
The Multivariate Power Series Package in Maple 2024

JUAN PABLO GONZÁLEZ TROCHEZ, The University of Western Ontario, Canada
ALI ASADI, Xanadu, Canada
ALEXANDER BRANDT, Dalhousie University, Canada
ERIK POSTMA,Maplesoft, Canada

Recommended Reference Format:
Juan Pablo González Trochez, Ali Asadi, Alexander Brandt, and Erik Postma. 2024. The Multivariate Power
Series Package in Maple 2024. 1, 1 (June 2024), 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Overview
While symbolic computation is the realm of exact methods, this field was able to develop solutions
to approximate problems, which, in turn, can be used to provide approximate answers to problems
that are either intractable or too expensive to solve exactly. A well-known example is the so-called
symbolic Newton iteration method for approximating the solutions of algebraic equations, see
Chapter 9 in the landmark textbook Modern Computer Algebra [18].
At the heart of these exact, but approximate, methods is the manipulation of formal multivari-

ate power series. Power series form an active research area of symbolic computation, since the
early days of that discipline [8]. Power series are available in various computer algebra systems:
Mathemagix [17] Maple [9],Mathematica [19], and SageMath [14], to name a few.
Considering that a power series has potentially an infinite number of terms naturally brings

computational challenges. For that reason, software implementation often restrict power series
to being either univariate or truncated. By truncated, we mean reduced modulo the power of a
monomial ideal.
A “truncated” implementation, while simple, may be unsatisfactory in practice. For instance,

modern algorithms for polynomial system solving make an intensive use of modular methods based
on Hensel lifting. In those lifting procedures, appropriate degrees of truncation may not be known
a priori, thus leading to truncated power series being used in a non-optimal manner.
The limitations of an implementation based on truncated power series are overcome by using

instead the technique of lazy evaluation, aka call-by-need. With this paradigm, a power series is
represented as a procedure which, given a particular (total) degree, produces and memorizes the
terms of that degree, if they have not been computed yet. The usefulness of lazy evaluation in
computer algebra has been studied for a few decades: see the work of Karczmarczuk [7], discussing
different mathematical objects with an infinite length, as well as the work of Burge and Watt in [6].
See also the landmark paper Relax, but don’t be too lazy by van der Hoeven [16], improving the
paradigm of lazy evaluation for univariate power series.
Section 2 of the present paper highlights the relations between the algebraic foundation of

multivariate formal power series and the algorithmic scheme of lazy evaluation.

Authors’ addresses: Juan Pablo González Trochez, The University of Western Ontario, 1151 Richmond St, London, Canada,
jgonza55@uwo.ca; Ali Asadi, Xanadu, 777 Bay Street, Toronto, Canada, epostma@maplesoft.com; Alexander Brandt,
Dalhousie University, 6050 University Avenue, Halifax, Canada, ABrandt@dal.ca; Erik Postma, Maplesoft, 615 Kumpf Dr,
Waterloo, Canada, epostma@maplesoft.com.

Permission to make digital or hard copies of all or part of this work for any use is granted without fee, provided that copies
bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored.
© 2024 Maple Transactions.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Juan Pablo González Trochez, Ali Asadi, Alexander Brandt, and Erik Postma

A second implementation challenge arises when implementing Laurent and Puiseux series.
While arithmetic operations (addition, multiplication, inversion) have natural and straightforward
algorithms for multivariate formal power series, the state of affairs changes dramatically with
multivariate Laurent and Puiseux series. In fact, arithmetic operations on Laurent and Puiseux
require the manipulations of polyhedral cones that are trivial in the univariate case and research
problems in the multivariate one, see [10, 15], as well as Section 3.
The MultivariatePowerSeries library in Maple, to which this paper is dedicated, provides

formal, Laurent and Puiseux series in several variables. The implementation of those series is
based on the paradigm of lazy evaluation. Not only arithmetic operations (addition, multiplication,
inversion) are supported, but univariate polynomials over multivariate series are provided by this
library. One of the main motivations is to factor such polynomials in a number of ways, using either
Weierstrass Preparation Theorem, Hensel Lemma, Puiseux Theorem and the Extended Hensel
Construction. Section 4 covers these features.
The MultivariatePowerSeries library was introduced in Maple in 2021, see [3]. Its initial

version was an adaptation to the Maple language of an implementation [4, 5] realized in the BPAS
library [2]. In 2022 and 2023, the MultivariatePowerSeries library was enhanced with Laurent
and Puiseux series, respectively, see [15]. In 2024, the MultivariatePowerSeries library was
enhanced with the Extended Hensel Construction, invented by T. Sasaki and F. Kako, see [13].

