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ABSTRACT

Genomic signatures—taxon-specific patterns in nucleotide composition—are widely used for taxonomic assignment and
comparative genomics, yet their genome-wide pervasiveness across Telomere-to-Telomere assemblies, particularly within
functionally diverse and highly repetitive regions, remains undercharacterized. We address this gap with an alignment-free,
k-mer-based analysis using Frequency Chaos Game Representations (FCGRs) across the human genome and three additional
eukaryotes from distinct kingdoms. First, by combining qualitative inspection of FCGR landscapes with quantitative distance
benchmarking, we show that each species exhibits a stable genomic signature across most chromosomes, with localized
departures concentrated in regions enriched for short and long tandem repeats. Then, we introduce two computational
pipelines that automatically select a short, contiguous representative genomic segment (500 Kbp) per genome and use it as
a proxy to quantify intragenomic variation. Using DSSIM on a [0,1] scale, 80% of 500 Kbp segments in the human genome
lie within 0.24 of the representative; segments exceeding this threshold align with tandem-repeat-dense loci. Leveraging
these representatives in downstream tasks yields practical gains—for example, one-nearest-neighbor taxonomic classification
improves by 7% relative to choosing a random segment. Finally, we provide CGR-Diff, a graphical tool that enables side-by-
side visualization and quantitative comparison of FCGR-based genomic signatures for sample or user-provided sequences,
facilitating exploratory analyses of intragenomic variation within and across species. Collectively, our results provide extensive
qualitative and quantitative evidence that k-mer-based genomic signatures are pervasive at genome scale while varying
predictably in repeat-dense regions, and they introduce practical methods and software for proxy selection and comparative
analysis.

Introduction

Recent advances in long-read sequencing and sequence assembly algorithms have led to many Telomere-to-Telomere (T2T)
genome sequence assemblies for various species!?, including human, uncovering significant heterogeneity and structural
variation within the genome?. While it is known that across the genome there are several structural elements (e.g., telomeres,
centromeres, and chromosome arms) which differ in function and composition®, analysis of T2T sequences has revealed
additional insights. Beyond the structural variation that exists within the genome, several factors vary along the length of
chromosomes, including GC content, gene density, and the distribution of long interspersed repeat elements (LINEs), long
terminal repeats (LTRs), microsatellites, and other repeats'*3’4. Furthermore, some studies have shown that even regions
traditionally considered highly uniform in sequence composition (e.g., Internal Transcribed Spacers (ITS) and rDNA) exhibit
extensive variation across different parts of the genome>-°.

In spite of this regional diversity in genome sequence composition associated with local functional attributes, some studies
have suggested the presence of certain global characteristics (e.g., dinucleotide relative abundance’, or the relative frequency
of oligonucleotides!?) that are repeated across different segments of a genome and are referred to as the genomic signature’.
The studies introducing these concepts hypothesized that the genomic signature is pervasive genome-wide and species-specific,
although this conclusion was based on limited analyses of short genomic regions (50 kbp to 100 kbp)’~" or a small number
of species'?. In spite of the small scale of these studies, the assumption of the pervasiveness of genomic signatures within
a genome took hold and has been successfully used in numerous applications, including phylogenetics and evolutionary
analyses'! 12, taxonomic classification'®!314 genome adaptation studies'>, the identification of emergent pathogens'®, and the

classification of cancer genomes'”.



Prior work has identified various quantitative approaches that could serve as a genomic signature'®2%. One of the earliest
approaches was the use of Dinucleotide Relative Abundance Profiles (DRAPs)”-%21-23 which calculates the ratio of the
observed frequency of a dinucleotide (a pair of consecutive nucleotides) to its expected frequency (i.e., the product of the
frequencies of its constituent nucleotides). The DRAP concept was then generalized to the oligonucleotide relative abundance
profile of a DNA segment, computed as the ratio of the observed frequency of an oligonucleotide to its expected frequency'®.
The Generalized Genomic Signature®* is a similar approach that operates by first filtering out the background nucleotide
composition and then measuring only the deviation of oligonucleotide frequencies from this background composition.

Another approach to construct a genomic signature is through the Chaos Game Representation (CGR)> of DNA sequences
and its derivative, Frequency Chaos Game Representation (FCGR)?*?7. The CGR of a DNA sequence is a two-dimensional
binary image whereby each pixel represents the presence/absence of an oligonucleotide in the sequence'?, and where the
resolution of the image determines the oligonucleotide length?®. Thus, the CGR of a DNA sequence is a simultaneous
representation of the distribution of oligonucleotides of a certain length within that sequence. FCGR generalizes CGR by
providing a quantitative view: In an FCGR of resolution 2% x 2¥, where k corresponds to the length of the oligonucleotide'®
(also referred to as a k-mer), the intensity of each pixel represents the frequency of a specific k-mer within the sequence, making
the entire plot a comprehensive visual representation of k-mer frequencies in the originating DNA sequence. FCGRs of DNA
sequences exhibit fractal geometric patterns, and the genomic signature represented by an FCGR is correlated to other methods
such as DRAP, in that DRAP can be deduced from FCGR!$20, but not vice versa'8. CGR and FCGR have gained significant
attention through their usability in bioinformatics'!-?®, due to their ability to visually encapsulate genome-wide sequence
composition patterns, and given their robustness, flexibility, and applicability to sequences of any length!'?. Specifically, FCGR
has been effectively used for alignment-free genome comparisons in taxonomic analysis>*~3!, thanks to the computational
efficiency that results from its alignment-free nature, which allows bypassing the computationally expensive step of multiple
sequence alignment®.

While the aforementioned studies have suggested that a k-mer-based genomic signature is pervasive across the genome of
an organism® -1 and this assumption has been successfully used in various bioinformatics applications, the extent to which
this pervasiveness holds throughout a T2T genome assembly remains counterintuitive'> and underexplored. In particular, the
intragenomic variability of such a genomic signature across different genomic regions still awaits a comprehensive investigation.
Should the hypothesis of genomic signature pervasiveness be conclusively proven, an alignment-free genome comparison
algorithm would still depend on a method to reliably select a DNA genomic segment that reflects the nucleotide composition
characteristics of the whole genome. Given the observed heterogeneity and structural variations within a genome and the
expected impact of this heterogeneity on the genomic signature, finding such a representative DNA genomic segment could be
challenging.

This study aims to fill these gaps by providing extensive qualitative and quantitative analyses supporting the hypothesis that
a k-mer-based genomic signature is largely preserved along the length of each individual T2T genome in human and other
eukaryotic species, with notable exceptions and localized variations. It also proposes two computational pipelines for selecting
a short representative DNA segment that captures the nucleotide composition of the entire genome, at a given resolution (k-mer
size), and that can be used to explore the sequence composition variability along a T2T assembly. Finally, through several
computational experiments, this study demonstrates that short representative genomic segments can be successfully used in
downstream tasks such as taxonomic classification. While this initial work focuses on representative model species from
different taxonomic groups, the framework is general and can be extended to a broader and more heterogeneous set of genomes.

Concretely, to extract genomic signatures that reliably encapsulate the characteristics of the genome, this study uses FCGR,
which allows both visual and quantitative comparisons of genomic signatures. Visual inspection of FCGR images from each
chromosome of a T2T genome reveals consistent overall patterns, although variations in image intensity are observed. Beyond
a qualitative analysis, this study shows that when comparing FCGRs quantitatively, some distance measures outperform others
in capturing notable biological differences in the genomic signature. Through various intra- and intergenomic experiments, the
Structural Dissimilarity Index (DSSIM) is suggested as a suitable measure for FCGR comparison for the datasets in this paper.

Using DSSIM, the Representative Segment Selection Pipeline (RepSeg) is then introduced as an algorithm to identify
a genomic segment whose FCGR has the minimum average distance to those of other segments within the same genome.
To increase the computational efficiency of RepSeg, a computationally optimized pipeline, the Approximate Representative
Segment Selection Pipeline (aRepSeg) is also proposed: Depending on the application, RepSeg can be used when high accuracy
is prioritized, while aRepSeg can be used for datasets with large genomes or for time-sensitive applications. The representative
segment identified by either pipeline encapsulates genome-wide nucleotide compositions and enables quantitative investigation
of intragenomic variation by measuring the distances between constituent genome segments and the representative segment,
thereby revealing longitudinal changes in the genomic signature. Also, the representative segment serves as an effective proxy
for downstream tasks such as taxonomic classification, and in this study, a benchmark dataset is designed to demonstrate that
using representative segments as training samples improves the performance of a one-nearest-neighbor (1-NN) classifier by 7%.
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Finally, to facilitate both visual and quantitative comparisons of FCGRs derived from different genomic sequences, and
to support the replication of the analysis in this study, a software tool with a graphical user interface (GUI), called CGR-Diff
is developed. Unlike existing general-purpose GUI tools for intragenomic analysis, such as Integrative Genomics Viewer
(IGV)32, UGENE?3, VDAP-GUI?*, and GEMINTI??, or alignment-free k-mer-frequency comparison tools such as KAST?®
and TreeWave®’, CGR-Diff is specialized for FCGR-based analysis of the intragenomic variation. The software visualizes
the FCGRs of two independent sequences, whether from the same species or different ones, highlights their differences, and
provides several quantitative methods to measure their dissimilarity.

The main contributions of this study are:

» Extensive qualitative and quantitative evidence of the as-yet undemonstrated pervasiveness and localized variation of a
k-mer-based genomic signature in eukaryotes;

* Design and implementation of two computational pipelines that select a contiguous 500 Kbp representative DNA segment
to serve as a genome proxy, thereby improving alignment-free taxonomic classification and supporting intragenomic
variation analyses. Applying these pipelines to the human genome, we quantified intragenomic variability and found
that 80% of 500 Kbp genome segments lie within distance DSSIM < 0.24 ([0,1] scale) of the representative, indicating
strong genome-wide pervasiveness of the signature;

* Development of CGR-Diff, a novel software tool with a graphical user interface (GUI) for the visual and quantitative
comparisons of FCGR-based genomic signatures of sample or user-provided DNA sequences.

To the best of our knowledge, this is the first study to examine the pervasiveness of FCGR-based genomic signatures across
whole genomes of eukaryotic species from four different kingdoms of life, and propose pipelines for selecting a representative
DNA segment that preserves the key characteristics of the whole genome.

