-tests and collected bug proofs-of-
concept (PoCs). As shown in Figure 8, most test cases contain
1-30 instructions (a) and 1-9 execution paths (b), with only 23
and 28 test cases exceeding 30 instructions and ten execution



RC # | Instruction Status Description and Consequence

RC4 1 | mov Fixed Fails to track non-r10 precision on stack, leading to privilege escalation.
RC3 2 | kfunc call Fixed Miss argument type checks, leading to DoS.

RC4 3 | store Fixed Incorrectly mark stack slot type, leading to ASLR bypass.

RC3 4 | atomic* Fixed Miss propagating precisions to stack slots used in atomic instructions.
RC3 5 | atomic_xchg Acked Verifier misidentifies scalar type, failing stack pointer validation.

RC1 6 | store Acked Not propagate scalar range from registers to stack

RC3 7 | be32 Fixed Incorrect precision back-propagation

RC3 8 | store Fixed Mis-reject a 32-bit store to overwrite a spilled 64-bit scalar on the stack.
RC2 9 | atomic¥ Acked Allow atomic instructions operating on local memory regions.

RC2 10 | arith operations  Reported Inconsistent constraints on instructions converting pointer to scalars
RC1 11 | jumps Reported Coarse-grained pointer comparison

RC1 12 | memory operations Acked Imprecise stack data tracking

RC1 13 | arith operations  Reported Inaccurate tracking of arithmetic instruction result

Table 1. The list of bugs detected by VERITAS. kfunc call: kernel function call
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Figure 8. The size of test cases (self-tests and bug PoCs) measured
by instruction count and execution paths, indicating that small-
sized test cases are sufficient for finding bugs.

paths, respectively. These findings support the insight in §4
that small test cases are sufficient to uncover most bugs.

Accuracy of the specification-based oracle. During the
entire intermittent running, SPECCHECK reported no false
alarms but encountered timeouts (0.2% of tests) due to test
complexity. These timeouts occur when the Dafny verifier
encounters undecidable constraints or exceeds 900 seconds.

6.2 Comparison with the State-of-the-art

To measure SPECCHECK, we compare it with the oracle used
in existing fuzzers [26, 27, 36, 37] from two perspectives.
First, we evaluate if VERITAS can detect bugs identi-
fied by existing fuzzers. This paper focuses on the oracle
SpecCHECK—instead of a test generator—which can be inte-
grated into other fuzzers to leverage their test case genera-
tor with engineering effort. Therefore, we directly evaluate
SpECCHECK using PoCs from a collected bug dataset. The
dataset includes 14 verifier bugs reported by existing fuzzers:
10 from SEV, 1 from BVF, 2 from Buzzgr, and 1 from BRF.
We excluded bugs outside VERITAS’s scope, such as those in
the JIT compiler or kernel function implementations. While
SEV claimed 15 bugs (comprising 12 incorrectly accepted
unsafe programs and 3 incorrectly rejected safe programs),
we could only identify 11 of these through mailing lists, as in-
dividual bugs were poorly documented and difficult to trace.
It’s worth noting that SEV’s oracle has an inherent limitation:

it cannot detect incorrectly rejected safe programs as its ora-
cle relies on the runtime states but rejected programs even
have no chance to run. SEV identified incorrectly rejected
safe programs either manually or through the verifier’s self-
assertions. We also excluded two additional "bugs" from SEV
and BVF that only produced misleading error messages with-
out affecting verification outcomes. SPECCHECK detected all
14 bugs in the dataset, demonstrating its comprehensive
capability in identifying existing verifier bugs.

We also evaluated if existing fuzzers can detect the bugs
found by VERITAS. Among the four fuzzers considered, only
BRF [27] and BuzzEr [26] are open-source, allowing for di-
rect empirical comparison, while SEV [36] and BVF [37]
were evaluated through theoretical analysis. To ensure a fair
comparison that eliminates randomness in test generation,
we provided the exact bug PoCs directly to Buzzer and BRF.
Despite this advantage, neither fuzzer successfully detected
any of the bugs found by VErrTas. Even for bug #1, which
can potentially cause runtime memory errors, both fuzzers
failed to find the correct map data to trigger the faulty in-
struction in the provided PoC. Our theoretical analysis on
SEV and BVF indicates that existing fuzzers may detect bug
#1, linked to runtime memory errors. The remaining bugs do
not manifest as runtime errors, which clearly demonstrates
the necessity of our specification-based oracle. These results
conclusively show that SPECCHECK can identify bugs that
are beyond the detection capabilities of existing oracles.