2 The algebraic foundation of lazy evaluation for multivariate power series
The goal of this section is to show how the MultivariatePowerSeries handles the arithmetic
operations of addition, multiplication, inversion and composition, with the machinery of lazy
evaluation. We refer to [5] for the concepts that we use without recalling their definitions.
Let K be a field and 𝑋1, . . . , 𝑋𝑛 be independent indeterminates. We denote by A the ring

K[[𝑋1, . . . , 𝑋𝑛]] of multivariate formal power series in 𝑋1, . . . , 𝑋𝑛 with coefficients in K.
For an integer 𝑘 ≥ 0 and 𝑓 =

∑
𝑒 𝑎𝑒𝑋

𝑒 ∈ K[[𝑋1, . . . , 𝑋𝑛]], the homogeneous part of degree 𝑘 of
𝑓 is 𝑓(𝑘) =

∑
|𝑒 |=𝑘 𝑎𝑒𝑋

𝑒 .
For 𝑔, ℎ ∈ K[[𝑋1, . . . , 𝑋𝑛]] their sum 𝑠 and their product 𝑝 are given by:

𝑠 (𝑘) = 𝑔(𝑘) + ℎ (𝑘) and 𝑝 (𝑘) =
𝑘∑︁
𝑖=0

𝑔(𝑖)ℎ (𝑘−𝑖) , (1)

for all integer 𝑘 ≥ 0.
Let M = ⟨𝑋1, . . . , 𝑋𝑛⟩ be the maximal ideal of A. For 𝑑 ≥ 0, the ideal M𝑑 is generated by the

monomials of degree 𝑑 . We have:

M𝑑+1 ⊆ M𝑑 and
⋂

𝑘∈N
M𝑘 = ⟨0⟩. (2)

Such a filtration yields a topology, the Krull topology, where the neighbourhoods of a power series
𝑓 are of the form 𝑓 +M𝑑 .
Let (𝑓𝑛)𝑛∈N be a sequence of elements of A and let 𝑓 ∈ A. The sequence (𝑓𝑛)𝑛∈N converges to 𝑓

if for all 𝑘 ∈ N there exists 𝑁 ∈ N such that for all 𝑛 ∈ N we have:

𝑛 ≥ 𝑁 ⇒ 𝑓 − 𝑓𝑛 ∈ M𝑘 , (3)

Therefore, a bivariate function
𝐹 : A × A ↦−→ A (4)

is continuous at (𝑝, 𝑞) if for every 𝑑 ∈ N we can find 𝑏, 𝑐 ∈ N such that

𝐹 (𝑝 +M𝑏, 𝑞 +M𝑐) − 𝐹 (𝑝, 𝑞) ⊆ M𝑑 . (5)

, Vol. 1, No. 1, Article . Publication date: June 2024.

The Multivariate Power Series Package in Maple 2024 3

Continuous functions are those which can be implemented by lazy evaluation; This is clearly the
case for addition, multiplication. Similarly, one can prove that inversion of formal power series is
continuous in Krull topology.
We turn our intention to the composition of power series, starting with the substitution of

non-units (that is, elements ofM) into power series (that is, elements of A). This substitution is
well-defined, but can it be done via lazy evaluation?

For simplicity, we describe the univariate case and refer to [12] for the multivariate one. The
input is 𝑎 :=

∑
𝑖 𝑎𝑖𝑋

𝑖 and 𝑏 :=
∑

𝑗 𝑏 𝑗𝑋
𝑗 . We want 𝑎 |𝑋=𝑏 By definition, we have:

𝑎 |𝑋=𝑏 =
∑︁
𝑖

𝑎𝑖 𝑋
𝑖
��
𝑋=

∑
𝑗 𝑏 𝑗𝑋

𝑗 =
∑︁
𝑖

𝑎𝑖

(∑︁
𝑗

𝑏 𝑗𝑋
𝑗

)𝑖
.