Methods

This section first describes the dataset and genome sequences utilized in this study. Next, it provides an overview of FCGR,
a graphical representation of genomic signatures used in this paper. This is followed by a detailed description of various
distance measures employed to compare FCGRs, which serve as a key component of the proposed pipeline. Then, RepSeg is
introduced as a pipeline designed to select a short-length representative of the entire genome that can act as a proxy of that
genome for computational analyses. To further enhance computational efficiency and reduce memory usage, aRepSeg, an
optimized version of RepSeg, is proposed to select representative genome segments more efficiently. Subsequently, CGR-Diff,
a novel graphical software developed in Python, is described as a tool that enables the visualization and comparison of genomic
FCGRs and facilitates both intragenomic and intergenomic studies. The software allows users to either upload two genomic
FASTA files or select segments from predefined genomic assemblies of various species, as listed in Fig. 1b. After uploading or
selecting sequences, users can identify and select specific segments from each sequence for FCGR comparison. Additionally,
CGR-Diff offers built-in tests for analyzing intersegment variation, increasing its applicability in genomic research. Finally, the
experiments conducted in this study are outlined (see Fig. 1 for an overview of the experiments and dataset).

Dataset

The DNA sequence dataset consists of three subsets covering the whole genomes of several model species from different
kingdoms creating a comprehensive resource for various experiments. The human genome, functioning as the Reference
Subset (Subset 1), serves as the core and primary data in the study. This choice is justified by the structural and functional
complexities of the human genome, along with the extensive annotations and supplementary information available for its
Telomere-to-Telomere (T2T) assembly?>>. In addition to the human genome, the dataset includes the whole genomes of eleven
other species, organized into two different subsets: the Intergenomic Analysis Subset (Subset 2), and the Intragenomic Analysis
Subset (Subset 3). These genomes are specifically selected to be used alongside the human genome for specific parts of the
experiments and analyses. The subsequent paragraphs provide details of these genomes, and indicate the source to retrieve
their data as well as annotations, in cases where the annotations are available. Additionally, our GitHub page includes the data
assembly files for each species, instructions on how to retrieve annotations, and the final annotation files.

To retrieve the human genome, the latest assembly, “T2T-CHM13v2.0,” released in 202223 was downloaded from the
NCBI database (link in Fig. 1b) on May 9, 2023. This fully annotated assembly, developed by the Telomere-to-Telomere
(T2T) consortium3®, offers a gapless and complete representation of the human genome, covering all chromosomal regions.
It contains all known structural variations, including tandem repeats for each chromosome, and features a fully colored and
annotated ideogram. The annotations for the different parts of the chromosomes are obtained from GitHub, the NCBI database,
or are manually extracted from the NCBI Genome Data Viewer> on Dec 4, 2023.

3/26


https://github.com/Niousha12/Intragenomic_analysis
https://github.com/marbl/CHM13/tree/master
https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_009914755.4/
https://www.ncbi.nlm.nih.gov/gdv/browser/genome/?id=GCF_009914755.1
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* Distance measures: (1) Normalized Euclidean distance, (2) Cosine distance, (3) Manhattan distance, (4) Structural Dissimilarity
Index (DSSIM), (5) Descriptor distance, (6) Kolmogorov-Smirnov (K-S) distance, (7) Wasserstein distance, and (8) Learned
Perceptual Image Patch Similarity (LPIPS).

(b)
Dataset Kingdom Species (common name) Assembly Length Mbp) % ‘N’
fsesz ee;”’f) Animalia  Homo sapiens (human) GCA_009914755.4 3,117 0
Pan troglodytes (chimpanzee) GCA_028858775.2 3,178 0.16
Animalia  Mus musculus (house mouse) GCA_000001635.9 2,723 2.7
I . Drosophila melanogaster (fruit fly) GCA_000001215.4 80 0.57
ntergenomic . ..
Analysis Fungi Saccharomyces cerevisiae (yeast) GCA_000146045.2 12 0
(Subset 2) Plantae Arabidopsis thaliana (thale cress) GCA_000001735.2 119 0.16
Protista Paramecium caudatum™ GCA_000715435.1 30 2.16
Archaea  Pyrococcus furiosus GCA_008245085.1 2 0
Bacteria Escherichia coli GCA_000005845.2 5 0
Intragenomic  Fungi Aspergillus nidulans GCA_000011425.1 30 0.04
Analysis Plantae Zea mays (maize) GCA_022117705.1 2,179 0
(Subset 3)  Protista  Dictyostelium discoideum GCA_000004695.1 34 0.07

*Among all the species in this table, the assembly for Paramecium caudatum is at the scaffold level.

Figure 1. Method overview and dataset. (a) Overview of the four experiments and their interrelationships: Experiment 1 is
an independent study exploring the pervasiveness of genomic signatures across chromosomes within a single species.
Experiment 2 conducts internal tests to identify the most appropriate distance measure for comparing genomic signatures.
Experiment 3 applies the selected distance measure from Experiment 2 to analyze intragenomic variation across the entire
genome through representative segment selection. Experiment 4 assesses the effectiveness of the representative segments
suggested by pipelines using a 1-NN classifier. (b) Summary of selected species: This includes a list of the selected species for
our subsets, detailing their GenBank assemblies from the NCBI database, genome lengths, and the percentage of unknown
nucleotides (represented as ‘N’) in their genomes.
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The Intergenomic Analysis Subset (Subset 2) includes the genomes of eight species with different phylogenetic or evolu-
tionary distances from the human genome, which are used for the distance selection experiment. Two of these species, Pan
troglodytes and Mus musculus, are selected from Class Mammalia due to their common origin from an ancestral eutherian
genome, which results in strong resemblance in chromosome structures and gene sequences*’. In addition to the mammalian
genomes, six other species are selected for Subset 2, each representing one of the six kingdoms of life: Drosophila melanogaster
(Animalia), Saccharomyces cerevisiae (Fungi), Arabidopsis thaliana (Plantae), Paramecium caudatum (Protista), Pyrococcus
furiosus (Archaea), and Escherichia coli (Bacteria). The genomes of these species differ significantly from the human genome in
terms of karyotypes and gene density. Notably, Pyrococcus furiosus (Archaea) and Escherichia coli (Bacteria) are prokaryotes,
meaning their DNA is not encapsulated within a nucleus, and the compactness and regulatory mechanisms of their genomes
differ substantially from those in eukaryotes. These eight species are chosen to span a range of genomic resemblance to
the human genome, enabling the evaluation of whether these differences are reflected in the FCGR distance analysis. The
assemblies for these species were retrieved on May 25, 2024 from the NCBI database (link in Fig. 1b). Among them, the
assemblies of Saccharomyces cerevisiae (Fungi), Pyrococcus furiosus (Archaea), and Escherichia coli (Bacteria) are gapless
and complete, containing no unknown nucleotides (‘N’), while the rest of the assemblies include ‘N’ within their genome.
In generating FCGRs, these unknown nucleotides are removed without introducing k-mer artifacts by discarding k-mers that
contain ‘N.” Moreover, among these eight species, all assemblies are at the chromosome level, except for Paramecium caudatum,
whose assembly is at the scaffold level. Fig. 1b includes the additional information of these species including their assembly
number in the NCBI database, length of their genome sequence, and the percentage of unknown nucleotides in their assembly.

The Intragenomic Analysis Subset (Subset 3) is designed for use alongside the human genome in experiments focused
on genome representative segment selection. It includes the genomes of Aspergillus nidulans (Fungi), Zea mays (Plantae),
and Dictyostelium discoideum (Protista). The rationale behind the selection of these species is that, first, the species in this
subset are eukaryotes with genome lengths comparable to that of the human genome, enabling similar testing of strategies
for representative segment selection. Second, each assembly in this subset is chosen from a different kingdom to evaluate
the effectiveness of the analysis and assess the generalizability of findings from the human genome to other eukaryotes. The
assemblies in Subset 3 were downloaded from the NCBI database (link in Fig. 1b) on Aug 28, 2024, with additional details and
annotations for the maize genome extracted from Hufford et al.*!. The additional information about the species in this subset is
included in Fig. 1b.

Frequency Chaos Game Representation (FCGR)

Chaos Game Representation (CGR) is a technique to visualize genomic sequences, such as one-dimensional DNA sequences,
into two-dimensional visual representations that reflect sequence composition>. DNA sequences, composed of four fundamental
nucleotide bases—Adenine (A), Cytosine (C), Guanine (G), and Thymine (T)—can be visualized using CGR. To create a CGR
image from a sequence, each corner of a square is labeled with one nucleotide. In this analysis, the bottom left corner is labeled
A, the top left corner is labeled C, the top right corner is labeled G, and the bottom right corner is labeled T, an arrangement that
corresponds to the purine vs. pyrimidine grouping with diagonally opposite corners assigned to purines (A, G) and pyrimidines
(C, T)*2. The center of the square is the starting point, and from there, each nucleotide adds a point to the image, placed halfway
between the current point and the corner labeled by that nucleotide? (see Fig. 2a). The final CGR image is a two-dimensional
plot reflecting the fractal pattern in the DNA sequence composition. Intuitively, for a predetermined k value, CGR generates a
binary image with size 2% x 2%, where each plotted point corresponds to the presence of a specific k-mer in the sequence (see
Fig. 2b). Thus, this technique can be considered both a visualization method and a feature extraction method that encodes the
distribution of k-mers within a DNA sequence (see Fig. 2¢,d for the examples of CGR images).

The Frequency Chaos Game Representation (FCGR) is an extension of CGR that quantifies the distribution of points
generated by CGR?%. While CGR creates a fractal image of the sequence, FCGR transforms this visual information into a
numerical matrix. The unit square is divided into a grid of resolution 2 x 2%, where the intensity of each cell corresponds
to the frequency of the k-mer within the DNA sequence (see Fig. 2e,f). The key difference between CGR and FCGR is that
CGR displays k-mer abundances and biases in k-mer composition, while FCGR provides a quantitative representation of the
frequency of k-mers of a specific value of k within the sequence. It is noteworthy to mention that some sequences may contain
unknown nucleotides, represented as ‘N.” During FCGR generation, rather than removing these ‘N’s before extracting the
k-mers, all k-mers are first extracted, and then any containing ‘N’ are discarded. This approach prevents the introduction of
unwanted k-mers that could result from removing ‘N’ directly from the original sequence.