6.3 Fuzzing Performance

We ran the fuzzer for 40 hours, generating eBPF programs
with 5-30 instructions based on test case size analysis in §6.1,
with a Dafny verification timeout of 900 seconds and state
sampling every three instructions after six instructions.

Fuzzing throughput. State sampling and asynchronous
checking during evaluation achieve a fuzzing speed of 23-25
tests per second by utilizing all 224 cores. Compared with
Buzzer (700 tests/s) and BRF (50 tests/s), VERITAS trades
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Figure 9. Fuzzing performance. (a) shows the entire execution time
distribution of test cases during fuzzing, while (b) depicts the Dafny
verification time without and with sampled verifier states.

throughput for a much higher bug-per-test rate: 12/13 newly
discovered bugs are silent semantic errors rather than the
crash-triggering faults that raw throughput alone can expose.

The checking time of each test case in SPECCHECK, includ-
ing state sampling, embedding, and Dafny verification, takes
1.5 to 489 seconds, averaging 10 seconds. As shown in Fig-
ure 9 (a), 95.8% of test cases complete within 5-20 seconds,
with few exceeding 20 seconds. Stage-wise analysis reveals
Dafny verification consumes 99% of the time, while state
sampling and embedding account for just 0.03% and 0.0002%.
Performance improvement from state sampling. We
reran the fuzzer for 40 hours with the same setting in the
above evaluation, except verifying each test case twice: once
with state sampling (optimized setting) and once by verify-
ing the complete test case without state sampling (default
setting). VERITAs generated 143,733 test cases, with 51,254
using state sampling. On average, state sampling saved 53
seconds per test case, with a maximum saving of 12 minutes.
However, state sampling introduces longer checking time
on 5.0% (2,574) test cases because SPECCHECK identifies less
complex violated constraints in another culprit instruction
in the default setting. Despite this, state sampling reduces
overall resource usage, saving 754 CPU-core hours !, as il-
lustrated in Figure 9 (b). Moreover, state sampling does not
introduce bug misses in the evaluation.

Code coverage. VERITAS aims to provide a comprehensive
testing oracle rather than a dedicated test generator like BVF
and BRF, with test generation improvements planned for
future work. Nevertheless, our system achieves 32% branch
coverage (3,432 branches), which exceeds BRF’s 29% (3,124
branches)—BRF being the only publicly available system
with comparable metrics. This coverage level has proven
sufficient for discovering numerous bugs. It is worth noting
that our coverage measurement uses XOR operations on
basic block IDs, a method that may introduce hash collisions
and potentially underestimate the actual coverage achieved.

6.4 Specification Extensibility and Complexity

To extend the specification with new instructions or kernel
functions, users are expected to write more ghost methods

1A CPU-core hour measures the usage of one CPU core for an hour [14].

in Dafny, embedding safety rules as pre-conditions and op-
erational semantics as post-conditions. While it is hard to
measure the actual manual effort scientifically, we estimate
it by counting the pre- and post-conditions required for each
instruction in the current specification.

On average, each instruction or kernel function has 3.6
pre-conditions (max 13) and 3.7 post-conditions (max 6).
Arithmetic and data-handling instructions have fewer pre-
conditions (2.9) but more post-conditions (4.7), because they
generally only require operand type checks but involve spe-
cial pointer semantics due to representing pointers as mem-
ory regions and offsets. Conversely, memory operations and
kernel functions generally have more pre-conditions (4.7)
and fewer post-conditions (2.3). The more pre-conditions
stem from fine-grained memory access control and pro-
gram state checks, while fewer post-conditions arise because
general-purpose memory regions, excluding stack memory,
have simpler type rules. Additionally, kernel functions typi-
cally only specify return values as post-conditions, except
in complex cases, such as “spin_lock”, which often involve
changes to program states (e.g., lock state).

