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Abstract

Causal inconsistency arises when the underlying causal
graphs captured by generative models like Normalizing
Flows are inconsistent with those specified in causal models
like Struct Causal Models. This inconsistency can cause un-
wanted issues including the unfairness problem. Prior works
to achieve causal consistency inevitably compromise the ex-
pressiveness of their models by disallowing hidden layers. In
this work, we introduce a new approach: Causally Consistent
Normalizing Flow (CCNF). To the best of our knowledge,
CCNEF is the first causally consistent generative model that
can approximate any distribution with multiple layers. CCNF
relies on two novel constructs: a sequential representation of
SCMs and partial causal transformations. These constructs
allow CCNF to inherently maintain causal consistency with-
out sacrificing expressiveness. CCNF can handle all forms of
causal inference tasks, including interventions and counter-
factuals. Through experiments, we show that CCNF outper-
forms current approaches in causal inference. We also empir-
ically validate the practical utility of CCNF by applying it
to real-world datasets and show how CCNF addresses chal-
lenges like unfairness effectively.

Code — https://github.com/UWCSZhou/CCNF
Extended version — https://arxiv.org/abs/2412.12401

1 Introduction

Causal generative modeling is generative models (GMs)
that utilize given causal models like structure causal mod-
els (SCMs) for data generation (Komanduri et al. 2024). It
has been widely researched on different types of GMs like
VAE (Yang et al. 2021), GAN (Kocaoglu et al. 2017), Normaliz-
ing Flow (NF) (Javaloy, Martin, and Valera 2023) and Diffusion
Model (Sanchez and Tsaftaris 2022).

However, most approaches have a problem that they can
only approximate the causality relations instead of enforcing
the consistency between the causal graph induced by GMs
and the causal graph in given SCMs. The problem is called
casual inconsistency problem in prior works (Javaloy, Martin,
and Valera 2023) and will be discussed in detail in Section 3.
This could lead to critical societal issues (e.g. the one in Sec-
tion 2), which have yet to be adequately addressed.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

22974

Fortunately, recent works have proposed GMs that are
causally consistent by design. Causal NF (Javaloy, Martin, and
Valera 2023) and VACA (Sdnchez-Martin, Rateike, and Valera
2022) ensure causal consistency by limiting their models to
minimal structural complexity. More specifically, Causal NF
restricts the model depth to zero, i.e., eliminating middle lay-
ers in NF; while VACA applies a similar restriction to its en-
coder structure. In other words, causal consistency is guaran-
teed at the expense of the utility of these models—the ability
to approximate any arbitrarily complex distributions of ob-
servations. For instance, the training objective of Causal NF
is to minimize the discrepancy between the distributions of
latent variables and the pre-selected distributions by users
(e.g. Gaussian). However, as shown in Figure 1a, a Causal
NF trained on a nonlinear Simpson dataset is not able to ac-
complish the objective. The distribution of the third latent
variable, highlighted in green in Figure 1a, deviates signifi-
cantly from the Gaussian distribution.

In this paper, we introduce Causally Consistent
Normalizing Flow, abbreviated as CCNF, that is a
causally consistent GM by design without sacrificing
utility, i.e., approximating arbitrarily complex distributions
based on universal approximation theorems (details in
Theorem 5.2). A key innovation of CCNF is to translate an
SCM into a sequence (details in Secion 4). The sequential
representation of an SCM eliminates the constraints of
maximum layer depths without compromising causal
consistency, enabling a more flexible model architecture in
CCNEF (details in Section 5). Subsequently, CCNF employs
normalizing flows with partial causal transformations to
effectively capture the causality in the data, which is further
elaborated in Section 4 and Section 5.

We demonstrate that CCNF is inherently causally consis-
tent and capable of performing causal inference tasks such as
interventions and counterfactuals. To the best of our knowl-
edge, CCNF is the first causally consistent GM that can ap-
proximate any distributions of observation variables across
multiple layers. In comparison, CCNF outperforms exist-
ing models like Causal NF in similar tasks, as shown in 1b.
Additionally, CCNF proves effective in real-world applica-
tions, addressing significant issues such as unfairness. Ap-
plying CCNF to the German credit dataset (Hofmann 1994),
we observe notable improvements: a reduction in individual
unfairness from 9.00% to 0.00%, and an increase in overall
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Figure 1: Prior distributions of causal NF and CCNF

accuracy from 73.00% to 75.80%.
Summary. This paper makes the following contributions:

We propose a new sequential representation for SCMs,
and formally prove its ability to maintain the causal con-
sistency.