In generating FCGR images, both the size of k and the sequence length influence the visibility of geometric patterns. For a
DNA sequence of fixed length, a very small k results in low resolution FCGRs, which provide limited detail and make geometric
patterns indistinct. Conversely, a very large k leads to sparsity in k-mer frequencies due to the exponential increase in potential
k-mers, making the geometric patterns within the FCGR image harder to discern. Similarly, when the image resolution is fixed
(i.e., k is fixed), shorter sequences contain fewer k-mer frequencies, resulting in sparser FCGRs and less discernible geometric
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patterns. Therefore, an optimal k value must be selected for each sequence length to balance high resolution with a sufficient
distribution of k-mer frequencies, ensuring that the FCGR remains informative and the geometric patterns are clearly visible.
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Figure 2. CGR/FCGR image generation. a. A schematic of CGR image generation from a DNA sequence. b. Mapping of
k-mers to specific positions in the CGR. ¢, d. Examples of CGR images (512 x 512, k = 9) for human (panel ¢) and maize
(panel d). e, f. Generating FCGR images by counting k-mer frequencies (k = 3) for human and maize, respectively. (This figure
is adapted from Lochel et al.!!)

Fig. 2c depicts the CGR image of the human chromosome 21 and Fig. 2d shows the CGR of the maize chromosome 8. Their
corresponding FCGR representations for k = 3 are displayed in Fig. 2e for human and Fig. 2f for maize. As seen in the figure,
the CGR/FCGR representations differ significantly between the human and maize chromosomes. Generally, FCGRs have
been found to be species-specific, such that CGR/FCGR images of DNA sequences from the same genome are quantitatively
more similar, while those from different species” genomes show considerable differences'. Therefore, FCGR images have
been successfully used in numerous studies for species identification?’-%4344 taxonomic classification’*-3! and phylogenetic
clustering'?.

Distance Measures

Distance measures in this study refer to quantified measures of dissimilarity between FCGR images. Several studies have
investigated various methods of comparing two FCGR images'!-!326:43 Among the existing methods for measuring the
dissimilarity of two FCGR images, eight different distance measures are considered: Normalized Euclidean distance, Cosine
distance, Manhattan distance, Structural Dissimilarity Index (DSSIM)*©, Descriptor distance®’, Kolmogorov-Smirnov (K-S)
distance*®, Wasserstein distance*, and Learned Perceptual Image Patch (Dis)Similarity (LPIPS)°. Each measure provides
a unique way to quantify the dissimilarity between FCGR representations. The Euclidean distance has been widely used in
FCGR comparison in different studies'>27-3°. In order to improve the interpretability of the Euclidean distance values, the
Normalized Euclidean distance is used, which limits the upper bound of the values. Manhattan, DSSIM, and Descriptor are
included as these performed better than the other distances investigated by Karamichalis et al.'? in a study of intergenomic
and intragenomic variation. In addition to well-established distance measures in the literature, four additional distances are
incorporated. Cosine distance is included for its interpretability and proven effectiveness in machine learning applications>'>2.
The K-S statistic and Wasserstein distance are selected as probability-based distance measures, offering different and unique
comparison methods with respect to similar studies. Lastly, LPIPS is chosen as a deep learning-based method that combines
both structural and perceptual components for measuring dissimilarity. Details on the calculation of each distance measure and
the required preprocessing steps are presented in the Supplementary Material Section A.1.
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Representative Segment Selection Pipeline (RepSeg)

Building on the evidence in this study, demonstrating the pervasive nature of genomic signatures across chromosomes and
entire genomes within a species, the Representative Segment Selection Pipeline (RepSeg) is proposed. This pipeline identifies
a DNA segment that is significantly shorter than the entire chromosome or genome (e.g., approximately 0.5% of the length
of a human chromosome) yet encapsulates the main k-mer frequency characteristics of that genome, and closely resembles
in this respect most other segments of the same chromosome or genome (hereafter referred to as ‘genome’ for simplicity).
The representative segment thus serves as an ideal reference for analyzing intragenomic variations of the genomic signature.
Most importantly, the representative segment can act effectively as a proxy of the genome for important applications such as
taxonomic classification. This section describes the details of the RepSeg step by step.

The RepSeg begins by dividing a genome into consecutive, non-overlapping segments of equal length. Then, for each
segment, it converts the DNA sequence to an FCGR image using a pre-determined k-mer value. In the next step, it computes
the distance matrix D by calculating the distance between all pairs of FCGRs obtained from the segments. The total number
of non-overlapping consecutive segments (S) determines the dimensions of the resulting S x S symmetric distance matrix D.
Finally, it selects the medoid®’ (i.e., the segment that minimizes the average of distances to all other segments in the matrix)
and designates it as the representative segment for the genome.

Fig. 3 summarizes all the steps of the RepSeg for a chromosome, including consecutive segment splitting (e.g., size
500 Kbp), FCGR generation (e.g., using k = 9), distance matrix calculation, and representative segment selection based on the
minimum average distance in the distance matrix. Fig. 3 also includes a Multidimensional Scaling (MDS) representation of
the distance matrix D, where matrix elements that are close to each other are depicted by closer dots in the MDS plot. The
representative segment, highlighted in red, is the center of mass of the points in the MDS representation, as it has the minimum
distance to all other points.

@ Segments FCGRs
Labels
Tandem Repeat
Centromere
Euchromatin
[ ]
o N ati
Distance Matrix D @ ¢ Heterochromatin
® Representative
8 a z 3
o Qo 2 2 0.1
zZZ = Z  Mean
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% FCGR i [ ]—
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: : o ° 0
X ) X od 0
Representative: Segment with
minimum average distance Multidimensional scaling representation of
S from other segments the distance matrix D

Figure 3. Summary of the Representative Segment Selection Pipeline (RepSeg). a. Outlines the steps involved in the
pipeline for a chromosome, including chromosome segmentation (e.g., size 500 Kbp), FCGR generation (e.g., using k =9),
distance matrix calculation, and representative segment selection. b. Multidimensional Scaling (MDS) representation of the
distance matrix D. The representative segment is highlighted as a red point, representing the center of mass of the MDS plot
due to its minimal average distance to other points.

The proposed pipeline identifies the segment with the minimum average distance from all other segments of the genome,
making it a strong candidate to serve as the representative segment, as it shares the most similarities with the other segments.
However, this pipeline has three intrinsic limitations. First, it is sensitive to both the segment length and the k value used in
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the k-mer generation for FCGR (using a different segment length and different £ can lead to different representative). Second,
since the genome is divided into non-overlapping segments, the representative can only be selected from these segments,
which means that it is not chosen from among all possible segments of the same length from the genome. Although this issue
could be addressed by using overlapping segments, this approach would significantly increase the total number of segments,
leading to higher computational and memory costs due to the quadratic time and space complexity of the distance matrix D.
Finally, computing the distance matrix D can be time-consuming for large genomes with a high number of segments, as it
requires calculating the distance between all pairs of segments. To address these limitations, the segment length and k-value
are consistent in our experiments to ensure comparability of results. Subsequently, an approximate pipeline for selecting the
representative segment is proposed, which is capable of identifying a representative from any position across the genome, while
simultaneously addressing the computational complexity of RepSeg.

Approximate Representative Segment Selection Pipeline (aRepSeg)

The RepSeg can be computationally expensive due to the quadratic time complexity of distance matrix calculation, which
makes its performance highly dependent on the genome length and the chosen segment length. To address this limitation,
an alternative pipeline referred to as Approximate Representative Segment Selection Pipeline (aRepSeg) is proposed, which
produces a representative segment that approximates the one chosen by RepSeg but with reduced time complexity. For this
purpose, instead of dividing the genome into consecutive, non-overlapping segments, aRepSeg randomly selects 7 fixed length
segments and computes their pairwise FCGR distances. The number of these random segments affects the time complexity
of the algorithm; increasing n improves the approximation but also increases the computational cost. The genomic signature,
which is pervasive within a species, ensures that the distances between segments of a genome generally exhibit low variability
and remain relatively small. However, segments from regions with large tandem repeats can deviate significantly from this
pattern, potentially skewing the results. To address this, aRepSeg incorporates a step to identify and exclude these outliers from
the randomly selected segments.

More precisely, aRepSeg is an iterative pipeline that starts by initializing the dynamic set § with n randomly chosen
segments of fixed length. It then creates the distance matrix D by calculating the pairwise distances between the FCGR images
of all segments in the set S. After the calculation of the distance matrix, aRepSeg applies an outlier detection algorithm based
on the Interquartile Range (IQR) to identify outlier segments within $. Accordingly, the pipeline removes these outliers from
the dynamic set and adds new randomly selected segments, equal in number to the removed ones. The pipeline iteratively
recalculates the distance matrix, detects the outliers, and updates the S by replacing the outliers until no further outliers exist in
the set. Finally, the segment with the minimum average distance to all others in S is selected as the representative.

To remove outlier segments from S, an algorithm similar to the Interquartile Range (IQR) method is used, which is typically
applied to identify and remove outliers. The IQR method works by calculating the interquartile range, which is the difference
between the first quartile (Q1) and the third quartile (Q3) of the data®*. The algorithm then defines a range for typical data by
adding 1.5 times the IQR to Q3, known as the upper bound, and subtracting 1.5 times the IQR from Q1, known as the lower
bound. Data points outside this range are considered outliers and are removed, resulting in a cleaner dataset with fewer extreme
values. In the pipeline, the IQR method is applied to the average distance of each segment in S from the other segments, which
is derived from the distance matrix D. However, aRepSeg modifies this algorithm to only remove values above the upper bound,
as small distances are expected, and only high distances pose a problem (they could result from, e.g., one of the segments
originating from a tandem repeat region). Any segment detected as an outlier by this modified IQR-based method is removed
from the set and replaced with a new random segment chosen from the genome.

To evaluate the effectiveness of aRepSeg and its ability to approximate RepSeg, the representative segments identified
by each algorithm are compared. Rather than directly computing the distance between these two representative segments,
which would not necessarily be informative, both RepSeg and aRepSeg first identify representative segments for a specific
genome. Then, the genome is divided into non-overlapping, continuous segments, each of the same size as the representative
segment. Distances are computed between each of these segments and the representative segments selected by RepSeg and
aRepSeg, respectively. The Mean Absolute Error (MAE) between the two resulting distance vectors serves as a measure of the
approximation error introduced by aRepSeg.

