
Implementing Kaltofen and Yagati’s fast transposed Vandermonde

solver

Hyukho Kwon and Michael Monagan
Department of Mathematics, Simon Fraser University

hyukhok@sfu.ca and mmonagan@sfu.ca

June 21, 2024

Extended Abstract

1 Introduction

We present a C implementation of Kaltofen and Yagati’s fast transposed Vandermonde solver
from [6] over the finite field Zp for p a prime with at most 63 bits. For comparison, we have
also implemented Kaltofen and Yagati’s algorithm in Maple and Zippel’s algorithm from [9] in C.
The motivation for our work is the black-box multivariate polynomial factorization algorithm of
Chen and Monagan [3] which needs to solve many transposed Vandermonde systems. In [3] the
authors factor the determinant of the 16 by 16 symmetric Töplitz matrix. About 3/4 of the total
factorization time is spent solving transposed Vandermonde systems, the largest of which is 127,690
by 127,690.

Let F be a field and a(x) =
∑n−1

j=0 ajx
j be an unknown polynomial in F [x]. For u1, u2, . . . , un ∈

F , suppose we have computed bi = a(ui) for 1 ≤ i ≤ n and we want to determine a ∈ Fn, that
is, we want to interpolate a(x). Various algorithms, for example [1], use geometric point sequences
ui = αi−1 for some α ∈ F such that αi 6= αj for all i 6= j. Thus

bi = a(ui) =

n−1∑
j=0

aj(α
i−1)j =

n−1∑
j=0

aj(α
j)i−1 =

n−1∑
j=0

aj(uj+1)
i−1 for 1 ≤ i ≤ n.

In matrix-vector form, we have
1 1 1 · · · 1
u1 u2 u3 · · · un
u21 u22 u23 · · · u2n
...

...
...

...

un−11 un−12 un−13 · · · un−1n

a0
a1
a2
...

an−1

 =

b1
b2
b3
...
bn

U a b

. (1)

The matrix U is called a transposed Vandermonde matrix and the linear system Ua = b is called
a transposed Vandermonde system.

We note that in some applications, for example, the GCD algorithm of Hu and Monagan in
[5], one needs random evaluation points for ui as u1 = α0 = 1 may cause a problem. To resolve

1

this we may instead use ui = αi for 1 ≤ i ≤ n so that u1 = α. This leads to a shifted transposed
Vandermonde system U ′a = b where U ′i,j = uij for 1 ≤ i ≤ n and 1 ≤ j ≤ n. The matrix U ′ factors
as U ′ = UD where D is a diagonal matrix with Di,i = ui. Thus to solve U ′a = (UD)a = b, since
a = D−1U−1b we first solve the unshifted transposed Vandermonde system Uc = b for c then use
a = D−1c.

Let M(n) be the number of field operations for polynomial multiplication with two polynomials
of degree at most n in F [x]. Table 1 summarizes three methods for solving Ua = b.

Methods # ops in F space

Gaussian Elimination O(n3) O(n2)
Zippel’s method [9] O(n2) O(n)

Kaltofen & Yagati’s method [6] O(M(n) log n) O(n log n)

Table 1: Algorithms for solving n by n transposed Vandermonde systems

2 Summary of work and optimizations

Kaltofen and Yagati’s algorithm assumes fast multiplication, fast multi-point evaluation and fast
division in F [x]. We summarize what we have implemented for these for the prime field F = Zp.

2.1 Fast multiplication

Let q be a 63 bit Fourier prime, that is, a prime of the form q = 2ks+1 for large k. The underlying
FFT for Zn

q that we use is the in-place recursive FFT from Law and Monagan [7] which does exactly
1
2n log2 n multiplications. For ω a primitive nth root of unity in Zq it precomputes an array W of
size n of the powers of ω needed for all recursive calls

W = 1 ω ω2 · · · ωn/2−1 1 ω2 ω4 · · · ωn/2−2 · · · 1 0

To multiply two polynomials in Zq[x], Law and Monagan use the decimation in frequency FFT
for the two forward transforms and the decimation in time FFT for the inverse transform so that
the two bit-reversal permutations cancel out and can be omitted from both FFTs.