6.5 Case Study

We present three additional bugs found by VEr1TAS to further
illustrate their characteristics.

rl = ri10
if cond
(b1) / \ (b2)
/ \
*(ub4 *)(rl -120) =0  *(u64 *)(rl -120) = r2

1

2

3

4

5

6 \ /

7 r2 = *(u64 *)(rl1 -120)

8 // r3 points to an eight-byte memory region

9 r3 += r2

0 *(u64*) (r3 + 0) = evil_data

1 // Memory write from (b2) can overwrite any kernel addresses.
Figure 10. An erroneous optimization in Linux eBPF verifier prunes
instructions after line 7 in branch b2, causing out-of-bound access.

Bug #1: Out-of-bound access leading to privilege es-
calation. The bug in Figure 10 is a mis-optimization bug
originating from RC4. It overlooks r2 and stack slot r1-120
as critical states, skips their comparison at the convergence
point (line 7) when verifying branch (b2), and incorrectly
deems the program states from branches (b1) and (b2) equal,
leading to skipped verification of instructions beyond line 7
in branch (b2). This allows branch (b2) to access any ker-
nel address via r2, enabling privilege escalation with only
the CAP_BPF capability. The vulnerability has been fixed and
merged to the stable Linux version.

uint32_t array[4];

array[0] = 1; // fp-8

array[1] = 2; // fp-4
// Reject: attempt to corrupt spilled pointer on stack

T RN

Figure 11. Initialization of a 32-bit integer array is mistakenly
rejected by the Linux eBPF verifier. fp represents the stack frame
pointer. fp-8 means the stack slot at fp-8.



Bug #8: Mis-rejecting 32-bit variable initialization. In
Figure 11, the eBPF verifier incorrectly rejects the initial-
ization of a 32-bit integer array, citing "attempt to corrupt
spilled pointer on stack”, if the program has no data leakage
privilege. This error arises because the verifier assumes an
8-byte aligned stack slot contains a pointer without verifying
its type. Specifically, after initializing array[0] at fp-8 with
the integer constant 1, the slot type is a scalar, not a pointer.
When initializing array[1] at fp-4, the verifier checks the
8-byte region ([fp-8, £p-1]) for pointers to prevent partial
overwrites and potential pointer leakage. However, it does
not check the type of the region and erroneously treats it as
a pointer, leading to the rejection. Without SPECCHECK, no
existing oracles can detect such bugs.

Bug #5 and #9. Atomic operations are intended for concur-
rent access to shared memory. However, the verifier allows
unnecessary atomic instructions on private memory (e.g.,
stack), as in the acknowledged bug #9. Although not directly
causing usability or security issues, this increases implemen-
tation complexity and contributes to bug #5. The issue arises
with atomic_xchg(rl, rl) in privileged mode, where r1 is
a stack pointer. This instruction swaps the value at the ad-
dress pointed to by r1 with the value in r1, involving a load
followed by a store. The verifier checks the load and then
the store, but immediately marks r1 as a scalar after the load,
leading to a failure in the store check since r1 is no longer a
pointer. Finally, this safe instruction is mistakenly rejected.

7 Discussion

Semantics fidelity. To ensure that SPECCHECK is faithfully
modeling eBPF, we tested that: 1) SPECCHECK conforms to
all selftests of the Linux eBPF verifier, and 2) all discrepan-
cies between SPECCHECK and the Linux eBPF verifier found
during fuzzing can be attributed.

Future Maintenance. We aim to strengthen the specifica-
tion’s soundness and completeness by formalizing additional
higher-level properties. Moreover, we plan to integrate the
specification into the eBPF development CI/CD pipeline, en-
abling synchronized updates with the eBPF verifier modifi-
cations and automated validation against previously verified
higher-level properties to preserve correctness guarantees.
To minimize ongoing effort, we can leverage large language
models (LLMs) to draft the specifications of kernel functions—
components under active development—which developers
then review and finalize.

Beyond testing oracle. Beyond acting as a testing oracle,
the specification in SPECCHECK can be further leveraged to
enable the automatic generation of formal proofs in proof-
carrying code (PCC) [31, 32] in eBPF-based kernel extensions.
PCC requires code producers (e.g., extension developers) to
provide formal proof of code safety, allowing consumers
(e.g., OS kernels) to verify compliance with safety properties,
offering developers more flexibility in proving code safety.