CGR-Diff: A Software for CGR Comparison

To facilitate the experiments on the pervasiveness and variation of genomic signatures, CGR-Diff, a novel graphical software
tool is developed to extract, visualize, and compare CGRs or FCGRs of different genomic sequences, including chromosomes,
genome segments, or any other arbitrary DNA sequence stored in a FASTA file. The tool offers adjustable segment lengths,
customizable k-mer sizes, and a selection of distance measures for comparison. The software includes a feature allowing users
to utilize the assemblies suggested in Fig. 1b or upload their own assemblies for analysis. Additionally, users have the option to
select chromosome segments from a list of annotated sequence segments, such as cytobands, if these annotations exist for the
selected assembly (cytoband annotations are currently available only for the human genome). The tool also offers the ability to
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apply the reverse complement to a selected DNA sequence before generating the CGR/FCGR representation. See GitHub for
more information regarding how to use the software.

Furthermore, the software includes built-in experiments designed to analyze genomic signature variations both within a
species (intragenomic variation) and across different species (intergenomic variation). It also facilitates the replication of the
RepSeg and aRepSeg analyses for entire genomes or individual chromosomes from various species. The details of these built-in
analyses are as follows:

* Comparison of consecutive non-overlapping segments for each chromosome or entire genome: In this experiment, the
tool allows users to upload a FASTA file or select the entire genome or specific chromosomes of a species from a
predefined list. Users can also specify a segment size and choose a distance measure. The sequence is then divided
into consecutive non-overlapping segments of the chosen size. The software then calculates and displays the pairwise
distances between neighboring segments, providing a visual representation of these distances on a plot. Additionally, it
illustrates the FCGR of each DNA segment, quantifies the distance measures, and visualizes the differences between
pairs of FCGRs.

e Comparison of different segments of a chromosome or genome with a reference sequence: This experiment is similar
to the first, except that the consecutive non-overlapping segments of a chromosome or genome are compared with a
chosen, common reference sequence, instead of being compared with their neighboring segments. For the reference
sequence, users can choose any segment from the same or different genome with arbitrary start and end points, or select a
predefined segment from the list of annotated cytoband sections. The results of these comparisons are visualized in a plot,
demonstrating the difference between the chosen reference sequence and each segment. To provide more detailed results,
users can select any segment and visually compare its FCGR with that of the reference sequence. The software displays
the FCGR of the selected segment, the FCGR of the reference sequence, and the distance between the two, enabling both
qualitative and quantitative comparisons.

* Representative segment selection: This experiment enables users to run representative selection pipelines on a desired
sequence. Users can either upload a FASTA file or select a predefined chromosome or genome from a list. Afterward,
they can specify the size of the representative segment, choose the selection pipeline (from RepSeg, aRepSeg, or
Random Selection), and select a preferred distance measure. Upon execution, the software identifies and describes
the representative segment (including its location in the sequence and its cytoband) and generates a plot showing the
distances between different segments along the chromosome or genome and the representative segment. Additionally, it
displays the FCGR of the representative segment and each of the segments at each step, along with their differences and
distance values.

Experimental Design

This section provides a detailed account of the experiments conducted in this study, including the hyperparameter values used,
such as segment length and the k value for FCGR generation. To determine the optimal k-mer size and fragment length, both
empirical and quantitative analyses were performed. For the empirical analysis, the FCGRs of human chromosome 1, as well as
its first 500 Kbp, and its first 200 Kbp of the p34.1 cytoband (a euchromatin and gene-rich region), were visualized across k
values ranging from 2 to 9 (see Supplementary Fig. S1). This analysis showed that there is a trade-off between choices: FCGRs
with smaller k values have insufficient resolution, while FCGRs with larger k values have sufficient resolution but can be faint
and less discernible when the originating sequences are shorter. For the quantitative analysis, one-nearest-neighbor (1-NN)
species classification tasks were performed while systematically varying both the & value and the length of the segments used
(see Supplementary Material Section A.3). This analysis showed that k =4, k =5, and k = 6 yielded comparable classification
accuracy. Overall, k = 6 achieved an optimal balance between visual resolution and classification performance, and was
selected for most experiments where FCGRs were generated from chromosome segments rather than entire chromosomes. The
exception was Exp 1, where the sequences were larger (full chromosomes) and a k value of 9 was more effective, producing
clear FCGR images at a resolution of 512 x 512 (see Supplementary Fig. S1). Regarding sequence length, both 200 Kbp and
500 Kbp segments achieved comparable classification performance, and these lengths were used interchangeably in different
experiments depending on the genome length.

Exp 1 Pervasive Nature of Genomic Signatures: This experiment empirically investigates the pervasive nature of genomic
signatures across the genome by visualizing the FCGRs of the full sequences of all 24 human chromosomes and all
10 maize chromosomes using k-mers with k = 9. This choice of k produces high-resolution FCGR images, which
are empirically verified for representing the genomic signature of the full length of chromosomes. The resolution is
particularly critical for detailed visualization, as even the shortest chromosome in these species, human chromosome 21,
is approximately 45 Mbp.
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Exp 2 Distance Selection: The majority of the experiments are built upon comparing the signature of two DNA sequences
using their FCGR images. However, comparing two FCGRs using different distance measures can sometimes lead
to non-comparable distance values, as each of them employs a unique method of comparison. Moreover, in FCGR
images, it is not only the distribution of k-mers that matters; the geometry and visual patterns embedded in the images
also contain valuable information that is pervasive and species-specific’’. Therefore, it is important to analyze the
behavior of different distance measures against biological expectations, when comparing FCGR images. For example,
if two DNA sequences are phylogenetically similar, the distance value between their FCGRs is expected to be small;
otherwise, a larger distance value is expected. To evaluate the effectiveness of the eight distance measures introduced in
the section Methods: Distance Measures and to determine the optimal one for comparing FCGRs, two experiments are
conducted: Human Intragenomic Distance Analysis, and Intergenomic Distance Analysis.

In the Human Intragenomic Distance Analysis experiment, the sequence length varies depending on the region of
interest. However, when selecting a random segment from a region, a standard length of 500 Kbp is used. This segment
size provides a proper sample size that captures sufficient variation. Since each chromosome spans several Mbp,
selecting multiple random 500 Kbp segments ensures diverse sampling and meaningful comparisons. Furthermore,
the probability of significant overlap between two randomly selected 500 Kbp segments is very low. For instance,
the shortest tandem repeat region within the human chromosome is 10 Mbp, belonging to chromosome 14. Within
this region, the chance of observing more than 70% overlap between two randomly selected segments of 500 Kbp is
approximately 3%, while the probability of exceeding 50% overlap is only about 5%. These low probabilities ensure
that the selected segments are largely independent when the segment size is 500 Kbp, while larger segments would
increase the risk of overlap, and smaller segments may fail to capture the genomic signature adequately. Also, the results
of the one-nearest-neighbor species classification tasks (see Supplementary Material Section A.3 for experimental
details and Table S1 for results), in which both k-mer size and segment length were systematically varied, indicated
that 500 Kbp segments generally yield higher accuracy than shorter segment lengths. Accordingly, we use the same
500 Kbp segment length in the Intergenomic Distance Analysis to ensure consistency.

Exp 2.1 (Human Intragenomic Distance Analysis) focuses on comparing FCGRs within the human genome, leveraging
the complexity of this genome and the extensive annotations available for its chromosomes, such as the color-coded
regions in the NCBI Data Viewer. In this study, a series of experiments is conducted using various distance measures
to compare FCGRs across different human chromosomal regions, including short and long tandem repeats, as well
as regions with varying G+C content and CpG composition, such as telomeres, heterochromatin, euchromatin, and
the p-arms of acrocentric chromosomes. The effectiveness of these distance measures is evaluated based on their
consistency with known differences in sequence composition, such as the occurrence of regional clustering of short and
long tandem repeat sequences. This comprehensive intragenomic analysis on the human genome enables the assessment
of how well different distance measures align with biological expectations regarding the occurrence and length of
tandem repeating sequences. The series of experiments conducted in this study is briefly described below, with detailed
explanations provided in the Supplementary Material Section A.2.

» Telomere vs. Telomere aims to determine the distances between the p-arm telomere of chromosome 1 and the
p-arm telomeres of other chromosomes. Telomeres, composed of conserved tandem repeats and associated
proteins, exhibit similar structure and composition across human chromosomes>>>.

* Heterochromatin vs. Heterochromatin calculates the average distance between the most condensed heterochro-
matic region (located distal to the centromere on the p-arm, or, if absent, proximal on the gq-arm) and other
heterochromatic regions within the same chromosome. The final result is the overall average distance calculated
across all chromosomes. Heterochromatin, characterized by high condensation and transcriptional inactivity>’-%,
is visually represented by black and three shades of gray in the NCBI Data Viewer, with darker shades indicating
higher levels of compaction®”.

* Heterochromatin vs. Euchromatin calculates the average distance between the most condensed heterochromatic
region (located distal to the centromere on the p-arm or proximal on the q-arm if absent) and four randomly
selected euchromatic segments within each chromosome. The final result is the overall average distance computed
across all chromosomes. Euchromatin, characterized by less condensed DNA and active gene transcription60,
differs significantly from heterochromatin in structure, function, and genomic compositionéo’(".

* p-arm vs. g-arm measures the average distance between 100 randomly selected 500 Kbp segments on the p-arm
and g-arm of each acrocentric chromosome (13, 14, 15, 21, 22) as well as the Y chromosome. Acrocentric
chromosomes are characterized by a short p-arm, which is enriched with tandem repeat sequences, and a longer
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Exp 3

g-arm, which contains fewer repeats®> 3. These tandem repeat regions consist of long DNA stretches where a
sequence is repeated in a head-to-tail manner, varying in repeat unit length, size, and organization®*-. Since the
Y chromosome contains repetitive regions in its g-arm> %7, it is also included in this experiment.

* Y g-arm vs. acrocentric chromosome p-arm (Large Tandem Repeat Arrays) calculates the distance between the
tandem repeat arrays on the g-arm of the Y chromosome and those on each acrocentric chromosome, and reports
the average. The g-arm of the Y chromosome contains a repetitive region that differs in length and in the nature
of its tandem repeat arrays from those on acrocentric chromosomes>.