Utilizing this sequential representation alongside par-
tial causal transformations, we develop CCNF, a GM
that guarantees causal consistency and excels at complex
causal inference tasks.

We empirically validate CCNF, demonstrating it outper-
forms state-of-the-art casually consistent GMs on causal
inference benchmarks. Furthermore, our real-world case
study showcase the potential of CCNF in addressing crit-
ical issues like unfairness. CCNF is open-sourced in the
code link.

2 A Motivating Example

To articulate the causal inconsistency problem between GMs
and SCMs, we present a motivating example modeling a
simplified admission system.

A simplified admission system. The causal graph of a sim-
plified admission system M is shown in Figure 2. It con-
sists of four attributes: gender, age, score, and admission
decision. In terms of casualty, gender and age determine
the distribution of score, and ideally, score solely deter-
mines the distribution admission decision, ensuring that
gender does not (and should not) directly affect admission.
To illustrate, we assume the observations O of this admis-
sion system M can be generated by the equations in Table 1
under the SCM column. Here, the value of independent vari-
ables u; where i € {g,a,s,d} are randomly sampled from
predefined distributions. For instance, u, is sampled from
a distribution where gender is distributed equally. With dis-
tinct samples for u; where i € {g, a, s, d}, this system can
generate unique observations representing O.
GMs based on the admission system. In this scenario,
GMs learned from the observations O offer extensive capa-
bilities (Harshvardhan et al. 2020). However, a GM may es-
tablish incorrect causal links, such as between gender and
admission decision, as indicated by the red dashed line in

22975

Figure 2: The causal graph of an SCM describing an admis-
sion system with direct causalities that are intended (black
solid line) and forbidden (red dashed line)

Variable | SCM GM
gender Ug Ug
age Uq Uq,
score us+gender+age Uus-gender+age
decision| f(ugtscore) f(ua+score+2*gender)

Table 1: Comparison of generative equations between the
actual SCM and GM. The function f in the table stands for
the sign function.

Figure 2. This incorrect causality suggests that in G M, dif-
ferent values of gender could lead to varied distributions of
admission decision, even if the score is identical.

Consider the scenario where the underlying causal rela-
tionships of a GM are formulated as in the GM column of
the Table 1. We can verify that the data distributions gen-
erated by the GM is indistinguishable from those of M,
despite in distinct functional forms. However, GM and M
are not causally consistent, which could result in significant
consequences.

Unfairness due to causal inconsistency. In this exam-
ple, causal inconsistency could cause an unfairness problem.
Consider a scenario where users generate data instances with
the same score. In the origin system M, as gender has no
direct impact on admission decision, users will observe
that changing the gender attribute does not alter the distribu-
tion of admission decision. However, in the causally in-
consistent model G M, users will surprisingly observe that
different values of gender could lead to different distribu-
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Figure 3: Causally consistent models and inconsistent mod-
els of prior works. G = Gender, A = age, S = Score, D =
Decisions, M stands for nodes in the middle layer.

tions of decision, even with the same score. Such gender
bias could lead to intense social debates and the organization
deploying the GM might face legal challenges (Thompso
2023).

Prior works and their drawbacks. Despite being applied
to various architectures of GMs, prior works on guaranteed
causally consistent GMs share a common intuition: while
each attribute in observation is influenced only by its par-
ent attributes within the causal graph, the causality relation
must be captured in the GM model all at once, which means
that their layer depth must be zero. Figure 3a shows an ex-
ample of this approach. In this scenario, if we maintain con-
stant values for age and score and only mutate the value
of gender, The distribution of admission decision should
remain unaffected.

This intuition indeed ensures causal consistency, but it has
some shortcomings; notably, it does not allow for incorpora-
tion of any middle layers. For example, mutating the value
of gender in Figure 3b results in a change of admission
decision due to the red dashed connections. This compar-
ison between Figure 3b and Figure 3a illustrates how causal
consistency is compromised even with the introduction of
a single layer in the middle, while on the other hand, for-
bidding middle layers significantly impairs the model’s ca-
pacity for learning. However, as we will demonstrate later,
CCNF can maintain causal consistency even with multiple
middle layers. Therefore CCNF offers great learning ability
compared to previous models, enhancing practical applica-
bility.

