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Abstract. We present a software package called SresToolsNPB for computing resultant and subresultants of
polynomials in non-power basis, including the Newton or Bernstein basis. It is required that the produced
resultant and subresultants are also defined in the same basis, which often has a simpler form than those in
power basis. The package SresToolsNPB is implemented in Maple based on some basis-preserving algorithms
recently developed for constructing resultant and subresultants of univariate polynomials in non-power basis.
A detailed description of the usage of the functions contained in the package and illustrative examples are
provided to show the capability of the implemented package.
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1 Introduction
Resultant theory serves as a fundamental pillar within the domain of computer algebra and has been
extensively studied in the past centuries (just list a few [3, 5, 8, 9, 11, 14, 15, 16, 17, 18, 19, 21, 23]).
Most of the studies so far have concentrated on the study of polynomials in power basis (also
known as standard basis or monomial basis). However, the increasing application of basis-preserving
algorithms across a spectrum of computational tasks ([1, 6, 10, 12, 13]) has underscored the necessity
for a deeper investigation into the resultant and subresultants within the context of non-power
bases (see [2, 4, 20, 24]). Nevertheless, the development of theories and software tools which are
specialized for computing resultant and subresultants for polynomials in non-power basis has been
lagging, although significant strides have been taken, as evidenced by the works of [1, 7, 25, 26, 29],
which have substantially bridged the aforementioned gap. Furthermore, we are not aware of any
software tools or packages which are publicly available for computing resultant and subresultants
in non-power basis.
In this paper, we introduce a Maple package named SresToolsNPB, which is specifically tailored for
computing resultant and subresultants of polynomials expressed in Bernstein basis and Newton
basis (which are two typical types of non-power bases). It should be pointed out that the package
SresToolsNPB is designed with the requirement of maintaining the same basis for both the input
and output polynomials. In other words, when calling the functions in the package, the output
resultant/subresultants are represented in the same basis as used to formulate the input polynomials.
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The package SresToolsNPB is implemented based on the most recent algorithms developed by the
authors and other colleagues for computing resultant/subresultant polynomials in non-power basis
[22, 24, 27, 28]. These algorithms are basis-preserving, which indicates that they do not rely on
basis transformation and thus can avoid extra computation cost and numerical instability caused by
the transformation. In the package, nine functions are provided for computing resultant matrices,
resultant and subresultant polynomials.
The rest of the paper is structured as follows. Section 2 provides a brief review of resultant, resultant
matrices and subresultant polynomials in power basis. In Section 3, we give a formal description of
the problems tackled by the package as well as the methods the implementation relies on. Then we
illustrate the usage of public functions provided by SresToolsNPB and provide some examples for
readers’ reference in Section 4.

2 Review
In this section, we review three types of resultant and subresultants of polynomials. For this purpose,
we assume �,� ∈ K[G] be of degree< and =, respectively, where K stands for an integral domain
hereinafter.
Sylvester type. The Sylvester matrix of � and � with respect to G is defined as a matrix Syl(�,�)
such that

Syl(�,�) ·
[
G<+=−1 · · · G0

])
=
[
G=−1� · · · G0� G<−1� · · · G0�

])
We call det Syl(�,�) the Sylvester resultant of � and � w.r.t. G . Subresultants are often formulated
in the form of determinant polynomial. The determinant polynomial of a matrix " with order ? × @

where ? ≤ @ is defined by
detp" :=

∑
0≤ 9≤@−?

