
January 6, 2021 13:37 112-IJFCS 2042006

International Journal of Foundations of Computer Science

Vol. 31, No. 8 (2020) 1113–1132
c© World Scientific Publishing Company

DOI: 10.1142/S012905412042006X

State Complexity of Overlap Assembly

Janusz A. Brzozowski∗, Lila Kari† and Bai Li‡

David R. Cheriton School of Computer Science

University of Waterloo,
Waterloo, ON, Canada N2L 3G1

∗brzozo@uwaterloo.ca
†lila@uwaterloo.ca

‡bai.li.2005@gmail.com

Marek Szyku la§

Institute of Computer Science, University of Wroc law
Joliot-Curie 15, PL-50-383 Wroc law, Poland

msz@cs.uni.wroc.pl

Received 14 December 2018

Revised 18 September 2019
Accepted 20 October 2019

Published 15 December 2020

Communicated by Cezar Câmpeanu

The state complexity of a regular language Lm is the number m of states in a min-

imal deterministic finite automaton (DFA) accepting Lm. The state complexity of

a regularity-preserving binary operation on regular languages is defined as the maximal
state complexity of the result of the operation where the two operands range over all lan-

guages of state complexities ≤ m and ≤ n, respectively. We determine, for m ≥ 2, n ≥ 3,

the exact value of the state complexity of the binary operation overlap assembly on
regular languages. This operation was introduced by Csuhaj-Varjú, Petre, and Vaszil to

model the process of self-assembly of two linear DNA strands into a longer DNA strand,
provided that their ends “overlap”. We prove that the state complexity of the overlap

assembly of languages Lm and Ln, where m ≥ 2 and n ≥ 1, is at most 2(m−1)3n−1+2n.

Moreover, for m ≥ 2 and n ≥ 3 there exist languages Lm and Ln over an alphabet of
size n whose overlap assembly meets the upper bound and this bound cannot be met
with smaller alphabets. Finally, we prove that m+n is the state complexity of the over-

lap assembly in the case of unary languages and that there are binary languages whose
overlap assembly has exponential state complexity at least m(2n−1 − 2) + 2.
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1. Introduction

The state complexity of a regular language is the number of states in a minimal

deterministic finite automaton (DFA) accepting the language. The state complexity

of a regularity-preserving binary operation on regular languages is defined as the

maximal state complexity of the result of the operation when the operands range

over all languages of state complexities ≤ m and ≤ n; it is a function of m and n.

State complexity was introduced by Maslov [31] in 1970, but his short paper was

relatively unknown for many years. Maslov stated without proof that the state com-

plexity of the (Kleene) star of a language Ln of state complexity n is 2n−1 + 2n−2,

that of reversal is 2n, that of concatenation of languages Lm and Ln of state com-

plexities m and n, respectively, is (m−1)2n+2n−1, and that of union is mn. A more

complete study of state complexity including proofs was presented by Yu, Zhuang,

and Salomaa [34] in 1994. They proved that the state complexity of intersection

is also mn. The same bound also holds for other binary Boolean functions such as

symmetric difference and difference [1]. Since the publication of the paper by Yu,

Zhuang, and Salomaa, many authors have written on this subject; for an extensive

bibliography see the recent surveys [2, 17]. In particular, the state complexities of

the so-called basic operations, namely Boolean operations, concatenation, star and

reversal in various subclasses of the class of regular languages have been studied [2].

In this paper, we consider the state complexity of a biologically inspired binary

word and language operation called overlap assembly. Formally, overlap assembly

is a binary operation which, when applied to two input words xy and yz (where

y is their nonempty overlap), produces the output xyz. As a formal language

operation, overlap assembly was introduced by Csuhaj-Varjú, Petre, and Vaszil [6]

under the name “self-assembly”. It has been studied by Enaganti, Ibarra, Kari and

Kopecki [9, 10] for closure properties of various language families, decision prob-

lems, and the possible use of iterated overlap assembly to generate combinatorial