3 Preliminaries

In this section, we define basic concepts and related lemmas
to set the stage for CCNF. All definitions and lemmas intro-
duced in this section are consistent with prior works (Khe-
makhem et al. 2021; Papamakarios et al. 2021; Thost and Chen
2021).
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Structured Casual Model (SCM)

Definition. A structural causal model (SCM) is a tuple

M = (f, P,) commonly used to represent causality. It de-
scribes the process that a set of d endogenous (observed)
random variables X = {Xj,---, X} is generated from
a corresponding set of exogenous (latent) random variables
U = {U, - ,Uy} associated with a set of predefined dis-

tributions P, and a set of transfer functions f. Typically, X
and U have the same length, denoting as d. The generation
of X is governed by the equation:

X; = [i(Xpa, Us), i€{l,...,d} (1)
where X .. denotes a set of endogenous variables that di-
rectly influences X, i.e. the parents of X;. Particularly, pa;
represents the labels of those parent variables of X;. Gener-

ally, we assume exogenous variables U are mutually inde-
pendent.

Graphical representation of an SCM: causal graph. A
causal graph G = (V,E) with |[V| = d nodes represent-
ing an SCM is a powerful tool to describe causality. Each
node in V corresponds to an endogenous random variable
X, and each edge in E represents a causal link from a vari-
able in X5, to X;. As a common assumption (Pearl 2009),
the causal graph G is structured as a directed acyclic graph
(DAG). For convenience, each node V' € 'V is assigned with
alabel i € L = {1,---,d}, and we denote it as V;. For a
subset of labels A C L, we define VA = {V; | i € A}. See
Figure 4a for an illustration.

Causal inference and causal hierarchy. Causal infer-
ence denotes the data generation process by SCM. Accord-
ing to the causal hierarchy (Pearl 2009), the generative pro-
cess is classified into three distinct tiers: observations, in-
terventions, and counterfactuals. The observations process
involves generating X unconditionally. This is straightfor-
ward: we generate U sampled from the predefined distri-
butions P, and then compute X from U by the formula
in Equation 1. The interventions process involves generat-
ing X while setting the X; to a specific value of a, often
represented as Do(X; = a). This requires modifying the
SCM such that every X; in Equation 1 is replaced with
a to create a new SCM: Mp,(x,—q). X is generated by
performing observations on the new SCM. The counterfac-
tuals process considers a specific data instance X where
X; = b, and aims to generate data instances supposing that
X; = b’ # b. This process first deduces U from X via
Equation 1, then performs Do(X; = b) to create a new
SCM M p,(x,=1), Subsequently, the data is generated by
inputting U into M p,(x,—a)-

Causal Normalizing Flows

Normalizing flows. Normalizing flows constitute a set of
generative models that express the probability of observed
variables X from U by change-of-variables rules. Particu-
larly, given X = {X3,--- , Xy} and U = {Uy,--- ,Uy},
the probability of X is expressed as follows:
X =Typ(U), whereU ~ Py

Px(X) = Py (T, (X)] det J 1 (X)]

2
3)



Here, T} represents a transformation that maps endogenous
variables U to exogenous variables X. Ty could be any
transformation as long as it is a partial derivative and invert-
ible, often realized by a neural network with parameter 6. It
is common to chain different transformations Ty, - - - T, to
form a larger transformation Ty = Tj, o- - - Ty, 0Ty, . Px de-
notes the probability of X while Py denotes the probability
of U, where Px is the target and Py usually follows a sim-
ple distribution. The det J means the Jacobian determinant
of a given function, which is T}, L in this formula.

Multi-layer universal approximator. An NF serves as a
multi-layer universal approximator, implying that any Px
can be approximated by chaining a finite number of transfor-
mations. Comparatively, the single-layer universal approxi-
mator can achieve the same objective with only one transfor-
mation. The assumption that a NF is single-layer universal
is stronger than the assumption that it is multi-layer.
Although an NF the theoretical capability is single-layer
universal (Papamakarios et al. 2021), No concrete NF suc-
ceeded in proving this. Instead, a recent study on the uni-
versity of coupling-based NF proves that affine coupling
flows like MAF (Papamakarios, Pavlakou, and Murray 2018) are
multi-layer universal (Draxler et al. 2024).
Autoregressive normalizing flows. Autoregressive nor-
malizing flows are a type of NFs whose transformations
are defined as below: given two random variables U
{U,---,Ug} and X = {X3,---, X4}, the special trans-
formation of Equation 2 is:

X; = Ty(U; | Xoy), i€ {l,....d} @

Here, X ; = {X1, -, X,;_1}. This formula indicates that
the parameter 6 in Tp(U; | X ;) is determined by X ;, and
the output value X; is directly determined only by U;. This
transformation yields a simple Jacobin determinant since its
Jacobin matrix is lower triangular.