* Arbitrary Sequences calculates the average intragenomic distance by selecting two random non-overlapping
500 Kbp sequences from a randomly chosen chromosome, computing the distance between their FCGRs, and
averaging the results over 100 iterations.

Among the discussed experiments, the Telomere vs. Telomere comparison is expected to yield the smallest distance due
to the identical repeats in the telomere regions. The Heterochromatin vs. Heterochromatin comparison should produce
the second smallest distance, and it should be smaller than the Heterochromatin vs. Euchromatin comparison. The
p-arm vs. g-arm experiment, which compares repeat-rich regions to non-repetitive sequences, is expected to result in the
largest distance among all tests. The Large Tandem Repeat Arrays experiment is expected to show a large distance, but
smaller than p-arm vs. g-arm since it compares different types of repeats and explores the variation within the repeats,
specifically between Y g-arm repeats and acrocentric p-arm repeats. Finally, the Arbitrary Sequences test is anticipated
to reflect an intermediate intragenomic distance within the human genome, as its large sample size ensures a balanced
sampling of diverse combinations of genomic sequences.

Exp 2.2 (Intergenomic Distance Analysis) involves comparing random segments from the human genome with random
segments from eight other species listed in Subset 2 of Fig. 1b. Since FCGR images are species-specific, it is
hypothesized that phylogenetic distances between the genomes of different species and the human genome will be
reflected in their FCGR comparisons, with distances between two random human genome sequences expected to be
smaller than those between human and non-human genome sequences. Smaller distances are also anticipated between
human and chimpanzee genome sequences compared to those involving human genome and genomes from species in
different kingdoms. This evaluation enables the assessment of each distance measure based on how well it aligns with
known phylogenetic or evolutionary distances.

To perform this analysis, 100 random segments of length 500 Kbp are selected from the human genome to serve as
reference sequences, ensuring that centromeres and large tandem repeat arrays (e.g., the short arms of acrocentric
chromosomes and the long arm of the Y chromosome) are excluded. Selections from telomeric regions are not excluded
due to their short sequence footprints and minimal impact on the k-mer compositions of FCGRs. Then, for each of the
nine species (human and eight others), 100 random segments of the same length (500 Kbp) are selected, and pairwise
distances between their FCGRs and the reference FCGRs from the human genome are calculated using all eight distance
measures. When selecting random segments from the human genome, centromeres and large tandem repeat regions
are again avoided. Finally, these distances are compared across all nine species using boxplots and the Wilcoxon
signed-rank test®®%°, with expectations based on known phylogenetic relationships. The Wilcoxon signed-rank test is
applied because the same reference human FCGRs are used to compute both sets of distances, leading to dependent
matched samples.

Intragenomic Variation: A series of experiments is conducted to evaluate the RepSeg and aRepSeg methods. The
methods that are designed to select representative genomic segments for various species. These representatives serve
multiple purposes, including exploring variation in genomic signatures along chromosomes or entire genomes and
supporting downstream tasks, such as the species classification in Exp 4. Experiments in this section, focus on the
human and three species listed in Subset 3 of Fig. 1b. For human and maize, which have long genomes (approximately
3 billion bp and 2 billion bp, respectively) and chromosomes ranging from 45 Mbp (e.g., human chromosome 21) to
300 Mbp (e.g., maize chromosome 1), a representative segment is selected for individual chromosomes to maintain
their distinct genomic information. For species with smaller genomes, such as Aspergillus nidulans and Dictyostelium
discoideum, all chromosomes are concatenated with ‘N’ to prevent unwanted k-mers, and a representative segment is
selected for the entire genome. In all cases, a segment length of 500 Kbp is used, as it is sufficiently long to preserve
genomic signatures while remaining a small fraction of the total genome length (e.g., less than 1% of the shortest human
chromosome). Furthermore, for comparing FCGRs in these experiments, the DSSIM distance measure is utilized, as it
demonstrates the best compatibility with the biological expectations discussed in the Distance Analysis experiment (see
Results section).
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Exp 4

Exp 3.1 (Representative Segment Selection) applies the RepSeg to the human genome and the genome of each species
listed in Subset 3 of Fig. 1b. This pipeline finds a representative segment for each individual chromosome in human
and maize, and for the entire genome in Aspergillus nidulans and Dictyostelium discoideum. Using the representative
segment as a reference, the experiment calculates and plots the distances between each consecutive segment (of the
same length as the representative segment, i.e., 500 Kbp) and the representative segment. This analysis highlights the
prevalence or variation of the genomic signature within a single chromosome or the entire genome.

Exp 3.2 (Approximate Representative Segment Selection) repeats the previous experiment on the human genome and
the genomes of all the species of Subset 3 in Fig. 1b, but uses the aRepSeg to determine the representative segment. The
aRepSeg utilizes a set of random segments S, and in this experiment, the size of S is set to 30. This size is determined
through an empirical experiment (see Supplementary Table SS5).

Exp 3.3 (Unlikely Representative Segment from Tandem Repeat Regions) is an experiment similar to the previous ones
but designed to demonstrate the impact of selecting a random segment from regions with large and small tandem repeats,
such as the centromere, as the representative segment. This experiment is applied only to human chromosomes, as it is
the only genome from Fig. 1b that contains annotations for cytobands and repeat regions.

Taxonomic Classification: To evaluate the utility of the representative segment chosen by RepSeg or aRepSeg in
downstream tasks, a simple taxonomic classification experiment is conducted using a one-nearest-neighbor (1-NN)
classifier. This experiment is applied to all the species listed in Fig. 1b, except for Paramecium caudatum, whose
genome is available only at the scaffold level, making it unsuitable for consistent segmentation or classification. For this
experiment, the segment size is reduced from 500 Kbp, as used in previous experiments, to 200 Kbp. This adjustment
accommodates the relatively short genomes of some species in the dataset, where extracting 100 random 500 Kbp
segments per species would be impractical. This choice is further supported by the analysis in Supplementary Material
Section A.3, which shows that 200 Kbp provides reliable species classification accuracy.

Train Data: The training dataset consists of one representative for each species, which is selected under two scenarios:
(1) using the pipelines (RepSeg or aRepSeg) or (2) choosing a random segment from a chromosome or genome as
the representative. For genomes shorter than 100 Mbp, in the first scenario, the representative is selected by applying
RepSeg or aRepSeg to the entire genome, whereas in the second scenario, the genome is divided into consecutive
segments of 200 Kbp, and one segment is randomly chosen as the representative. For genomes longer than 100 Mbp,
the representative in the first scenario is determined as the final representative of the representatives of individual
chromosomes, where the final representative is the segment with the minimum average distance to all other chromosome-
level representatives. In the second scenario, a random chromosome is first selected, divided into consecutive segments
of 200 Kbp, and a random segment from these is chosen as the representative.

Test Data: The test dataset consists of 100 random segments of 200 Kbp each, extracted from the entire genome for
species with genomes under 100 Mbp and from random chromosomes for species with genomes exceeding 100 Mbp.
This results in a total of 1,100 test samples, representing 11 species.

Classification Approach: The classifier predicts the label for each test sample by comparing the DSSIM distance
between the FCGR of the test sample and the FCGRs of the 11 representative segments in the training set. The DSSIM
distance measure is used for comparing FCGRs, as described in Exp 3.

Evaluation: The two scenarios are compared by computing their classification accuracy. To avoid bias towards tandem
repeat regions, for the random selection scenario, the average accuracy over 50 repetitions is reported. This comparison
assesses the effectiveness of the pipelines (RepSeg or aRepSeg) in generating representative segments for downstream
tasks.

Results

CGR-Diff Software Tool for Assessing Intragenomic Variations in the Genomic Signature
Fig. 4 demonstrates the capabilities of the software tool by presenting an example from its first built-in experiment, Comparison
of consecutive non-overlapping segments for each chromosome or entire genome. The primary objective of this experiment
is to evaluate intragenomic variation in the genomic signature and to quantitatively compare genomic signatures along the
chromosome. In this example, human chromosome 1, the longest chromosome in the genome, is analyzed using a segment size
of 500 Kbp, k = 6 for FCGR generation, and DSSIM (as defined in Methods: Distance Measures) as the distance measure to
capture variation along the chromosome.

Fig. 4b displays a feature of the software that visualizes the DSSIM distance between each pair of consecutive genomic
segments. As seen in this figure, in the case of human chromosome 1, most of these distance values are low (with an average of
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approximately 0.11), indicating a consistent genomic signature between neighboring segments. However, several high distance
values are observed to occur at specific locations, particularly at cytoband boundaries, reflecting significant changes in k-mer
composition. The highest observed distance in this experiment is 0.88 (highlighted in red), which is a significant value given
that DSSIM ranges from O to 1 when comparing FCGR images. This peak occurs at the boundary between the q12 and q21.1
cytobands of chromosome 1, where q12 is associated with tandem repeats, while q21.1 corresponds to a euchromatin region.
Before this peak, there is a portion of the plot where the DSSIM distances are close to zero. This low variation occurs within
the tandem repeat region (q12), where the sequences of consecutive segments are highly similar, resulting in similar FCGR
patterns and low DSSIM distance values between them.

Fig. 4c displays a feature of the software that provides a detailed visualization of two selected consecutive segments and
their comparison. In this example, the two selected consecutive segments are those whose distance is the peak distance value in
Fig. 4b (segments 285 and 286, together spanning 142.0-143.0 Mbp). The left and right images display the FCGRs of the
individual segments, while the center matrix shows the pixel-wise difference between them, highlighting which k-mers are
more abundant in each segment. The observed difference in FCGR patterns reveals a shift in sequence composition that aligns
with the transition from a tandem repeat-rich region (Segment 1) to a euchromatic region (Segment 2).

CGR Comparator Consecutive Segments Common Reference Representative
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Figure 4. A screenshot of the consecutive non-overlapping segments experiment of the CGR-Diff software. a. Control
panel showing the parameters of the experiment, including k, segment size, and distance measure. b. Plot displaying the
distances between FCGRs of consecutive segments across the first human chromosome (using k = 6, segment size = 500 Kbp,
and distance measure = DSSIM). The red bar indicates the maximum distance (0.88) at the boundary between a tandem repeat
region (q12) and a euchromatic region (q21.1). ¢. FCGRs correspond to two consecutive segments associated with the
maximum distance, with their positions on the chromosome mentioned at the top of the images. The left and right images show
the individual FCGRs, and the center shows their pixel-wise difference, highlighting shifts in k-mer composition.

