
A New Algorithm for Computing Integer Hulls of 2D
Polyhedral Sets

CHIRANTAN MUKHERJEE, The University of Western Ontario, Canada

Recommended Reference Format:
Chirantan Mukherjee. 2024. A New Algorithm for Computing Integer Hulls of 2D Polyhedral Sets. 1, 1

(July 2024), 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The integer points of rational polyhedral sets are of great interest in various areas of scientific

computing. Two such areas are combinatorial optimization (in particular integer linear pro-

gramming) and compiler optimization (in particular, the analysis, transformation and scheduling

of for-loop nests in computer programs), where a variety of algorithms solve questions related to

the points with integer coordinates belonging to a given polyhedron.

Wang and Moreno Maza have developed the existing integer hull algorithm for polyhedral sets

in Maple [18, 12]. Their algorithm is applicable to polyhedral sets of any given dimension. However,

for the purpose of our discussion, we will focus on the 2D case.

In this paper we propose a novel algorithm 2 for computing the integer hull of 2D polyhedral

sets. The existing integer hull algorithm, as referenced in [18, 12], relies on a recursive construction,

effectively reducing the computation of integer hulls in arbitrary dimensions to that of dimension

2. However, to enhance performance, we propose improvements for this base case. Our preliminary

experiments with the new algorithm demonstrate its efficiency and ability to handle polyhedral

sets with a large number of integer point.

There are threemain families of integer hull algorithms for polyhedral sets: cutting plane method,
branch-and-bound method and lattice point counting method.

The cutting plane methodwas introduced by Gomory [9] to solve integer linear programming

and mixed integer linear programming. This method involves solving the linear programming

problem to find the optimal solution. It does this by introducing new constraint at each step until

an integer solution is found, which in turn reduces the area of the feasible solution. Chvátal [5]

and Schrijver [15] provided a geometric description of this method and developed a procedure for

computing the integer hull of a polyhedral set.

Land and Doig [11] introduced the branch-and-bound method for computing the integer hull

of a polyhedral set. This method works by recursively partitioning the polyhedral set into sub-

polyhedral sets, then computing the integer vertices of each of the sub-polyhedral set and finally

merging them all together.

Pick’s theorem [13] can be used for calculating the area of any polygon with integer lattice

points. Using this idea Barvinok [3] created an algorithm for counting the number of integer lattice

points inside a polyhedron. Building on Barvinok’s algorithm, Verdoolaege, Seghir, Beyls, Loechner

and Bruynooghe [17] came up with a method for counting the number of integer points in a

non-parametric polytope. Meanwhile, Seghir, Loechner and Meister [16] developed a method of

Author’s address: Chirantan Mukherjee, The University of Western Ontario, 1151 Richmond St, London, Canada, cmukher@

uwo.ca.

Permission to make digital or hard copies of all or part of this work for any use is granted without fee, provided that copies

bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored.

© 2024 Maple Transactions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: July 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Chirantan Mukherjee

counting the number of images by an affine integer transformation of the lattice points contained

in a parametric polytope. In 2004, a software package named LATTE [6] was developed for counting
number of integer points in a rational polyhedral set using Barvinok’s algorithm.

The paper is organized as follows. Section 2 and 3 is a brief review of polyhedral geometry and

the existing integer hull algorithm in Maple. Section 4 and 5 presents the new integer hull algorithm

in Maple for 2D cases. Section 6 reports on our preliminary experimentation with the proposed

algorithm.

2 Preliminaries
We denote by Z, Q and R the ring of integers, the field of rational numbers and the field of real

numbers. Unless specified otherwise, all matrices and vectors have their coefficients in Z.

Definition 2.1. A polyhedral set 𝑃 is a set which can be expressed as the intersection of finite

number of (closed) half spaces, that is {x ∈ R𝑛 | 𝐴x ≤ b}, where 𝐴 ∈ R𝑚×𝑛
is a matrix and b ∈ R𝑚

is a vector.

