
1

AddressWatcher: Sanitizer-Based Localization
of Memory Leak Fixes

Aniruddhan Murali , Student Member, IEEE , Mahmoud Alfadel , Member, IEEE ,
Meiyappan Nagappan , Meng Xu Member, IEEE and Chengnian Sun , Member, IEEE

Abstract—Memory leak bugs are a major problem in C/C++ programs. They occur when memory objects are not deallocated.
Developers need to manually deallocate these objects to prevent memory leaks. As such, several techniques have been proposed to
automatically fix memory leaks. Although proposed approaches have merit in automatically fixing memory leaks, they present
limitations. Static-based approaches attempt to trace the complete semantics of memory object across all paths. However, they have
scalability-related challenges when the target program has a large number of leaked paths. On the other hand, dynamic approaches
can spell out precise semantics of memory object only on a single execution path (not considering multiple execution paths).
In this paper, we complement prior approaches by designing and implementing a novel framework named AddressWatcher.
AddressWatcher allows the semantics of a memory object to be tracked on multiple execution paths as a dynamic approach.
Addresswatcher accomplishes this by using a leak database that is designed to allow storing and comparing different execution paths
of a leak over several test cases. We conduct an evaluation of AddressWatcher over five popular open-source packages, namely
binutils, openssh, tmux, openssl and git. In 23 out of the 50 examined real-world memory leak bugs, AddressWatcher correctly points to
a free location to fix memory leaks. Moreover, to demonstrate the real-world impact of AddressWatcher, we submitted 25 pull requests
(PRs) to 12 popular open-source project repositories. These PRs targeted the resolution of memory leaks within these repositories.
Among these, 21 PRs were merged, addressing 5 open GitHub issues. In fact, a critical fix prompted a new version release for the calc
repository, a program used to find large primes. Furthermore, our contributions through these PRs sparked intense discussions and
appreciation in various repositories such as coturn, h2o, and radare2, highlighting the significant impact of AddressWatcher.

Index Terms—Memory leak, Dynamic analysis, Vulnerability

✦

1 INTRODUCTION

Memory leaks are common bugs in programming languages
like C/C++. They mainly occur when dynamically allocated
objects are not deallocated. Programming languages like C
and C++ do not have automatic garbage collection, instead,
they rely on developers to manually deallocate memory
objects. Due to such a manual process, developers may
forget to deallocate an object, causing a memory leak.

Memory leaks may have a large negative impact on
software systems if not carefully examined and fixed. In fact,
memory leaks are direct sources of security vulnerabilities.
Attackers can utilize a memory leak to launch a denial
of service (DoS) by crashing or hanging the program and
taking advantage of other unexpected program behaviour
resulting from low memory condition [1]. Recently, a num-
ber of memory leak vulnerabilities have been disclosed in
Linux kernel (e.g., CVE-2022-27819 [2], CVE-2017-10810 [3]).
Such vulnerabilities in the kernel had severe consequences
on system stability and availability [4, 5, 6].

Fixing memory leaks manually is often time-consuming
and error-prone for developers [7]. Hence, prior work
focused on designing and implementing techniques to
address challenges of automatically fixing memory leak
bugs [7, 8, 9, 10, 11]. Many of these prominent techniques
leverage static and dynamic approaches to fixing memory

All authors are with the David R. Cheriton School of Computer Science,
University of Waterloo, Canada.
E-mail:{a25murali, malfadel, mei.nagappan, meng.xu.cs, cn-
sun}@uwaterloo.ca

leak bugs, although very few of these approaches have been
open-sourced [7, 8] (both of them being static approaches).

An exemplary static analysis tool is Memfix [7]. Memfix
identifies all paths involving an allocated memory. It models
the problem of identifying a set of deallocation statements
on these identified paths as an exact cover problem. It then
uses a SAT solver to find the solution to the exact cover
problem [12]. The solution suggested by Memfix is always a
safe fix. However, Memfix cannot resolve program paths in
the presence of function pointers and recursion, and it errors
out when there is an explosion of leaked program paths.

Furthermore, prior work has proposed dynamic analysis
techniques to mitigate the problem of over-approximation
by static approaches. LeakPoint is one example of such an
approach, which is a dynamic analysis tool that performs
taint propagation on leaked objects [11]. It identifies last-use
sites of leaked objects and suggests candidate sites for leak
fixing. One limitation of LeakPoint is that the fix is limited
to considering a given execution path.

In this paper, we complement prior approaches (e.g.,
static approaches like Memfix) by proposing a new open-
source dynamic approach for memory leak fixing, called Ad-
dressWatcher. Our approach aims to automatically identify
locations where a memory leak should be fixed. Address-
Watcher is an iterative process that is designed to refine its
fixes over several test runs as more memory leak paths are
uncovered. AddressWatcher achieves this by cross-linking
the runtime behavior of the same memory object across
a fleet of test cases. The conventional views of static and
dynamic analysis are as follows:

ar
X

iv
:2

40
8.

04
76

4v
1

 [
cs

.C
R

]
 8

 A
ug

 2
02

4

https://orcid.org/0000-0002-4405-1657
https://orcid.org/0000-0002-2621-6104
https://orcid.org/0000-0003-4533-4728
https://orcid.org/0009-0001-6364-4837
https://orcid.org/0000-0002-0862-2491

2

• Static analysis techniques can spell out the complete
semantics of a memory object (from allocation to free)
on all paths, but this is not precise (e.g., Memfix [7],
Leakfix [8]).

• Dynamic analysis techniques can spell out the precise
semantics of a memory object on a particular execution
path. This is enough for leak detection but less useful
for suggesting a fix covering multiple execution paths
(e.g., LeakPoint [11], LeakChaser [13]).

AddressWatcher offers a way to combine the strengths of
both views–it allows the semantics of a memory object to be
tracked on multiple execution paths, only bounded by the
quality of the test suite. In particular, AddressWatcher uses
a leak database as a dynamic analysis technique, storing and
comparing execution traces of leaks over several test runs. It
also complements prior static analysis tools by considering
memory leak cases that are unable to be fixed by such
static-based analysis, i.e., our approach relies upon test case
runs to track execution paths of leaks, and hence, it does
not suffer from issues related to “path explosion” prob-
lems that are present in static-based approaches. Moreover,
our approach addresses the problem of slowdown due to
dynamic binary instrumentation in certain dynamic-based
approaches (e.g., LeakPoint) by using sanitizer-based and
light-weight compile-time instrumentation.

Contributions. The key contributions of this paper are as
follows:

1) We present AddressWatcher, an automated dynamic
analysis tool that suggests locations for memory leak
fixes in C/C++ programs. AddressWatcher introduces
the concept of using shadow memory to tag memory
and eventually suggests a bug-fix location. Address-
Watcher can suggest multiple free locations for a given
leak after considering all relevant execution traces in a
leak database.

2) We examine the effectiveness of AddressWatcher on
a set of 50 memory leak bugs in popular packages,
followed by a qualitative analysis. We compare the
fix locations suggested by AddressWatcher with Mem-
fix [7].

3) We demonstrate the practical relevance of Address-
Watcher by submitting 25 PRs to major open-source
projects with memory leak issues. Of these, 21 were
approved and merged, resolving 5 open GitHub is-
sues [14, 15, 16, 17, 18].

4) We develop a prototype tool for AddressWatcher. The
tool and benchmarks are made publicly available [19].

2 MEMORY LEAKS & SANITIZERS

In this section, we provide an overview of several concepts
related to memory errors.

Shadow memory is a duplicate region of memory used
to mimic the state of actual process memory. It can be used
to store any kind of information about the state of process
memory [20, 21, 22, 23]. Compile-time instrumentation
refers to the insertion of appropriate instructions into the
application binary during compilation. These instructions
can be used to detect the violation of a given property to
identify memory errors [24, 25]. Red zones are fixed-size

blocks of memory that are safe from modification by a given
application. Red zones have been used to detect several
memory errors. For example, a common technique to detect
buffer overflows is to pad local and global variables with
red zone buffers. If a read/write operation happens to a
red zone then a buffer overflow has occurred. A common
technique to identify the location of buffer overflow is to use
compile-time instrumentation to insert checks at suspicious
read and write locations. The instrumentation checks if the
read/write happens to a red zone memory region. Several
tools (e.g., ASAN [21], Dr. Memory [20]) have been proposed
to detect such scenarios by using shadow memory to encode
the location of inserted red zone regions.

Memory leak checking is an example of a memory error
whose source can be traced by red zones that store relevant
information about the surrounding process memory. When-
ever memory is allocated, a red zone region can store meta-
data such as a thread ID for allocating the memory, the size
of allocated memory, and the program stack at which the
memory was allocated. Tools such as LSAN [26] ensure that
when the allocated memory is freed, it is overwritten with a
magic value. Before the program termination, LSAN detects
memory leaks by identifying allocated memory surrounded
by red zone regions that have not been overwritten with a
magic value. The allocation stack is then retrieved from the
red zone as the source of the memory leak.

1 void read(int size) {
2 char* p = (char*)malloc(size);
3 fgets(p, size, stdin);
4 if (*p == "\n") {
5 // Path 1: Abrupt return
6 // Leak p
7 return;
8 }
9 // Path 2: Process p

10 // Leak p
11 return;
12 }

Listing 1: Leak detection vs leak fixing.

Leak detection vs fixing. While memory leak detection
and leak fixing are relevant, they require fundamentally
different approaches to address them. In the case of static
leak detectors such as Saber [27], it is sufficient to track
allocated memory being leaked along just one path to con-
firm a leak. For example, in code listing 1, user stdin input
is stored in “p”. If input starts with a newline character,
then we return abruptly on Path 1 (see line 7), which leaks
allocated memory. Otherwise, we proceed to process user
input normally on Path 2 (see line 11), which also leaks the
memory. A static tool can analyze Path 1 alone to confirm
the leak. However, in order to fix the leak, a static technique
must analyze all paths that leak memory in order to fully
deallocate the leak (by inserting frees along both Path 1 and
Path 2).

3 DESIGN

AddressWatcher is an approach that performs memory
tracking to automatically suggest locations where a fix for a
memory leak should be placed.