Autoregressive flows and causality. Although many
works (Pawlowski, Coelho de Castro, and Glocker 2020; Ribeiro
et al. 2023) have utilized NFs for causal inference tasks like
counterfactual inference, autoregressive flows and casualty
were still considered as two unrelated fields. However, Ilyes
noticed that it is possible to leverage autoregressive flows for
causal tasks due to their intrinsic similarity (Khemakhem et al.
2021). Particularly, to capture the causal relation between X;
and U; accurately, autoregressive flows possess a transfor-
mation as follows:

Xi =Ty(U; | Xpa,), i€{l,...,d} 5)

In contrast to Equation 4, the parameter 6 in Equation 5 is
determined by X, rather than X ;.

Causal Consistency

For any given SCM M and the its casual graph G, we
call a GM is causally consistent with M if the causal graph
Ggnm induced by the GM is the same as Gpq. According
to previous work, the special GMs exist and can produce
consistent result in all three tiers of causal hierarchy (Xia,
Pan, and Bareinboim 2022).

Note that causal consistency only require the M and G
to share the same causal graph. In previous work (Xi and
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Bloem-Reddy 2023), they have proved that such GM and
M are identifiable, which means the data-generating pro-
cess between GM and M only differs by an invertible
component-wise transformation of the variables in U, there-
fore GM can perform causal inference tasks just like M.

Topological Batching

Topological batching results in an ordered sequence B =
(B1,- -+ ,B,,) which partitions the label set {1,...,d} of a
DAG G = (V,E). It provides a method to process V se-
quentially with a deterministic ordering. The algorithm of
topological batching is outlined in the extended version. In
brief, nodes are organized by a topological sort, with each
B, representing a topological equivalence class of V.
Topological batching was initially introduced in previous
work (Crouse et al. 2019) and refined with rigorous mathemat-
ical proof by Thost (Thost and Chen 2021). Since we assume a
causal graph is a DAG, topological batching can be directly
applied to SCMs. See Figure 4a for an illustration. In this ex-
ample, the label set is partitioned into an ordered sequence

B = ({1,2}, {3}, {4}).

4 Causally Consistent Normalizing Flows
Definitions

Sequential representation of an SCM. Similar to the
graph representation, The sequential representation of an
SCM entails describing the SCM by an ordered sequence.
Specifically, for a causal graph G which is a DAG, we can
obtain an ordered sequence B = (B, - -- , B,,) by applying
topological batching on G as discussed in Section 3. The se-
quence B could be interpreted as a sequential representation
of the SCM. For instance, the sequential representation of
Figure 4a is ({1, 2}, {3}, {4}).

Partial causal transformation. Assume we have two ran-
dom variables: U = {Uy,--- ,Ug}t, X = {X3, -, X4}, a
label subset L C {1,---,d} and the parent node label set
pa; of each X; as defined in Section 3. A partial causal
transformation Ty over the label set L can be expressed as

T@(Ui | Upai) VieL

follows:
{Ui Vi¢ L ©)

We call it "partial” because it only transfers U; to X; under
the condition Uy, for any 7 € L. In the following section,
we use T to express the partial causal transformation T
over the label set L.
Causally Consistent Normalizing Flows. Given the se-
quential representation B = (By,--- ,B,,) of an SCM M,
we define Causally Consistent Normalizing Flows as such
NF whose transformation is 72 = TO]i "o0---0 T(f' L.

For convenience, weuse Z = (Z° = U, - .- ,Z"~1 Z"
X)) to represent the output of each NF in the chain. More
specifically, we use ZF to represent the i-th output of Z*.

X, =

A Running Example

We implement CCNF based on the SCM illustrated in Fig-
ure 4a as an example. Recall that the sequential representa-
tion of Figure 4ais B = (B, B1,B2) = ({1, 2}, {3}, {4}).
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Figure 4: An example SCM, its topological order, and a related CCNF.

The CCNF comprises two layers for each T “ and is de-
picted in Figure 4b. Note that there is no hmltatlon on the
number of layers for T8, and we pick two for convenience.

