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In recent decades, the study of polynomial, rational matrix functions
has become a prolific area of active an innovative research, and much of this
involves computing the “structural data” (eigenvalues and minimal indices).
Current studies of the structural data of polynomial and rational matrices
are very much motivated by nonlinear eigenvalue problems (NEPs): given
a matrix-valued function F : C → Cn×n, find λ ∈ C and v ∈ Cn such
that F (λ)v = 0. Nonlinear eigenvalue problems have become increasingly
relevant as new applications in physics, engineering, and systems theory (to
name a few) have given rise to NEPs with interesting spectral structure
[7, 9].

Some NEPs that are of particular interest include polynomial and ratio-
nal eigenvalue problems (PEPs and REPs, resp.), and quadratic eigenvalue
problems (QEPs) which have a multitude of applications on their own [12].
One reason for the special interest in polynomial and rational NEPs stems
from the following method for solving NEPs. First approximate the matrix
function F (λ) in a compact domain Ω ⊂ C by a polynomial matrix P (λ)
or a rational matrix R(λ). Then, by a process called linearization, a ma-
trix pencil L(λ) is constructed with the same structural data as P (λ) (or
R(λ)). Finally, the structural data of L(λ) is computed numerically and
then translated to approximate solutions to the original NEP.

The structural data of a polynomial or rational matrix consists of zeros
with multiplicities, poles with multiplicities (only for rational), and minimal
indices. The zeros can be finite or infinite, and for a polynomial matrix,
they are the eigenvalues. The poles of a rational matrix can also be finite or
infinite, and for both polynomial and rational matrices, the minimal indices
are non-negative integers associated with the left and right null spaces.

A natural question to ask in the study of polynomial and rational ma-
trices is the inverse problem:

Given a list L of structural data, is there a polynomial matrix P (λ) (or
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rational matrix R(λ) if the structural data includes poles) with structural
data given by L, and if there is, can one be readily computed?

With all the new and evolving algorithms for computing the structural data
of polynomial and rational matrices, it has become important to be able
to build test matrices with prescribed structural data in order to stress
test these algorithms. For generalized eigenvalue problems (GEPs), the
Kronecker canonical form provides a starting point for building test pencils
with known structural data. Thus the Holy Grail for researchers working
on polynomial and rational inverse problems is a Kronecker-like canonical
form for polynomial and rational matrices.

Canonical forms are an integral part of matrix theory. From the Jor-
dan canonical form for square matrices under similarity and the Kronecker
canonical form for matrix pencils under strict equivalence to the Smith
canonical form for matrix polynomials under unimodular equivalence, the
discovery of new canonical forms can lead to significant advances in new
theory. We propose a new canonical form for strictly regular matrix polyno-
mials under unimodular equivalence that not only has many of the features
of existing canonical forms, but also has the property that the degree of the
matrix polynomial is preserved. In addition, as a corollary, we get a new
canonical form for skew-symmetric matrix polynomials under unimodular
congruence.

It was established in [10] that the structural data of a polynomial matrix
satisfies the equation:∑

{e-val multiplicities}+
∑

{minimal indices} = dr, (1)

where r is the rank and d is the degree. This equation was dubbed in [5]
the index sum equation, and it was shown that it is the only constraint
for solving the polynomial inverse problem over C. In 2019, we showed
in [1] that the older rational index sum equation [14] is equivalent to its
polynomial counterpart (1) and is the only constraint for solving the rational
inverse problem over C. While the results in [1, 5] provide a mechanism for
producing solutions to the polynomial and rational inverse problems, the
question of a Kronecker-like realization was left unanswered. The Kronecker
canonical form has many valuable qualities, one of which is that it not
only explicitly solves the generalized inverse problem, but it does so by
producing a realization that is a direct sum of simple blocks from which the
original structural data can be easily recovered without doing any numerical
computations
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Attempts have been made to emulate the Kronecker form for quadratic
polynomial matrices in [3] and [4]; however, the number of required block
types increases substantially, and it is no longer as straightforward to recover
the partial multiplicities of the eigenvalues and minimal indices. Addition-
ally, the structural data in the Kronecker form is separated into distict block
types, one for finite eigenvalues, one for infinite eigenvalues, one for left min-
imial indices, and one for right minimal indices. However, the Kronecker-like
quadratic forms fail to achieve this separation, and, in fact, the authors prove
that such a separation is impossible, which is what leads to the dramatic
increase in the number of block types.