By the multinomial formula, we have:

𝑎 |𝑋=𝑏 =
∑︁
𝑖

𝑎𝑖
©«

∑︁
𝑚∈𝑀𝑖

((
𝑖

𝑚

) ∏
(𝑏 𝑗𝑋

𝑗)𝑚 𝑗

)ª®¬
where𝑀𝑖 is the set of all infinite non-negative integer sequences (𝑚1,𝑚2, . . . ,) with finitely many
nonzero entries and whose sum is 𝑖 . Note the multinomial coefficients.

Up to elementary expansions, we also have:

𝑎 |𝑋=𝑏 =
∑︁
𝑖

𝑎𝑖
©«

∑︁
𝑚∈𝑀𝑖

(
𝑖

𝑚

) (∏
𝑏 𝑗

𝑚 𝑗

)
𝑋

∑
𝑗 𝑗𝑚 𝑗

ª®¬
By grouping terms of equal degree in 𝑋 , we obtain:

𝑎 |𝑋=𝑏 =
∑︁
𝑖

©«
∑︁

𝑚∈𝑀𝑖

𝑎 |𝑚 |
(��𝑚��
𝑚

) (∏
𝑏 𝑗

𝑚 𝑗

)ª®¬𝑋 𝑖

where𝑀𝑖 is now the set of all infinite non-negative integer sequences (𝑚1,𝑚2, . . . ,) with finitely
many nonzero entries and such that

∑
𝑗 𝑗𝑚 𝑗 = 𝑖 . Because 𝑏0 = 0, we can start numbering such a

sequence𝑚 at𝑚1 and we have
��𝑚�� ≤ ∑

𝑗 𝑗𝑚 𝑗 = 𝑖 . Therefore, only finitely many coefficients of 𝑎
and 𝑏 contribute to each coefficient of 𝑎 |𝑋=𝑏 . Consequently, this process is continuous in the Krull
topology.

Finally, we consider the substitution of units into power series. Consider 𝑎 = 𝑏 =
∑∞

𝑖=0
𝑋 𝑖

𝑖! , which
we traditionally view as 𝑒𝑋 . We expect that 𝑎 |𝑋=𝑏 evaluates to the power series for 𝑒𝑒𝑋 , which is

∞∑︁
𝑖=0

𝑒𝐵𝑛

𝑛!
𝑋𝑛 = 𝑒 + 𝑒𝑋 + 𝑒𝑋 2 + (5/6)𝑒𝑋 3 + · · · ,

Because of the factor of 𝑒 , substituting units into power series cannot be continuous in the Krull
topology. There is a work-around, however. If two multivariate power series 𝑎, 𝑏 have analytic
expressions 𝑓𝑎, 𝑓𝑏 and we want 𝑎 |𝑋𝑛=𝑏

, then:
(1) we compute 𝑓 := 𝑓𝑎 |𝑋𝑛=𝑓𝑏

, and
(2) we obtain the coefficient of 𝑋𝑚1

1 · · ·𝑋𝑚𝑛
𝑛 as

1
𝑚1! · · ·𝑚𝑛!

𝜕 |𝑚 | 𝑓

𝜕𝑋1
𝑚1 · · · 𝜕𝑋𝑛

𝑚𝑛

����
𝑋1=· · ·=𝑋𝑛=0

To obtain an efficient implementation, see the details in [12].

, Vol. 1, No. 1, Article . Publication date: June 2024.

4 Juan Pablo González Trochez, Ali Asadi, Alexander Brandt, and Erik Postma

Fig. 1. MultivariatePowerSeries session showing the use of analytic expressions of power series.

Figure 1 illustrates how analytic expressions of power series, and univariate polynomials over
power series, are computed in the MultivariatePowerSeries library. These expressions are
involved by various commands. We just saw the case of substitution. Another scenario is that of
inversion for Laurent and Puiseux to be discussed in the next section.