Definition 2.2. A subset 𝐹 of the polyhedron 𝑃 is called a face of 𝑃 if 𝐹 equals {x ∈ 𝑃 | 𝐴subx =

bsub} for a sub-matrix 𝐴sub of 𝐴 and a sub-vector bsub of b. A face of 𝑃 , distinct from 𝑃 and of

maximum dimension, is called a facet of 𝑃 . A face of dimension 0 is called a vertex of 𝑃 .

Definition 2.3. Given a polyhedral set 𝑃 and a vertex 𝑣 of 𝑃 , the vertex cone of 𝑃 at 𝑣 is the

intersection of the half-spaces defining 𝑃 and whose boundaries intersect at 𝑣 .

In our study of two-dimensional polyhedral sets, we observe that every non-trivial face falls into

one of two categories: either it is a facet (which can be a segment or a half-line), or it is a vertex.
Furthermore, each vertex cone exhibits a simplicial structure. Specifically, a vertex cone is defined

by two half-lines originating from the same point, that is the vertex of that particular cone.

3 Exisiting Integer Hull Algorithm
The integer points of polyhedral sets hold paramount importance in the context of the delineariza-

tion problem [4, 7], scheduling for-loop nests [8], accessing memory location of for-loop nests [10],

Barvinok’s algorithm for counting integer points in a polyhedral set [3] and many more.

Definition 3.1. The integer hull 𝑃𝐼 of a convex polyhedral set 𝑃 is the convex hull of integer

points of 𝑃 .

In this section we focus on implementing the current integer hull algorithm in Maple as described

in [18, 12]. It has three main steps:

• Normalization: In this step, the polyhedron 𝑃 is transformed into a rational polyhedron

𝑄 ⊆ Q𝑑 . This transformation ensures that each facet of𝑄 has integer points on its supporting

hyperplane, while maintaining 𝑃𝐼 = 𝑄𝐼 .

• Partitioning: Here, integer points within 𝑄 are identified and used to partition 𝑄 into

smaller polyhedral sets. Each set’s integer hull can then be computed more straightforwardly.

• Merging: This step involves merging the integer hulls obtained from the partitioning process

using a convex hull algorithm.

Example 3.2. The integer hull of the following triangle can be represented by the shaded pentag-

onal region in figure 1.

The integer hull 𝑃𝐼 of a convex polyhedral set 𝑃 can be described in terms of its vertices. Since 𝑃𝐼
is the smallest polyhedral set containing the integer points of 𝑃 , the vertices of 𝑃𝐼 are necessarily

integer points.

, Vol. 1, No. 1, Article . Publication date: July 2024.

A New Algorithm for Computing Integer Hulls of 2D Polyhedral Sets 3

For 𝑃 = ∆𝐴𝐵𝐶 given in the above example 3.2, we have VertexSet(𝑃) = {𝐴, 𝐵,𝐶}, none of which
are integer points. We translate the supporting hyperplane of the facet 𝐵𝐶 to the west until the

supporting hyperplane of the facet 𝐵𝐶 has at least one integer point, call it 𝐹 . We obtain a new

triangle 𝑄 = ∆𝐴𝐵′𝐶′
, which, clearly has the same integer points as 𝑃 .

We then repeat the process for the supporting hyperplane of the facet 𝐴𝐵′
by translating it

upwards until we get integer points {𝐷, 𝐸}, obtaining a new facet𝐴′𝐵′′
. We do not need to translate

the supporting hyperplane of the facet 𝐴′𝐶′
since there is already an integer point 𝐻 on it.

We see that the triangle ∆𝐴′𝐵′′𝐶′
can be divided into 4 regions:

(1) the convex hull, say 𝑅, of the points {𝐷, 𝐸, 𝐹, 𝐻 };
(2) three "small" triangles: ∆𝐴′𝐷𝐻,∆𝐻𝐶′𝐹,∆𝐸𝐵′′𝐹 .