Handling loops in SPECCHECK. SPECCHECK verifies eBPF
programs with loops using bounded loop unrolling, which is
sufficient as a testing oracle as most of the generated eBPF
programs are small as shown in the bugs found in §6.1. An
alternative is automated loop invariant inference or gener-
ating eBPF programs based on pre-defined loop invariants.
We leave them to future work.

8 Related Work

We discussed related work on eBPF verifier testing in §2.3
and address the remaining related work below.

eBPF verification. Formal verification has improved the
correctness of the eBPF JIT compiler [33] and range-tracking
in the verifier [39]. Verifying the eBPF verifier is more com-
plex due to its large codebase (e.g., 20,000 lines of code) and
intricate logic, compared to JIT’s 2,440 lines for one architec-
ture [5]. While we do not verify the verifier, our specification,
defining instruction semantics and safety properties, can be
leveraged to verify eBPF verifier further.

Specification-based testing oracle. The challenge of
specification-based oracles involves defining the specifica-
tion and encoding it as an executable oracle. Some studies
offer frameworks [16, 20] and languages [1] that support
these stages with assertions, while others focus on encoding
using informal specifications such as POSIX specification or
TCP/IP RFCs—either generating formal specifications auto-
matically (e.g., rule-based methods [30]) or manually encod-
ing them, as seen in Netsem [17], SibyiFS [34], Hydra [28],
and Monarch [29]. In the context of eBPF, the lack of formal
documentation forces us to create a systematic specification,
a difficult yet key contribution. Moreover, our per-instruction
specification with safety properties as pre-conditions and
instruction semantics as function bodies introduces an ex-
tensible approach that integrates seamlessly with shallow
embedding for fuzzing-based testing oracles.

9 Conclusion

Specification-based oracle offers a holistic approach to de-
tecting correctness bugs. In the Linux eBPF verifier case,
VERITAS finds high-impact bugs across diverse root causes,
some of which can never be found with bug oracles in prior
fuzzing campaigns as these oracles only indirectly hint the
existence of a bug without revealing its root cause.
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A Appendix

A.1 The abstracted syntax of eBPF instruction in SPECCHECK

datatype Instruction =

ARITHUNARY (dst: REG, uop: ARITHUNARYOP)

ARITHBINREG(dst: REG, src: REG, binop: ARITHBINOP)
ARITHBINIMM(dst: REG, src_imm: bv64, binop: ARITHBINOP)
DATAMOVIMM(dst: REG, src_imm: bv64, moviop: MOVIMMOP)
DATAMOVREG(dst: REG, src: REG, movrop: MOVREGOP)

MEMLD(dst: REG, src:REG, ioff: s16, size: SIZE, sign_ext: bool)
MEMSTX(dst: REG, src:REG, ioff: sl16, size: SIZE)

MEMST(dst: REG, src_imm: bv64, ioff: sl16, size: SIZE)
ATOMICLS(dst:REG, src:REG, ioff:sl6, asize: ASIZE, op:ATOMICOP)
CONDJMPREG(dst: REG, src: REG, jmpop: JMPOP)

CONDJMPIMM(dst: REG, src_imm: bv64, jmpop: IMPOP)
CALL_PSEUDO_FUNC() | CALL_HELPER() | CALL_KFUNCS(Q) | EXITQ

datatype REG = | RO | R1 | R2 | R3 | R4 | RS | R6 | R7 | R8 | R9 | R10

datatype SIZE =
datatype ASIZE

| B | HW | W | DW
| W | DW

datatype ARITHUNARYOP =
| NEG32 | BV2BE16 | BV2BE32 | BV2LE1l6 | BV2LE32 | BV2SWAP16 | BV2SWAP32 | NEG64 | BV2BE64 | BV2LE64 | BV2SWAP64
datatype ARITHBINOP =

| ADD32 | SUB32
| ADD64 | SUB64

| MUL32 | DIV32 | SDIV32 | MOD32 | SMOD32 | BVOR32 | BVAND32 | BVXOR32 | BVLSHR32 | BVASHR32 | BVSHL32
| MUL64 | DIV64 | SDIV64 | MOD64 | SMOD64 | BVOR64 | BVAND64 | BVXOR64 | BVLSHR64 | BVASHR64 | BVSHLG64