3 Laurent and Puiseux series
We focus on Laurent series since the case of Puiseux series is essentially similar, as explained in [15].
However, at the end of this section we illustrates the use of multivariate Puiseux series with the
MultivariatePowerSeries library.
Recall that K is a field. The sequences x = 𝑥1, . . . , 𝑥𝑝 and u = 𝑢1, . . . , 𝑢𝑚 are ordered indetermi-

nates with𝑚 ≥ 𝑝 . By definition, a multivariate formal Laurent series look like:

𝑓 (x) := Σk∈Z𝑝 𝑎kxk,

where the 𝑎k are elements of K, and uk is a notation for 𝑢𝑘1
1 · · ·𝑢𝑘𝑝𝑝 where 𝑘1, . . . , 𝑘𝑝 are integers.

Let𝐶 ⊆ R𝑝 be a cone.𝐶 is said to be line-free if for every v ∈ 𝐶 \ {0}, we have −v ∉ 𝐶 . All cones
here are line-free, polyhedral and generated by integer vectors. The set of the Laurent series
𝑓 (x) ∈ K((x)) with supp(𝑓 (x)) ⊆ 𝐶 is an integral domain denoted by K𝐶 [[x]], where:

supp(𝑓 (x)) := {k ∈ Z𝑝 | 𝑎k ≠ 0}.

Note that, there exists 𝑔(x) ∈ K𝐶 [[x]] with 𝑓 (x)𝑔(x) = 1, if and only if 𝑎0 ≠ 0.
Let ⪯ be an additive order in Z𝑝 . Thus, for all i, j,k ∈ Z𝑝 , we have:

i ⪯ j =⇒ i + k ⪯ j + k.

let C be the set of all cones 𝐶 ⊆ R𝑝 which are compatible with ⪯. Thus, for every 𝐶 ∈ C, if for all
k ∈ 𝐶 ∩ Z𝑝 we have 0 ⪯ k. Define:

K⪯ [[x]] := ∪𝐶∈CK𝐶 [[x]] and K⪯ ((x)) := ∪e∈Z𝑝xeK⪯ [[x]] .

Then, K⪯ [[x]] is a ring and K⪯ ((x)) is a field.

, Vol. 1, No. 1, Article . Publication date: June 2024.

The Multivariate Power Series Package in Maple 2024 5

If you are puzzled by the factor xe think that the inverse of 𝑥−1 + 1 + 𝑥 + 𝑥2 + · · · is the inverse
of 𝑥−1 (1 + 𝑥 + 𝑥2 + 𝑥3 + · · ·) that is 𝑥

1−𝑥 .
The MultivariatePowerSeries library implementsK⪯ ((x)), where ⪯ is <𝑔𝑙𝑒𝑥 . Recall that <𝑔𝑙𝑒𝑥

first compares total degrees before using reverse lexicographic order as tie-breaker. We explain
our encoding of K⪯ ((x)).

Let 𝑔 ∈ K[[u]] be a multivariate power series, let e ∈ Z𝑝 be a point, and R := {r1, . . . , r𝑚} ⊂ Z𝑝
be a set of grevlex non-negative rays. Then,

𝑓 = xe𝑔(xr1 , . . . , xr𝑚),
is a Laurent series object, which belongs to xeK𝐶 [[x]], where 𝐶 is the cone generated by R. Our
implementation encodes every multivariate Laurent series as a Laurent series object, LSO for short,
that is, a quintuple (x,u, e,R, 𝑔). As an example, consider 𝑓 := 𝑥−4𝑦5 ∑∞

𝑖=0 𝑥
2𝑖𝑦−𝑖 . To encode 𝑓 as

an LSO, one can choose:

x = [𝑥,𝑦],u = [𝑢, 𝑣],R = [[1, 0], [1,−1]], e = [𝑥 = −4, 𝑦 = 5]
and 𝑔 = Inverse(PowerSeries(1+uv)).
We turn our attention to the addition and multiplication of LSOs. Let 𝐶1,𝐶2 ⊆ Z𝑝 be generated

by grevlex non-negative rays, R1 := {r′1, . . . , r′𝑚} ⊂ Z𝑝 and R2 := {r′′1 , . . . , r′′𝑚} ⊂ Z𝑝 , with𝑚 ≥ 𝑝 .
Consider two Laurent series in K⪯ ((x)), namely:

𝑓1 = xe1𝑔1 (xR1) and 𝑓2 = xe2𝑔2 (xR2),
with 𝑔1, 𝑔2 ∈ K[[u]] and e1, e2 ∈ Z𝑝 . Then, we have:

𝑓1 𝑓2 = xe1+e2
(
𝑔1 (xR1)𝑔2 (xR2)

)
.