3

To put the problem more formally: consider a memory
allocation at code point A within a program that is subse-
quently leaked. Assume that the allocated object is used at
different code points o1, o2, o3....on within the program. A
use of an allocated object can refer to either a read or write to
the allocated object. Intuitively, the fix to this memory leak
should be placed after the last use of the allocated object.
Therefore, the core problem AddressWatcher aims to solve
is how to automatically identify the last use of a memory
object.

On a high level, AddressWatcher relies on dynamic
information collected when executing test cases of the tar-
get program. To illustrate, assuming the testsuite for this
program contains two different testcases t1 and t2. Let
us assume that testcase t1 executes a sequence of these
code points A, o2, o3, o4 etc. Similarly the other testcase t2
can execute a different sequence of code points A, o1, o5.
AddressWatcher needs to identify that o4 and o5 are the last
points where memory related to allocation A was used and
hence needs to be subsequently freed.

AddressWatcher breaks down the challenge of suggest-
ing memory leak fixes into the following (D)esign compo-
nents:

(D1) Instrument relevant code points. Set up checkpoints
at all relevant code points through binary instrumenta-
tion, i.e., o1, o2, ...on.

(D2) Detect leak. At the end of a given testcase, Address-
Watcher must detect that the allocation at A is not de-
allocated.

(D3) Tag leak. At a given allocation code point while exe-
cuting a testcase, AddressWatcher must detect that the
allocation was leaked on some other testcase in the past.

(D4) Track leak. Identify when leaked memory is read/writ-
ten at a given instrumented checkpoint.

(D5) Preserve leak and execution trace integrity across
testcases. Store leak information and execution trace of
leaks in a database in a way that preserves integrity
across multiple testcases.

(D6) Suggest fix location. Compare all the different execu-
tion traces (eg. execution traces for testcases t1 and t2)
to identify multiple last use points, after which a fix is
suggested.

Each of the design components (mentioned above) rep-
resents unique challenges. In Section 4, we discuss how each
of these challenges is handled.

4 PROPOSED APPROACH

In the previous section, we discussed the design challenges
that AddressWatcher aims to tackle. In this section, we
discuss how each unique challenge is handled in the Ad-
dressWatcher framework. Figure 1 shows an overview of
our approach. The Figure shows a code program that suffers
from a memory leak on line 1. Our goal is to suggest a
location where a fix to the memory leak should be added,
i.e., the approach aims to suggest a code line for adding
a deallocation statement. Our approach goes through four
main steps to achieve the goal, (1) Adding a leak checker
and instrumenting program binary; (2) Identifying memory
leaks; (3) Tagging and tracking execution paths of memory
leaks; (4) Suggesting fix location for memory leaks. These

steps outline a concrete implementation to achieve each of
the design components described in the previous section.

Next, we describe each step in detail using the code
example shown in Figure 1. We explain how the approach
goes through the four steps to suggest a fix location after
line 3 for the memory leak that occurs in the code example.

Step 1: Adding a leak checker and instrumenting pro-
gram binary. The first goal of this step is to obtain an
instrumented binary of a given program. The compiler
adds AddressWatcher instrumentation before each read and
write operation in the program. As shown in Figure 1,
AddressWatcher adds some code before lines 2 and 3,
since these lines contain read/write operations of program
memory. The instrumented binary is an essential artifact of
the approach as it helps for tracking memory leaks (more
on this in later steps). The AddressWatcher instrumentation
behaves as a checkpoint while tracking reads and writes
of memory objects. This enforces the design component
(D1) described in the previous section. The other goal of
this instrumentation step is to insert sanity-checking logic
for detecting memory leaks. The output of this step is an
instrumented binary of the given program.

Step 2: Identifying memory leaks. In the previous step, we
are able to obtain an instrumented binary of the program.
In this step, we use the instrumented binary and identify
memory leak objects (e.g., code points that have malloc,
calloc, and realloc allocations without certain deallocations
in the program). To achieve this step, we execute the in-
strumented binary which essentially runs the existing test
cases. Just before the program is terminated while running
the tests, the leak checker module (which was instrumented
in step 1) is invoked to perform heap analysis to detect
leaked objects (as described in Section 2). For the running
example in Figure 1, the leak checker identifies that there is
a leaked object originating from the calloc function on line
1. The leak checker detects leaks at the end of the given
testcase which accomplishes the design step (D2). In fact,
the checker additionally stores the allocation stack traces
of the leaks in a database, which we call a leak database.
The allocation stack trace is the program stack when the
leaked object is allocated. Initially, the leak database is
empty, however, after the first program execution, the leak
database gets populated with the detected leaks. This is
one essential part of achieving the design component (D5).
Subsequent testcases will then read from the leak database
to match allocations with leaks from testcases in the past.
Such a database aims to help us for profiling and tracking
the execution paths of each leaked object, as we describe in
the next step.

Step 3: Tagging and tracking execution paths of memory
leaks. So far we are able to only identify leaked objects of the
program (stored in the leak database). In this step, our goal
is to obtain the execution paths of the previously identified
leaked objects. Obtaining the execution path of the identified
leak is important to deduce the fix location in the next step.
The execution path of a leaked object is a list of stacks that
represent code points that the leaked object passes through.
To obtain these stacks, we re-execute the program binary,
and perform two tasks: 1) tagging leaks; and 2) tracking

4

int main()
{
1. char* p = calloc(8);
2. *p = ‘a’;
3. *(p+1) = ‘b’;
}

Instrument
Binary

int main()
{
1. char* p = calloc(8);
2. *Instrumentation on line 2*
2. *p = ‘a’;
3. *Instrumentation on line 3*
3. *(p+1) = ‘b’;
}

Identify Leaks

Leak DB

Tag and Track
Leaks

Suggest Fix

S1 S2

S1 & S2 are stack
traces for execution

paths of *p

int main()
{
1. char* p = calloc(8);
2. *p = ‘a’;
3. *(p+1) = ‘b’;
4. free(p);
}

C Program with a memory leak
on line #1

C Program with the memory leak
on line #1 fixed by the developer

after suggestion

Developer

Fig. 1: An overview of our approach for suggesting a location of a memory leak fix.

leaks.
Tagging leaks. To enable tracking leaked objects during

the program execution, we first need to distinguish leaked
from non-leaked memory objects, i.e., we need to tag leaked
objects to be tracked during the execution. To perform
tagging, we examine if each allocation is a memory leak in
a previous execution, by obtaining its allocation stack and
then comparing it to the stacks stored in the leak database. If
there is a match with any stack in our leak database, we add
a special value (i.e., a tag) to the leaks’ shadow memory.
Given the code program in Figure 1, once our program
execution reaches line 1 in the code, a check happens to
examine if the allocation is a memory leak. Given that there
is a match in the leak database, we tag the leaked object on
line 1, i.e., a special value that corresponds to the leaked
object p is added to its shadow memory. This fulfills design
component (D3).

Tracking leaks. Once the leaked object is tagged, we want
to track its execution path, i.e., we track all code points
that the leaked object passes through. For example, the
code shown in Figure 1 contains calloc function on line 1
for variable p (which we already know is a memory leak).
Subsequent lines that write to *p (i.e., lines 2 & 3) are a set of
lines that are part of the execution path of the leaked object.
Hence, we need to collect the stack traces of both lines 2
and 3. To do so, we utilize the instrumentation (added in
step 1) as guard checkpoints surrounding every read and
write operations on memory, in order to check whether the
read/write happens on a tagged leaked object, by checking
the tag value of the object in the shadow memory. If the
shadow memory of the object contains the special value, we
record the current program stack in the execution path of the
leak. Since both conditions are satisfied, i.e., line 2 and line
3 are memory writes to variable p and p is already tagged
in the shadow memory, we record the stacks related to both
lines. Overall, this step implements design component (D4)
discussed in previous section. Finally we store the stacks as
part of the execution path of p in the leak database. This is
the final crucial part of design component (D5). The output
of this step is a list of stacks that represent execution paths
of a memory leak, e.g., an execution profile consisting of
stacks S1 and S2 (corresponding to lines 2 and 3) is the
output after applying this step on our given program, as
shown in Figure 1. Note that we provide more details about
the special value of shadow memory and tracking process
in Technical Challenges Section 5.

Step 4: Suggesting fix location for a memory leak. In the
previous steps, we are able to profile and obtain a set of

different execution paths (list of stack traces) along which
memory is leaked. In this step, we utilize the execution paths
to suggest fix locations of a memory leak. Ideally, the last
code point in the tracked execution path of a memory leak
allocation is considered to be a fix location. For example,
in the code shown in Figure 1, to fix the memory leak on
line 1, a developer needs to add a deallocation statement
after line 3, as this is the latest line in which the leaked
object p is being used. To identify such a fix location, we
identify the last code point on our tracked execution profile.
The execution profile for the leak in our example consists
of stacks S1 followed by S2. Therefore the last code point in
this execution profile is the stack S2. Our approach aims to
suggest the stack of the last use point as a fix to the leak,
and hence, a developer can benefit from our solution by
manually adding a free statement at the suggested point,
i.e., the developer needs to deallocate the leak immediately
after line 3. The solution is further refined over several test
runs as more execution paths are uncovered, i.e., we find the
last use point over all of the execution traces stored in the
leak database. Note that if the program contains multiple
malloc functions, our approach still tackles them because
we define a separate execution profile for each individual
leaked object. AddressWatcher also handles scenarios where
multiple frees are required for a given memory leak. A
detailed explanation of the AddressWatcher algorithm that
handles multiple deallocations is described in Technical
Challenges Section 5. This step enables the realization of
the design component (D6).

5 TECHNICAL CHALLENGES

In the previous section, we provide a high-level description
of how AddressWatcher works to suggest a memory leak fix.
In this section, we describe specific implementation details
of different components of the approach to provide insights
into the technicalities of our work. We build prototype for
AddressWatcher atop ASAN [21] and LSAN [26] runtime
libraries within gcc compiler.

Detecting leaks. We use a sanitizer for detecting memory
leaks - LSAN [26]. During compile time, we compile with
LSAN option, which add a leak checker module to identify
leaks in the program.