DNA libraries. A particular case of overlap assembly, called chop operation, where

the overlap consists of a single letter, was studied in [20, 21], and generalized to

an arbitrary length overlap in [19]. Other similar operations have been studied in

the literature, such as the short concatenation [4], which uses only the maximum-

length (possibly empty) overlap y between operands, the Latin product of words [18]

where the overlap consists of only one letter, and the operation
⊗

which imposes

the restriction that the non-overlapping part xz is not empty [23]. Overlap assembly

can also be considered as a particular case of semantic shuffle on trajectories with

trajectory 0∗σ+1∗ [8],a or as a generalization of the operation
⊙

N from [8] which

imposes the length of the overlap to be at least N .

aInformally, during a shuffle between two words with a trajectory over {0, 1, σ}+, the symbols of

the trajectory are interpreted as follows: 0 (respectively 1) signifies that the corresponding letter

from the first (respectively second) word is retained, and σ signifies that a letter from the first
word is retained, provided it coincides with the corresponding letter in the second word.
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The study of overlap assembly as a formal language operation was initiated in

the context of research on DNA-based information and DNA-based computation,

as a formalization of a biological lab procedure that combines short linear DNA

strands into longer ones, provided that their ends “overlap”. The process of overlap

assembly is enabled by an active agent called the DNA polymerase enzyme, which

has the property of being able to extend DNA strands, under certain conditions.

Other DNA bio-operations enabled by the action of the DNA polymerase enzyme,

which have been modeled and studied as formal language operations, include hairpin

completion and its inverse operation, hairpin reduction [5, 26, 28, 29], overlapping

concatenation [30], and directed extension [11]. Experimentally, (parallel) overlap

assembly of DNA strands under the action of the DNA polymerase enzyme was

used for gene shuffling in, e.g. [33]. In the context of experimental DNA computing,

overlap assembly was used in, e.g. [7, 12, 24, 32] for the formation of combinatorial

DNA or RNA libraries. Overlap assembly can also be viewed as modeling a special

case of an experimental lab procedure called cross-pairing PCR, introduced in [15]

and studied in, e.g. [13, 14, 16, 27].

In this paper, we investigate the state complexity of overlap assembly as a binary

operation on regular languages. Except that regular languages were known to be

closed under overlap assembly, the topic was not studied before. The paper is orga-

nized as follows. Section 2 describes the biological motivation of overlap assembly.

Section 3 introduces our notation and describes the construction of an NFA that

accepts the results of overlap assembly of two regular languages, given by their

accepting DFAs. In Sec. 4, we prove that the state complexity of the overlap assem-

bly of languages Lm and Ln, where m ≥ 2 and n ≥ 1, is at most 2(m− 1)3n−1 + 2n

(Theorem 3). Moreover, for m ≥ 2 and n ≥ 3 there exist languages Lm and Ln over

an alphabet of size n whose overlap assembly meets the upper bound (Theorem 5)

and, in addition, this bound cannot be met with smaller alphabets (Theorem 4).

Section 5 proves that m + n is a tight upper bound on the state complexity of

overlap assembly of two unary regular languages Lm and Ln (Theorem 6), and in

Sec. 6 we show that in the case of a binary alphabet the state complexity can be at

least m(2n−1 − 2) + 2, thus is already exponential in n.

A shorter version of this work not containing the results about unary and binary

alphabets has appeared in [3].

2. Overlap Assembly

The bio-operation of overlap assembly was intended to model the procedure whereby

short DNA single strands can be concatenated (assembled) together into longer

strands under the action of the enzyme DNA polymerase, provided they have ends

that “overlap”. Recall that DNA single strands are oriented words from the DNA

alphabet ∆ = {A,C,G, T}, where one end of a strand is labeled by 5′ and the other

by 3′. Watson/Crick (W/C) complementarity of DNA strands couples A to T and

C to G and acts as follows: Given two W/C single strands, of opposite orientation,
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ity of DNA strands binds the two single strands together by covalent bonds, to

form a DNA double strand. The W/C complementarity of DNA strands has been

traditionally modeled [22, 25] as an antimorphic involution θ : ∆∗ −→ ∆∗, that is,

an involution on ∆ (θ2 is the identity on ∆) extended to an antimorphism on ∆∗,
whereby θ(uv) = θ(v)θ(u) for all u, v ∈ ∆∗. In this formalism, the W/C complement

of a DNA strand u ∈ ∆+ is θ(u).