Assume e = e1 is the grevlex-minimum of e1 and e2. Then, we have:

𝑓1 + 𝑓2 = xe
(
𝑔1 (xR1) + xe2−e𝑔2 (xR2)

)
.

To make 𝑓1 𝑓2 (resp. 𝑓1 + 𝑓2) an LSO object, we need to find a cone containing supp(𝑓1 𝑓2) (resp.
supp(𝑓1 + 𝑓2)). We developed an algorithm which takes several cones 𝐶𝑖 ’s all generated by grevlex
non-negative rays (g.n.r.) and returns a cone 𝐶 generated by 𝑝 g.n.r. and containing

⋃
𝑖 𝐶𝑖 ’s.

Finally, we consider the inversion of Laurent series. Let 𝐶 ⊆ Z𝑝 be a line-free cone described by
a set of grevlex non-negative rays, R := {r1, . . . , r𝑚} ⊂ Z𝑝 , and let e ∈ Z𝑝 be a point. Now, consider

0 ≠ 𝑓 = xe𝑔(xR) ∈ xeK𝐶 [[x]],
with 𝑔 ∈ K[[u]]. We have:

supp(𝑔(xR)) = {(r𝑇1 , . . . , r𝑇𝑚) · k𝑇 | k ∈ supp(𝑔)} ⊆ Z𝑝 .
Finding the smallest element of the support of the power series 𝑔 does not guarantee that we can

find the grevlex-minimum element of the support of he Laurent series 𝑓 , see [15] for an example.
However, if R is a set of grevlex-positive rays, then

min(supp(𝑔(xR))) = min(
{
R · k𝑇 | k ∈ supp(𝑔) with

���R · k𝑇
��� ≤ ���R · k

𝑇
���}),

where k = min(supp(g)) and R = (r𝑇1 , . . . , r𝑇𝑚).
When R has rays with null total degree, we replace

���R · k
𝑇
��� by a guess bound 𝐵 and carry

computations until the guess is proved to be wrong, in which case 𝐵 is increased. As an optimization,
if 𝑔 has an analytic expression 𝐺 , and if 𝐺 is a rational function, then min(supp(𝑔(xR))) is always
computable, even if R has rays with null total degree.

, Vol. 1, No. 1, Article . Publication date: June 2024.

6 Juan Pablo González Trochez, Ali Asadi, Alexander Brandt, and Erik Postma

Fig. 2. Maple session showing the computation of the inverse of a Puiseux series.

Figure 2 illustrates how one can create and invert a multivariate Puiseux series with the Multi-
variatePowerSeries library.

4 UPoPS factorization based on lazy evaluation
The goal of this section is to show how the MultivariatePowerSeries handles the factorization
of univariate polynomials over A = K[[𝑋1, . . . , 𝑋𝑛]], with the machinery of lazy evaluation.
We denote by A[𝑌] the ring of univariate polynomials over power series, that we call UPoPS for

short. We recall Weierstrass Preparation Theorem.
Let 𝑓 ∈ A[𝑌]. Assume 𝑓 . 0 modM[𝑌]. Write 𝑓 =

∑𝑑+𝑚
𝑖=0 𝑎𝑖𝑌

𝑖 , where 𝑑 ≥ 0 is the smallest
integer such that 𝑎𝑑 ∉ M and𝑚 ∈ Z+. Then, there exists a unique pair (𝑝, 𝛼) satisfying 𝑓 = 𝑝 𝛼 ,
where 𝛼 is an invertible element ofA[𝑌], and 𝑝 = 𝑌𝑑 +𝑏𝑑−1𝑌

𝑑−1+· · ·𝑏1𝑌 +𝑏0 is a monic polynomial
of degree 𝑑 , such that we have 𝑏𝑑−1, . . . , 𝑏0 ∈ M.

, Vol. 1, No. 1, Article . Publication date: June 2024.