Since the vertices of 𝑅 are all integer points, 𝑅 is its own integer hull. However, 𝑅 may not be the

integer hull of 𝑄 . Indeed, each of the small three triangles may still contain integer points. This is

actually the case for ∆𝐻𝐶′𝐹 .
Because these three triangles are generally small in practice, one can apply a brute force method

to search for integer points. One brute force method for computing the integer hull 𝑃𝐼 of a polyhedral

set 𝑃 is to use Fourier-Motzkin elimination [1, 14] to obtain a parametric representation of 𝑃 .

With such a parametric representation, one can enumerate all the integer points of 𝑃 .

𝐴 𝐵

𝐶

𝐷 𝐸

𝐹𝐻

𝐺

𝐵′

𝐶′

𝐵′′𝐴′

Fig. 1. Integer hull of a triangle.

We want to stress that the computational cost of any brute force algorithm is inherently high, as

such it is favorable to apply such a method only if the area is significantly small. In the next section

we will discuss our alternative algorithm 2 which is designed to ensure that the area on which the

brute force method is applied remains small, thereby optimizing the computational efficiency.

Returning to our example, we complete the construction of the integer hull by putting together:

(1) the integer points found in each small triangle;

(2) the vertices of 𝑅;

(3) apply a convex hull algorithm, such as QuickHull [2], to all those points.

Let us first state the condition which guarantee the existence of integer points on any line

[18, 12].

, Vol. 1, No. 1, Article . Publication date: July 2024.

4 Chirantan Mukherjee

A (parametric) polyhedral set can be defined as the intersection of vertex cones. That is a

polyhedral set 𝑃 (b) defined by

©«
𝑎1 𝑐1

𝑎2 𝑐2

.

.

.

.

.

.

𝑎𝑑 𝑐𝑑

ª®®®®¬
(
𝑥

𝑦

)
≤
©«
𝑏1

𝑏2

.

.

.

𝑏𝑑

ª®®®®¬
can be written as intersections of all vertex

cones 𝑆𝑖 , that is 𝑃𝑖 (b) =

𝑑⋂
𝑖=1

𝑆𝑖 (b), where each polyhedral cone 𝑆𝑖 is given by

(
𝑎𝑖 𝑐𝑖
𝑎𝑖+1 𝑐𝑖+1

) (
𝑥

𝑦

)
≤

(
𝑏𝑖
𝑏𝑖+1

)
,

for all 𝑖 ∈ [1, 𝑑] such that 𝑑 + 1 = 1.

The following lemma gurantees the existence of an integer vertex on the supporting hyperplane

of the facets in the polyhedral set.

Lemma 3.3 ([12] Lemma 1 on p. 256, [18] Lemma 1 on p. 13). A line 𝑎𝑥 + 𝑐𝑦 = 𝑏, where 𝑎, 𝑏, 𝑐 ∈ Z
and 𝑔𝑐𝑑(𝑎, 𝑏, 𝑐) = 1, can have integer vertex (𝑥,𝑦) if one of the following conditions is satisfied:

(1) If 𝑎 ̸= 0 and 𝑐 ̸= 0, then (𝑥,𝑦) is a integer vertex if and only if 𝑔𝑐𝑑(𝑎, 𝑐) = 1, that is, 𝑥 ≡ 𝑏
𝑎

(𝑚𝑜𝑑𝑐).
(2) If 𝑎 = 0 (similarly 𝑐 = 0), then (𝑥,𝑦) is a integer vertex if and only if 𝑐 = 1 (similarly 𝑎 = 1).

Another crucial observation for constructing the integer hull is the ability to translate the

supporting hyperplane of each facet. This translation ensures that we can find at least one integer

point on it. In other words, the integer hull of the parametric polyhedral set 𝑃𝐼 (b) remains unchanged

when translating the supporting hyperplane of the facets by an integer 𝑇 , that is, 𝑃𝐼 (b +𝑇) = 𝑃𝐼 (b).

We can combine everything that we have observed so far in this section and construct the integer

hull of any parametric 2D polyhedral set as follows.

We translate each supporting hyperplane 𝐻 of a facet 𝐹 of the polyhedral set 𝑃 inwards until 𝐻

intersects an integer point of the integer hull of the polyhedral set 𝑃𝐼 . Indeed,

(1) We can detect whether 𝐻 has integer points or not by means of Lemma 3.3.