The details of the graph in Flgure 4b are elaborated be-
low. Each column represents (Z°, - - - , Z™) as previously de-
scribed. We use right arrows with different colors to denote
the direction of the dataflow. The black arrow indicates the
left node is equivalent to the right node, such as Uz — Zi
meaning U3 == Z3i. The green arrow indicates that the
value of the left node is utilized during training to deter-
mine the parameters. For instance, the green arrows between
73— 73 and Z3— Z3 suggest that Z7 and Z3 are employed
to determine the parameter ;. The red arrow indicates the
left variable is the dependent variable on the right variable.
For instance, Z3 —Z3 denotes Z3 = T,>* (Z3). Specifically,
since there is no dependence for the variables X 1,Xo € By,
the TBO could be emitted and we can obtain the value of
X, X 2 by directly sampling from the distribution.

5 CCNF: Properties and Operations
Properties of CCNF

Theorem 5.1 (Causality). Given a CCNF T, (33, for the i-th
variable X;, X; only depends on its parents Xpa and Uj.

'(Ui | Xpa,)
Theorem 5.2 (Universality). A CCNF Te is a multi-layer

. . . B;
universal approximator as long as for any j, Ty’

J
layer universal approximator.

Farticularly assume i € B, we have X; = T

is a multi-

Theorem 5.3 (Causal Consistency). TeB is causally consis-
tent with the given SCM M.

Theorem 5.4 (Minimum Layer). If the longest path of the
DAG causal graph G is d, then CCNF contains at least d
layers.

Proofs of the theorems are available in the extended
version. All those properties together make CCNF highly
practical. Causality guarantees that all causal relationships
within the SCM are encapsulated. Universality guarantees
CCNF can approximate the distributions of endogenous
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random variables in any form. Causal consistency and mini-
mum layer limitation collectively guarantee CCNF can cap-
ture accurate causality in M.

Causal Inference Tasks

According to Pearl’s causal hierarchy, causal inference tasks
can be divided into three levels: observations, interventions,
and counterfactuals. Here we will demonstrate that CCNF
can perform all three tasks effectively. The extended version
contains algorithms for all three tasks.

Observations. Generating observation data in CCNF is
straightforward. We begin by sampling U from the given
distributions Py. Then we compute X through X
TGB(U). We repeat this process and get multiple possible
X to form the observations O.

The Do Operator. Before diving into interventions and
counterfactuals, it is crucial to introduce the do opera-
tor (Pearl 2012), since it forms the foundation for those con-
cepts. Do(X; = a) simulates a physical intervention on an

SCM M = (£, P,) by fixing the observational variable X;
to a specific value a. Traditionally, the do operator requires
modifying the M by substituting the variable X; from a

in every function f. However, this approach is not suitable
for CCNF. Instead, we propose a method like Causal NF to
address this limitation. The key insight lies on the fact that

X, = T '(U; | Xpa,), indicating that fixing the value of
X, is equlvalent to fixing the value of U;.

Interventions. Interventions can be realized as applica-
tions of the do operator. More particularly, given X
(X1, ,X4) with d attributes, interventions inquire about
the distributions of variables when X, is fixed to a, i.e.
P(X; | X; =a),j € {1,...,d}. In practice, we generate
observations O as described before. For each X € O, we
constraint the value of X; in X by performing Do(X; = a)
on X. The constrained results represent samples from the
distributions P(X | Do(X; = a)).

Counterfactuals. Like interventions, counterfactuals can
also be accomplished through the do operator. Specifically,
counterfactuals seek the precise value of X, j € {1,...,d}



when the set X is fixed to its counterfactual, i.e. X; <+ X f !

In practice, For any given X, we execute Do(X; = X ! ) on
it to get the counterfactual of X.

6 Evaluation

We evaluate CCNF to answer three key questions:

1. Causal Consistency. Despite theoretical assurances of
causal consistency is demonstrated, does CCNF main-

tain this consistency in practical implementations?

. Performance on Causal Inference Tasks. In causal in-
ference tasks, How accurately do the data instances gen-
erated by CCNF compare with those generated by actual
models? Is there an observable improvement in accuracy
compared to state-of-the-art models?

Effectiveness in Real-world Case Studies. Can CCNF
be effectively applied to real-world scenarios, such as
mitigating unfairness?

Refer to the links of the extended version and code for a
complete description of the experiments.

Causal Consistency

Experiment design. We compare CCNF with three
state-of-the-art models: CAREFL, VACA, and CausalNF.
CAREFL is the first causal autoregressive flow, utilizing
causal ordering with an affine layer to capture casualty.
VACA employs a GNN to encode the causal graph, lever-
aging its structure to capture causal relationships. CausalNF
restricts the conditioner of autoregressive flow to the parent
nodes, enhancing its ability to model causal dependencies.
All models except CCNF are categorized into two types: a
model with one layer (L = 1) and a model with more than
one layer (L > 1). More details are in the extended version.

