Sparse Interpolation: design sparse antenna arrays for estimating directions of arriving signals

Wen-shin Lee

Division of Computing Science and Mathematics, University of Stirling, Scotland, UK

Estimating the directions of simultaneously arriving signals plays an important role in radar, remote sensing, radio frequency interference mitigation, wireless networks, machine perception of unmanned aerial vehicles or self-driving cars. In signal processing, antenna array systems have been designed to solve the problem of estimating the direction of arrival (DOA). A main constraint in designing regularly spaced antenna systems is the spatial Nyquist criterion, which requires the space between two sensors to be less than half of the signal wavelength. A disadvantage of densely spaced antenna elements is the effect of mutual coupling, normally reduced through costly extensive calibration of the system.

Using a regularly spaced antenna system for DOA estimation can be formulated as an exponential analysis problem, which can be tackled by the classical Prony method from approximation theory. Interestingly, the Ben-Or/Tiwari sparse interpolation algorithm in computer algebra is closely related to Prony’s method. This connection has led to a major development in exponential analysis that can circumvent the Nyquist constraint [1], hence allow us to completely remove the dense Nyquist spacing requirement for DOA in antenna design [2].

Keywords
direction of arrival, exponential analysis, sparse interpolation

References