datatype MOVIMMOP =
| MOVIMM32 | MOVIMM64 | LOADIMM64 | LOADMAPBYFD | LOADMAPVALBYFD | LOADMAPBYIDX
| LOADMAPVALBYIDX | LOADVARBYBTFID | LOADFUNCBYIDX
datatype MOVREGOP =
| MOV32 | MOVSX8T032 | MOVSX16TO032 | MOV64 | MOVSX8TO64 | MOVSX16T064 | MOVSX32T064
datatype ATOMICOP =
| ATOMIC_ADD | ATOMIC_AND | ATOMIC_OR | ATOMIC_XOR | ATOMIC_FETCH_ADD | ATOMIC_FETCH_AND
| ATOMIC_FETCH_OR | ATOMIC_FETCH_XOR | ATOMIC_XCHG | ATOMIC_CMPXCHG

datatype JMPOP =
| JEQ32 | JNE32
| JEQ64 | INE64

| JSET32 | JGT32 | JGE32 | JSGT32 | JSGE32 | JLT32 | JLE32 | JSLT32 | JSLE32
| JSET64 | ]GT64 | JGE64 | JSGT64 | JSGE64 | JLT64 | JLE64 | JSLT64 | JSLE64

Figure 12. The abstracted syntax of eBPF instruction used in SPECCHECK. The abstracted terms exclude the direct-jump instructions JA and
JA32 and calls to pseudo functions: the former are translated to Dafny’s control-flow constructs, and the latter are inlined during shallow

embedding.

A.2 The eBPF program state in SPECCHECK

datatype State =

State (

RO: ETYPEV, R1: ETYPEV, R2: ETYPEV, R3: ETYPEV, R4: ETYPEV, R5: ETYPEV,
R6: ETYPEV, R7: ETYPEV, R8: ETYPEV, R9: ETYPEV, R10: ETYPEV,

R6': ETYPEV, R7': ETYPEV, R8': ETYPEV, R9': ETYPEV,

cfg: ConfigState, jmp_res: bool, maps_meta: seg<MapState>, mems: seq<seq<Mem>>,

D)

datatype MemSlot = MemSlot(field_perm: ACCESSPERM, etypev: ETYPEV, field_size: int)
datatype Mem = Mem(mem_type: MEMTYPE, is_concur: bool, base: bv64, data: seq<MemSlot>)

Figure 13. The eBPF program state in SPECCHECK. It includes the register, memory, and branch informations. For brevity, we omit the state
defition of eBPF VM configuration: ConfigState.



A.3 Typing rules of the dynamic type system
We present the way dynamic types are propagated by each instruction through dynamic typing rules in Figure 14 in the

form %, which indicates that the eBPF VM state transitions from S to an updated state only when the specified
type preconditions are satisfied. We only specify the way types flow and omit what happens to the values, since values follow
standard eBPF semantics.

To interpret these rules, we highlight the below points:

o The left-hand sides are terms, whereas the right-hand sides are type rules. Term variables range over all possible values
unless otherwise constrained. For example, uop ranges over the unary arithmetic operations defined in ARTTHUNARYOP.

e Each rule must adhere to the semantic constraints defined in §3.2, such as enforced memory alignment.

o If, during the execution of an instruction in an eBPF program, no rule matches in a top-to-bottom pass over the rule list,
SpecCHECK would dynamically report an error for this instruction.

e The basic type rules described in §3.2 correspond to the rules without boxed preconditions. To ensure data safety, as discussed
in §3.3, we strengthen these rules by adding type preconditions shown inside boxes| |.

S.Rys; # Uninit A| S.Rys; = Scalar(, ) \
S — S[Ryss > Scalar(_,_)]

ARITHUNARY(dst, uop)

S.Rgs; = Scalar(_,_) A S.Rsyc =PtrType(_,_,_)
S — S[Rast — PtrType(,, )]

S.Rgs; =PtrType(_,_,_) AS.Rsyc = Scalar(_,_)
ARITHBINREG(dst, src, ADD64) S — S[Ryst > PtrType(,_,_)]

S.Rgst # Uninit A S.Rspe # Uninit A| S.Ryzsy = Scalar(_,_) A S.Rgyc = Scalar(_,_)
S — S[Ryss + Scalar(_, )]