Using the convention that a word x over the DNA alphabet represents the DNA

single strand x in the 5′ to 3′ direction (usually depicted as the top strand of a double

DNA strand), the overlap assembly of a strand uv with a strand θ(w)θ(v) first forms

a partially double-stranded DNA molecule, where the substrand v in uv binds to

the substrand θ(v) in θ(w)θ(v); see Figure 1(a). The DNA polymerase enzyme will

then extend the 3′ end of uv with the strand w; see Figure 1(b). Similarly, the 3′ end
of θ(w)θ(v) will be extended, resulting in a full double strand whose upper strand

is 5′−uvw− 3′, and bottom strand is 5′ − θ(w)θ(v)θ(u)− 3′, see Figure 1(c). Thus,
in principle, the overlap assembly between uv and θ(w)θ(v) results in the strands

uvw and θ(uvw) = θ(w)θ(v)θ(u).

(a)
u v5′ 3′

3′ 5′θ(v) θ(w)

5′ 3′

(b)
u v w

3′ 5′θ(v) θ(w)

5′ 3′

(c)
u v w

3′ 5′θ(u) θ(v) θ(w)

Fig. 1. (a) The input DNA single strands uv and θ(w)θ(v) (by convention, all strands are written
in the 5′ to the 3′ direction) bind together by the binding of their complementary segments v
and θ(v), to form a partially double-stranded DNA molecule. (b) The DNA polymerase enzyme
extends the 3′ end of the strand uv, to form uvw. (c) The DNA polymerase enzyme extends the 3′

end of the strand θ(w)θ(v) to form θ(w)θ(v)θ(u). The resulting DNA double strand, whose “top”
strand is uvw, is considered to be the output of the overlap assembly applied to the two input
single strands. Adapted from [10].

Assuming that all involved DNA strands are initially double-stranded, that is,

whenever the strand x is available, its W/C complement θ(x) is also available, this

model was further simplified [6] as follows: Given words x, y over an alphabet Σ,

Fig. 1. (a) The input DNA single strands uv and θ(w)θ(v) (by convention, all strands are written

in the 5′ to the 3′ direction) bind together by the binding of their complementary segments v
and θ(v), to form a partially double-stranded DNA molecule. (b) The DNA polymerase enzyme

extends the 3′ end of the strand uv, to form uvw. (c) The DNA polymerase enzyme extends the 3′

end of the strand θ(w)θ(v) to form θ(w)θ(v)θ(u). The resulting DNA double strand, whose “top”
strand is uvw, is considered to be the output of the overlap assembly applied to the two input

single strands. Adapted from [10].

and whose letters are complementary at each position, the W/C complementarity

of DNA strands binds the two single strands together by covalent bonds, to form

a DNA double strand. The W/C complementarity of DNA strands has been tra-

ditionally modeled [22, 25] as an antimorphic involution θ : ∆∗ → ∆∗, that is,

an involution on ∆ (θ2 is the identity on ∆) extended to an antimorphism on ∆∗,
whereby θ(uv) = θ(v)θ(u) for all u, v ∈ ∆∗. In this formalism, the W/C complement

of a DNA strand u ∈ ∆+ is θ(u).

Using the convention that a word x over the DNA alphabet represents the DNA

single strand x in the 5′ to 3′ direction (usually depicted as the top strand of a double

DNA strand), the overlap assembly of a strand uv with a strand θ(w)θ(v) first forms

a partially double-stranded DNA molecule, where the substrand v in uv binds to

the substrand θ(v) in θ(w)θ(v); see Fig. 1(a). The DNA polymerase enzyme will

then extend the 3′ end of uv with the strand w; see Fig. 1(b). Similarly, the 3′ end

of θ(w)θ(v) will be extended, resulting in a full double strand whose upper strand

is 5′ − uvw − 3′, and bottom strand is 5′ − θ(w)θ(v)θ(u) − 3′, see Fig. 1(c). Thus,

in principle, the overlap assembly between uv and θ(w)θ(v) results in the strands

uvw and θ(uvw) = θ(w)θ(v)θ(u).