Measurement. In this experiment, we evaluate given mod-
els based on two key metrics: accuracy and causal consis-
tency. Accuracy reflects through the KL distance between
the captured prior distribution and the actual one, denoted as
K L(pam|pe)- Causal consistency is reflected through Equa-
tion 7 as in Causal NF.

L(Tp(X)) = [IVaTo(X) - (1 = G)|2 ©)
Here, G represents the causal graph as an adjacency ma-
trix of a given SCM M, V,Ty(X) denotes the Jacobian
matrix of Ty(X). Ty(X) is causally consistent with M iff
L(Ty(X)) =0.
Result. Results are summarized in Table 2. In a nutshell,
the practical results are consistent with theoretical expecta-
tions. Firstly, CCNF demonstrates causally consistent with
the given SCM, as L(T(X)) of CCNF is consistently 0.
Secondly, state-of-the-art models can only keep consistency
by constraining their expressive power. CAREFL fails to
meet the casual consistency altogether, while VACA and
CausINF can only achieve that with a single layer (L = 1).
These findings remain consistent with the results reported in
their respective papers.
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Causal Inference Tasks

Experiment design. Since only CausalNF and VACA with
one layer (L = 1) can ensure causal consistency, in this ex-
periment, we compare CCNF with CausalNF (L = 1) and
VACA (L = 1) for causal inference tasks. We test given mod-
els on representative synthetic datasets: Nonlinear Triangle
dataset, Nonlinear Simpson dataset, M-graph dataset, Net-
work dataset, Backdoor dataset, and Chain dataset with 3—8
nodes, respectively. Those causal structures are either from
previous works (Javaloy, Martin, and Valera 2023; Sanchez-
Martin, Rateike, and Valera 2022) or from practical applica-
tions, making them suitable for evaluating the performance
of causal inference.

Measurement. We use three different measurements to
evaluate the performance of causal inference tasks. For ob-
servations, the measurement is the KL distance, for inter-
ventions, we measure the max Maximum Mean Discrepancy
(MMD) distance. For counterfactuals, we measure the Root-
Mean-Square Deviation (RMSD) distance. More details are
in the extended version.

Result. As shown in Table 3, CCNF demonstrates superior
performance compared with previous works across nearly
all datasets. This can be attributed to the ability of CCNF to
capture complex casualties with additional middle layers—
an ability absent in CausalNF and VACA. While compared
with CausalNF, CCNF requires approximately 130% more
time for training and evaluation, the time spent remains
within a reasonable range and is less than that of VACA.
Overall, CCNF is a more practical choice for causal infer-
ence tasks compared to stat-of-the-art tools.

Real-world Evaluation

Experiment design. Like prior works (Sanchez-Martin,
Rateike, and Valera 2022; Javaloy, Martin, and Valera 2023), we
select the German credit dataset as a representative exam-
ple. Classifiers commonly utilize this dataset to predict the
credit risk for a given applicant. If a classifier of the German
credit predicts the risk directly through the sex attribute, we
say it has the unfairness problem.

CCNF offers two methods to address real-world issues:
(D building a fairness classifier directly or strengthening the
dataset through counterfactual data augmentation. Specifi-
cally, we first train CCNF on the German credit dataset.
For any applicant, CCNF could function as an unfairness-
free classifier by setting the exogenous variable of the risk
attribute to its mean value, which is 0 in our experiment.
Additionally, @ CCNF could generate counterfactuals of
the training set to create a data-augmented dataset. We also
build an SVM classifier on the origin German credit dataset
and the augmented one respectively for comparison.

Measurement. We utilize the individual fairness (Fleisher
2021) to evaluate the fairness of a classifier. Individual fair-
ness is determined by examining whether changing the sex
attribute of an applicant alters the risk level predicted by a
classifier. Mathematically, for a test dataset with n instances,
we define individual fairness as ., |Risk(Xsez=1) —
Risk(Xsex=0)|/n-



L=1 L>1
CAREFL CausalNF VACA CAREFL CausalNF VACA CCNF
KL 0.01£0.03 0.00+£0.00 2.96+0.08 0.00+£0.00 0.00£0.00 2.62+0.08 0.00£0.00
L(Ty(X)) 0.20£0.04 0.00-£0.00 0.00£0.00 0.32+0.09 0.16£0.05 0.15+0.01 0.00£0.00