Let f, g ∈ Zp[x]. To multiply modulo p we choose three Fourier primes p1, p2, p3 such that
p1p2p3 > (p − 1)2 min(1 + deg(f), 1 + deg(g)) and we use the FFT to multiply f × g mod pi for
i = 1, 2, 3 then Chinese remaindering to recover the integer coefficients in f × g before reduction
mod p. This is called the three primes method. In [8], von zur Gathan and Gerhard use it for
multiplying long integers.

Theorem 1 The three primes method does M(n) = 27n log2 n+O(n) field operations to multiply
two polynomials of degree at most n in Zp[x].

2.2 Fast division

Let f, g ∈ Zp[x] with deg(g) = n and deg(f) < 2n. The classical algorithm for f divided by g does
O(n2) field operations. Let g =

∑n
i=0 gix

i and ĝ =
∑n

i=0 gn−ix
i denote the reciprocal polynomial.

The fast division algorithm [8] computes ĝ−1 mod xn using a Newton iteration (see Theorem 2
below) then the quotient q from q̂ = f̂ × ĝ−1 mod xn then the remainder r using r = f − g × q.

2

Theorem 2 (Theorem 9.2 [8]) Assume h =
∑n

i=0 hix
i ∈ Zp[x] and h0 6= 0. Let y0 = h−10 and

yi = 2yi−1 − h · y2i−1 mod x2
i

for i ≥ 1. For all i ≥ 0, h · yi mod x2
i

= 1.

Using Theorem 2, we can compute the inverse of ĝ in 3M(n) + O(n) field operations in Zp [8].
We have implemented the middle product of Hanrot, Quercia, and Zimmerman [4] who instead use
yi = yi−1+yi−1 ·(1−h·yi−1). Their method reduces the cost of computing ĝ−1 to 2M(n)+O(n) field
operations in Zp. All polynomial multiplications need to be done using the three primes method.
Using the three primes method, we can also save one FFT by computing the FFT of yk−1 once
which reduces the constant 2 to 5/3. The total cost for the polynomial multiplications in division
becomes 11/3M(n) +O(n) field operations in Zpi .

Theorem 3 Fast division in Zp[x] does at most 11M(n) +O(n) field operations.

In our implementation of fast division we use classical division for n ≤ 512.

2.3 Fast multi-point evaluation

Let f be a polynomial in Zp[x] with deg(f) ≤ n−1 where n = 2k for some k ≥ 0. Let u0, u1, . . . , un−1
be distinct elements in Zp. The multi-point evaluation problem is to compute f(ui) for 0 ≤ i ≤ n−1.

Repeated usage of Horner’s method costs O(n2) arithmetic operations in Zp. In 1971, Borodin
and Munro [2] introduced an O(M(n) log n) algorithm. Their algorithm first builds a product tree
T , a complete binary tree in which every leaf is a linear polynomial x−ui for 0 ≤ i ≤ n−1 and each
parent node is the product of their two children so that the root node of T is Tk,0 =

∏n−1
i=0 x− ui.

Each multiplication in the product tree is of two monic polynomials Ti,j = x2
i

+ A(x) by

Ti,j+1 = x2
i

+ B(x) which needs an FFT of size 4 × 2i. Instead, by computing Ti,j × B(x) and

adding x2
i
Ti,j we can use an FFT of size 2 × 2i. Also, since all polynomials in T are monic we

only need to store A(x) and B(x) which have size 2i. The product tree can be stored in a one
dimensional array using space for n(1 + log2 n) elements of Zp.

Theorem 4 Building a product tree (BuPT) in Zp[x] does 3
2M(n) log2 n + O(n log n) field opera-

tions.