Assuming that all involved DNA strands are initially double-stranded, that is,

whenever the strand x is available, its W/C complement θ(x) is also available, this

model was further simplified [6] as follows: Given words x, y over an alphabet Σ,
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the overlap assembly of x with y is defined as:

x� y = {z ∈ Σ+ | ∃u,w ∈ Σ∗,∃v ∈ Σ+ : x = uv, y = vw, z = uvw}.
This can be naturally generalized to languages: Given languages Lm and Ln

of state complexities m and n, respectively, the overlap assembly of Lm and Ln is

defined as:

Lm � Ln = {z | z = x� y, x ∈ Lm, y ∈ Ln}.

3. An ε-NFA for Overlap Assembly

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ), where

Q is a finite non-empty set of states, Σ is a finite non-empty alphabet, δ : Q×Σ→ Q

is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final

states. We extend δ to functions δ : Q × Σ∗ → Q and δ : 2Q × Σ∗ → 2Q as usual.

A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The language accepted by D is

denoted by L(D). If q is a state of D, then the language Lq(D) of q is the language

accepted by the DFA (Q,Σ, δ, q, F ). A state is empty (or dead or a sink state) if

its language is empty. Two states p and q of D are equivalent if Lp(D) = Lq(D).

A state q is reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA D is

minimal if it has the smallest number of states and the smallest alphabet among all

DFAs accepting L(D). It is well known that a DFA is minimal if it uses the smallest

alphabet, all of its states are reachable, and no two states are equivalent.

A nondeterministic finite automaton (NFA) is a quintuple N = (R,Σ, η, I, F ),

where R, Σ, and F are as Q, Σ, and F in a DFA respectively, η : R×Σ→ 2R, and

I ⊆ R is the set of initial states. Each triple (p, a, q) with p, q ∈ R, a ∈ Σ is a tran-

sition if q ∈ η(p, a). A sequence ((p0, a0, q0), (p1, a1, q1), . . . , (pk−1, ak−1, qk−1)) of

transitions, where pi+1 = qi for i = 0, . . . , k−2 is a path inN . The word a0a1 · · · ak−1
is the word spelled by the path. A word w is accepted byN if there exists a path with

p0 ∈ I and qk−1 ∈ F that spells w. If q ∈ η(p, a) we also use the notation p
a−→ q.

We extend this notation also to words, and write p
w−→ q for w ∈ Σ∗. An ε-NFA is

an NFA in which transitions under the empty word ε are also permitted.

Given any two DFAs, we construct an ε-NFA that recognizes the overlap assem-

bly of the languages accepted by the DFAs. This proves constructively that the

family of regular languages is closed under overlap assembly.

Let Dm = (Qm,Σ, δm, 0, F ) and D′n = (Q′n,Σ, δ
′
n, 0
′, F ′) be two DFAs with

Dm recognizing Lm and D′n recognizing L′n, where F = {f1, . . . , fh} and F ′ =

{f ′1, . . . , f ′h′}. Let Qm = {0, . . . ,m− 1}, Q′n = {0′, . . . , (n− 1)′}, and let 0 and 0′ be

the initial states. We claim that the NFA N , constructed as shown below, accepts

the result of the overlap assembly of Lm and L′n.

The NFA is defined as N = (R,Σ, η, {r0}, FN ) where the set of states is R =

(Qm ∪ {t}) × (Q′n ∪ {s′}) with s′, t being new symbols not occurring in Qm ∪ Q′n,

the initial state is r0 = (0, s′), and the set of final states is FN = {(t, q′) | q′ ∈ F ′}.
Intuitively, the NFA simulates reading the word first by Dm, then by both Dm and
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D′n, and then by D′n. Hence the states in R contain a state of Dm and a state of D′n.

The states with s′ indicate that the second DFA has not yet read any letter, while

the states with t indicate that the first DFA has finished its reading. The set of

transitions η is defined below. The informal explanations at the right of transition

definitions assume two operands uv ∈ Lm and vw ∈ L′n respectively. The word

z = uvw belongs to their overlap assembly.

(i) {(qi, s′) a−→ (qj , s
′) | qi a−→ qj ∈ δm}; read u.

(ii) {(qi, s′) a−→ (qj , q
′
k) | qi a−→ qj ∈ δm, 0′

a−→ q′k ∈ δ′n}; read the first letter of v.