In a parallel track, attempts have been made to emulate the Schur trian-
gularization theorem for quadratic matrix polynomials in [13] and for general
matrix polynomials in [11]. In 2021, we showed that every regular matrix
polynomial over an arbitrary field can be block-triangularized with diagonal
blocks that have an upper bound on their size [2].

In this talk we present a new strategy for constructing canonical forms
for matrix polynomials that does not rely on the direct-sum-of-blocks ap-
proach of Kronecker. This new approach can also be seen as building a so-
lution to the inverse problem that focuses on invariant polynomials instead
of elementary divisors. When the original matrix polynomial has only finite
eigenvalues (which we dubbed strictly-regular) we obtain a new canonical
form under unimodular equivalence. In the general regular case, we obtain
a new canonical form, but the equivalence transformations are unknown.
When the original matrix polynomial is singular, our construction takes the
form of a product of factors instead of direct sums of blocks.

These “product realizations”, introduced in my doctoral thesis [8] but de-
veloped by Dopico, Makcey, and Van Dooren in an unpublished manuscript,
solve the polynomial inverse problem as a product of three factors

P (λ) = L(λ)M(λ)R(λ), (2)

where the left and right minimal indices are encoded in L(λ) and R(λ) re-
spectively, while the partial multiplicities of the eigenvalues are encoded in
the regular middle factor M(λ). These factors are also constructed in such
a way that the original data can be recovered from their respective factors
without doing any numerical computations, one of the desirable properties
of the Kronecker canonical form. These factors also benefit from “data spar-
sity”; that is, if the overall realization ism×n, then each factor can be stored
as and recovered from a data vector of length O(k) where k = max{m,n}.
When the strucutal data contains only eigenvalues and their multiplicities,
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the middle factor is the previously mentioned regular (or strictly regular
when only finite eigenvalues) canonical form.

This work is also extended in [8] to solve the rational inverse problem as
a similar product realization, but now of five factors

R(λ) = ZL(λ)DL(λ)M(λ)DR(λ)ZR(λ), (3)

where ZL(λ) and ZR(λ) encode the left and right minimal indices, M(λ)
encodes the finite poles and zeros along with their partial multiplicities, and
DL(λ)M(λ)DR(λ) encodes the infinite pole and zero multiplicities. The
matrices DL(λ) and DR(λ) are both diagonal, and this realization benefits
from the same nice properties as those of its polynomial counterpart in (2).
As in the polynomial case, the middle factor M(λ) can be interpreted as
a canonical form under unimodular equivalence when the structural data
contains only finite poles and zeros.

Another consideration that is made is that of structured matrix poly-
nomials, e.g. skew-symmetric, alternating, palindromic. A Kronecker-like
canonical form for palindromic quadratic matrix polynomials was presented
in [4]. In the present work, a canonical form for skew-symmetric matrix
polynomials of arbitrary degree is given, while alternating, symmetric, and
palindromic are still under investigation.

Due to limited time, this talk will only discuss the polynomial inverse
problem when the structural data contains only finite eigenvalues and their
multiplicities. For such structural data, the product realization (2) simplifies
to just the middle factorM(λ). In this case, the realization is strictly regular ;
that is, regular with nonsingular lead coefficient. The realization M(λ) can
be constructed algorithmically, the amount of data needed to be stored
is O(n) where n is the size, and the original partial multiplicities of the
eigenvalues can be recovered without any numerical computation. Such a
realization is an ideal choice to use as a starting point to build test matrices
for computational algorithms.
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