(2) If 𝐻 has integer points, Lemma 3.3 gives a formula for them, which we can then plug into

the system of inequalities defining 𝑃 , so as to check whether some of those integer points of

𝐻 are in 𝑃𝐼 or not.

4 New Integer Hull Algorithm
In this section, we present our algorithm for computing the integer hull of a 2D polyhedral set. The

integer hull algorithm proposed by Wang and Moreno Maza is extremely efficient as evidenced by

the data presented in [[18] Table 4.5 on p. 51, Table 4.6 on p. 52]. However, it is crucial to note that

when there are integer points present on the supporting hyperplane of the facets of the polyhedral

set the computational cost become high. This observation becomes evident when considering the

following example.

Example 4.1. Consider the following triangle 𝑃 = ∆𝐴𝐵𝐶 , where none of whose vertices are

integer points. Following the algorithm discussed in the last section, we translate the supporting

hyperplane of the facet 𝐴𝐵 upwards until it intersects at least one integer point, call it 𝐷 . This leads

to a new triangle 𝑄 = ∆𝐴′𝐵′𝐶 , which retains the same integer points as 𝑃 . We repeat this process

for the supporting hyperplane of the facet 𝐴′𝐶 by translating it to the east until we obtain integer

points 𝐷,𝐻 . No adjustment is needed for the supporting hyperplane of facet 𝐵′𝐶′
since it already

contains an integer point, 𝐹 .

The resulting triangle ∆𝐴′′𝐵′𝐶′
can be partitioned into 3 regions:

• the convex hull, denoted as 𝑅, of the points {𝐷,𝐻, 𝐹 }
• two triangles 𝐴′′𝐵′𝐹 , 𝐻𝐶′𝐹 .

, Vol. 1, No. 1, Article . Publication date: July 2024.

A New Algorithm for Computing Integer Hulls of 2D Polyhedral Sets 5

While the vertices of 𝑅 are all integer points, it may not represent the integer hull of 𝑄 . Each of the

smaller triangles,𝐴′′𝐵′𝐹 and𝐻𝐶′𝐹 , may still contain additional integer points. Therefore, to ensure

completeness, a brute force procedure is employed to identify integer points within these triangles.

However, it is noteworthy that given the larger area of ∆𝐴′′𝐵′𝐶′
the brute force procedure will

be computationally expensive. The time for obtaining the number of points using the brute force

approach will surpass those obtained using the algorithm. In fact, the situation gets worse if there

are integer points in the other edges as well.

𝐴
𝐵

𝐶

𝐷
𝐸

𝐻

𝐺

𝐹

𝐴′

𝐵′
𝐴′′

𝐶′

Fig. 2. Wang and Moreno Maza’s integer hull algorithm.

We propose a new algorithm to reduce the area on which the brute force method is applied.

We initiate the algorithm by translating the supporting hyperplane of facet 𝐴𝐵 downward from

the vertex𝐶 until it intersects at least one integer point, denoted as𝐺 . This process is then repeated

for the supporting hyperplanes of facets 𝐴𝐶 and 𝐵𝐶 by translating them to the west from vertex 𝐵

and east from vertex 𝐴, respectively, until integer points 𝐸 and 𝐷 are obtained.

𝐴
𝐵

𝐶

𝐷 𝐸

𝐻

𝐺

𝐹

𝐷 ′′

𝐷 ′

𝐵′′

𝐵′

𝐶′ 𝐶′′

Fig. 3. New integer hull algorithm.

The hexagon 𝐷 ′′𝐵′′𝐵′𝐶′′𝐶′𝐷 ′
resulting from this algorithm can be subdivided into 4 regions:

, Vol. 1, No. 1, Article . Publication date: July 2024.

6 Chirantan Mukherjee

(1) the convex hull, denoted as 𝑅, formed by the points {𝐷, 𝐸,𝐺}
(2) three quadrilaterals 𝐷𝐷 ′′𝐵′′𝐸, 𝐸𝐵′𝐶′′𝐺 and 𝐷 ′𝐷𝐺𝐶′

.