Implementing leaks database. A key component in our
approach is the leak database (step 2, Section 4). To im-
plement the leak database, we create a text file to store
allocation stacks of the leaks and their execution trace. Note
that we create a unique leak database for every binary, i.e.,

5

the database name is a combination of the instrumented
binary name and the instrumented binary directory path.
We also use a special directory to store the leak database.
This directory has read and write permissions only for the
given user running the binary.

Recompilation constraints. The design of AddressWatcher
also takes into account the case when a program binary
gets recompiled. For example, for the code example shown
in Figure 1, AddressWatcher suggests adding a fix after
line 3. Let us assume that a developer agrees with the
suggestion and inserts a free statement in line 4. In this
case, if a recompilation happens after, AddressWatcher must
stop tracking the memory leak allocation at line 1 because
the leak has been fixed. However, the leak database still
has a stack stored in it, suggesting that allocation at line
1 is a leak. Hence, recompilation renders all information
in the leak database useless. Therefore, we label each leak
database with the compile time of the corresponding binary,
and if a recompilation is detected, AddressWatcher flushes
the corresponding binary’s leak database.

Implementing leak tagging. AddressWatcher uses shadow
memory to encode information on whether a region of
memory is tagged as a leak, i.e., we override allocation
functions such as malloc/calloc/realloc, so that Address-
Watcher can check if the allocation stack trace of the object
belongs to the leak database. If so, AddressWatcher tags the
allocated object by assigning a special value to its shadow
memory before finally allocating the memory. This special
value added to the shadow memory corresponds to setting
the higher-order word (16 bits) of the shadow memory
to hexadecimal value 0xe. We note that unlike previous
approaches [20, 21, 22, 23] that utilize shadow memory
to detect memory errors, AddressWatcher utilizes shadow
memory to tag leaks on different executions and to finally
suggest leak fixes.

Implementing leak tracking. AddressWatcher utilizes in-
strumentation to perform leak tracking. This instrumenta-
tion is a modification of ASAN instrumentation [21]. Before
reading and writing to allocated variables of the program,
ASAN inserts instrumentation. The ASAN instrumentation
is shown in Listing 2. Specifically, in lines 1 and 2, the
shadow value of variable Var is retrieved by accessing
shadow memory. In line 3, the instrumentation checks the
shadow value. If it is not 0, Report function is called on line
4. We use the function Report to track execution paths of
leaked objects (step 3, Section 4). For tagged leaked objects,
the special shadow value is always non-zero (as we modify
the upper word of shadow value when tagging leaks).
Hence, the condition shown on line 3 always succeeds and
Report is invoked. If the shadow value contains the special
value tag, AddressWatcher adds the current program stack
to execution path of the tagged leaked object. Otherwise
(If the special value tag is not observed), AddressWatcher
continues execution normally.

1 ShadowAddr = ShadowMap(&Var);
2 ShadowValue = *ShadowAddr;
3 if (ShadowValue != 0)
4 Report(&Var);

Listing 2: ASAN instrumentation.

TABLE 1: Execution trace of example testcases considered.
A is allocation code point for leaked object. o1, o2 and o3 are
code points where the leaked object is used.

Testcase Code points executed

t1 A, o1
t2 A, o1, o2
t3 A, o1, o3

Multiple free locations. There can be multiple locations
for free statements required to fix a given memory leak.
AddressWatcher resolves this by analyzing all the tracked
execution paths of the memory leak from the leak database.
We illustrate this with an example below. For example,
consider a case where an object is allocated at code point
A and o1, o2, o3 are different code points where the memory
allocation is used. Let us assume there are three testcases t1,
t2, and t3 which leaks the same object on different execution
paths. We describe the execution trace of each testcase as
a list of code points executed by the testcase in Table 1.
AddressWatcher analyzes each execution trace and filters
those execution traces which are a subsequence of another
execution trace. A subsequence of an execution trace E is
the resulting execution trace when one or more code points
are deleted within E. For example the execution trace of
t1 is a subsequence of the execution trace of t2 (iie. code
point o2 must be deleted from execution trace of t2 to obtain
execution trace of t1). We filter execution trace of t1 because
if a free is inserted at it’s last code point (iie. o1) it will
result in a use-after-free vulnerability when testcase t2 is
executed. AddressWatcher then obtains the last code point
within the remaining execution traces which are points
where the developer is suggested to add the deallocation
statements. We note that as the test suite covers more leaked
paths, AddressWatcher refines it’s fixes by storing relevant
execution traces in the leak database for analysis.

Custom API deallocations. AddressWatcher only suggests
the location of the last use point of leaked memory. The
developer must identify the pointer to the allocated memory
from this last use point and manually insert the deallo-
cation statement thereafter. The developer can deallocate
this leaked memory at the suggested location in their own
desired way using custom APIs. We note that these custom
APIs still fundamentally deallocate memory using free
function.

6 EVALUATION

In this section, we evaluate our proposed approach. In
particular, we introduce our evaluation dataset in Section 6.1
and present how fixes suggested by AddressWatcher com-
pare with manual fixes from developers in Section 6.2.
Next, we conduct a comparison with Memfix tool, the state
of the art approach for statically fixing memory leaks, in
Section 6.3. We then present the efficiency evaluation of
AddressWatcher in Section 6.4. Finally, we demonstrate the
practicality of AddressWatcher by submitting 25 PRs across
12 diverse open-source software. We discuss these PRs in
depth in Section 6.5.

6

6.1 Benchmark
We evaluate AddressWatcher over real world memory leaks
that have been fixed by developers in open-source projects.
In particular, we choose to evaluate AddressWatcher over
the same benchmark examined by Memfix, a static-based
approach for fixing memory leaks in C/C++ programs [7].
The benchmark used by Memfix includes memory leak bugs
in five open source packages, namely, openssh, binutils,
tmux, openssl and git [28, 29, 30, 31, 32].

The benchmark in our data comprises 50 fixes of memory
leak bugs distributed across the five packages. There are 10
bug fixes in each of the following repositories - binutils,
tmux, openssh-portable, openssl and git. To verify
that these bugs are memory leak fixes in the program, we
manually analysed them by looking at the corresponding
GIT commit, in order to ensure that it discusses fixing a
memory leak bug through information in the commit mes-
sage and the discussion of the corresponding pull-request.

The ground truth for the bug fixes in our benchmark are
locations (line numbers) where a developer inserted a free
statement for the corresponding memory allocation. To per-
form our evaluation, we compare this ground truth with the
solution suggested by AddressWatcher. If AddressWatcher
suggests a fix to be added at the same location as the
one inserted by the developer (ground truth), we consider
that AddressWatcher successfully fixed the memory leak
bug. In contrast, if AddressWatcher suggests a fix that has
a different location from the ground truth, we consider
AddressWatcher to fail fixing the bug.

6.2 AddressWatcher Effectiveness

Table 2 presents the distribution of 50 bug fixing commits
across the three studied packages in our dataset. For each
fixing commit, Table 2 shows whether AddressWatcher fixes
the corresponding bug. Overall, AddressWatcher fixes a
total of 23 bugs (out of 50 bugs) with an accuracy of 46%.
Breaking down the fixes per package, AddressWatcher fixes
6 bugs in binutils, 6 bugs in tmux, 3 in openssh, 3 in
openssl and 5 in git covering a total of 23 bugs. That
said, AddressWatcher fails to fix the remaining 27 bugs.

We manually look at each one of the 27 bugs to
understand the context of the affected code and the reason
why AddressWatcher could not suggest the same fix as
the one developers add in the code. Table 2 summarizes
the reasons as to why AddressWatcher failed to fix a given
memory leak bug. Below, we provide more details about
each reason.

Error paths (20 cases). The most common reason of
AddressWatcher failing to provide a correct fix is when
the program contains error paths. An error path refers to
a program path where an abrupt return happens under
abnormal situations (incorrect arguments, low memory,
etc.). Listing 3 shows a real example of such a case for a
bug in binutils [33]. In the Listing, the error path could
be triggered in case the user does not supply the correct
arguments to the program. The allocation on line 1 is leaked
only on the error path (when goto FAIL is executed on
line 2) and not on the non-error path (for the non-error
path, there is already a deallocation on line 4). Hence, a

1 struct btrace {
2 char* p;
3 char* q;
4 }
5 void btrace_alloc (struct* X) {
6 X = malloc(sizeof(X));
7 X->p = malloc(10);
8 X->q = malloc(10);
9 }

10 void btrace_clear (struct* X) {
11 // Developer adds free(X->p) here
12 free(X->q);
13 free(X);
14 }
15 int main () {
16 struct btrace* X;
17 btrace_alloc(X); // Allocate X,p,q
18 doSomething1(X->p); // Use X->p
19 // AddressWatcher suggests fix for X->p here
20 doSomething2(X->q); // Use X->q
21 btrace_clear(X); // Deallocate X,q
22 return 0;
23 }

Listing 4: Code snippet from binutils showing
AddressWatcher failure due to code organization [34].

developer would insert the fix in the error path before
the exit keyword on line 8. In such cases, AddressWatcher
fails to provide the same fix as the developer’s solution.
This is because there is no read/write operation to the
leaked object in the error handling routine, and hence, our
approach is not able to track the leaked object. In such
cases, AddressWatcher suggests a fix immediately after the
allocation on line 1.

1 char *p = malloc(10); // AddressWatcher suggests
fix after allocation

2 if(argv == NULL) goto FAIL; // Memory leak
3 *p = ’a’ // Non-error path
4 free(p);
5 return 0;
6 FAIL:
7 // Error path
8 // Developer inserts fix here
9 exit(1);

Listing 3: Code snippet from binutils showing
AddressWatcher failure due to an error path [33].

Weak test suite (5 cases). Other cases where
AddressWatcher could not suggest an accurate fix is
when the program test coverage is weak or insufficient.
This is because AddressWatcher relies upon the test suite to
track leaks on new paths. That said, with a better testsuite
coverage, AddressWatcher is still able to suggest the correct
fix for these cases.

