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Abstract
Summary: We present an interactive Deep Learning-based software tool for Unsupervised Clustering of DNA Sequences (iDeLUCS), that
detects genomic signatures and uses them to cluster DNA sequences, without the need for sequence alignment or taxonomic identifiers.
iDeLUCS is scalable and user-friendly: its graphical user interface, with support for hardware acceleration, allows the practitioner to fine-tune the
different hyper-parameters involved in the training process without requiring extensive knowledge of deep learning. The performance of
iDeLUCS was evaluated on a diverse set of datasets: several real genomic datasets from organisms in kingdoms Animalia, Protista, Fungi,
Bacteria, and Archaea, three datasets of viral genomes, a dataset of simulated metagenomic reads from microbial genomes, and multiple data-
sets of synthetic DNA sequences. The performance of iDeLUCS was compared to that of two classical clustering algorithms (k-meansþþ and
GMM) and two clustering algorithms specialized in DNA sequences (MeShClust v3.0 and DeLUCS), using both intrinsic cluster evaluation met-
rics and external evaluation metrics. In terms of unsupervised clustering accuracy, iDeLUCS outperforms the two classical algorithms by an aver-
age of �20%, and the two specialized algorithms by an average of �12%, on the datasets of real DNA sequences analyzed. Overall, our results
indicate that iDeLUCS is a robust clustering method suitable for the clustering of large and diverse datasets of unlabeled DNA sequences.

Availability and implementation: iDeLUCS is available at https://github.com/Kari-Genomics-Lab/iDeLUCS under the terms of the MIT licence.

1 Introduction

Clustering algorithms for DNA sequences play a fundamental
role in bioinformatics, as they can be used to study the struc-
tural composition of DNA sequence datasets, to discover
novel operational taxonomic units, and to complement phylo-
genetic analysis. The development of high throughput se-
quencing technologies has raised several challenges to many
clustering methodologies, as most of them cannot keep up
with the exponential increase in the number of sequences
available for analysis. One of the reasons is that many cluster-
ing methods rely on the computationally expensive process of
sequence alignment. To address these limitations, several
alignment-assisted and alignment-free methodologies were
proposed, see, e.g. James et al. (2018) and Ghodsi et al.
(2011). The majority of these methods also face scalability
issues, as they are reliant on classic clustering algorithms that
perform well in the low data regime but have poor perfor-
mance when large amounts of data are available. While in the
aforementioned approaches the exponential increase of data
is a hindrance to good performance, other approaches, e.g.
deep-learning-based methods, benefit from the availability of
large amounts of data. In particular, multiple deep learning
algorithms have been developed for classification and infer-
ence using both alignment-based and alignment-free method-
ologies (Tampuu et al. 2019, Vu et al. 2020, Nissen et al.
2021). It has also been shown recently by Millán Arias et al.

(2022) that deep learning provides a significant improvement
over classical unsupervised learning algorithms in discovering
genomic-signature-based clusters, at different taxonomic lev-
els. These promising initial results motivated the development
of iDeLUCS, which takes advantage of the capabilities of
deep learning, and is capable of clustering datasets comprising
more than 400 Mbp. In addition, iDeLUCS exhibits several
novel features which enhance the interpretability of its results:
confidence scores of the final cluster assignments, a graphical
user interface (GUI), dynamic visualization of the underlying
training process, and incorporated evaluation metrics.

2 Software description

iDeLUCS is a standalone software tool that exploits the capa-
bilities of deep learning to cluster genomic sequences. It is ag-
nostic to the data source, making it suitable for genomic
sequences taken from any organism in any kingdom of life.
iDeLUCS assigns a cluster identifier to every DNA sequence
present in a dataset, while incorporating several built-in visu-
alization tools that provide insights into the underlying train-
ing process and the composition of the datasets (Fig. 1).
iDeLUCS offers an evaluation mode to compare the ground-
truth label assignments (or hypothesized label assignments) of
the dataset sequences with their discovered cluster labels. This
is accompanied by a visual qualitative assessment of the