Let mi = x − ui for all 0 ≤ i ≤ n − 1. The remainder of f(x) divided mi, denoted f mod mi is
f(ui). Recall that if g|h, then f mod g = (f mod h) mod g where f, g, h ∈ Zp[x]. Each node Ti,j
for 0 ≤ i ≤ k, 0 ≤ j < 2k−i in the product tree T is a factor of its parent node in T . In other words,

Ti,j = Ti−1,2j × Ti−1,2j+1 =⇒ Ti−1,2j |Ti,j and Ti−1,2j+1|Ti,j .

Thus we can compute f(ui) for 0 ≤ i ≤ n− 1 by dividing down the product tree with a divide-and-
conquer approach.

Theorem 5 Dividing down the product tree (DDPT) in Zp[x] does 11M(n) log2 n+O(n log n) field
operations.

2.4 Fast transposed Vandermonde solver

We present Kaltofen and Yagati’s algorithm from [6] in Algorithm 1. Given u1, u2, . . . , un, Kaltofen
and Yagati first build the product tree T . After constructing T , we extract the root polynomial
M , which Zippel [9] calls the master polynomial. Then Algorithm 1 creates a polynomial D whose
coefficients are from b and multiplies M by D to get H = M × D. We construct a polynomial
Q from H. The dominating cost is evaluating Q and M ′ at u1, u2, . . . , un by dividing down the
product tree T to obtain ai−1 = Q(ui)/M

′(ui) for 1 ≤ i ≤ n.

3

Algorithm 1 Fast transposed Vandermonde solver(FastTVS)

Input: n = 2k for some k ∈ N, u = [u1, u2, . . . , un] ∈ Zn
p (which defines the transposed Vander-

monde matrix U) and b = [b1, b2, . . . , bn] ∈ Zn
p

Output: a = [a0, a1, . . . , an−1] ∈ Zn
p satisfying Ua = b.

1: T ← BuPT(n, u) . 3
2M(n) log2 n+O(n log n)

2: M ← Tk,0 from T // M =
∏n

i=1(x− ui)
3: D ← bnx+ bn−1x

2 + · · ·+ b1x
n

4: H ←M ×D // Let H =
∑2n−1

i=0 hix
i+1 .3M(n)

5: Q←
∑n−1

i=0 hn+ix
i //

∑n−1
i=0 hn+iz

i is the coefficient of xn in H/(x− z)
6: s1, s2, . . . , sn ← DDPT(n, Q, T) // si = Q(ui) 11M(n) log2 n+O(n log n)
7: Differentiate M .O(n)
8: t1, t2, . . . , tn ← DDPT(n, M ′, T) // ti = M ′(ui) = qi(ui) 11M(n) log2 n+O(n log n)
9: for i from 1 to n do ai−1 ← t−1i · si end for .O(n)

10: return [a0, a1, . . . , an−1]

Theorem 6 Algorithm 1 does at most 53
2 M(n) log2 n+O(n log n) field operations in Zp.

In our implementation of Algorithm 1, for n ≤ 64 we evaluate using Horner’s method instead of
dividing down the product tree. Also, if after Step 1 we compute the inverses of all T̂i,j polynomials,
we can use them for both DDPT calls in Steps 6 and 8. Computing intermediate inverses costs
5M(n) log2 n+O(n log n). This reduces the cost of each DDPT to 6M(n) log2 n+O(n log n) field
operations. In our implementation we store the inverses in a second product tree. This optimization
reduced the time for n = 216 in Table 2 from 1500.7 ms to 1249.3 ms.

2.5 Implementation and Benchmark

We have implemented Algorithm 1 FastTVS in C for the case where p is a 63 bit Fourier prime
and are presently implementing the three primes method.

For comparison we have also implemented Zippel’s O(n2) algorithm from [9] in C and we
have implemented Kaltofen and Yagati’s algorithm in Maple. The Maple implementation for mul-
tiplication in Zp[x] is done using a single large integer multiplication using GMP’s fast integer
multiplication.