Code organization (2 cases). Code organization refers to
developer’s decisions in structuring the code in a certain
way to promote general code reliability and adaptability to
future changes. This can lead developers to provide fixes
that are not always immediately after the last use of the
allocated object. Such a case is seen in a bug that affects the
package binutils [34], which is illustrated in Listing 4. As
the Listing shows, there is a memory leak originating from

7

TABLE 2: List of 50 bug fixing commits in our benchmark,
per package. For each commit, we present: 1) whether Ad-
dressWatcher can fix the bug, 2) the reason AddressWatcher
fails to fix the bug, 3) whether Memfix can fix the bug.

Repository Leak
No.

Fixed
by AW
(/×)

AW Failure
reason

Fixed
by MF?
(/×)

binutils

1 -
2 -
3 -
6 -
4 - ×
5 - ×
7 × Error path ×
8 × Code Organization ×
9 × Code Organization ×
10 × Error Path ×

tmux

1 -
2 -
3 -
4 -
5 - ×
6 - ×
7 × Error Path
8 × Error Path ×
9 × Error Path ×
10 × Error Path ×

openssh-portable

1 -
2 - ×
3 - ×
4 × Error Path
5 × Error Path
6 × Error Path
7 × Error Path
8 × Weak test suite
9 × Error Path ×
10 × Weak test suite ×

openssl

1 -
2 - ×
3 - ×
4 × Error Path
5 × Error Path
6 × Error Path
7 × Error Path
8 × Error Path ×
9 × Error Path ×
10 × Weak test suite ×

git

1 -
2 - ×
3 - ×
4 - ×
5 - ×
6 × Weak test suite ×
7 × Weak test suite ×
8 × Error Path ×
9 × Error Path ×
10 × Error Path ×

allocation of variable p within struct X of type btrace. The
developer constructs two separate routines for allocation
and deallocation of the struct X and its inner variables,
one is called btrace_alloc (on line 5) which is used for
allocation, and the other is called btrace_clear (on line
10) for deallocation. X->p is allocated in btrace_alloc
and its last use occur in routine doSomething1. Hence,
AddressWatcher suggests the last use point after routine
doSomething1 as the fix. However, the developer inserts
the fix on line 11 in btrace_clear before the struct X

TABLE 3: Memory leak fixes by AddressWatcher & Memfix,
per package.

Repository name Total bugs # Fixes by AddressWatcher # Fixes by Memfix

binutils 10 6 4
tmux 10 6 5
openssh-portable 10 3 6
openssl 10 3 5
git 10 5 1

Total 50 23 21

itself is freed. This could have been done for general code
reusability reasons for future commits. We count this as
a negative case for AddressWatcher because we are com-
paring with the ground truth being the location where the
developer inserts the fix. However, we should note that
the solution suggested by AddressWatcher is more optimal
(freeing memory earlier) than the developer’s fix.

6.3 Dynamic (AddressWatcher) Fixing Compared to
Static (Memfix) Fixing
In this section, we compare AddressWatcher to Memfix,
the state-of-the-art approach for statically fixing memory
leaks [7]. The goal of our comparison with a static-based
analysis approach is to expose the gap between static and
dynamic analysis for fixing memory leak bugs.

Memfix attempts to fix memory leaks by identifying a
set of free statements that deallocates all objects without
causing double-free or use-after-free. It utilizes the insight
that identifying set of deallocation statements corresponds
to an exact cover problem on a variant of typestate static
analysis. It uses a SAT solver to solve the exact cover
problem [12]. Then, all frees that are present in these paths
are removed, and new free statements are added.

We compare AddressWatcher to Memfix over the same
packages examined in the benchmark. We set up a virtual
machine provided by Memfix and run Memfix with its
default configuration over the bugs in the benchmark [35].
We run Memfix without any time constraints and compare
results with AddressWatcher.

Table 3 shows the number of memory leak fixes by both
Memfix and AddressWatcher, per package repository. From
the Table, we can see that, of the 50 bugs examined in our
benchmark, AddressWatcher fixes 23 bugs while Memfix
fixes 21 bugs.

We now aim to understand the intersection of memory
leak fixes introduced by AddressWatcher and Memfix, i.e.,
bugs independently and jointly fixed by both tools. We
outline the distribution of memory leak fixes in Figure 2.
The figure shows that AddressWatcher fixes 12 bugs
independently of Memfix, i.e., Memfix fails to suggest fixes
for these bugs. Also, we can see that there are 10 bugs
fixed by Memfix independently of AddressWatcher. Both
AddressWatcher and Memfix jointly provide proper fixes
for 11 bugs. Still, 17 bugs in the examined repositories were
not fixed by both AddressWatcher and Memfix. Next, we
provide further investigation into those bugs which are
not fixed by atleast one approach (static or dynamic). We
describe these in the following three scenarios (S1 – S3):

https://github.com/bminor/binutils-gdb/commit/be74fad95edc8827516e144cf38d135b503249cd
https://github.com/bminor/binutils-gdb/commit/3cfd3dd0956fe854a07795de12c1302ecabbd819
https://github.com/bminor/binutils-gdb/commit/3f2a3564b1c3872e4a380f2484d40ce2495a4835
https://github.com/bminor/binutils-gdb/commit/aba19b625f34fb3d61263fe8044cf0c6d8804570
https://github.com/bminor/binutils-gdb/commit/b55ec8b676ed05d93ee49d6c79ae0403616c4fb0
https://github.com/bminor/binutils-gdb/commit/848ac659685fba46ce8816400db705f60c8040f7
https://github.com/bminor/binutils-gdb/commit/a26a013f22a19e2c16729e64f40ef8a7dfcc086e
https://github.com/bminor/binutils-gdb/commit/f978cb06dbfbd93dbd52bd39d992f8644b0c639e
https://github.com/bminor/binutils-gdb/commit/7ed1acafa0b5d135342f9dcc0eb0387dff95005a
https://github.com/bminor/binutils-gdb/commit/8a286b63457628b0a55d395f14005f254512e27d
https://github.com/tmux/tmux/commit/c363c236aaea5b7a879493d8f3c85bead546f063
https://github.com/tmux/tmux/commit/1e0eb914d945e0f287716d56669d0de409e86e59
https://github.com/tmux/tmux/commit/d566c780e54010112d499707cd80a594144d1a89
https://github.com/tmux/tmux/commit/2c9bdd9e326723fb392aed4d8df12cba7ef34f1f
https://github.com/tmux/tmux/commit/51ac2a3202d55c439976ecce49229e35865c7ebd
https://github.com/tmux/tmux/commit/6daf06b1ad61f67e9f7780d787451b9b5f82dd43
https://github.com/tmux/tmux/commit/933929cd622478bb43afe590670613da2e9ff359
https://github.com/tmux/tmux/commit/7340d5adfdc8cc6d845a373f3e0d59bfd10a45d1
https://github.com/tmux/tmux/commit/189017c078b7870c18ced485c1fd99f65fcc4801
https://github.com/tmux/tmux/commit/5acee1c04ed38afd6a32da4a66e6855ccdc52af3
https://github.com/openssh/openssh-portable/commit/0d6771b4648889ae5bc4235f9e3fc6cd82b710bd
https://github.com/openssh/openssh-portable/commit/aae07e2e2000dd318418fd7fd4597760904cae32
https://github.com/openssh/openssh-portable/commit/393920745fd328d3fe07f739a3cf7e1e6db45b60
https://github.com/openssh/openssh-portable/commit/b2afdaf1b52231aa23d2153f4a8c5a60a694dda
https://github.com/openssh/openssh-portable/commit/64a89ec07660abba4d0da7c0095b7371c98bab62
https://github.com/openssh/openssh-portable/commit/165bc8786299e261706ed60342985f9de93a7461
https://github.com/openssh/openssh-portable/commit/66d2e229baa9fe57b86
https://github.com/openssh/openssh-portable/commit/4f7cc2f8cc861a21e6dbd7f6c25652afb38b9b96
https://github.com/openssh/openssh-portable/commit/a63cfa26864b93ab6afefad0b630e5358ed8edfa
https://github.com/openssh/openssh-portable/commit/e52a260f16888ca75390f97de4606943e61785e8
https://github.com/openssl/openssl/commit/8abeefeccc4cfbfba9b5ebfc7604fe257a97317a
https://github.com/openssl/openssl/commit/af6de400b49c011600cfd557319d1142da6e5cbd
https://github.com/openssl/openssl/commit/04761b557a53f026630dd5916b2b8522d94579db
https://github.com/openssl/openssl/commit/85155346b3ca2dcdecf018dc8db9df94ceebeb0d
https://github.com/openssl/openssl/commit/44f19af7434cdb996f1ce11789150baa07db27e6
https://github.com/openssl/openssl/commit/59099d6b8a3aec77f7d9f310ebf8e31b09c2d518
https://github.com/openssl/openssl/commit/62b0a0dea612e3683c6bd4bef359fceda00238e8
https://github.com/openssl/openssl/commit/b6306d8049b04dca7fa738a86c892c43ba6a5fc4
https://github.com/openssl/openssl/commit/918a27facd3558444c69b1edbedb49478e82dff5
https://github.com/openssl/openssl/commit/9561e2a169f499f8346ffdd7541bc4e3d81d6711
https://github.com/git/git/commit/cb7b29eb67772d08e2365ed07ede9d954d0344c1
https://github.com/git/git/commit/dd1055ed594f8fef18779cce3cd921c4ac66cf9c
https://github.com/git/git/commit/a452d0f4bae99c9acef6f7db75f6f1d922618732
https://github.com/git/git/commit/e336bdc5b9bcb62982da9708dfb6e68150de72a3
https://github.com/git/git/commit/fc5c40bb2bb1921f3bdfa55c1d846dc080c356b2
https://github.com/git/git/commit/f4e45cb3eb6fad4570ff63eecb37bae8102992fc
https://github.com/git/git/commit/dcb572ab94f83a1a857d276fcebff5700077f2b7
https://github.com/git/git/commit/4da72644b768b0491110a8ba0aa84d32b6bde41c
https://github.com/git/git/commit/851e1fbd01250f56a6e479e1addada220a56e1f7
https://github.com/git/git/commit/afbb8838b7d4d1887da1e1871f8e9ccd01ae1138

8

AW only MF only AW & MF No tools

10

12

14

16

18

12

10

11

17

Tool

#
M

em
or

y
le

ak
fix

es

Fig. 2: Distribution of memory leak fixes by AddressWatcher
(AW) and Memfix (MF).