Table 2: Causal consistency comparison between CCNF and prior works. The causally consistent models are marked in bold.
KL is used to evaluate the accuracy and £(Ty (X)) is used to evaluate the causal consistency

Dataset Model Performance Time(ms)
KL Inter.vmp C.Frmsp Train Evaluation
Nlin- CCNF 0.12+0.04 0.03+0.03 0.14+0.05 20.2440.32 19.80+0.27
Triangle CausalNF 0.37+0.00 0.10£0.02 0.79+0.07 6.03+0.07 5.09+0.10
VACA 1.41+0.07 2.13+0.61 34.62+12.53 36.234+0.70 35.2740.63
Nlin- CCNF 0.01-£0.00 0.00£0.00 0.00£0.00 15.96+0.24 15.73+0.68
Simpson CausalNF 0.25+0.00 0.04+0.01 0.00+0.00 6.30+0.13 5.53+0.30
VACA 1.56+0.04 0.114+0.15 0.5940.10 36.5240.40 35.6240.39
CCNF 0.01+0.00 0.00+0.00 0.0440.01 9.1340.11 8.3640.18
M-Graph CausalNF 0.32+0.00 0.17+0.01 0.02+£0.01 6.21+0.15 5.33+0.26
VACA 1.8340.01 0.1240.01 1.1940.03 40.50+1.18 39.8940.72
CCNF 0.55+0.13 0.01+£0.01 0.25+0.06 19.9440.32 19.444+0.86
Network CausalNF 1.38+0.04 0.15+0.02 0.4140.03 9.11+£0.08 8.14+0.07
VACA 1.67+0.03 0.38+0.12 13.204+0.50 38.36+0.36 37.594+0.36
CCNF 0.56+0.00 0.01+£0.00 0.04+0.01 15.214+0.22 14.714+0.62
Backdoor CausalNF 0.964+0.00 0.0840.02 0.040.00 6.301+0.23 5.45+0.40
VACA 1.78+0.01 0.13+0.01 1.88+0.02 39.04+0.39 38.2140.40
CCNF 0.28+0.02 0.00+£0.00 0.03-+0.00 26.104+0.34 24.784+0.29
Chain CausalNF 4.6740.04 0.05+0.01 0.13£0.02 11.59+0.09 10.75+0.07
VACA 1.52+0.14 0.22+0.03 1.26+0.26 45.691+0.72 44.66+0.66

Table 3: Causal inference tasks comparison between causally consistent models. In the title, Inter. means interventions, C.F.

means counterfactuals. The best results are marked in bold

Name Accuracy F1 Fairness

SVM 73.00£0.00  82.12£0.00  9.00+£0.00
SVMcr  72.60£1.10 81.90+0.59 4.10£1.40
CCNF  75.80+2.22 84.34+2.22  0.00+0.00

Table 4: Real-world evaluation on German credit dataset, ev-
ery number is magnified 100 times.

Result. The results are summarized in Table 4. Overall,
CCNF can enhance fairness while maintaining accuracy in
both methods. For the fairness problem, CCNF can lower
the fairness rate significantly. Particularly, the NF classifier
demonstrates superior accuracy and eliminates unfairness.
Those facts reveal that CCNF are suitable for real-world
problems like unfairness without compromising accuracy.

7 Conclusion and Future Work

Causal inconsistency in generative models can lead to sig-
nificant consequences. While some prior works cannot guar-
antee causal consistency, others achieve it only by limiting
their depth. In the paper, we introduce CCNF, a novel causal
GM that ensures causal consistency without limiting the
depth as rigorously demonstrated in Section 5. Furthermore,
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we elaborate on how to perform causal inference tasks in
CCNF, demonstrating its proficiency in efficiency. Through
synthetic experiments, we illustrate that CCNF outperforms
state-of-the-art models in terms of accuracy across differ-
ent causal tasks. To validate the real-world applicability of
CCNF, we also apply CCNF to a real-world dataset and
address practical issues concerning unfairness. Our results
indicate that CCNF can effectively mitigate problems while
maintaining accuracy and reliability. Overall, CCNF repre-
sents a significant advancement in incorporating generative
models with causality, offering both theoretical guarantees
of causal consistency and practical applicability in address-
ing real-world issues involved with causality.