2 9G
9

where 2 9 = det
[
"1 · · · "?−1 "@− 9

]
and ": stands for the :-th column of " . Let Syl: be a

matrix satisfying

Syl: (�,�) ·
[
G<+=−2:−1 · · · G0

])
=
[
G=−:−1� · · · G0� G<−:−1� · · · G0�

])
Then the :-th subresultant of � and � w.r.t. G is defined as (: (�,�) := detp Syl: (�,�) and the
principal coefficient of (: (�,�) is called the :-th principal coefficient of subresultant of � and �
w.r.t. G , denoted by B: (�,�). Obviously, (0(�,�) is the Sylvester resultant of � and � w.r.t. G .
Bézout type. Assume< ≥ =. The Bézout matrix of � and � w.r.t. G is defined as a matrix Bez(�,�)
of order< ×< satisfying

� (G )�(~) − � (~)�(G )

G − ~
= G) · Bez(�,�) · ~

where G = [G<−1, . . . , G0]) and ~ = [~<−1, . . . , ~0]) . We call det Bez(�,�) the Bézout resultant of �
and � w.r.t. G . Let Bez: be the submatrix of Bez(�,�) obtained by deleting its last : rows. Then we
have (: (�,�) = 2 · detp Bez: for some constant 2 . Thus we call detp Bez: the Bézout subresultant of
� and � w.r.t. G .
Barnett type. The formulation of the Barnett-type resultant matrix needs a concept called com-
panion matrix. The companion matrix of a polynomial % with degree C is a matrix �% such that
G · G ≡% �% · G where G = [GC−1, . . . , G0]) . For given polynomials �,� ∈ K[G], the Barnett resultant
matrix of � and � w.r.t. G is defined as Bar(�,�) := �(�� ), whose determinant is called the Bar-
nett resultant. Let Bar: be the submatrix of � obtained by deleting its first : rows. Then we have
(: = 2 · detp Bar: for some constant 2 . Thus we call detp Bar: the Barnett subresultant of � and �
w.r.t. G .
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From now on, when the variable which the resultant/subresultants are defined w.r.t. is clear from
the context, we can omit it for the sake of simplicity.

3 Problems and Methods
It is seen that the three types of resultant matrix, resultant and subresultants in Section 2 are
formulated in power basis. A natural question is: what is their equivalence in other basis? By
equivalence, we mean that the resultant/subresultants in non-power basis are similar to those in
power basis, only differing by a non-zero constant factor. In this section, we review three such
types of resultant matrices, resultants and subresultants in non-power basis, including Sylvester
type in Bernstein basis, Bézout type and Barnett type in Newton basis. It should be pointed out that
the formulation of resultant matrices in non-power basis does not require the polynomials to be
given in the same basis. However, these matrices display simpler forms when the polynomials are
formulated in the same basis (see [27, Example 4]). Therefore, in the rest of the paper, we assume
the polynomials are given in Bernstein/Newton form.

3.1 Sylvester matrices and resultants in Bernstein basis

LetFB =
[
FB,B (G ) FB,B−1(G ) · · · FB,0(G )

]) where

FB,8 (G ) =

(
B

8

)
(1 − G )B−8G8 for 0 ≤ 8 ≤ B .

Then FB is called the Bernstein basis of KB[G]. A polynomial written as a linear combination of
FB,8 (G )’s is called a Bernstein polynomial.
The Sylvester matrix of � and � in Bernstein basis is defined as a matrix Syl(1)(�,�) such that

Syl(1)(�,�) ·F<+=−1 =
[
F=−1� F<−1�

])
We call det Syl(b)(�,�) the Sylvester resultant of � and� in Bernstein basis. When � and� are given
in Bernstein basis, one can easily write down their Sylvester matrix in Bernstein basis from the
above definition and then compute their resultant in Bernstein basis. More explicitly, when � and
� are given in their Bernstein form below:

� (G) =
<∑
8=0

08F<,8 (G ), � (G) =
=∑
8=0

18F=,8 (G ).

their Sylvester matrix (~; (1)(�,�) is

Syl(1)(�,�) = " (1)�

where

• " (1) =



0<
(
<
<

)
0<−1

(
<

<−1
)

· · · 00
(
<
0

)
. . . . . . . . . . . .

0<
(
<
<

)
0<−1

(
<

<−1
)

· · · 00
(
<
0

)
1=

(
=
=

)
1=−1

(
=

=−1
)

· · · 10
(
=
0

)
. . . . . . . . . . . .