Received: September 13, 2022. Revised: July 18, 2023. Editorial Decision: August 8, 2023. Accepted: August 16, 2023
VC The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39(9), btad508
https://doi.org/10.1093/bioinformatics/btad508

Advance access publication 17 August 2023

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/9/btad508/7243983 by guest on 27 Septem
ber 2023

https://orcid.org/0000-0002-8886-9389
https://orcid.org/0000-0002-7788-5105
https://github.com/Kari-Genomics-Lab/iDeLUCS


clustering, through the use of the uniform manifold approxi-
mation (UMAP, see McInnes et al. 2018) of the learned lower
dimensional embedding. Finally, iDeLUCS outputs confidence
scores for all of its cluster-label predictions, for enhanced in-
terpretability. The software was developed using Python 3.9
and can be deployed with or without a graphics processing
unit (GPU) (see Supplementary Appendix SA for implementa-
tion details).

3 Materials and methods

iDeLUCS builds upon the pipeline proposed in Millán Arias
et al. (2022), consisting of: (i) calculating the k-mer frequen-
cies for each DNA sequence, (ii) computing the data augmen-
tations (mimic sequences), (iii) training multiple deep neural
networks to learn the cluster assignments, and (iv) computing
the majority voting cluster assignment for each sequence. In
addition to multiple algorithmic optimizations to the pipeline,
iDeLUCS significantly extends it in four main aspects. First, it
uses the contrastive learning framework introduced by Chen
et al. (2020), and incorporates an additional contrastive term
in the loss function, which enforces the consistency of the hid-
den representations learned by the artificial neural networks.
These hidden representations are learned simultaneously with
the cluster assignments via backpropagation. Second, it repla-
ces the majority voting scheme by a more robust clustering en-
semble based on information theory, which reduces the
variance and boosts the accuracy. Third, it uses the informa-
tion provided by the ensemble and the consistency of the hid-
den representations to provide an intrinsic quantitative
assessment of the clustering assignment (silhouette coefficient,
Davies–Bouldin Index), as well as to output the confidence
score for the cluster assignment of each sequence in the

dataset. Finally, the new contrastive learning framework can
be combined with nonparametric clustering algorithms, such
as HDBSCAN (McInnes et al. 2017), to automatically deter-
mine the number of clusters. This iDeLUCS option is recom-
mended only for fine-grained clusterings, due to the fact that
HDBSCAN is a density-based method (see Supplementary
Appendix SB for details).

To assess the performance and applicability of iDeLUCS,
we first analyzed 14 real datasets with known ground-truth
annotations [described in (a) and (b)]: nine datasets of mito-
chondrial DNA from various Kingdoms of life (Animalia,
Protista, Fungi) totaling 18 810 sequences, two Bacteria data-
sets totaling 4800 sequences, and three viral datasets totaling
4144 sequences. In addition, we analyzed one dataset of simu-
lated reads from microbial genomes (Bacteria and Archaea)
comprising 432 333 reads [described in (c)], and 12 synthetic
datasets totaling 246 625 artificial DNA sequences [described
in (d)]. Each dataset was selected for its unique characteristics,
as described herein:

a) Eight datasets from Kingdom Animalia, Kingdom
Bacteria, and three datasets of viral sequences, obtained
from Millán Arias et al. (2022): six mitochondrial DNA
datasets of vertebrates at taxonomic levels from
Subphylum to Family; two bacterial datasets to be clus-
tered into families; and three viral datasets (Dengue,
Influenza-A, Hepatitis B) to be clustered into virus sub-
types. The maximum number of clusters per dataset is 12,
and the maximum cluster size is 500 sequences, with the
average sequence length of 16 700 bp for mtDNA,
433 882 bp for bacterial, and 5058 bp for viral sequences.

b) Three new mitochondrial DNA datasets (Table 1) cre-
ated to enhance the representation across Kingdoms of