S.Rgs; =PtrType(,_,_) V S.Rgs; =Scalar(_,_)
S—S

ARITHBINIMM(dst, src_imm, ADD64)

S.Ryst # Uninit A| S.Rgs; = Scalar(_,_)

S — S[Rgss > Scalar(_,_)]

S.Rgsy =PtrType(_,_,_) A S.Rsyc = Scalar(_,_)
S-S

S.Rgst # Uninit A S.Rgpc # UninitA

ARITHBINREG(dst, src, SUB64
(dst, sre ) (‘ (S.Rgs: = Scalar(_,_) A S.Rgyc = Scalar(_,_)) ‘ v

‘ (S-Rast =PtrType(r, ,_) A S.Rsrc =PtrType(r,_,_)) ‘)

S — S[Rygs > Scalar(_,_)]

S.Rgst =PtrType(,_,_) V S.Rgsy =Scalar(_,_)
S—S

ARITHBINIMM(dst, src_imm, SUB64)

S.Rys; # Uninit A| S.Rys; = Scalar(_, ) ‘
S — S[Ryss > Scalar(_,_)]

ARITHBINREG(dst, src, binop), S.Ryst # Uninit A S.Reye # Uninit /\\ S.Rygsr = Scalar(_,_) A S.Rgye = Scalar(_,_)
binop ¢ {ADD64, SUB64} S S[Rye o Scalar ()]

ARITHBINIMM(dst, src_imm, binop), S.Rys: # Uninit A| S.Rys; = Scalar(_, ) ‘
binop ¢ {ADD64, SUB64}

S — S[Rygs: > Scalar(_,_)]

(a) Type rules of arithmetic operations.




DATAMOVREG(dst, src, MOV64)

DATAMOVREG(dst, src, movrop),
movrop # MOV64

DATAMOVIMM(dst, src_imm, moviop)

S.Rsre # Uninit
S — S[Ryst = Rsrel

S.Rsyc # Uninit A| S.Rg,c = Scalar(_,_)
S — S[Rgss > Scalar(_,_)]

S = S[Rgs: — PtrType(_, _,_)] if moviop € {LOADMAPBYFD, LOADMAPBYIDX,
LOADMAPVALBYFD, LOADMAPVALBYIDX, LOADFUNCBYIDX, LOADVARBYBTFID}

S — S[Rys: > Scalar(_, )], otherwise

(b) Type rules of data handling operations.

MEMLD(dst, src, ioff, size, sign_ext)

MEMSTX(dst, src, ioff, size)

MEMST(dst, src_imm, ioff, size)

ATOMICLS(dst, src, ioff, asize,
ATOMIC_CMPXCHG)

ATOMICLS(dst, src, ioff, asize,
*_FETCH | ATOMIC_XCHG)

ATOMICLS(dst, src, ioff, asize, op)
op € {ATOMIC_ADD, ATOMIC_AND,
ATOMIC_OR, ATOMIC_XOR}

S.Rsrc =PtrType(_,_,_) Aslot_init(S,S.Rsyc,iof f,size)

‘ \ptr_slots(S, Rsre, iof f, size), if size # DW

DATA[Rsrc][bsrc]  if same_type(S, S.Rsyc, iof f, size) A size = DW ]

5— S[R N
dst {Scalar (L) otherwise

S.Rgst =PtrType(_, _,_) AS.Rspc # UninitA

’ S.Rsyc & {PtrType(_, _,_),PtrOrNullType(_, ,_)}, if size # DW ‘

’ Iptr_slots(S, Rgss, iof f, size), if size # DW

Vi € [b,e), DATA[Rgs:][i] = S.Rsre if size == DW
S — S[ Vie [b,e'), DATA[Rys;|[i] — Scalar(_,_) ifsize # DW A ptr_slots(S, Ryss, iof f, size) ]
Vi € [b,e), DATA[Rgs:|[i] — Scalar(_,_) otherwise

S.Rgst =PtrType(_,_,_)A

\ptr_slots(S, Rgs;s, iof f, size), if size # DW ‘

s S[ Vie [b,e'), DATA[Rys;|[i] — Scalar(_,_) ifsize # DW A ptr_slots(S, Rgs;s, iof f, size)
-
Vi€ [b,e), DATA[Rgs¢|[i] — Scalar(_,_) otherwise