Demonstrating the Pervasive Nature of Genomic Signatures (Exp 1)

The FCGRs for the complete sequences of all 24 human chromosomes (see Fig. 5) and all 10 maize chromosomes (see
Supplementary Fig. S2) are generated using kK = 9. The FCGRs of human chromosomes exhibit similar geometric patterns
across all chromosomes, which are distinctly different from those observed in maize. Similarly, the FCGRs of maize
chromosomes are consistent among themselves. These observations support the assumption that genomic signatures are both
species-specific and pervasive across the entire genome of a species.

13/26



Chromosome 3 c Chromosome 4 G

Chromosome 7

c Chromosome 11 G C

Chromosome 12 G

Chromosome 17

c Chromosome Y

c Chromosome 21 G cC Chromosome 22 G

Figure 5. Analyses of the Human Genome Genetic Signature. Each image represents the FCGR of a complete human
chromosome, constructed using k = 9. The overall structure reveals a preserved genomic signature across chromosomes, while
variations in intensity indicate differences in k-mer distribution. Specifically, certain chromosomes, such as chromosome 9, 15,
16, and Y, appear lighter, consistent with the presence of regions with known high k-mer repetition.
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Despite the overall consistency of FCGR patterns across all human chromosomes, chromosomes 9, 15, 16, and Y exhibit
notable deviations in FCGR intensity, as shown in Fig. 5. These variations are not due to chromosome length, but rather to
the high relative frequencies of some specific k-mers (9-mers in Fig. 5), which result in lower counts of the other k-mers
(lighter other regions in the FCGR image). Specifically, the relative frequencies of AAGGTAAGG (chromosome 9, 0.75%),
CTTACCTTA (chromosome 15, 0.34%), TTACCTTAG (chromosome 16, 0.36%), and TAAGGTAAG (chromosome Y, 1.00%)
are significantly higher than the relative frequency of 9-mers in the other chromosomes (average 0.13%). These observed high
frequencies of specific 9-mers are likely the result of extensive repetitive regions within chromosomes 9, 15, 16 and Y, and
are absent in the other chromosomes (see Supplementary Table S2). For example, chromosome 9 contains the largest block
of heterochromatin among human chromosomes and exhibits numerous repetitive regions within the centromere and large
heterochromatic regions’’. Similarly, chromosomes 15 and 16 have some of the highest levels of segmental duplications in the
human genome’!-72. Finally, the human Y chromosome is substantially different from all other chromosomes, as it is densely
packed with repeats, such that almost any sequence from the Y chromosome either repeats internally or has a near-identical
copy elsewhere on this chromosome™ 7.

A similar phenomenon is observed in the maize chromosomes, with the FCGR images of chromosomes 2 and 4 displaying
reduced overall pixel intensities. These lighter FCGRs are due to the high relative frequencies of specific k-mers (see
Supplementary Table S3). Specifically, the relative frequencies of TCATCATCA (chromosome 2, 0.10%) and TGATGATGA
(chromosome 4, 0.05%), are higher than the relative frequency of 9-mers in the other chromosomes (average 0.02%).

Determining the Optimal Distance Measure (Exp 2)

Human Intragenomic Comparison (Exp 2.1)

The performance of the eight distance measures in the human intragenomic distance analysis experiment is shown in Fig. 6.
Considering the identical sequence repeats in telomeres, the Telomere vs. Telomere comparison is expected to yield the smallest
distance relative to other experiments. As seen in the figure, this expectation is met for most distance measures, except
for the Wasserstein distance (where the Telomere vs. Telomere comparison is considerably larger than Heterochromatin vs.
Heterochromatin) and for the Normalized Euclidean and Cosine distances (where Telomere vs. Telomere is slightly larger
than Heterochromatin vs. Heterochromatin, but still comparable). Additionally, the expectation that the Heterochromatin
vs. Euchromatin comparison would result in a larger distance than the Heterochromatin vs. Heterochromatin comparison is
confirmed by all distance measures. The p-arm vs. g-arm experiment in different chromosomes is expected to produce the
largest distance among all tests, as it compares repeat-rich regions to non-repetitive sequences. However, as shown in Fig. 6,
the Normalized Euclidean, Cosine, K-S, and Wasserstein distance measures fail to reflect this expected result. Finally, in the
Large Tandem Repeat Arrays experiment, a large distance is expected, greater than in the Arbitrary Sequences comparison but
smaller than in the p-arm vs. g-arm comparison, since it compares different types of large tandem repeat arrays. However,
the Normalized Euclidean, Cosine, Manhattan, K-S, and Wasserstein distance measures fail to meet this expectation. Overall,
among all the distance measures, Descriptor, DSSIM, and LPIPS performed as expected in Exp 2.1.

Intergenomic Comparisons (Exp 2.2)

Fig. 7 presents boxplots illustrating the distribution of intergenomic distance values across species with known phylogenetic
distances from the human genome, using the eight proposed distance measures. Each boxplot represents the distribution
of pairwise distances between 100 randomly selected human segments (referred to as human reference segments) and 100
randomly selected segments from the corresponding species. In these boxplots, the box corresponds to the interquartile range,
the whiskers indicate the broader spread of values, and the red line marks the median. In the arrangement of the boxplots, the
first plot, positioned on the far left, corresponds to comparisons between human reference segments and randomly selected
human genome segments (human-human). Progressing to the right, the subsequent boxplots represent increasing phylogenetic
distances, comparing human reference segments to segments from increasingly distantly related species. This arrangement
illustrates the expected trend of increasing intergenomic distances as we move from closely related species (e.g., Pan troglodytes
(chimpanzee) and Mus musculus (mouse)) to those less related, and further to species from different kingdoms.

Based on biological hypotheses, an increase in distance values is expected from left to right along the horizontal axis in
each plot, reflecting greater divergence from the human genome. Smaller distances are anticipated for comparisons between
human reference segments and randomly selected human genome segments (human-human) compared to distances between
human reference segments and segments from other species. Furthermore, no significant difference (i.e., p-value greater than
0.05) is expected between the human-human distances and the distances between human reference segments and segments from
closely related mammals, such as Pan troglodytes (chimpanzee) and Mus musculus (mouse). In contrast, significant differences
are expected when comparing the human-human distances to the distances between human reference segments and segments
from species in different kingdoms.

Moreover, the variability in distance distributions when comparing each species to human reference segments reflects the
intragenomic variation within that species. This variation is due to known intragenomic sequence composition, particularly in

15/26



Normalized Euclidean Cosine Manhattan Descriptor DSSIM LPIPS K-S Wasserstein

035 031 I
0.121

4 0.7
1.0 [l

2504
1.0
0.6
0.89
2004

0.59 0.8

150 II 06
100 I|

0.8

0.7
0.30 0.4
: 0.104
0.6

0.5 0.08+4

0.06+ i
0.04+ I
0.05

0.19
.05 lII 0.024
0.00- 0.0- D.OO-JII-I

0.6 0.39

0.4

034
0.4 0151 0.2

0.4 0.3

0.2 0.10

| I S S
1
s
| I I A
N S S S S
| I S S
| I S
o
N
i
N N A S S
| I S S S S
L 1 ]
N A
N S S S

0.2
0.29

50 0.2
0.11 III I 01
0.0- 0.0-~v-v-II-I 0- 0.0 0.0

%======-_ I

Telomere vs. Telomere W= Y (p-arm vs. g-arm) 15 (p-arm vs. g-arm) B [arge Tandem Repeat Arrays
s Heterochromatin vs. Heterochromatin mmm 13 (p-arm vs. g-arm) 21 (p-arm vs. g-arm) Arbitrary Sequences
Bl Heterochromatin vs. Euchromatin 14 (p-arm vs. g-arm) 22 (p-arm vs. g-arm)

Figure 6. Intragenomic Distance Analysis (Exp 2.1). Each bar plot shows the performance of a distance measure across the
different experiments in Exp 2.1. Three shades of blue represent the Telomere vs. Telomere, Heterochromatin vs.
Heterochromatin, and Heterochromatin vs. Euchromatin experiments, which are expected to yield relatively small distance
values compared to the other experiments (the lighter the shade, the smaller the expected distance value). Six warm colors
correspond to the p-arm vs. g-arm experiment in different chromosomes (Y, 13, 14, 15, 21, and 22), where distance values are
expected to be the largest among all experiments. Purple bars represent the Large Tandem Repeat Arrays experiment, which is
expected to have large distance values, though smaller than those in the p-arm vs. g-arm experiment. Finally, gray bars indicate
the Arbitrary Sequences experiment, which is expected to produce intermediate distance values. Among all distance measures,
Descriptor, DSSIM, and LPIPS align best with biological expectations.

relation to large tandem repeat regions. Therefore, the variability of each boxplot can also be assessed based on biological
predictions. For instance, the genome composition of vertebrates leads to an expectation of greater variability compared
to bacterial genomes. Notably, the chimpanzee genome is predicted to exhibit a high variation, highlighting its abundant
intragenomic differences.

According to Fig. 7 and the p-values from the Wilcoxon signed-rank test in Supplementary Table S4, no statistically
significant differences are observed between the human-human distances and the human-P. troglodytes (chimpanzee) distances
across the eight distance measures. However, when comparing the human-human distance values with those of human-M.
musculus, the Manhattan, Descriptor, and Wasserstein distance measures yield statistically significant differences, with p-values
of 0.0009, 0.0348, and 0.0415, respectively. Therefore, these three distance measures, do not support the expectation of
no significant difference among mammals. Additionally, when comparing the human-human distances with the distances
between human and more distantly related species, all distance measures show statistically significant differences, except for
Wasserstein distance in the comparison between human-human and human-A. thaliana (p = 0.0684). Among the remaining
distance measures, Normalized Euclidean, Cosine, and DSSIM most accurately reflect phylogenetic distances and align with
the expected variation in vertebrates.