1=
(
=
=

)
1=−1

(
=

=−1
)

· · · 10
(
=
0

)



= rows

< rows

,

• � = diag

[
1(

<+=−1
<+=−1

) , 1(
<+=−1
<+=−2

) , · · · , 1(
<+=−1

0

) ] .
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3.2 Sylvester subresultants in Bernstein basis
When it comes to subresultants, one may naturally ask the following question:
In: � and � in Bernstein polynomials, and an integer : < min(deg �, deg�)
Out: (: (�,�) which is expressed in Bernstein basis.
A naive way for solving the above problem is: (1) converting � and � to polynomials in power
basis, (2) computing (: (�,�), and (3) changing the basis back. We call this approach the basis-
transformation-based method. It often involves intensive computation and also causes numerical
instability. Another natural extension is to truncate the resultant matrices in Bernstein polynomials
as done in power basis and compute the determinant polynomial (but in Bernstein basis). However,
the resulting subresultants are not equal to those in power basis. Thus we have to explore other
approaches to formulate subresultants in Bernstein basis.
We note that subresultants in power basis can also be expressed as determinants of matrices which
contain subresultant matrices as submatrices [19]. Following this approach, Tan presents an analogy
of subresultant formulation in Bernstein basis in [22]. More explicitly, the :-th subresultant of �
and � w.r.t. G is

(: (�,�) = detp

[
Syl(1)

:
(�,�)

-:%:

]
where Syl(1)(�,�) is the submatrix of " (1) obtained by deleting the last : rows from each block
consisting the coefficients of � and � respectively and deleting the last : columns, and

-: =


−(1 − G ) G

. . . . . .
−(1 − G ) G

:×(:+1)
%: =


(
<+=−:−1
<+=−:−1

)
· · ·

(
<+=−:−1

0

)
. . . . . .(

<+=−:−1
<+=−:−1

)
· · ·

(
<+=−:−1

0

)
 (:+1)×(<+=−:)

Obviously, (0(�,�) is the Sylvester resultant of � and � w.r.t. G .
In order to expand (: = det Syl(1)

:
(�,�) into an expression in Bernstein basis, we suggest to replace

1 − G with ~ during the determinant expansion and change ~ back to 1 − G later.

3.3 Resultant matrices and resultants in Newton basis
Let _ = (_1, . . . , _C ) ∈ KC and #_(G ) =

[
#C · · · #1 #0

]) where #8 (G ) = #8−1(G )(G − _8 ) with
the convention #0 := 1. We call #_(G )1 the Newton basis of KC [G] w.r.t. _. Moreover, a polynomial
written as a linear combination of #8 ’s is called a Newton polynomial.
Bézout type. Assume< ≥ =. The Bézout matrix of � and � in the basis #_ is defined as a matrix
Bez_(�,�) of order< ×< satisfying

� (G )�(~) − � (~)�(G )

G − ~
= #̃_(G )

) · Bez_(�,�) · #̃_(~)

where #̃_(G ) =
[
#<−1(G ) · · · #1(G ) #0(G )

]) and #̃_(~) =
[
#<−1(~) · · · #1(~) #0(~)

]) .
Barnett type.The formulation of the Barnett-type resultant matrix in Newton basis needs a concept
called confederate matrix, which is an extension of the companion matrix in power basis to other
bases. The confederate matrix of a polynomial % with degree C in #̃_(G ) (where _ ∈ KC ) is a matrix

1�_ (G ) can be abbreviated as �_ if no ambiguity occurs.
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�_
%
such that G · #̃_(G ) ≡% �_

%
· #̃_(G ). For given polynomials �,� ∈ K[G], the Barnett resultant

matrix of � and � associated to #̃_(G ) where _ ∈ K< is defined as Bar_(�,�) := �(�_
�
), whose

determinant is called the Barnett resultant.
When the input polynomials are formulated in Newton basis, the authors present a basis-preserving
method for computing Bez_(�,�) effectively [27], which relies on the reveal of an internal connec-
tion among the entries of Bez_(�,�). Then one can utilize the connection between Bez_(�,�) and
Bar_(�,�) discovered in [29] to compute Bar_(�,�). Both of the methods are implemented in the
Maple package SresToolsNPB.