S1. Memory leak bugs fixed by AddressWatcher only.
As shown previously, AddressWatcher provides 12 fixes
independently of Memfix. Among them, Memfix fails
to generate and solve constraints for its SAT solver in 6
cases due to the complex nature of these interprocedural
leaks. Memfix also fails in 3 cases where leaked memory
is reallocated (with realloc). Finally, Memfix fails in the
remaining 2 cases where recursion is not supported.
Additionally, in one case, the Memfix application crashes
without providing a reason for the crash. In contrast,
AddressWatcher succeeds in such cases because it is a
dynamic approach where it relies on a test suite to uncover
all leaked paths.

S2. Memory leak bugs fixed by Memfix only. To
understand the nature of the 10 bugs fixed by Memfix
independently of AddressWatcher, we manually look at
these cases, trying to understand the nature of each case.
We find that most of these bugs are related to error path
cases (9 cases). Another failure case is due to a weak test
suite not covering the leaked path. We previously describe
the context of all such cases where AddressWatcher fails in
Section 6.2.

S3. Memory leak bugs not fixed by both AddressWatcher
and Memfix. For the 17 cases that both approaches fail
to provide a fix, our manual investigation shows that the
majority of the bugs that AddressWatcher could not fix are
due to error paths (11 cases). There are 4 memory leaks
where AddressWatcher fails to fix due to a weak test suite,
and the remaining 2 cases are due to code organization
issues. Memfix encounters issues in specific scenarios: it
fails when dealing with reallocated memory (10 cases),
cannot generate constraints for its SAT solver in certain
complex interprocedural leaks (6 cases), or when dealing
with function pointers (1 case).

To sum up, our comparison demonstrates that Address-
Watcher complements Memfix by tackling fixes along non-
error paths, where Memfix errors out. Moreover, note that

TABLE 4: Efficiency of AddressWatcher (AW).

Repository % AW
overhead

AW avg
run

time (s)

AW max
run

time (s)

binutils 178.24 0.53 0.62
tmux 160.69 0.51 0.54
openssh-portable 142.75 0.52 0.75
openssl 147.32 0.50 0.58
git 171.36 0.48 0.60

Memfix does not support recursion, function pointers and
memory reallocation in their static analysis, which is not
the case in dynamic approaches like AddressWatcher. These
tools are, hence, complementary in nature and can be used
together to fix 33 real-world leaks in our benchmark.

6.4 AddressWatcher Efficiency
In this section, we evaluate the efficiency of Address-
Watcher. AddressWatcher utilizes LSAN to detect leaks.
Then, in subsequent testcases, it profiles those leaks and
suggests final fix locations. Therefore, for Addresswatcher
to provide the best solution, each testcase must be run twice.
This is the runtime with AddressWatcher instrumentation.
In order to calculate AddressWatcher overhead, we must
first establish the time taken to run those testcases without
any profiling instrumentation or LSAN. Hence, our baseline
is the runtime of the binary with testcases run twice without
any instrumentation. Then, the overhead is calculated as
follows: ((TI − TWI)/TWI) ∗ 100 where TI is the time
taken to execute testcases twice with instrumentation and
TWI is the time taken to execute testcases twice without
instrumentation. The result of this analysis is shown in
Table 4.

Table 4 indicates the average runtime required by Ad-
dressWatcher to suggest fixes in a repository. The table also
shows the maximum runtime to suggest the leak fix in
that repository. Overall AddressWatcher has a performance
overhead of 142-178% over the baseline. This clearly shows
the efficiency of AddressWatcher in suggesting memory leak
fixes. Additionally, AddressWatcher is a debugging tool, not
a runtime checker, and is not intended to be deployed on
production servers. Therefore, it is most useful when the
code is in the testing phase.

6.5 Practicality of AddressWatcher in Open Source
In this section, we demonstrate the practicality and rele-
vance of AddressWatcher to the open-source community.
We identified 12 prominent C repositories with memory
leak problems using the Github search functionality. We
then used the Leaksanitizer tool to detect various mem-
ory leaks. We then submitted 25 Pull Requests to these
prominent open-source projects that are affected by memory
leak bugs. We submitted these PRs by inserting deallocation
statements at the locations specified by the AddressWatcher
suggestions.

Overall, among these 25 PRs, 21 were merged and 4 are
pending approval. The merged PRs led to 5 open github
issues on memory leaks being resolved [14, 15, 16, 17, 18].

9

One of our merged patches was so critical that it resulted
in a new version of the calc software (calc v2.15.0.6) being
released [36]. Additionally, 3 of our PRs even triggered lively
discussion on the coturn repository on how to improve
memory safety in the future by upgrading to C++17 [37].
Below, we provide insights into the context of a subset of
these PRs, highlighting their importance and the impact
they have on the analyzed projects:

1 sockfd = openconn(server, port);
2 free(server); // AddressWatcher fix
3 server = do_query(sockfd, query_string);

Listing 5: whois PR showing AddressWatcher leak fix [38].

1 if (getsockopt(fd, IPPROTO_TCP, TCP_CONGESTION,
buf, &buflen) == 0) {

2 return h2o_iovec_init(buf, strlen(buf));
3 }
4 free(buf); // AddressWatcher fix

Listing 6: h2o PR showing AddressWatcher leak fix [39].

1 // Displayed if appending to trash fails when
syncing or closing a mailbox

2 if (mutt_append_message(m_trash, m, e, NULL,
MUTT_CM_NO_FLAGS, CH_NO_FLAGS) == -1)

3 {
4 mx_mbox_close(m_trash);
5 mailbox_free(&m_trash); // AW fix
6 return -1;
7 }

Listing 7: neomutt PR showing AddressWatcher fix [40].

1) Calc (1 PR merged): Calc [41] is an interactive calculator
that can be easily programmed for difficult or long cal-
culations. It has been used before to calculate the largest
known non-Mersenne prime: 391, 581 ∗ 2216,193 − 1.
Calc is now being used to calculate other large primes
over years of execution. We merged a PR in this repos-
itory [42] and were given credit for fixing a “long-
standing memory leak” on their discussion forum [36]
and CHANGES document [43]. The repository owners
noted that the merged fix addresses a memory leak
in calc that previously caused crashes due to gradual
memory leak buildup over years of execution, hin-
dering the discovery of larger primes. Additionally, a
new version of calc was immediately rolled out (calc
v2.15.0.6) after merging the PR indicating the high
impact of the fix [36].

2) Radare2 (10 PRs merged): Radare is a library used
to ease binary reverse engineering tasks and binary
exploitation [44]. We submitted 10 PRs fixing leaks
detected while analyzing “ls” binary and by running
the visual mode of radare [45, 46, 47, 48, 49, 50, 51, 52,
53, 54]. Three of these PRs fixed leaks across multiple
locations as well [47, 48, 49]. All 10 were merged. In one
PR, the author was even impressed with a fix saying
“whoa nice spot!” [54].

3) CoTurn (3 PRs merged): Coturn is an implementa-
tion of a VoIP media traffic NAT traversal server and
gateway [55]. We submitted 3 PRs to this repository
and all 3 were merged [56, 57, 58]. The PRs that we
submitted initiated a long discussion on how to migrate

project code to C++17 to improve memory safety using
destructors [37]. Later after submitting the PRs, the
first author was approached by mail for a consultancy
position.

4) Net-snmp (2 PRs merged): Net-snmp is a widely used
protocol for monitoring the health of network equip-
ment [59]. We fixed 2 leaks identified by fuzzers when
the ’-a’ argument of net-snmp is used incorrectly [60,
61]. Both PRs were merged resolving an open issue [16].

5) Neomutt (1 PR merged): NeoMutt is a command line
mail reader [62]. We submitted a PR fixing a memory
leak when certain mail is added to trash [40], as shown
in Listing 7. In this case, the trash mailbox is closed, but
the memory associated with it is not freed. Address-
Watcher is able to locate the line that closes the mailbox
as the last use location and suggests a free after this
line. The PR fixing the leak was merged and the authors
were congratulated for a ”good spot”.

6) Whois (1 PR merged): Whois is a UNIX command-line
utility used to make WHOIS protocol queries [63]. In
the repository, a pointer to allocated memory server
is reassigned without being freed, as shown in Listing
5. AddressWatcher is able to detect this last line where
the leaked memory is used and suggests the free after
this line. We submitted a PR fixing the leak that is
merged [38] and resolved another issue [17].

7) h2o (1 PR merged): h2o is a really fast HTTP server [64].
In Listing 6, a leak occurs when allocated mem-
ory in buf is used to change socket options through
getsockopt. If setting socket options fails, the al-
located memory is never used and never freed. Ad-
dressWatcher identifies last use location to be the
getsockopt call. We submitted a PR that frees the
memory after the branch condition, which has been
merged [39] and resolved another issue [15].

8) Iniparser (1 PR merged): This library offers parsing of
ini files from C [65]. We submitted a PR [66] which
project owners mentioned to be more comprehensive
than another PR submitted by a different user [67]. Our
PR was merged in the repository leading to an open
issue being resolved [14].

9) NanoNNG (1 PR merged): NanoNNG solves common
recurring messaging problems for IoT devices, such
as RPC-style request/reply [68]. We merged a PR that
fixed a memory leak that occurred on reading config-
uration files with repeating JSON fields [69]. This also
led to an open issue being closed [18].

We also submitted 4 PRs in 3 other repositories. We
submitted 2 PRs in yasm repository [70, 71], 1 PR in shc
repository [72], and 1 PR in hackem repository [73]. How-
ever, these PRs are still under review and are yet to be
merged.

7 DISCUSSION

This section discusses how certain aspects impact the per-
formance of AddressWatcher when suggesting fix locations.

Code coverage. AddressWatcher fundamentally relies on a
test suite to provide a fix for memory leaks. Hence, if the
test suite does not cover all paths of a leaked object, the

10

suggested solution might not be optimal. For example, a
leaked object may be used through a path that is not covered
by the test suite and such a path could be located in a
point that is deeper in the program flow than the point
we suggest for the fix. Consequently, the suggested fix may
lead to a use-after-free if the test coverage is poor. We note
that this is a limitation of all existing dynamic analysis
techniques [10, 11, 13]. Possible future work to mitigate this
in AddressWatcher would be to fuzz the program to obtain
a high-quality test suite. This is an orthogonal problem
that will further improve the results of AddressWatcher.
AddressWatcher is the framework that utilizes these test
cases to obtain memory leak fixes.