Conclusion of Exp 2: DSSIM Confirmed as Preferred Distance Measure

Considering the results of Exp 2.1 and Exp 2.2, DSSIM is the preferred distance measure for comparing FCGRs and is used in
subsequent experiments. The consistent performance of DSSIM is further supported by the Wilcoxon signed-rank test, where
the p-value for the comparison between the human-human distances and those of human-P. troglodytes is 0.178, between
human-human and human-M. musculus is 0.096, and for all other species, the p-value is less than 107!, The DSSIM distance
measure not only meets all biological expectations but also, compared to distance measures like LPIPS (as defined in Methods:
Distance Measures), has lower computational complexity. Additionally, it has the advantage of boundedness, with a practical
range of [0, 1], which makes the interpretation of numerical results easier.

Evidence of Low Intragenomic Variability of the Genomic Signature (Exp 3)
To quantitatively measure the intragenomic variation of genomic signatures within each chromosome of humans and maize,
as well as across the entire genomes of Aspergillus nidulans and Dictyostelium discoideum, the RepSeg and aRepSeg are
applied as described in Experiments 3.1 and 3.2. These pipelines extract representative segments, and the distances between
consecutive segments (each 500 Kbp in length) and the representative segments are calculated.

Fig. 8 presents the results of these experiments for human chromosomes. The line plots show the DSSIM distances of
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Figure 7. Intergenomic Distance Analysis (Exp 2.2). The eight panels correspond to the eight different distance measures
considered. Each panel presents boxplots illustrating the distribution of pairwise distances between 100 randomly selected
human reference segments and 100 randomly selected segments from the same, or one of eight other species (shown on the
horizontal axis). In each boxplot, the box represents the interquartile range, the whiskers indicate the broader spread of values,
and the red line marks the median.

segments relative to their representative segments. In the red lines, the representative segment is selected using the RepSeg
method, which follows a deterministic pipeline using all non-overlapping consecutive segments. The blue lines show the
distances of the segments from the representative segment selected using the aRepSeg method, which employs an approximation
pipeline based on a random sample of segments. Finally, the black lines illustrate the distances of consecutive segments from
a randomly selected segment within regions of high repetitive sequences, as described in Exp 3.3. The Fig. 8 also includes
ideograms of human chromosomes (adapted from the NCBI Genome Data Viewer?).

According to the red lines in Fig. 8, among all human chromosomes, the majority of segments (83.32%) exhibit a DSSIM
distance of less than 0.24 from the representative segment suggested by RepSeg. As shown in Supplementary Fig. S6, a DSSIM
distance of 0.24 can result from altering only about 1.1% of a 500 Kbp sequence, indicating that such a value can result from
small structural composition changes. The similarity of FCGR patterns across most segments confirms the pervasiveness of
genomic signatures within the chromosomes. This finding aligns with the results of Experiment 1, which provided evidence
for the pervasiveness of the genomic signature across different chromosomes, further supporting their pervasiveness within
individual chromosomes as well. Consequently, it is reasonable to propose a shorter representative segment for a chromosome
with millions of base pairs that effectively captures this signature. At the same time, a small fraction of segments (16.67%)
exhibit outlier behavior, with FCGR patterns that differ from the majority and contribute to the observed fluctuations in
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Figure 8. DSSIM distances of consecutive segments from the representative segment across all human chromosomes.
Each chromosome is divided into successive non-overlapping 500 Kbp segments, and the distances are calculated from these to
a chromosome representative segment. The red line (Exp. 3.1) corresponds to a representative segment selected using the
RepSeg method, where the representative is chosen as the segment with the smallest average distance to the others. The blue
line (Exp. 3.2) corresponds to a representative segment selected using the aRepSeg method, where the selection is
approximated iteratively. The black line (Exp. 3.3) corresponds to a representative segment randomly selected from a region
with highly repetitive sequences. Each point along a line indicates the DSSIM distance between a 500 Kbp genomic segment
and its representative segment. The horizontal axis shows the DSSIM distance values ranging from 0 to 1 (with increments of
0.2), where higher values indicate greater dissimilarity. The vertical axis is divided into intervals of 20, corresponding to
sequential 500 Kbp segments along each chromosome. Chromosome ideograms to the left of each plot are adapted from the
NCBI Genome Data Viewer and display key structural regions such as heterochromatin (regions colored in black and three
shades of gray), euchromatin (white regions), centromeres (pink regions), and large tandem repeat arrays (purple regions).

18/26


https://www.ncbi.nlm.nih.gov/gdv/browser/genome/?id=GCF_009914755.1

the genomic signature along the chromosome. Several factors may underlie this intragenomic variation and require further
investigation. As a case study, we examined the effects of common scattered repeats such as SINEs, LINEs, LTRs, and
Satellites on the genomic signature variation (see Supplementary Material Section A.4). Our analysis shows that these repeats
do not contribute to intragenomic variability profile. Instead, the observed variation is primarily driven by distinct sequence
composition in regions such as the centromeres or by long noncoding DNAs which have reduced G and C content and GC skew.

As the genomic signature is consistently repeated along the chromosome, one may assume that a randomly selected segment
from the chromosome can also serve as the representative. However, selecting a purely random segment as the representative is
not advisable, as a randomly chosen segment from the outlier segments is an unlikely representative and would fail to accurately
encapsulate the genomic signature (see the substantial difference between the black and red lines in Fig. 8 with an average MAE
of 0.61 across all chromosomes). On the other hand, the close resemblance (average MAE of 0.02 across all chromosomes)
between the blue line (aRepSeg) and red line (RepSeg) further validates the effectiveness of aRepSeg in accurately capturing
the genomic signature while reducing the computational cost of RepSeg.

Supplementary Table S5 shows the effect of the hyperparameter 7 (the size of the set § in aRepSeg) on runtime improvement
and MAE between aRepSeg and RepSeg. In this table, an n value of 1 corresponds to random representative selection.
Intuitively, n determines the size of a dynamic set from which the representative segment is selected—only if the set contains
no outliers. A larger n increases the chances of including a high-quality representative segment; however, larger values of n
also increase time complexity, thereby reducing the time-saving advantage of aRepSeg. Therefore, identifying an optimal # is
essential to balance both time efficiency and effective representative selection. Computational analysis, which explored values
of n between 1 and 50, empirically determined that n = 30 achieves an MAE of 0.027 on human chromosome 1, which is a
negligible error within the range of DSSIM distances and corresponds to approximately a 20x improvement in computational
time for representative selection in this chromosome.

In summary, the study confirms that a representative segment of 500 Kbp, as suggested by both RepSeg and aRepSeg,
effectively captures the genomic signature within chromosomes. This representative facilitates intragenomic variation analysis,
and quantitative exploration of the pervasiveness of genomic signatures along individual chromosomes of the human genome,
while highlighting outlier regions that show abnormal genomic signatures. Moreover, setting the hyperparameter » to an optimal
value of 30 for aRepSeg keeps a balance between precision and computational efficiency.

To demonstrate the generalizability of RepSeg and aRepSeg beyond the human genome, these pipelines are applied to ten
maize chromosomes (see Supplementary Fig. S3) as well as the entire genomes of Aspergillus nidulans and Dictyostelium
discoideum (see Supplementary Fig. S4). The results from these species are consistent with those observed in Fig. 8, further
supporting the pervasive nature of genomic signatures across both chromosomes and entire genomes. Some variations are
observed, primarily due to the presence of tandem repeat regions, which is a pattern also seen in the human genome.

Across all maize chromosomes, the majority of segments (93.23%) exhibit a DSSIM distance of less than 0.24 from the
representative segment selected by RepSeg. Furthermore, aRepSeg closely replicates RepSeg across all chromosomes, with an
average MAE of 0.02. Also, similar to the human genome, DSSIM distances in the maize genome tend to increase in segments
associated with centromeres and large tandem repeat regions.

The assembly of Aspergillus nidulans consists of eight chromosomes, which are concatenated to form the full genome
sequence. Since the individual chromosomes have an average length of 3.7 Mbp, the 500 Kbp representative selection pipeline
is applied to the concatenated chromosomes rather than to individual ones. Similarly, Dictyostelium discoideum has six
chromosomes with an average length of 5.6 Mbp, and the same 500 Kbp representative segment selection pipeline is applied to
the whole genome obtained by concatenation of all chromosomes. Supplementary Fig. S4 illustrates the DSSIM distance of
consecutive segments from the representative segment selected by RepSeg (red line) and aRepSeg (blue line) for each species.
Compared to the human and maize genomes, these two eukaryotes exhibit a more uniform distance from the representative
segment, further supporting the pervasiveness of genomic signatures within the genome of a species. In Aspergillus nidulans,
the average DSSIM distance from the representative segment selected by RepSeg is 0.13, with a standard deviation of 0.03,
indicating low intragenomic variation. Also, aRepSeg closely aligns with RepSeg, with an MAE of 0.01. A similar trend is
observed in Dictyostelium discoideum, where the average DSSIM distance is 0.004 (standard deviation: 0.006), and aRepSeg
deviates from RepSeg with an MAE of 0.0003.

Effectiveness of Genomic Signatures for Alignment-Free Taxonomic Classification (Exp 4)
To demonstrate the effectiveness of the representative segment selection pipelines, a simple taxonomic classification task is
performed using 1,100 randomly selected segments from the species listed in Fig. 1b. First, a training set is constructed by
selecting the representative segment identified by either RepSeg or aRepSeg for each species. Then, test samples are classified
based on their DSSIM distance to the corresponding representative segment, achieving an accuracy of 84.91% when using
RepSeg and 84.45% when using aRepSeg to select the representative segments.

Furthermore, to assess the significance of the representative segments selected by the pipelines, the classification task is
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repeated using a randomly chosen segment from each species as the reference instead of the representative segment suggested
by the pipelines. This substitution results in a drop in average classification accuracy to 77.63% over 50 runs. This reduction
in accuracy highlights the effectiveness of representative segment selection for downstream applications such as taxonomic
classification. Additionally, it suggests that while genomic signatures are pervasive across the genome of a species, they are not
entirely uniform, likely due to the presence of repetitive regions.

Most misclassifications occur between human and chimpanzee segments, reflecting the inherent similarity of their genomic
signature (see Supplementary Material Section A.5 and the confusion matrices in Supplementary Fig. S5). To address this, we
repeat the experiment excluding chimpanzees from the dataset and achieve an accuracy of 91.7% using RepSeg and 91.4% using
aRepSeg. In comparison, the average accuracy using random segments as representative segments across 50 runs is 84.36%.
While the accuracy improves in all scenarios, the difference between the accuracy using the pipeline-selected representative and
the accuracy using a random representative remains the same.