Figure 1. Training tab of iDeLUCS. The left panel displays a summary of the main training parameters, as well as some statistics about the dataset under

study. The center panel contains a qualitative assessment of the learning progress. In this particular case, the figure illustrates the clustering of

mitochondrial genomes of insects into seven different clusters, each corresponding to one corner of the heptagon. Each point represents a genome, and

its position indicates the probability that it is assigned to a different cluster/corner. The right panel contains a dynamic plot with the learning curves of the

different models and serves as an indicator of whether or not the contrastive loss function is being minimized during training.
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life: a dataset of 2581 mitochondrial genomes from
Kingdom Protista (average sequence length 17 141 bp)
clustered into three phyla/subphyla; a dataset of 9027
mitochondrial genomes from class Insecta (average se-
quence length 15 841 bp) clustered into seven orders;
and a dataset of 1759 mitochondrial genomes from
Kingdom Fungi (average sequence length 62 644 bp),
clustered into three phyla/subphyla.

c) One dataset of simulated metagenomic reads from eight
microbial genomes, obtained from Wickramarachchi
and Lin (2022). This dataset comprises more than
430 000 reads to be clustered into 8 species (7 Bacteria
and one Archaea). The reads were simulated using the
PacBio sequencing simulation parameters, with maxi-
mum cluster size of 119 330 sequences, and average se-
quence length of 8511 bp.

d) Twelve synthetic datasets from Girgis (2022). These are
artificial datasets, each consisting of 100 random tem-
plate sequences, representing the true clusters, and a ran-
dom number of mutated copies that were generated from
each template according to a predefined identity thresh-
old. Each dataset contains at most 25 000 sequences,
with a minimum dataset size of 18 210. The maximum
number of clusters for each dataset is 12, the maximum
cluster size is 400 sequences, and the average sequence
length is 20 552 bp.

A detailed description of the datasets can be found in the
Supplementary Tables S1–S3 in Supplementary Appendix SC.

To assess the performance of iDeLUCS on all the datasets
analyzed in this study, we utilize both intrinsic (Davies–
Bouldin Index, Silhouette Coefficient) and external
[Homogeneity, Completeness, Unsupervised Clustering
Accuracy (ACC)] clustering evaluation metrics. Of these,
ACC arguably is the best indicator of performance, as it
reflects the correspondence between cluster assignments and
the ground-truth.

4 Applications and results

The performance of iDeLUCS was compared against two
classic clustering algorithms, k-meansþþ and Gaussian
Mixture Models (GMM), as well as two recent clustering
methods specific to DNA sequences, DeLUCS (Millán Arias
et al. 2022) and MeShClust v3.0 (Girgis 2022). The perfor-
mance results for all four algorithms, in terms of intrinsic and
external evaluation metrics as well as running time and mem-
ory usage, on the new mitochondrial datasets (b), are summa-
rized in Table 2. Note that MeShCLust v.3.0 was run both
with the recommended option of automatic identification of

the “identity threshold” parameter, as well as with the manu-
ally optimized value of the identity threshold parameter
obtained by searching the interval [0.5, 0.9], with a step size
of 0.05. The performance results for all algorithms on the
other, previously published, datasets can be found in
Supplementary Tables S4–S7 in Supplementary Appendix SC.
Overall, iDeLUCS has a robust performance across these very
different types of datasets: small (113 sequences) or large
(432 000 reads); real, simulated, or synthetic; at different tax-
onomic levels ranging from phyla to subtypes; with balanced
clusters or with unbalanced clusters; with cluster number
varying from 3 to 100 clusters; comprising long sequences
(500 000 bp) or short sequences (650 bp); consisting of ho-
mologous sequences or of nonhomologous sequences. On
these datasets, the unsupervised clustering clustering accuracy
(ACC) obtained by iDeLUCS ranges from 78% to 100%,
with an average accuracy of 90%.

In particular, iDeLUCS outperforms the other four cluster-
ing algorithms on the real datasets in (a) and (b), most of
which consist of nonhomologous sequences. For example, for
the mitochondrial genome datasets the average accuracy
(ACC) of iDeLUCS is 92.4%, while classic clustering algo-
rithms obtain an average accuracy of 70.2%, and the second-
best performant algorithm has an average accuracy of only
75.42%.