Multi-threading support. In the case of a multi-thread
program, each thread could lead down a different execution
path for a given leak. Consider the case where a memory
leak has two different execution paths. Thread 1 explores
the first execution path and thread 2 explores the second
execution path. That is, each thread can lead to a different
solution for the same leak. To mitigate this, we implement
a concurrency lock to prevent threads from writing to the
database simultaneously. In the case that thread 1 completes
before thread 2, thread 1 first writes its solution to the leak
database. When thread 2 is about to die, it reads the previous
solution in the leak database and compares it with its
own solution using the comparison operator. Based on the
comparison outcome, thread 2 will store the best solution,
i.e., the solution that represents a later point in the program
path will be stored in the leak database.

8 RELATED WORK

Two lines of work are closely related to AddressWatcher: (1)
techniques for memory leak detection, and (2) techniques
for memory leak fixing. In the following, we discuss the
related work and reflect on how the work compares with
our work.

8.1 Approaches for Memory Leak Detection
Static approaches. A plethora of recent work focused on
detecting memory leaks statically [27, 74, 75, 76, 77, 78].
Static analysis approaches such as Smoke [78] suffers from
imprecision in detecting bugs. This can be due to approx-
imations in underlying pointer analysis, lack of library
specifications, infeasible paths due to complex arithmetic
in branch conditions, and other cases such as recursion,
function pointers, etc. Therefore, the common problem of
most static approaches is that they incur a high rate of false
positives in detecting bugs, and this translates to limitations
in bug fixing.

Dynamic approaches. Dynamic approaches for memory
leak detection have been discussed broadly. For example,
LeakSanitizer (LSAN) is a tool by Google that performs
dynamic analysis for detecting memory leaks [26]. When
memory is freed, a magic value is written into the memory.
When the program exits, the heap is checked for memory
leaks, i.e., by identifying allocated memory that has not
been overwritten with a magic value. Nethercote et al. in
their framework Valgrind [79] presents a virtual architecture
that captures all calls to memory allocation and deallocation

by the program. When the program exits, Valgrind checks
whether a memory allocation has been freed or not. If the
allocation is not freed and it is also not reachable from stack
and global variables, then it is considered to be a leak. The
approach suffers from performance overhead due to the
synthetic execution, i.e., checking every memory access.
Our proposed approach, AddressWatcher, suggests mem-
ory leak fixes. and is different from static and dynamic
approaches for detecting memory leaks.

8.2 Approaches for Memory Leak Fixing
Static approaches. Some prominent techniques have been
proposed to statically suggest fixes for memory leaks [7, 8].
For example, Memfix by Lee et al. [7] is a static approach to
fixing memory deallocation errors, including memory leaks.
First, Memfix identifies all program paths of a leaked object.
Then, the bug fix is modeled as an Exact Cover problem
where minimum frees must be placed to plug all the leaked
paths. A solution to the exact cover problem is generated us-
ing a SAT solver. Then, all generated deallocation statements
are inserted along the program paths. However, Memfix is
not precise and cannot track program paths in the presence
of function pointers and recursion. Memfix often errors out
when the number of program paths explodes and the SAT
solver is unable to generate a solution.

Another static-based approach to fixing memory leaks is
Leakfix [8]. Leakfix performs pointer analysis on the whole
program. Each procedure is classified into 3 types: those
that allocate, deallocate, or use a given memory allocation.
It then abstracts the program into a Control Flow Graph
(CFG) where every node is a procedure classified into above
three types. Then, the task of finding the correct deallocation
is equivalent to finding edges in the graph that meet a
set of criteria. These are program points where allocated
memory is still in scope, but will never be used thereafter
in the graph. The precision of the approach is limited to
the efficacy of pointer analysis techniques used for the
classification of procedures (e.g., DSA [80].) Such techniques
are employed to create the graph, but they face limitations.
For example, when a pointer array contains two different
allocated pointers, DSA cannot distinguish between them.

Our proposed approach, AddressWatcher, is comple-
mentary to such static-based analysis approaches. For ex-
ample, we compare AddressWatcher with Memfix using a
dataset of 50 memory leak bugs. We find that Address-
Watcher fixes 23 bugs related to non-error paths where
Memfix errors out.

Dynamic approaches. Several dynamic-based techniques
have been proposed to suggest different forms of leak
fixes [10, 11, 13]. Yu et al., in their tool DEF LEAK, propose
a dynamic symbolic execution approach to expose memory
leaks occurring in all execution paths [10]. In their approach,
the program to be analyzed is instrumented before execu-
tion. Dynamic symbolic execution is a technique of ana-
lyzing the program to determine inputs that would cause
certain parts of the program to execute. This technique is
employed to discover as many execution paths as possible.
The approach suffers from inaccuracy when it encounters
large programs whose inputs are hard to be symbolized
in dynamic symbolic execution. AddressWatcher, on the

11

other hand, relies on predefined test cases to suggest fixes,
and hence, the size of the program or nature of input will
not affect the accuracy of the suggested solution. Instead,
AddressWatcher relies on the completeness of the test suite.

The work most close to ours is proposed by Clause et
al. where they proposed LeakPoint [11]. LeakPoint is a dy-
namic analysis framework that performs taint propagation
on pointers to detect leaked objects, in order to identify last-
use sites of the objects and suggest candidate sites for fixing
them. In fact, Leakpoint uses Valgrind infrastructure for
implementing taint propagation and dynamic binary instru-
mentation, which brings a performance overhead of 100-300
times the base program [11]. We showed in Section 6.4 that
AddressWatcher has a performance overhead of 2.42-2.78
times the base program. Unfortunately, we were not able
to find a public implementation of all these dynamic tools,
such as LeakPoint or DEF LEAK, which makes it infeasible
to directly compare to AddressWatcher. AddressWatcher, on
the other hand, is open source with a publicly available
docker [19].

9 CONCLUSION AND FUTURE WORK

In this work, we present AddressWatcher, a new framework
for fixing memory leak bugs. Previous static analysis ap-
proaches attempt to trace the complete semantics of memory
objects on all leaked paths with imprecision. On the other
hand, dynamic approaches attempt to profile the memory
object on a particular execution path. AddressWatcher’s
novelty lies in the fact that it is a dynamic approach that
allows the semantics of a memory object to be tracked
over multiple execution paths using a leak database. Our
evaluation reveals that AddressWatcher correctly suggests
fixes for 23 out of 50 memory leaks in five benchmark open-
source projects. Finally, we demonstrate AddressWatcher’s
practicality and relevance to the open-source community by
submitting 25 PRs to 12 popular open-source repositories to
fix memory leaks. Out of these submissions, 21 PRs have
been successfully approved and incorporated within the
respective codebases. Furthermore, one of our fixes was
deemed so critical that it prompted a new version release
for the calc repository.

REFERENCES

[1] “Denial Of Service,” May 2023, [Online; accessed 4.
May 2023]. [Online]. Available: https://owasp.org/
www-community/vulnerabilities/Memory leak

[2] “CVE - CVE-2022-27819,” May 2023, [Online;
accessed 4. May 2023]. [Online]. Available: https://
cve.mitre.org/cgi-bin/cvename.cgi?name=2022-27819

[3] “CVE - CVE-2017-1081,” May 2023, [Online; accessed 4.
May 2023]. [Online]. Available: https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-1081

[4] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and
M. F. Kaashoek, “Linux kernel vulnerabilities: state-
of-the-art defenses and open problems,” in APSys ’11:
Proceedings of the Second Asia-Pacific Workshop on Sys-
tems. New York, NY, USA: Association for Computing
Machinery, Jul. 2011, pp. 1–5.

[5] “CWE - CWE-400: Uncontrolled Resource Con-
sumption (4.11),” May 2023, [Online; ac-
cessed 4. May 2023]. [Online]. Available:
https://cwe.mitre.org/data/definitions/400.html

[6] “Memory leak | OWASP Foundation,” May
2023, [Online; accessed 4. May 2023].
[Online]. Available: https://owasp.org/www-
community/vulnerabilities/Memory leak

[7] J. Lee, S. Hong, and H. Oh, “MemFix: static analysis-
based repair of memory deallocation errors for C,” in
ESEC/FSE 2018: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering.
New York, NY, USA: Association for Computing Ma-
chinery, Oct. 2018, pp. 95–106.

[8] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou,
B. Xie, and H. Mei, “Safe memory-leak fixing for C pro-
grams,” in ICSE ’15: Proceedings of the 37th International
Conference on Software Engineering - Volume 1. IEEE
Press, May 2015, pp. 459–470.

[9] H. Yan, Y. Sui, S. Chen, and J. Xue, “AutoFix: an
automated approach to memory leak fixing on value-
flow slices for C programs,” SIGAPP Appl. Comput.
Rev., vol. 16, no. 4, pp. 38–50, Jan. 2017.

[10] B. Yu, C. Tian, N. Zhang, Z. Duan, and
H. Du, “A dynamic approach to detecting,
eliminating and fixing memory leaks,” J.
Comb. Optim., 2021. [Online]. Available:
https://www.semanticscholar.org/paper/A-
dynamic-approach-to-detecting%2C-eliminating-and-
Yu-Tian/c6348fbfd0805a3b539be9498896a53e47980d65

[11] J. Clause and A. Orso, “LEAKPOINT: pinpointing the
causes of memory leaks,” in 2010 ACM/IEEE 32nd
International Conference on Software Engineering. IEEE,
May 2010, vol. 1, pp. 515–524.

[12] Contributors to Wikimedia projects, “SAT solver -
Wikipedia,” Apr. 2023, [Online; accessed 4. May
2023]. [Online]. Available: https://en.wikipedia.org/
w/index.php?title=SAT solver&oldid=1150878317

[13] G. Xu, M. D. Bond, F. Qin, and A. Rountev,
“LeakChaser: helping programmers narrow down
causes of memory leaks,” in ACM SIGPLAN Notices.
New York, NY, USA: Association for Computing Ma-
chinery, Jun. 2011, vol. 46, no. 6, pp. 270–282.

