Hermite Interpolation With Error Correction

Erich L. Kaltofen1,2 \[\text{kaltofen ät ncsu döt edu}\]
1 Department of Mathematics, NCSU, Raleigh, NC, USA
2 Department of Computer Science, Duke University, Durham, NC, USA

Univariate polynomial interpolation with error correction is the methodology of the 1960 Reed-Solomon algebraic error correction code. Univariate polynomial Hermite interpolation with error correction, which fits values and values of derivatives, is the 1997 methodology of Rosenbloom-Tsfasman multiplicity error correction code. The Welch-Berlekamp decoding algorithm applies to both problems, and can be formulated as a numerically stable linear system. At ISSAC 2021 [1], Kaltofen, Pernet and Z.-H. Yang show that in the presence of a large error rate the multiplicity code is sub-optimal for fields of characteristic zero, that is, uses more values than are necessary for a unique interpolant. The interpolation algorithm at ISSAC 2021 does not use the Welch-Berlekamp error locator polynomial with multiplicities, and instead iterates the Reed-Solomon decoder. In my talk, I will investigate the numerical stability of our new Hermite interpolation algorithm with error correction.

Keywords
Hermite interpolation, Multiplicity error correction code, Reed-Solomon error correction code, high error capacity