As seen in Table 2, for the new mitochondrial datasets
(b), iDeLUCS obtains unsupervised clustering accuracies
ranging from 78% to 89.7%. Specifically, iDeLUCS outper-
forms all the other clustering algorithms for the balanced
and unbalanced versions of the Insects and Fungi datasets,
and has a comparable performance with the other classifiers
for both the balanced and unbalanced versions of the Protist
dataset. Note that the improved clustering ensemble and the
new contrastive loss function of iDeLUCS significantly
enhance its capability to cluster unbalanced datasets, com-
pared to DeLUCS. These improvements become apparent in
the clustering of the dataset of simulated long metagenomic
reads (c), where the accuracy of iDeLUCS is �16% higher
than that of DeLUCS, and �7% higher than that of
k-meansþþ.

For the synthetic datasets in (d), iDeLUCS obtains an aver-
age accuracy of 98.5% when the number of clusters is given
as a parameter, and of 97.3% when the option of using
HDBSCAN is selected to automatically determine the number
of clusters. This is slightly lower than, but comparable to, the
performance of MeShClust v3.0, which achieves an average
accuracy of 99.3% for these synthetic datasets. Note that not
all synthetic datasets analyzed in Girgis (2022) were included
in this comparison, since iDeLUCS was not optimized for
some types of datasets. In particular, due to existing

Table 1. Description of the new mitochondrial DNA datasets (b).a

Dataset Total no.
sequences

Min. seq.
length (bp)

Avg. seq.
len. (bp)

Max. seq.
len. (bp)

Total no.
clusters

Cluster
min. size

Cluster
avg. size

Cluster
max. size

Insects 9027 14 602 15 841 26 613 7 652 1290 1976
Fungi 1759 20 063 62 644 99 976 3 335 586 889
Protists 2581 5493 17 141 69 503 3 315 860 1642
Insects—balanced 4550 14 602 15 897 25 011 7 650 650 650
Fungi—balanced 1005 21 684 60 657 99 976 3 335 335 335
Protists—balanced 945 5498 24 697 69 503 3 315 315 315

a Note that there is a balanced version of each new dataset (Fungi, Protists, Insects). For the balanced version, the number of sequences per cluster was
selected according to the number of sequences available in the smallest cluster.
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restrictions on the size of the output layer in deep learning
models, the synthetic datasets where the expected number of
clusters was large (5000) were excluded. In addition, since the
real genomic datasets analyzed in this study do not include
short sequences (< 500 bp), the synthetic datasets with aver-
age sequence length < 500 bp were also excluded from this
comparison. Future work is needed to systematically test and
optimize iDeLUCS for datasets with short reads, or datasets
where more than 200 clusters are expected.

All computational tests were performed on the Beluga cluster
of the Digital Research Alliance of Canada (16 x Intel Gold
6148 Skylake @ 2.4 GHz CPU, 32 GB RAM) with NVIDIA
V100SXM2 GPU (16 GB memory). The results obtained with-
out GPU for hardware acceleration can be found in
Supplementary Table S8 in Supplementary Appendix SC.

In summary, this study shows that iDeLUCS outperforms
other algorithms in clustering sizeable datasets of unlabeled
DNA sequences, especially when homology may or may not
be present, and when the user has some prior knowledge of
the expected number of clusters. Overall, our analysis shows
that iDeLUCS is an accurate and scalable clustering method,
performant on datasets of long, homology-free DNA

sequences, not tractable via alignment-based methods due to
either lack of alignment or excessive time complexity.
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Table 2. Comparison of the performance of iDeLUCS against k-meansþþ, GMM, DeLUCS, and MeShClust v3.0 clustering algorithms on the new

mtDNA datasets (b), using intrinsic cluster evaluation metrics (Davies–Bouldin Index, Silhouette Coefficient) and external evaluation metrics

(homogeneity, completeness, unsupervised clustering accuracy ACC), as well as time and memory.a

Dataset Model DB (#)
Index

Silhouette
(")

Homogeneity
(")

Completeness
(")

ACC
(")

Time
(#)

Memory
(#) (GB)