S.Rys; = PtrType(PTR_TO_MAP_VAL, , ) /\\ S.Ryye = Scalar(, ) w S.Ro = Scalar(_, )
S — S[RO + Scalar(_,_)]

S.Rys; = PtrType(PTR_TO_MAP VAL, , ) /\\ S.Rre = Scalar(, ) ‘
S — S[Rspc > Scalar(_,_)]

S.Rys; = PtrType(PTR_TO_MAP_VAL, , ) /\‘ S.Ryye = Scalar(, ) ‘

S-S

(c) Type rules of memory operations. We use the below definition to simplify the above formula:

DATA[R] (g) S.mems|[r2id(R.r)|[R.memid].data

def
slot_init(S, Ry, iof f,size) &= Y Ry.0ff +iof f <=i < Rye.0f f +iof f + size, DATA[Rx][i] # Uninit

def
ptr_slots(S, Ry, iof f, size) = VRx.of f+ioff <=i < Rx.of f +iof f +size, DATA[Ry][i] € {PtrType(_, _,_),PtrOrNullType(_, ,_)}

def

def def def def
bsre &= S.Rec.of f+ioff b &= SRyg.off +ioff b &= b— (b%8) e < b+size_to_nat(size) € < b +size_to_nat(DW)




CONDJMPREG(dst, src, JEQ64 | JNE64)

CONDJMPREG(dst, src, jmpop),
jmpop € {JGT64, JGE64, JSGT64, JSGE64,
JLT64, JLE64, JSLT64, JSLE64}

CONDJMPREG(dst, src, jmpop),
jmpop € {*32, JSET64}

CONDJMPIMM(dst, src_imm, JEQ64 | JNE64)

CONDJMPIMM(dst, src_imm, jmpop),
jmpop ¢ {JEQ64, JNE64}

CALL_PSEUDO_FUNC()

CALL_KFUNCS()
CALL_HELPER()

EXIT

S.Rgsy = PtrOrNullType(_, ,_) A S.Rsyc = Scalar(_,0)

S — S[Ryss > Scalar(_,_)] VS — S[Rys; — PtrType(_,_, )]
S.Rgs; = Scalar(_,0) A S.Rsyc =PtrOrNullType(_, ,_)

S — S[Rsyc > Scalar(_,_)] VS — S[Rsyc — PtrType(,,_,_)]

S.Rgsy # Uninit A S.Rgy¢ # Uninit A (‘ S.Rgs; = Scalar(_,_) A S.Rsyc =Scalar(_,_) |V

VT € {S.Rsrc, S-Ryst }, T € {PtrType(_, _,_),PtrOrNullType(_,_,_ )} ‘)

S—S

S.Rye; # Uninit A S.Rere # Uninit A ( \ VT € {S.Rsre, S-Rys; }, T = Scalar(_, ) \ v

VT € {S.Rsrc, S-Ryst }, T € {PtrType(_, _,_),PtrOorNullType(_,_,_)} ‘ )
S—S

S.Rgsy # Uninit A S.Rgre # Uninit /\\ VT € {S.Rsre,S-Rase}, T = Scalar(_, ) \
S—S

S.Rgsy = PtrOrNullType(_, ,_) Asrc_imm =0
S — S[Rygst > Scalar(_,_)] VS — S[Rys; — PtrType(_,_, )]

S.Rgs; # Uninit /\‘ S.Rgsy = Scalar(_,_)
S—S

S.Rgsy # Uninit /\‘ S.Rgsy = Scalar(_,_) ‘
S-S

S—>S|Vi € [6,9], R, HRil

Vi€ [1,argsT,,,], argsT’[i] = S.R;.T, where argsT’ is argument types of a kernel function.

nt

S5 S[RO v retT, Vi € [1,5], R; Uninit]

S.RO = Scalar(_,_), if S.R10.memid = 0
Vi € [1,5], R; = Uninit
S — S|Vi € [6,9], R; = R}, if S.R10.memid # 0 ]
Vi € |DATA[S.R10]|, DATA[S.R10][i] + Uninit

(d) Control flow operations.

Figure 14. The type rules in SPECCHECK.
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