3.4 Subresultant polynomials in Newton basis
Similar to Bernstein polynomials, one may consider the following problem:
In: � and � in Newton basis, and an integer : < min(deg �, deg�)
Out: (: (�,�) which is expressed in the given Newton basis.
For solving the posed question, Wang and Yang extended the concept of determinant polynomial
from power basis to Newton basis in [24]. Given a matrix " ∈ K?×@ where ? ≤ @ and a Newton
basis #_(G ) =

[
#< . . . #1 #0

]) , the determinant polynomial of " in #_(G ) is defined as

detp#_
" :=

∑
0≤ 9≤@−?

2 9# 9 (G )

where 2 9 = det
[
"1 · · · "?−1 "@− 9

]
and": stands for the :-th column of" . Then we provide

the following answers to the above problem:
• Let Bez_

:
be the submatrix of Bez_(�,�) obtained by deleting its last : rows. Then we have

(: = 2 · detp Bez_
:
for some constant 2 .

• Let Bar_
:
be the submatrix of Bar_ obtained by deleting its first : rows. Then we have (: =

2 · detp Bar_
:
for some constant 2 .

Therefore, we call detp Bez_
:
the :-th Bézout subresultant and det Bar_

:
the :-th Barnett subresultant

of � and � in the Newton basis #_(G ), respectively.

In summary, the problems which can be solved by the Maple package SresToolsNPB are summarized
below.
• Given two Bernstein polynomials � and � with degrees< and = in Bernstein basis, compute

the Sylvester resultant matrix in Bernstein basis.
• Given two Bernstein polynomials � and� with degrees< and = in Bernstein basis and 0 ≤ : <

min(<,=), compute the :-th Sylvester subresultant of � and � in Bernstein basis.
• Given _ ∈ F= and two Newton polynomials � and � degrees< and = in #_(G ), compute the

Bézout matrix of � and � in Newton basis.
• Given _ ∈ F= , two Newton polynomials � and� degrees< and= in#_(G ) and 0 ≤ : < min(<,=),

compute the :-th Bézout subresultant of � and � in Newton basis.
• Given _ ∈ F= and two Newton polynomials � and � degrees< and = in #_(G ), compute the

Barnett resultant matrix of � and � in Newton basis.
• Given _ ∈ F= , two Newton polynomials � and� degrees< and= in#_(G ) and 0 ≤ : < min(<,=),

compute the :-th Barnett subresultant of � and � in Newton basis.

4 Public Interface
This section presents the public functions of the SresToolsNPB package and their usage. It serves
as a quick reference manual for the users of the package. We assume � and � are represented by
their coefficient vectors 5 and 6 in the increasing degree.
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BernsteinSylvesterMatrix. The calling sequence is

BernsteinSylvesterMatrix(5 , 6)

It computes the Sylvester resultant matrix of � and � in Bernstein basis.

BernsteinSylvesterResultant. The calling sequence is

BernsteinSylvesterResultant(5 , 6)

It computes the Sylvester resultant of � and � in Bernstein basis.

BernsteinSylvesterSres. The calling sequence is

BernsteinSylvesterSres(5 , 6, :)

where : is an integer such that 0 ≤ : < min(Dim(5 ) − 1,Dim(6) − 1). The function computes the
:-th Sylvester subresultant of � and � in Bernstein basis.

NewtonBezoutMatrix. The calling sequence is

NewtonBezoutMatrix(5 , 6, _)

where _ ∈ Kmax(<,=) which represents the Newton basis obtained from _. It computes the Bézout
resultant matrix of � and � in the Newton basis #_ .