Insects k-meansþþ 1.62 0.22 0.50 0.52 64.50% 0:04:58 1.51
(9027 sequences) GMM 1.61 0.21 0.51 0.54 60.60% 1:16:15 4.57

DeLUCS 1.87 0.25 0.64 0.63 72.80% 0:15:50 6.74
MeshClust—auto 0.44 0.44 0.00 0.26 21.90% 1:06:13 1.81
MeshClust—0.7 0.91 0.21 0.98 0.37 49.40% 0:25

! i DeLUCS 3.75 0.52 0.78 0.76 84.10% 0:38:18 6.48
Fungi k-meansþþ 1.03 0.44 0.46 0.53 70.80% 0:00:20 0.55
(1759 sequences) GMM 1.04 0.44 0.49 0.57 70.20% 0:18:30 1.94

DeLUCS 0.88 0.46 0.50 0.48 63.50% 0:05:31 2.36
MeshClust—auto 1.15 0.11 0.81 0.19 34.50% 0:47:35 1.70
MeshClust—0.6 1.07 0.28 0.96 0.28 42.00% 0:13:33 1.15

! i DeLUCS 1.67 0.28 0.67 0.63 78.00% 0:04:32 2.28
Protists k-meansþþ 0.91 0.53 0.69 0.70 81.30% 0:0:08 0.61
(2581 sequences) GMM 0.93 0.53 0.69 0.69 81.90% 0:07:40 2.00

DeLUCS 1.16 0.51 0.54 0.45 62.20% 0:06:16 2.82
MeshClust—auto 0.99 0.44 1.00 0.43 70.70% 0:04:16 0.34
MeshClust—0.5 1.13 0.38 0.88 0.42 76.70% 0:01:40 0.23

! i DeLUCS 0.39 0.81 0.60 0.79 81.40% 0:13:56 2.77
Insects—balanced k-meansþþ 1.56 0.23 0.51 0.53 63.60% 0:00:20 0.89
(4550 sequences) GMM 1.64 0.22 0.52 0.55 62.70% 0:55:40 3.90

DeLUCS 1.33 0.37 0.67 0.68 78.30% 0:11:56 4.01
MeshClust—auto 0.43 0.43 0.00 0.21 21.90% 1:28:35 1.81
MeshClust—0.6 1.02 0.02 0.63 0.41 47.50% 0:03:20 0.53

! i DeLUCS 1.90 0.57 0.82 0.83 89.70% 0:19:11 3.90
Fungi—balanced k-meansþþ 1.09 0.37 0.38 0.43 59.50% 0:00:12 0.44
(1005 sequences) GMM 1.09 0.37 0.40 0.46 60.10% 0:05:41 1.95

DeLUCS 1.09 0.32 0.52 0.52 76.50% 0:04:47 1.91
MeshClust—auto 1.14 0.11 0.81 0.18 34.45% 1:04:08 1.70
MeshClust—0.5 1.41 �0.34 0.51 0.20 44.20% 0:01:44 0.30

! i DeLUCS 2.30 0.39 0.81 0.81 86.20% 0:12:12 2.17
Protists—balanced k-meansþþ 0.97 0.42 0.55 0.62 74.10% 0:0:08 0.43
(945 sequences) GMM 1.00 0.41 0.56 0.62 74.50% 0:05:46 1.98

DeLUCS 0.85 0.53 0.70 0.70 88.10% 0:07:42 1.85
MeshClust—auto 1.20 0.09 0.94 0.51 74.92% 0:03:20 0.26
MeshClust—0.7 1.02 0.06 0.97 0.44 71.85% 0:01:03 0.23

! i DeLUCS 0.85 0.53 0.70 0.70 88.10% 0:08:02 2.14

a Boldface indicates the best result, (")/(#) indicate that higher/lower is better, “balanced” indicates the balanced version of the datasets. “MeShClust—
auto” denotes MeshClust v3.0 run with the option of automatic identification of the identity threshold parameter, and “MeshClust—p” denotes MeshClust
v3.0 run with a manually optimized identity threshold p 2 ½0:5; 0:9�.
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