Overall, this experiment demonstrates the effectiveness of representative segment selection when choosing a portion of the
genome as genome proxy for downstream analysis. In particular, taxonomic classification and clustering studies such as Arias
et al."> and Lichtblau et al.3°, which rely on a random genomic segment as genome representative, or studies such as Alipour et
al.”*, which use the entire genome as representative, could benefit from our method as a preprocessing step to reliably identify a
genomic segment that captures the characteristics of the whole genome. Therefore, our representative selection could improve
the stability and classification/clustering accuracy of existing alignment-free taxonomic classification methods and pipelines.

Discussion and Conclusions

This study investigates the intragenomic variation of genomic signatures through the analysis of k-mer distributions in FCGR
images and proposes effective methods to select a representative segment to serve as a proxy for the whole genome for
taxonomic classification or other applications.

Overall, our findings indicate that the k-mer distribution reflected in FCGR images is preserved throughout the genome of
the studied species, with some exceptions in repetitive regions. This counterintuitive pervasiveness of the genomic signature
suggests that k-mer compositions within DNA sequences are shaped by fundamental patterns that tend to persist over long
periods of time'?. This being said, our analysis revealed some notable instances of FCGR patterns that deviate from the
dominant genomic signature, suggesting that the pervasiveness of the genomic signature has exceptions. These exceptions,
though limited in scope, may signal important biological events, and examining how and why genomic signature patterns vary
in certain regions could provide valuable insights into evolutionary processes, adaptations, the detection of genomic islands,
horizontal gene transfer events, and structural annotation. For instance, we hypothesize that genomic islands, which have
acquired genes from other organisms, could exhibit abnormal genomic signatures compared to the host genome that might
be identified through the intragenomic FCGR analysis suggested by this study. Another significant observation of this study,
based on deviations in the genomic signature observed in the genomes of eukaryotic species such as human and maize, is that
not all randomly selected genomic segments accurately reflect the species-specific genomic signature. This observation is
especially important for downstream applications such as phylogenetic inference and sequence classification, and it highlights
the significance of the proposed computational pipelines for the selection of a DNA representative genomic segment that can
serve as reliable genome proxy.

This study opens several avenues for future research. Since FCGRs are k-mer-based representations of DNA sequences,
their effectiveness can vary depending on both sequence length and the selection of parameter k. Given that the optimal choice
of k is highly dataset-dependent, with no single value consistently outperforming others across all datasets’>, exploring adaptive
or data-driven strategies for parameter selection could further improve consistency of the FCGR-based analysis’>. Moreover,
while FCGR-based methods offer a computationally efficient and alignment-free alternative to traditional approaches like
BLAST’®, they produce numerical dissimilarity scores without direct biological interpretation®. Future efforts could aim
to correlate these quantitative measures with interpretable inferences*®. Additionally, the representative selection pipelines
and intragenomic variation experiments presented in this study have been evaluated on four complete genomes but could be
extended to the study of species with potentially different characteristics, including those with bloated genomes where repetitive
sequences dominate (e.g., South American lungfish, Lepidosiren paradoxa’”) or those with whole-genome duplications, such
as many fish lineages, where duplicated content may strongly influence FCGR-based analyses. Future research could examine
the influence of specific sequence features, such as repetitive elements and structural composition, on genomic signature
variation. Our preliminary masking experiments suggest that common repeats (SINEs, LINEs, LTRs, and Satellites) have only
minor localized effects, but extending such analyses across species could reveal how compositional biases shape intragenomic
variation. Moreover, while this study focuses on nuclear DNA, subsequent investigations may explore mitochondrial DNA
(mtDNA) to assess the convergence or divergence between nuclear and mitochondrial genomic signatures. We note that
extending our intragenomic variation framework to mtDNA is feasible but constrained, as it requires species with sufficiently
long mtDNA sequences (such as Silene conica with 11 Mbp mtDNA®). Finally, while our experiments suggest that DSSIM
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is the most effective distance measure for comparing FCGRs, one could leverage machine learning to develop new distance
measures that could potentially align more closely with biological factors.

Taken together, our results provide the first genome-wide, cross-kingdom assessment of how FCGR-based genomic
signatures persist across complete eukaryotic genomes—and when they do not. We introduce computational and visual
frameworks for intragenomic signature analysis, together with a systematic pipeline that selects a short representative segment
capturing the compositional features of the whole genome. These tools could enable sensitive, spatially resolved detection
of departures from the prevailing signature—such as genomic islands’® and horizontal gene transfers®*—via comparisons
between local segments and their genome-level representative. We further observe that the representative segment often serves
as a more faithful proxy for downstream tasks than randomly chosen windows, and could improve alignment-free taxonomic
classification. Overall, the work aims to move genomic signatures from a descriptive notion to an actionable object and to
replace ad-hoc random sampling with representative segments—changes that could potentially yield accuracy gains and support
scalable, interpretable analyses of genome-wide variation.
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Figure legends

Figure 1. Method overview and dataset. (a) Overview of the four experiments and their interrelationships: Experiment 1 is an
independent study exploring the pervasiveness of genomic signatures across chromosomes within a single species. Experiment
2 conducts internal tests to identify the most appropriate distance measure for comparing genomic signatures. Experiment 3
applies the selected distance measure from Experiment 2 to analyze intragenomic variation across the entire genome through
representative segment selection. Experiment 4 assesses the effectiveness of the representative segments suggested by pipelines
using a 1-NN classifier. (b) Summary of selected species: This includes a list of the selected species for our subsets, detailing
their GenBank assemblies from the NCBI database, genome lengths, and the percentage of unknown nucleotides (represented
as ‘N’) in their genomes.

Figure 2. CGR/FCGR image generation. a. A schematic of CGR image generation from a DNA sequence. b. Mapping of
k-mers to specific positions in the CGR. ¢, d. Examples of CGR images (512 x 512, k = 9) for human (panel c¢) and maize
(panel d). e, f. Generating FCGR images by counting k-mer frequencies (k = 3) for human and maize, respectively. (This figure
is adapted from Lochel et al.!!)

Figure 3. Summary of the Representative Segment Selection Pipeline (RepSeg). a. Outlines the steps involved in the
pipeline for a chromosome, including chromosome segmentation (e.g., size 500 Kbp), FCGR generation (e.g., using k =9),
distance matrix calculation, and representative segment selection. b. Multidimensional Scaling (MDS) representation of the
distance matrix D. The representative segment is highlighted as a red point, representing the center of mass of the MDS plot
due to its minimal average distance to other points.

Figure 4. A screenshot of the consecutive non-overlapping segments experiment of the CGR-Diff software. a. Control
panel showing the parameters of the experiment, including k, segment size, and distance measure. b. Plot displaying the
distances between FCGRs of consecutive segments across the first human chromosome (using k = 6, segment size = 500 Kbp,
and distance measure = DSSIM). The red bar indicates the maximum distance (0.88) at the boundary between a tandem
repeat region (q12) and a euchromatic region (q21.1). ¢. FCGRs correspond to two consecutive segments associated with the
maximum distance, with their positions on the chromosome mentioned at the top of the images. The left and right images show
the individual FCGRs, and the center shows their pixel-wise difference, highlighting shifts in k-mer composition.

Figure 5. Analyses of the Human Genome Genetic Signature. Each image represents the FCGR of a complete human
chromosome, constructed using k = 9. The overall structure reveals a preserved genomic signature across chromosomes, while
variations in intensity indicate differences in k-mer distribution. Specifically, certain chromosomes, such as chromosome 9, 15,
16, and Y, appear lighter, consistent with the presence of regions with known high k-mer repetition.

Figure 6. Intragenomic Distance Analysis (Exp 2.1). Each bar plot shows the performance of a distance measure across

the different experiments in Exp 2.1. Three shades of blue represent the Telomere vs. Telomere, Heterochromatin vs. Hete-
rochromatin, and Heterochromatin vs. Euchromatin experiments, which are expected to yield relatively small distance values
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compared to the other experiments (the lighter the shade, the smaller the expected distance value). Six warm colors correspond
to the p-arm vs. g-arm experiment in different chromosomes (Y, 13, 14, 15, 21, and 22), where distance values are expected to
be the largest among all experiments. Purple bars represent the Large Tandem Repeat Arrays experiment, which is expected
to have large distance values, though smaller than those in the p-arm vs. g-arm experiment. Finally, gray bars indicate the
Arbitrary Sequences experiment, which is expected to produce intermediate distance values. Among all distance measures,
Descriptor, DSSIM, and LPIPS align best with biological expectations.

Figure 7. Intergenomic Distance Analysis (Exp 2.2). The eight panels correspond to the eight different distance measures
considered. Each panel presents boxplots illustrating the distribution of pairwise distances between 100 randomly selected
human reference segments and 100 randomly selected segments from the same, or one of eight other species (shown on the
horizontal axis). In each boxplot, the box represents the interquartile range, the whiskers indicate the broader spread of values,
and the red line marks the median.

Figure 8. DSSIM distances of consecutive segments from the representative segment across all human chromosomes.
Each chromosome is divided into successive non-overlapping 500 Kbp segments, and the distances are calculated from these
to a chromosome representative segment. The red line (Exp. 3.1) corresponds to a representative segment selected using the
RepSeg method, where the representative is chosen as the segment with the smallest average distance to the others. The blue
line (Exp. 3.2) corresponds to a representative segment selected using the aRepSeg method, where the selection is approximated
iteratively. The black line (Exp. 3.3) corresponds to a representative segment randomly selected from a region with highly
repetitive sequences. Each point along a line indicates the DSSIM distance between a 500 Kbp genomic segment and its
representative segment. The horizontal axis shows the DSSIM distance values ranging from O to 1 (with increments of 0.2),
where higher values indicate greater dissimilarity. The vertical axis is divided into intervals of 20, corresponding to sequential
500 Kbp segments along each chromosome. Chromosome ideograms to the left of each plot are adapted from the NCBI
Genome Data Viewer>® and display key structural regions such as heterochromatin (regions colored in black and three shades
of gray), euchromatin (white regions), centromeres (pink regions), and large tandem repeat arrays (purple regions).
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