The timings in Table 2 are in milliseconds. They were obtained on an AMD FX 8350-8 8-core
CPU at 4.2GHz using one core. The ratios in the first speed up column are the timings in column
ZippelTVS divided by those in column Total. The ratios in the second speed up column are the
timings in column Maple divided by those in column Total.

Our FastTVS implementation beats Zippel’s O(n2) method for n > 128 which is a good result.
Notice also that the time to build the product tree (BuPT) is much smaller than the time to
compute the inverses (column InvTree) plus divide down the product tree (columns DDPT1 and
DDPT2) thus any improvement will need to focus on polynomial division. Also, the Maple time of
69,705 ms for n = 218 is not an error; it seems to be an anomaly.

Acknowledgement

This work was supported by NSERC of Canada and Maplesoft.

4

n
FastTVS

ZippelTVS
speed

up
Maple

speed
upBuPT InvTree DDPT1 DDPT2 Total

26 0.046 - 0.046 0.039 0.195 0.1389 0.71 3.4 17.4
27 0.086 - 0.107 0.098 0.380 0.4879 1.28 8.6 22.6
28 0.150 - 0.254 0.238 0.808 1.9039 2.35 20.8 25.7
29 0.363 - 0.693 0.674 2.065 7.4640 3.61 63.0 30.5
210 0.875 0.600 1.890 1.877 5.811 30.826 5.30 113.2 19.5
211 2.020 2.417 5.070 5.008 15.775 116.84 7.40 270.0 17.1
212 4.755 7.529 12.307 12.268 39.444 469.64 11.90 608.0 15.4
213 11.146 20.556 29.566 29.270 95.765 1,868 19.50 1,321 13.8
214 25.901 53.099 71.091 70.580 231.55 7,456 32.19 3,025 13.1
215 60.151 131.30 166.15 166.46 546.52 29,986 54.86 7,190 13.2
216 131.23 314.56 380.02 376.77 1,249.3 120,292 96.28 16,455 13.2
217 339.89 746.70 867.30 863.48 2,914.9 478,912 164.3 69,705 23.9
218 663.01 1,747.1 1,961.8 1,955.2 6,529.8 1,929,776 295.5 97,667 15.0

Table 2: CPU timings in ms for solving n × n transposed Vandermonde systems over the prime
field Zp with p = 116 · 255 + 1

References

[1] Michael Ben-Or and Prasoon Tiwari: A Deterministic Algorithm for Sparse Multivariate
Polynomial Interpolation. Proceedings of STOC ’20, pp. 301–309, ACM, 1988.

[2] A. Borodin and I. Munro: Evaluating polynomials at many points. Information Processing
Letters 1(2):66–68, 1971.

[3] Tian Chen and Michael Monagan: Factoring Multivariate Polynomials Represented by Black
Boxes – A Maple + C Implementation. Mathematics in Computer Science 16(2–3), article 18,
Springer, 2022. https://doi.org/10.1007/s11786-022-00534-7

[4] Guillaume Hanrot, Michel Quercia, Paul Zimmermann: The Middle Product Algorithm I.
Speeding up the division and square root of power series. Applicable Algebra in Engineering,
Communication and Computing 14(6):415–438, Springer, 2004.

[5] Jiaxong Hu and Michael Monagan: A fast parallel sparse polynomial GCD algorithm. Pro-
ceedings of ISSAC ’2016, pp. 271–278, ACM, 2016.

[6] Erich Kaltofen and Lakshman Yagati: Improved sparse multivariate polynomial interpolation
algorithms. Proceedings of ISSAC’88, pp. 467–474, Springer, 1988.

[7] Marshall Law and Michael Monagan: A parallel implementation for polynomial multiplication
modulo a prime. Proceedings of PASCO’2015, pp. 78–86, ACM, 2015.

[8] Joachim von zur Gathen and Jüergen Gerhard: Modern Computer Algebra, Cambridge Uni-
versity Press, 2013.

[9] Richard Zippel: Interpolating polynomials from their values. Journal of Symbolic Computation
9(3):375–403, Elsevier, 1990.

5