Future work. First, a major constraint of CCNF is the re-
quirement of a well-defined causal graph, which is challeng-
ing to obtain in reality. In the future, CCNF should be able
to handle these cases more properly by supporting even in-
correct or non-DAG causal graphs. Second, while CCNF
primarily focuses on causal inference tasks, its capabilities
could be extended to other domains. For instance, by incor-
porating appropriate causalities to the SCM, CCNF could
aid in causal discovery tasks. In the future, CCNF could be
leveraged for extensive tasks.



Acknowledgements

This work is funded in part by NSERC (RGPIN-2022-
03325) and research gifts from Amazon and Meta.

References

Crouse, M.; Abdelaziz, 1.; Cornelio, C.; Thost, V.; Wu, L.;
Forbus, K.; and Fokoue, A. 2019. Improving graph neural
network representations of logical formulae with subgraph
pooling. arXiv preprint arXiv:1911.06904.

Draxler, F.; Wahl, S.; Schnorr, C.; and Kothe, U. 2024. On
the universality of coupling-based normalizing flows. arXiv
preprint arXiv:2402.06578.

Fleisher, W. 2021. What’s fair about individual fairness?
In Proceedings of the 2021 AAAI/ACM Conference on Al
Ethics, and Society, 480—490.

Harshvardhan, G.; Gourisaria, M. K.; Pandey, M.; and
Rautaray, S. S. 2020. A comprehensive survey and anal-
ysis of generative models in machine learning. Computer
Science Review, 38: 100285.

Hofmann, H. 1994. Statlog  (German
Data). UCI Machine Learning Repository.
https://doi.org/10.24432/C5NC77.

Javaloy, A.; Martin, P. S.; and Valera, I. 2023. Causal nor-
malizing flows: from theory to practice. In Thirty-seventh
Conference on Neural Information Processing Systems.

Khemakhem, I.; Monti, R. P.; Leech, R.; and Hyvirinen, A.
2021. Causal Autoregressive Flows. arXiv:2011.02268.

Kocaoglu, M.; Snyder, C.; Dimakis, A. G.; and Vishwanath,
S. 2017. Causal GAN: Learning Causal Implicit Generative
Models with Adversarial Training. arXiv:1709.02023.

Komanduri, A.; Wu, X.; Wu, Y.; and Chen, F. 2024. From
Identifiable Causal Representations to Controllable Counter-
factual Generation: A Survey on Causal Generative Model-
ing. arXiv:2310.11011.

Papamakarios, G.; Nalisnick, E.; Rezende, D. J.; Mohamed,
S.; and Lakshminarayanan, B. 2021. Normalizing flows for
probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57): 1-64.

Papamakarios, G.; Pavlakou, T.; and Murray, 1. 2018.
Masked Autoregressive Flow for Density Estimation.
arXiv:1705.07057.

Pawlowski, N.; Coelho de Castro, D.; and Glocker, B. 2020.
Deep structural causal models for tractable counterfactual
inference. Advances in neural information processing sys-
tems, 33: 857-869.

Pearl, J. 2009. Causality. Cambridge university press.

Credit
DOI:

Pearl, J. 2012. The do-calculus revisited. arXiv preprint
arXiv:1210.4852.

Ribeiro, F. D. S.; Xia, T.; Monteiro, M.; Pawlowski, N.; and
Glocker, B. 2023. High Fidelity Image Counterfactuals with
Probabilistic Causal Models. arXiv:2306.15764.

Sanchez, P.; and Tsaftaris, S. A. 2022. Diffusion causal
models for counterfactual estimation.  arXiv preprint
arXiv:2202.10166.

22981

Sanchez-Martin, P.; Rateike, M.; and Valera, 1. 2022. VACA:
Designing variational graph autoencoders for causal queries.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, 8159-8168.

Thompso, E. 2023. Class-action lawsuit against Facebook
claiming discrimination gets the green light. CBC.

Thost, V.; and Chen, J. 2021. Directed Acyclic Graph Neural
Networks. arXiv:2101.07965.

Xi, Q.; and Bloem-Reddy, B. 2023. Indeterminacy in gen-
erative models: Characterization and strong identifiability.

In International Conference on Artificial Intelligence and
Statistics, 6912-6939. PMLR.

Xia, K.; Pan, Y.; and Bareinboim, E. 2022. Neural causal
models for counterfactual identification and estimation.
arXiv preprint arXiv:2210.00035.

Yang, M.; Liu, F.; Chen, Z.; Shen, X.; Hao, J.; and Wang,
J. 2021. Causalvae: Disentangled representation learning
via neural structural causal models. In Proceedings of

the IEEE/CVF conference on computer vision and pattern
recognition, 9593-9602.