The Multivariate Power Series Package in Maple 2024 7

One can compute the polynomial 𝑝 and 𝛼 =
∑𝑚

𝑖=0 𝑐𝑖𝑌
𝑖 , where 𝑎ℓ , 𝑏 𝑗 , 𝑐𝑖 are power series by means

of the following observation:

𝑎0 = 𝑏0𝑐0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0
𝑎2 = 𝑏0𝑐2 + 𝑏1𝑐1 + 𝑏2𝑐0

...

𝑎𝑑−1 = 𝑏0𝑐𝑑−1 + 𝑏1𝑐𝑑−2 + · · · + 𝑏𝑑−2𝑐1 + 𝑏𝑑−1𝑐0
𝑎𝑑 = 𝑏0𝑐𝑑 + 𝑏1𝑐𝑑−1 + · · · + 𝑏𝑑−1𝑐1 + 𝑐0

𝑎𝑑+1 = 𝑏0𝑐𝑑+1 + 𝑏1𝑐𝑑 + · · · + 𝑏𝑑−1𝑐2 + 𝑐1
...

𝑎𝑑+𝑚−3 = 𝑏𝑑−3𝑐𝑚 + 𝑏𝑑−2𝑐𝑚−1 + 𝑏𝑑−3𝑐𝑚−2 + 𝑐𝑚−3
𝑎𝑑+𝑚−2 = 𝑏𝑑−2𝑐𝑚 + 𝑏𝑑−1𝑐𝑚−1 + 𝑐𝑚−2
𝑎𝑑+𝑚−1 = 𝑏𝑑−1𝑐𝑚 + 𝑐𝑚−1
𝑎𝑑+𝑚 = 𝑐𝑚

We update 𝑝 and 𝛼 by solving the above system of equations moduloM𝑘 , 𝑘 = 1, 2, This implies
that the UPoPS 𝑝 and 𝛼 are continuous functions in Krull topology of the input UPoPS 𝑓 . Therefore,
Weierstrass Preparation Theorem (WPT) can be implemented in a lazy evaluation manner.

It follows that the same is true for Hensel Lemma. To see this, let us restate this key result and
exhibit a (short) proof based on WPT.
Let 𝑓 = 𝑌𝑑 + ∑𝑑−1

𝑖=0 𝑎𝑖𝑌
𝑖 be a monic polynomial in K[[𝑋1, . . . , 𝑋𝑛]] [𝑌]. Let 𝑓 = 𝑓 (0, . . . , 0, 𝑌) =

(𝑌 − 𝑐1)𝑑1 (𝑌 − 𝑐2)𝑑2 · · · (𝑌 − 𝑐𝑟)𝑑𝑟 for 𝑐1, . . . , 𝑐𝑟 ∈ K and positive integers 𝑑1, . . . , 𝑑𝑟 . Then, there
exists 𝑓1, . . . , 𝑓𝑟 ∈ K[[𝑋1, . . . , 𝑋𝑛]] [𝑌], all monic in Y, such that:
(1) 𝑓 = 𝑓1 · · · 𝑓𝑟 ,
(2) deg(𝑓𝑖 , 𝑌) = 𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟 , and
(3) 𝑓𝑖 = (𝑌 − 𝑐𝑖)𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑟 .

Indeed. Let 𝑔 = 𝑓 (𝑋1, . . . , 𝑋𝑛, 𝑌 +𝑐𝑟) = 𝑌𝑑 +∑𝑑−1
𝑖=0 𝑏𝑖𝑌

𝑖 , sending 𝑐𝑟 to the origin. By construction, we
have 𝑏0, . . . , 𝑏𝑑𝑟 −1 ∈ M and WPT can be applied to produce 𝑔 = 𝑝 𝛼 with deg𝑝 = 𝑑𝑟 , deg𝛼 = 𝑑 −𝑑𝑟 .
Reversing the shift, we have 𝑓𝑟 = 𝑝 (𝑌 − 𝑐𝑟). Induction on 𝑓 = 𝛼 (𝑌 − 𝑐𝑟) completes the proof.

Consequently, the UPoPS 𝑓1, . . . , 𝑓𝑟 are continuous functions in Krull topology of the input UPoPS
𝑓 . Therefore, Hensel Lemma can be implemented in a lazy evaluation manner.
It turns out that the same is true for Puiseux Theorem. This follows easily from the proof that

Nowak gives of that theorem in [11] since it derives it from Hensel Lemma.
In a future paper, we shall explain how we have implemented the Extended Hensel Construc-

tion [13, 1] in a lazy evaluation manner.