[14] “ERROR: LeakSanitizer: detected memory leaks ·
Issue #123 · ndevilla/iniparser,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:
//github.com/ndevilla/iniparser/issues/123

[15] “Memory leak in function
’h2o socket log tcp congestion controller’ ·
Issue #3354 · h2o/h2o,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/h2o/h2o/issues/3354

[16] “tests: Memory leaks in
testing/fulltests/default/T115agentxperl simple ·
Issue #723 · net-snmp/net-snmp,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/net-snmp/net-snmp/issues/723

[17] “Harmless memory leak in split server port() ·
Issue #165 · rfc1036/whois,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:

https://owasp.org/www-community/vulnerabilities/Memory_leak
https://owasp.org/www-community/vulnerabilities/Memory_leak
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-27819
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2022-27819
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1081
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1081
https://cwe.mitre.org/data/definitions/400.html
https://owasp.org/www-community/vulnerabilities/Memory_leak
https://owasp.org/www-community/vulnerabilities/Memory_leak
https://www.semanticscholar.org/paper/A-dynamic-approach-to-detecting%2C-eliminating-and-Yu-Tian/c6348fbfd0805a3b539be9498896a53e47980d65
https://www.semanticscholar.org/paper/A-dynamic-approach-to-detecting%2C-eliminating-and-Yu-Tian/c6348fbfd0805a3b539be9498896a53e47980d65
https://www.semanticscholar.org/paper/A-dynamic-approach-to-detecting%2C-eliminating-and-Yu-Tian/c6348fbfd0805a3b539be9498896a53e47980d65
https://en.wikipedia.org/w/index.php?title=SAT_solver&oldid=1150878317
https://en.wikipedia.org/w/index.php?title=SAT_solver&oldid=1150878317
https://github.com/ndevilla/iniparser/issues/123
https://github.com/ndevilla/iniparser/issues/123
https://github.com/h2o/h2o/issues/3354
https://github.com/net-snmp/net-snmp/issues/723
https://github.com/rfc1036/whois/issues/165

12

//github.com/rfc1036/whois/issues/165
[18] “MemLeak in parse conf · Issue #1652

· nanomq/nanomq,” Mar. 2024, [Online; ac-
cessed 6. Mar. 2024]. [Online]. Available:
https://github.com/nanomq/nanomq/issues/1652

[19] “AddressWatcher,” Sep. 2023, [Online; accessed 18.
Sep. 2023]. [Online]. Available: https://github.com/
ashamedbit/AddressWatcher

[20] D. Bruening and Q. Zhao, “Practical memory checking
with Dr. Memory,” in International Symposium on Code
Generation and Optimization (CGO 2011). IEEE, Apr.
2011, pp. 213–223.

[21] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov, “AddressSanitizer: a fast address san-
ity checker,” in USENIX ATC’12: Proceedings of the
2012 USENIX conference on Annual Technical Conference.
USENIX Association, Jun. 2012, p. 28.

[22] N. Nethercote and J. Seward, “Valgrind: a framework
for heavyweight dynamic binary instrumentation,”
SIGPLAN Not., vol. 42, no. 6, pp. 89–100, Jun. 2007.

[23] E. Stepanov and K. Serebryany, “MemorySanitizer: Fast
detector of uninitialized memory use in C++,” in 2015
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, Feb. 2015, pp. 46–55.

[24] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and
D. Vyukov, “Dynamic Race Detection with LLVM
Compiler,” in Runtime Verification. Berlin, Germany:
Springer, 2012, pp. 110–114.

[25] A. Saeed, A. Ahmadinia, and M. Just, “Tag-protector:
an effective and dynamic detection of illegal memory
accesses through compile time code instrumentation,”
Advances in Software Engineering, vol. 2016, 2016.

[26] google, “sanitizers,” May 2023, [Online; ac-
cessed 4. May 2023]. [Online]. Avail-
able: https://github.com/google/sanitizers/wiki/
AddressSanitizerLeakSanitizer

[27] Y. Sui, D. Ye, and J. Xue, “Static memory leak detec-
tion using full-sparse value-flow analysis,” in ISSTA
2012: Proceedings of the 2012 International Symposium on
Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, Jul. 2012, pp.
254–264.

[28] openssh, “openssh-portable,” May 2023, [Online;
accessed 4. May 2023]. [Online]. Available: https:
//github.com/openssh/openssh-portable

[29] bminor, “binutils-gdb,” May 2023, [Online; accessed 4.
May 2023]. [Online]. Available: https://github.com/
bminor/binutils-gdb

[30] tmux, “tmux,” May 2023, [Online; accessed 4. May
2023]. [Online]. Available: https://github.com/tmux/
tmux

[31] openssl, “openssl,” May 2023, [Online; accessed 4.
May 2023]. [Online]. Available: https://github.com/
openssl/openssl

[32] git, “git,” May 2023, [Online; accessed 4. May 2023].
[Online]. Available: https://github.com/git/git

[33] bminor, “binutils-gdb,” May 2023, [Address-
Watcher failure due to Error Paths]. [Online].
Available: https://github.com/bminor/binutils-gdb/
commit/a26a013f22a19e2c16729e64f40ef8a7dfcc086e

[34] ——, “binutils-gdb,” May 2023, [AddressWatcher

failure due to Code organization]. [Online].
Available: https://github.com/bminor/binutils-gdb/
commit/7ed1acafa0b5d135342f9dcc0eb0387dff95005a

[35] “MemFix Project,” May 2023, [Online; accessed 4.
May 2023]. [Online]. Available: http://prl.korea.ac.kr/
MemFix

[36] “calc-2.15.0.6 release,” Feb. 2024, [Online; accessed 28.
Feb. 2024]. [Online]. Available: https://github.com/
lcn2/calc/discussions/143

[37] “Proposal / discussion: Build all of coturn as C++17,
instead of C11. by jonesmz · Pull Request #1416
· coturn/coturn,” Feb. 2024, [Online; accessed 28.
Feb. 2024]. [Online]. Available: https://github.com/
coturn/coturn/pull/1416

[38] “Fix memory leak in whois.c by ashamedbit ·
Pull Request #168 · rfc1036/whois,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/rfc1036/whois/pull/168

[39] “Fix leak in socket.c by ashamedbit · Pull Request
#3359 · h2o/h2o,” Mar. 2024, [Online; accessed 6. Mar.
2024]. [Online]. Available: https://github.com/h2o/
h2o/pull/3359

[40] “Fix memory leak in mx.c by ashamedbit · Pull
Request #4185 · neomutt/neomutt,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/neomutt/neomutt/pull/4185

[41] “calc,” Feb. 2024, [Online; accessed 28. Feb. 2024].
[Online]. Available: https://github.com/lcn2/calc

[42] “Fix memory leak in zrandom.c by ashamedbit ·
Pull Request #142 · lcn2/calc,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:
//github.com/lcn2/calc/pull/142

[43] “calc/CHANGES at master · lcn2/calc,” Mar.
2024, [Online; accessed 4. Mar. 2024]. [On-
line]. Available: https://github.com/lcn2/calc/blob/
master/CHANGES

[44] “radare2,” Mar. 2024, [Online; accessed 6. Mar. 2024].
[Online]. Available: https://github.com/radareorg/
radare2

[45] “Fix leak due to r bin field free by ashamedbit ·
Pull Request #22643 · radareorg/radare2,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/radareorg/radare2/pull/22643

[46] “Fix leak in esil.c by ashamedbit · Pull Request
#22642 · radareorg/radare2,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:
//github.com/radareorg/radare2/pull/22642

[47] “Fix leak in swift-sd by ashamedbit · Pull Request
#22641 · radareorg/radare2,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:
//github.com/radareorg/radare2/pull/22641

[48] “Fix leaks in bin elf.inc.c by ashamedbit · Pull
Request #22638 · radareorg/radare2,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/radareorg/radare2/pull/22638

[49] “Fix leaks related to name of RBinImport
by ashamedbit · Pull Request #22629 ·
radareorg/radare2,” Mar. 2024, [Online; ac-
cessed 6. Mar. 2024]. [Online]. Available:
https://github.com/radareorg/radare2/pull/22629

[50] “Fix leak in cmd meta.inc.c by ashamedbit · Pull

https://github.com/rfc1036/whois/issues/165
https://github.com/nanomq/nanomq/issues/1652
https://github.com/ashamedbit/AddressWatcher
https://github.com/ashamedbit/AddressWatcher
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/openssh/openssh-portable
https://github.com/openssh/openssh-portable
https://github.com/bminor/binutils-gdb
https://github.com/bminor/binutils-gdb
https://github.com/tmux/tmux
https://github.com/tmux/tmux
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://github.com/git/git
https://github.com/bminor/binutils-gdb/commit/a26a013f22a19e2c16729e64f40ef8a7dfcc086e
https://github.com/bminor/binutils-gdb/commit/a26a013f22a19e2c16729e64f40ef8a7dfcc086e
https://github.com/bminor/binutils-gdb/commit/7ed1acafa0b5d135342f9dcc0eb0387dff95005a
https://github.com/bminor/binutils-gdb/commit/7ed1acafa0b5d135342f9dcc0eb0387dff95005a
http://prl.korea.ac.kr/MemFix
http://prl.korea.ac.kr/MemFix
https://github.com/lcn2/calc/discussions/143
https://github.com/lcn2/calc/discussions/143
https://github.com/coturn/coturn/pull/1416
https://github.com/coturn/coturn/pull/1416
https://github.com/rfc1036/whois/pull/168
https://github.com/h2o/h2o/pull/3359
https://github.com/h2o/h2o/pull/3359
https://github.com/neomutt/neomutt/pull/4185
https://github.com/lcn2/calc
https://github.com/lcn2/calc/pull/142
https://github.com/lcn2/calc/pull/142
https://github.com/lcn2/calc/blob/master/CHANGES
https://github.com/lcn2/calc/blob/master/CHANGES
https://github.com/radareorg/radare2
https://github.com/radareorg/radare2
https://github.com/radareorg/radare2/pull/22643
https://github.com/radareorg/radare2/pull/22642
https://github.com/radareorg/radare2/pull/22642
https://github.com/radareorg/radare2/pull/22641
https://github.com/radareorg/radare2/pull/22641
https://github.com/radareorg/radare2/pull/22638
https://github.com/radareorg/radare2/pull/22629