While the vertices of 𝑅 are all integer points, 𝑅 may not represent the integer hull of 𝑄 . Indeed,

each of the "small" quadrilaterals may still contain integer points, as is the case for 𝐸𝐵′𝐶′′𝐺 and

𝐷 ′𝐷𝐺𝐶′
.

To ensure that no integer points are missed, a brute force method can now be applied to search

for integer points since the quadrilaterals are small. Alternatively, the algorithm can be repeated

for quadrilaterals 𝐸𝐵′𝐶′′𝐺 and 𝐷 ′𝐷𝐺𝐶′
until integer points 𝐻 and 𝐹 are obtained, adding these

points to VertexSet(𝑃𝐼). For quadrilateral 𝐷𝐷
′′𝐵′′𝐸, there are no integer points.

Hence, VertexSet(𝑃𝐼) = {𝐷, 𝐸, 𝐹,𝐺, 𝐻 }.

5 Algorithm
We provide an pseudo-code of the algorithm 2 for Integer Hull Computation using our procedure.
The main steps of this algorithm rely on the function ReplaceFacets as described in algorithm 1.

5.1 ReplaceFacets Algorithm
In Line 1 and 2, we initialize the facets F to an empty list, and the integer vertices𝑉 ′

to𝑉 . In Line 6

the getCoeffs function calculates the equation of the line between vertices 𝑣𝑎 and 𝑣𝑏. This forms

the facets 𝐹 of 𝑃 in line 7.

In Line 10, we choose the vertex 𝑣 opposite to each facet 𝐹 . In Line 12 - 16, we find the supporting

hyperplane passing through 𝑣 and is parallel to 𝐹 .

In Line 17 - 18, we find lines that are interior to the vertex before and after v, and contains integer

points using our nearestLine function. In Line 19 and 20, we use our intersection function to

find the point of intersection of these new lines with supporting hyperplane passing through 𝑣 and

parallel to 𝐹 .

In Line 21, we update the facet with F, and the intersection points to 𝑉 ′
in Line 22.

5.2 IntegerHull Algorithm
If the input polyhedral set 𝑃 is empty at Line 1, then we return an empty list in Line 2. Other-

wise, in Line 3, we initialize the vertices and rays of 𝑃 to 𝑉 and 𝑅 respectively using Maple’s

VerticesAndRays function, which is part of the PolyhedralSets package.

If the number of vertices of 𝑃 is atleast 3 then we implement our SortPoints, ReplaceFacets
and ReplaceVertices function, otherwise there can not be an integer hull and hence returns

empty list in Line 10. The SortPoints function sorts the vertices of 𝑃 based on angle with respect

to a randomly selected origin vertex. The vertices obtained from the ReplaceFacetsmight contain

rational vertices, which ReplaceVertices replaces with integer vertices that are contained within

the polyhedral set. This is because the integer hull of a polyhedral set is contained within the

polyhedral set itself.

In Line 11, we remove any duplicate vertices using Maple’s MakeUnique command.

In Line 12 if the number of integer vertices are more than 3, we use Maple’s ConvexHull function
that is part of the ComputationalGeometry package, which computes the convex (integer) hull of

the integer points. We return the integer hull of 𝑃 in Line 15.

The integer hull of a polyhedral set is a polyhedral set. Therefore, the output of the algorithm is

also a polyhedral set.

, Vol. 1, No. 1, Article . Publication date: July 2024.

A New Algorithm for Computing Integer Hulls of 2D Polyhedral Sets 7

Algorithm 1 ReplaceFacets

Require: Vertices 𝑉 of 𝑃 .

Ensure: Replace the facets that could not have integer point with the ones that could have.