We conclude this section with Figure 3 which illustrates Puiseux Theorem in action. To be precise,
we see how a UPoPS over Puiseux series is defined and then factorized.

References
[1] Parisa Alvandi, Masoud Ataei, Mahsa Kazemi, and Marc Moreno Maza. On the extended Hensel construction and its

application to the computation of real limit points. J. Symb. Comput., 98:120–162, 2020.
[2] M. Asadi, A. Brandt, C. Chen, S. Covanov, F. Mansouri, D. Mohajerani, R. H. C. Moir, M. Moreno Maza, D. Talaashrafi,

Linxiao Wang, Ning Xie, and Yuzhen Xie. Basic Polynomial Algebra Subprograms (BPAS), 2021. www.bpaslib.org.
[3] Mohammadali Asadi, Alexander Brandt, Mahsa Kazemi, Marc Moreno Maza, and Erik J. Postma. Multivariate Power

Series in Maple. In Robert M. Corless, Jürgen Gerhard, and Ilias S. Kotsireas, editors, Maple in Mathematics Education
and Research, pages 48–66, Cham, 2021. Springer International Publishing.

, Vol. 1, No. 1, Article . Publication date: June 2024.

www.bpaslib.org

8 Juan Pablo González Trochez, Ali Asadi, Alexander Brandt, and Erik Postma

Fig. 3. MultivariatePowerSeries session illustrating Puiseux Theorem in action.

[4] Alexander Brandt, Mahsa Kazemi, and Marc Moreno Maza. Power series arithmetic with the BPAS library. In Computer
Algebra in Scientific Computing (CASC ’20), volume 12291 of LNCS, pages 108–128. Springer, 2020.

[5] Alexander Brandt and Marc Moreno Maza. On the complexity and parallel implementation of Hensel’s lemma and
Weierstrass preparation. In Computer Algebra in Scientific Computing (CASC ’21), 2021. (To appear).

[6] William H Burge and Stephen MWatt. Infinite structures in scratchpad ii. In European Conference on Computer Algebra,
pages 138–148. Springer, 1987.

[7] Jerzy Karczmarczuk. Generating power of lazy semantics. Theoretical Computer Science, 187(1-2):203–219, 1997.
[8] Wolfram Koepf. Power series in computer algebra. J. Symb. Comput., 13(6):581–604, 1992.
[9] Maplesoft, a division of Waterloo Maple Inc. Maple 2024. www.maplesoft.com/.
[10] Ainhoa Aparicio Monforte and Manuel Kauers. Formal Laurent series in several variables. Expositiones Mathematicae,

31(4):350–367, 2013.
[11] Krzysztof Jan Nowak. Some elementary proofs of Puiseux’s theorems. Univ. Iagel. Acta Math, 38:279–282, 2000.
[12] Erik Postma and Marc Moreno Maza. Substituting units into multivariate power series. Maple Trans., 2(1), 2022.
[13] T. Sasaki and F. Kako. Solving multivariate algebraic equation by Hensel construction. Japan Journal of Industrial and

Applied Mathematics, 16(2):257–285, 1999.
[14] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1), 2020. https://www.sagemath.org.
[15] Juan Pablo González Trochez, Marc Moreno Maza, Erik Postma, and Matt Calder. Laurent series and Puiseux series in

maple. Maple Trans., 3(2), 2023.
[16] Joris van der Hoeven. Relax, but don’t be too lazy. Journal of Symbolic Computation, 34(6):479–542, 2002.
[17] Joris van der Hoeven and Grégoire Lecerf. Mathemagix User Guide. 101 pages, February 2013.
[18] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.). Cambridge University Press, 2013.
[19] Wolfram Research Inc. Mathematica, 2024. www.wolfram.com/mathematica.

, Vol. 1, No. 1, Article . Publication date: June 2024.

www.maplesoft.com/
www.wolfram.com/mathematica

	1 Overview
	2 The algebraic foundation of lazy evaluation for multivariate power series
	3 Laurent and Puiseux series
	4 UPoPS factorization based on lazy evaluation