NewtonBezoutResultant. The calling sequence is

NewtonBezoutResultant(5 , 6, _)

where _ ∈ Kmax(<,=) which represents the Newton basis obtained from _. It computes the Bézout
resultant of 5 and 6 in the Newton basis #_ .

NewtonBezoutSres. The calling sequence is

NewtonBezoutSres(5 , 6, _, :)

where _ ∈ Kmax(<,=) which represents the Newton basis obtained from _ and : is an integer such
that 0 ≤ : < min(Dim(5 ) − 1,Dim(6) − 1). It computes the :-th Bézout subresultant of 5 and 6 in
the Newton basis #_ .

NewtonBarnettMatrix. The calling sequence is

NewtonBarnettMatrix(5 , 6, _)

where _ ∈ Kmax(<,=) which represents the Newton basis obtained from _. It computes the Barnett
resultant matrix of 5 and 6 in the Newton basis #_ .

NewtonBarnettResultant. The calling sequence is

NewtonBarnettResultant(5 , 6, _)

where _ ∈ Kmax(<,=) which represents the Newton basis obtained from _. It computes the Barnett
resultant of � and � in the Newton basis #_ .

NewtonBarnettSres. The calling sequence is

NewtonBarnettSres(5 , 6, _, :)

where _ ∈ Kmax(<,=) which represents the Newton basis obtained from _ and : is an integer such
that 0 ≤ : < min(Dim(5 ) − 1,Dim(6) − 1). It computes the :-th Barnett subresultant of � and � in
the Newton basis #_ .

The package SresToolsNPB is available at
https://github.com/JYangMATH/SresToolsNPB
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for download. In Figure 1 below, we provide an illustration on how to use functions in SresToolsNPB.

> > 

(1.1)(1.1)

(2.1)(2.1)

> > 

> > 

> > 

(3.1)(3.1)

> > 

> > 

> > 

> > 

with SresToolsNPB :

Example 1:
 Sylvester matrix, resultant and subresultant in Bernstein basis 

f1d 2 4 3 :  g1d 6 K3 1 :   k1d 2 :

BernsteinSylvesterMatrix f1, g1 ,
BernsteinSylvesterResultant f1, g1 ,
BernsteinSylvesterSres f1, g1, k1

3
8

3

2

3
0

0 1
8

3
2

1 K2 2 0

0
1

3
K2 6

,
1816

9
,
2 1K x 2

3
C

8 x 1K x

3
C x2

Example 2:Bezout matrix, resultant and subresultant in Newton basis 

f2d K5 2 6 K3 :    g2d K8 1 3 K1 :  

h2d 5 3 8 :           k2d 2 :

NewtonBezoutMatrix f2, g2, h2 ,   
NewtonBezoutResultant f2, g2, h2 ,
NewtonBezoutSres f2, g2, h2, k2

K3 K1 19

K1 24 K90

19 K90 K191

, 32999, 24K xK 3 xK 5  xK 3

Example 3:
 Barnett matrix, resultant and subresultant in Newton basis 

f3d K9 K1 K5 :   g3d 2 9 1 K1 :    

h3d 5 1 K6 :       k3d 2 : 

NewtonBarnettMatrix f3, g3, h3 ,
NewtonBarnettResultant f3, g3, h3 ,
NewtonBarnettSres f3, g3, h3, k3

344 K431 K58

K49 50 10

5 1 9

,K42919,K4K xK 5 xK 5  xK 1

 

Fig. 1. Computing the resultant matrix/resultant/subresultants in non-power basis

5 Conclusion
This paper presents a Maple package SresToolsNPB for computing the resultants and subresultants
of polynomials in non-power bases, with a focus on the Newton and Bernstein bases as two typical
representatives. It is required that both the input and output polynomials are provided in the same
basis. Compared with the basis-transformation-based methods, the tools provided by the package
can compute the resultants and subresultants in non-power basis effectively. A natural question is:
for other bases (e.g., Chebyshev basis), are there any basis-preserving methods for computing the
resultants and subresultants? This question will be investigated in the future.
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