13

Request #22627 · radareorg/radare2,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/radareorg/radare2/pull/22627

[51] “Fix leaks in profile.c by ashamedbit · Pull Request
#22622 · radareorg/radare2,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:
//github.com/radareorg/radare2/pull/22622

[52] “Fix leak in lib.c by ashamedbit · Pull Request
#22621 · radareorg/radare2,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:
//github.com/radareorg/radare2/pull/22621

[53] “Free leak in reg.c by ashamedbit · Pull Request
#22620 · radareorg/radare2,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:
//github.com/radareorg/radare2/pull/22620

[54] “Fix leak in canvas.c by ashamedbit · Pull Request
#22655 · radareorg/radare2,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:
//github.com/radareorg/radare2/pull/22655

[55] “coturn,” Mar. 2024, [Online; accessed 6. Mar.
2024]. [Online]. Available: https://github.com/
coturn/coturn

[56] “Fix memory leak on http server.c by ashamedbit
· Pull Request #1412 · coturn/coturn,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/coturn/coturn/pull/1412

[57] “Fix memory leak in netengine.c by ashamedbit
· Pull Request #1411 · coturn/coturn,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/coturn/coturn/pull/1411

[58] “Fix memory leak in rfc5769check.c by ashamedbit
· Pull Request #1410 · coturn/coturn,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/coturn/coturn/pull/1410

[59] “net-snmp,” Mar. 2024, [Online; accessed 6. Mar.
2024]. [Online]. Available: https://github.com/net-
snmp/net-snmp?tab=readme-ov-file

[60] “Fix leak in snmpusm.c by ashamedbit · Pull
Request #792 · net-snmp/net-snmp,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/net-snmp/net-snmp/pull/792

[61] “Fix leaks in snmpv3.c by ashamedbit · Pull
Request #791 · net-snmp/net-snmp,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/net-snmp/net-snmp/pull/791

[62] “neomutt,” Mar. 2024, [Online; accessed 6. Mar. 2024].
[Online]. Available: https://github.com/neomutt/
neomutt

[63] “whois,” Mar. 2024, [Online; accessed 6. Mar.
2024]. [Online]. Available: https://github.com/
rfc1036/whois

[64] “h2o,” Mar. 2024, [Online; accessed 6. Mar. 2024].
[Online]. Available: https://github.com/h2o/h2o

[65] “iniparser,” Mar. 2024, [Online; accessed 6. Mar. 2024].
[Online]. Available: https://github.com/ndevilla/
iniparser

[66] “Free dictionaries in test dictionary.c by ashamedbit
· Pull Request #151 · ndevilla/iniparser,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/ndevilla/iniparser/pull/151

[67] “Correct a memory leak problem by zrrto ·

Pull Request #114 · ndevilla/iniparser,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/ndevilla/iniparser/pull/114

[68] “NanoNNG,” Mar. 2024, [Online; accessed 6.
Mar. 2024]. [Online]. Available: https://github.com/
nanomq/NanoNNG

[69] “Fix memory leak in hocon.c by ashamedbit ·
Pull Request #853 · nanomq/NanoNNG,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/nanomq/NanoNNG/pull/853

[70] “Fix memory leak in nasm-parse.c by ashamedbit
· Pull Request #265 · yasm/yasm,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/yasm/yasm/pull/265

[71] “Fix memory leak in nasm-pp.c by ashamedbit
· Pull Request #264 · yasm/yasm,” Mar. 2024,
[Online; accessed 6. Mar. 2024]. [Online]. Available:
https://github.com/yasm/yasm/pull/264

[72] “Fix memory leaks in write c and eval shell by
ashamedbit · Pull Request #165 · neurobin/shc,” Mar.
2024, [Online; accessed 6. Mar. 2024]. [Online]. Avail-
able: https://github.com/neurobin/shc/pull/165

[73] “Fix leak in makemon.c by ashamedbit · Pull
Request #533 · elunna/hackem,” Mar. 2024, [Online;
accessed 6. Mar. 2024]. [Online]. Available: https:
//github.com/elunna/hackem/pull/533

[74] S. Cherem, L. Princehouse, and R. Rugina, “Practical
memory leak detection using guarded value-flow anal-
ysis,” SIGPLAN Not., vol. 42, no. 6, pp. 480–491, Jun.
2007.

[75] Y. Jung and K. Yi, “Practical memory leak detector
based on parameterized procedural summaries,” in
ISMM ’08: Proceedings of the 7th international symposium
on Memory management. New York, NY, USA: Associa-
tion for Computing Machinery, Jun. 2008, pp. 131–140.

[76] W. Li, H. Cai, Y. Sui, and D. Manz, “PCA: memory leak
detection using partial call-path analysis,” in ESEC/FSE
2020: Proceedings of the 28th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on
the Foundations of Software Engineering. New York, NY,
USA: Association for Computing Machinery, Nov. 2020,
pp. 1621–1625.

[77] S. Cao, X. Sun, L. Bo, R. Wu, B. Li, and C. Tao,
“MVD: Memory-Related Vulnerability Detection Based
on Flow-Sensitive Graph Neural Networks,” arXiv,
Mar. 2022.

[78] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang,
“SMOKE: Scalable Path-Sensitive Memory Leak Detec-
tion for Millions of Lines of Code,” in 2019 IEEE/ACM
41st International Conference on Software Engineering
(ICSE). IEEE, May 2019, pp. 72–82.

[79] N. Nethercote and J. Seward, “Valgrind: a framework
for heavyweight dynamic binary instrumentation,”
SIGPLAN Not., vol. 42, no. 6, pp. 89–100, Jun. 2007.

[80] C. Lattner, A. Lenharth, and V. Adve, “Making context-
sensitive points-to analysis with heap cloning practical
for the real world,” SIGPLAN Not., vol. 42, no. 6, pp.
278–289, Jun. 2007.

https://github.com/radareorg/radare2/pull/22627
https://github.com/radareorg/radare2/pull/22622
https://github.com/radareorg/radare2/pull/22622
https://github.com/radareorg/radare2/pull/22621
https://github.com/radareorg/radare2/pull/22621
https://github.com/radareorg/radare2/pull/22620
https://github.com/radareorg/radare2/pull/22620
https://github.com/radareorg/radare2/pull/22655
https://github.com/radareorg/radare2/pull/22655
https://github.com/coturn/coturn
https://github.com/coturn/coturn
https://github.com/coturn/coturn/pull/1412
https://github.com/coturn/coturn/pull/1411
https://github.com/coturn/coturn/pull/1410
https://github.com/net-snmp/net-snmp?tab=readme-ov-file
https://github.com/net-snmp/net-snmp?tab=readme-ov-file
https://github.com/net-snmp/net-snmp/pull/792
https://github.com/net-snmp/net-snmp/pull/791
https://github.com/neomutt/neomutt
https://github.com/neomutt/neomutt
https://github.com/rfc1036/whois
https://github.com/rfc1036/whois
https://github.com/h2o/h2o
https://github.com/ndevilla/iniparser
https://github.com/ndevilla/iniparser
https://github.com/ndevilla/iniparser/pull/151
https://github.com/ndevilla/iniparser/pull/114
https://github.com/nanomq/NanoNNG
https://github.com/nanomq/NanoNNG
https://github.com/nanomq/NanoNNG/pull/853
https://github.com/yasm/yasm/pull/265
https://github.com/yasm/yasm/pull/264
https://github.com/neurobin/shc/pull/165
https://github.com/elunna/hackem/pull/533
https://github.com/elunna/hackem/pull/533

14

Aniruddhan Murali is a Ph.D. candidate in the
Cheriton School of Computer Science at the
University of Waterloo, Canada. His research in-
terests include fuzzing, code slicing, vulnerability
detection, and automatic bug fixing. You can find
more about him here.

Mahmoud Alfadel is a postdoctoral researcher
in the Cheriton School of Computer Science,
University of Waterloo. His research interests
include mining software repositories, empiri-
cal software engineering, software ecosystems,
open-source security, and release engineer-
ing. You can find more about him at https://
rebels.cs.uwaterloo.ca/member/mahmoud.html

Meiyappan Nagappan is an Associate Profes-
sor at the Cheriton School of Computer Science,
University of Waterloo. He has worked on em-
pirical software engineering to address software
development concerns and currently researches
the impact of large language models on software
development.

Meng Xu is an Assistant Professor in the Cheri-
ton School of Computer Science at the Uni-
versity of Waterloo, Canada. His research is in
the area of system and software security, with
a focus on delivering high-quality solutions to
practical security programs, especially in finding
and patching vulnerabilities in critical computer
systems. This usually includes research and de-
velopment of automated program analysis / test-
ing / verification tools that facilitate the security
reasoning of critical programs.

Chengnian Sun is currently an Associate Pro-
fessor at the Cheriton School of Computer Sci-
ence, University of Waterloo, Canada. His re-
search interests include software engineering
and programming languages, with a focus on
techniques, tools, and methodologies for improv-
ing software quality and developer productivity.
He received his Ph.D. degree from the School of
Computing at the National University of Singa-
pore.

https://www.linkedin.com/in/aniruddhan-murali-40b41a11a/
https://rebels.cs.uwaterloo.ca/member/mahmoud.html
https://rebels.cs.uwaterloo.ca/member/mahmoud.html

	Introduction
	Memory leaks & sanitizers
	Design
	Proposed Approach
	Technical challenges
	Evaluation
	Benchmark
	AddressWatcher Effectiveness
	Dynamic (AddressWatcher) Fixing Compared to Static (Memfix) Fixing
	AddressWatcher Efficiency
	Practicality of AddressWatcher in Open Source

	Discussion
	Related Work
	Approaches for Memory Leak Detection
	Approaches for Memory Leak Fixing

	Conclusion and Future Work
	Biographies
	Aniruddhan Murali
	Mahmoud Alfadel
	Meiyappan Nagappan
	Meng Xu
	Chengnian Sun