1: 𝐹 := [] ⊲ Initialize to empty list

2: 𝑉 ′
:= 𝑉 ⊲ Initialize to V

3: for 𝑖 from 1 to |𝑉 | do
4: 𝑣𝑎 := 𝑉 ′

[𝑖]

5: 𝑣𝑏 := 𝑉 ′
[if(𝑖 = |𝑉 |, 1, 𝑖 + 1)]

6: 𝑎, 𝑏, 𝑐 := getCoeffs(𝑣𝑎, 𝑣𝑏) ⊲ Coefficients of line 𝑎𝑥 + 𝑐𝑦 = 𝑏

7: Append [𝑎, 𝑏, 𝑐] to 𝐹 ⊲ Facets of 𝑃

8: for 𝑖 from 1 to |𝑉 | do
9: 𝑎, 𝑏, 𝑐 := 𝐹 [𝑖]

10: 𝑣𝑎𝑙 := if(ceil(|𝑉 |, 2) + 𝑖 > |𝑉 |, modp(ceil(|𝑉 |/2) + 𝑖, |𝑉 |), ceil(|𝑉 |/2) + 𝑖)

11: 𝑣 := 𝑉 [𝑣𝑎𝑙] ⊲ Choosing vertex which is opposite to the suppoting hyperplane

12: if 𝑐 = 0 then
13: 𝑏 := 𝑣[1] ⊲ Equation of a Parallel line through vertex 𝑣 , when 𝑎𝑥 = 𝑏

14: else
15: 𝑏′ := 𝑣[2] + (𝑎/𝑐) × 𝑣[1]

16: 𝑏 := 𝑐 × 𝑛𝑒𝑤𝑏 ⊲ Equation of a Parallel line through vertex 𝑣

17: 𝑎1, 𝑏1, 𝑐1 := nearestLine([𝑎, 𝑏, 𝑐],𝑉 [if(𝑣𝑎𝑙 = 1, |𝑉 |, 𝑣𝑎𝑙 − 1)]) ⊲ New line closer to 𝑣 with integer points

18: 𝑎2, 𝑏2, 𝑐2 := nearestLine([𝑎, 𝑏, 𝑐],𝑉 [if(𝑣𝑎𝑙 = |𝑉 |, 1, 𝑣𝑎𝑙 + 1)])

19: 𝑝1 := intersection([𝑎, 𝑏, 𝑐], [𝑎1, 𝑏1, 𝑐1]) ⊲ Intersection of two lines

20: 𝑝2 := intersection([𝑎, 𝑏, 𝑐], [𝑎2, 𝑏2, 𝑐2])

21: 𝐹 := [𝐹 [1], . . . , 𝐹 [𝑖 − 1], [𝑎, 𝑏, 𝑐], 𝐹 [𝑖 + 1], . . . , 𝐹 [|𝑉 |]
22: 𝑉 ′

:= [𝑉 [1], . . . ,𝑉 [𝑖 − 1], 𝑝1, 𝑝2,𝑉 ′
[𝑖 + 2], . . . ,𝑉 [|𝑉 |]]

23: return 𝑉 ′

Algorithm 2 NewIntegerHull

Require: 𝑃 a polyhedral set.

Ensure: Integer hull of the polyhedral set 𝑃 .

1: if 𝑃 = 𝜙 then
2: return [] ⊲ Returns empty set if empty input

3: V, R := VerticesAndRays(P) ⊲ Initialize the vertices and rays of 𝑃

4: if |𝑉 | ≥ 3 then
5: 𝒱 := SortPoints(V, V[1]) ⊲ Sorts the vertices of 𝑃 counter-clockwise starting with the first vertex

6: 𝒱 := ReplaceFacets(𝒱, P)
7: 𝒱 := ReplaceVertices(𝒱) ⊲ Replace the vertices with integer vertices (inside of 𝑃)

8: else
9: 𝒱 := []

10: 𝒱:=MakeUnique(𝒱) ⊲ Remove the repeated integer vertices from the integer hull of 𝑃

11: if |𝒱 | > 3 then
12: v := ConvexHull(𝒱) ⊲ Form the convex (integer) hull

13: 𝒱 :=𝒱[v]
14: return PolyhedralSet(𝒱, R) ⊲ Returns the integer hull of 𝑃

6 Experimentation
In this section, we report on the software implementation of the algorithms proposed in the

previous sections. We have implemented the algorithms in Maple programming language. The

, Vol. 1, No. 1, Article . Publication date: July 2024.

8 Chirantan Mukherjee

Maple version used is the 2024 release ofMaple. All the benchmarks are done on an Intel Core

i7-7700T with Clockspeed: 2.9 GHz and Turbo Speed: 3.8 GHz. It has 4 cores and 8 threads.

Preliminary Comparison Test

Number of Vertices Volume New Algorithm Existing Algorithm

10 29.9 663.00ms 823.00ms

13 35.08 906.00ms 1.06ms

13 40.56 996.00ms 1.10s

12 40.63 898.00ms 928.00ms

1000 69829.26 855ms 952ms

15 263124.06 1.65s 1.73s

1000 6.54 × 10
6

1.98s 2.44s

1500 3.13 × 10
9

74.11s 89.72s

References
[1] Utpal K. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations. Kluwer Academic Publishers,

USA, 1993.

[2] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex hulls. ACM Trans.
Math. Softw., 22(4):469–483, dec 1996.

[3] Alexander I. Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the dimension is

fixed. Math. Oper. Res., 19(4):769–779, nov 1994.
[4] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul. The polyhedral model is

more widely applicable than you think. In International Conference on Compiler Construction, 2010.
[5] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics, 4(4):305–337, 1973.
[6] Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. Effective lattice point counting in

rational convex polytopes. Journal of Symbolic Computation, 38(4):1273–1302, 2004. Symbolic Computation in Algebra

and Geometry.

[7] Paul Feautrier. Parametric integer programming. RAIRO - Operations Research - Recherche Opérationnelle, 22(3):243–268,
1988.

[8] Paul Feautrier. Automatic parallelization in the polytope model. In The Data Parallel Programming Model: Foundations,
HPF Realization, and Scientific Applications, page 79–103, Berlin, Heidelberg, 1996. Springer-Verlag.

[9] Ralph E. Gomory. Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed
Integer Problem, pages 77–103. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[10] Matthias Köppe and Sven Verdoolaege. Computing parametric rational generating functions with a primal barvinok

algorithm. arXiv preprint arXiv:0705.3651, 2007.
[11] Ailsa H. Land and Alison G. Doig. An automatic method of solving discrete programming problems. Econometrica,

28:497, 1960.

[12] Marc Moreno Maza and Linxiao Wang. On the pseudo-periodicity of the integer hull of parametric convex polygons.

In François Boulier, Matthew England, Timur M. Sadykov, and Evgenii V. Vorozhtsov, editors, Computer Algebra in
Scientific Computing, pages 252–271, Cham, 2021. Springer International Publishing.

[13] Georg Pick. Geometrisches zur zahlenlehre. Sitzenber. Lotos (Prague), 19:311–319, 1899.
[14] William Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM, 35(8):102–114, aug 1992.

[15] A. Schrijver. On cutting planes**research supported by the netherlands organization for the advancement of pure

research (z.w.o.). In Peter L. Hammer, editor, Combinatorics 79, volume 9 of Annals of Discrete Mathematics, pages
291–296. Elsevier, 1980.

[16] Rachid Seghir, Vincent Loechner, and Benoît Meister. Integer affine transformations of parametric Z-polytopes and

applications to loop nest optimization. ACM Trans. Archit. Code Optim., 9(2), jun 2012.

[17] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice Bruynooghe. Counting integer points

in parametric polytopes using barvinok’s rational functions. Algorithmica, 48:37–66, 2007.
[18] Linxiao Wang. Three Contributions to the Theory and Practice of Optimizing Compilers. PhD thesis, Electronic Thesis

and Dissertation Repository, 2022.

, Vol. 1, No. 1, Article . Publication date: July 2024.

	1 Introduction
	2 Preliminaries
	3 Exisiting Integer Hull Algorithm
	4 New Integer Hull Algorithm
	5 Algorithm
	5.1 ReplaceFacets Algorithm
	5.2 IntegerHull Algorithm

	6 Experimentation