(iii) {(qi, q′k)
a−→ (qj , q

′
`) | qi

a−→ qj ∈ δm, q′k
a−→ q′` ∈ δ′n}; read the remainder of v.

(iv) {(fi, q′k)
ε−→ (t, q′k) | fi ∈ F, q′k ∈ Q′n}; v has been read.

(v) {(t, q′k)
a−→ (t, q′`) | q′k

a−→ q′` ∈ δ′n}; these rules read w.

Figure 2 illustrates the construction of such an NFA, denoted by N ′, for two

particular two-state DFAs D2 and D′2 accepting the languages L(D2) (all words

over {a, b}∗ that have an odd number of as) and L(D′2) (all words over {a, b}∗ that

end in the letter a). Note that the overlap assembly of L(D2) and L(D′2) is L(D′2).

In the automaton N ′ of Fig. 2, states (0, s′) and (1, s′) behave as specified in

Rule (i), using the transitions of D2. Rule (ii) moves the states from the first row

to the second row of the figure. In the second row, the transitions are those of the

direct product of D2 and D′2, as directed by Rule (iii). Note that neither Rule (i)

nor Rule (ii) can be used again since s′ does not appear as a component of any state

August 12, 2020 14:6 WSPC/INSTRUCTION FILE overlap-ijfcss
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Intuitively, the NFA simulates reading the word first by Dm, then by both Dm and

D′
n, and then by D′

n. Hence the states in R contain a state of Dm and a state of D′
n.

The states with s′ indicate that the second DFA has not yet read any letter, while

the states with t indicate that the first DFA has finished its reading. The set of

transitions η is defined below. The informal explanations at the right of transition

definitions assume two operands uv ∈ Lm and vw ∈ L′
n respectively. The word

z = uvw belongs to their overlap assembly.

i {(qi, s′) a−→ (qj , s
′) | qi a−→ qj ∈ δm}; read u.

ii {(qi, s′) a−→ (qj , q
′
k) | qi

a−→ qj ∈ δm, 0′
a−→ q′k ∈ δ′n}; read the first letter of v.

iii {(qi, q′k)
a−→ (qj , q

′
ℓ) | qi

a−→ qj ∈ δm, q′k
a−→ q′ℓ ∈ δ′n}; read the remainder of v.

iv {(fi, q′k)
ε−→ (t, q′k) | fi ∈ F, q′k ∈ Q′

n}; v has been read.

v {(t, q′k)
a−→ (t, q′ℓ) | q′k

a−→ q′ℓ ∈ δ′n}; these rules read w.

Figure 2 illustrates the construction of such an NFA, denoted by N ′, for two

particular two-state DFAs D2 and D′
2 accepting the languages L(D2) (all words

over {a, b}∗ that have an odd number of as) and L(D′
2) (all words over {a, b}∗ that

end in the letter a). Note that the overlap assembly of L(D2) and L(D′
2) is L(D

′
2).

0 1

a

a

b bD2 D′
2

0′ 1′
a

b

b a

(0, s′) (1, s′)
a

a

b b

N ′

(0, 0′) (0, 1′) (1, 1′) (1, 0′)

a

b

a

b

b

a
a

b

b
a a

b

(t, 1′) (t, 0′)
b

a

ba
ε ε

Fig. 2. An example of an NFA N ′ that accepts the overlap assembly of the languages accepted by
the DFAs D2 (which accepts all words over {a, b}∗ that have an odd number of as) and D′

2 (which
accepts all words over {a, b}∗ that end in the letter a).

In the automaton N ′ of Figure 2, states (0, s′) and (1, s′) behave as specified in

Rule (i), using the transitions of D2. Rule (ii) moves the states from the first row

to the second row of the figure. In the second row, the transitions are those of the

Fig. 2. An example of an NFA N ′ that accepts the overlap assembly of the languages accepted

by the DFAs D2 (which accepts all words over {a, b}∗ that have an odd number of as) and D′2
(which accepts all words over {a, b}∗ that end in the letter a).
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after Rule (iii) is used. When N ′ is in a state where the first component is 1, which

is a final state of D2, N ′ can move to the next row following Rule (iv) and change

the first component of the state to t. Note that Rule (iii) cannot be used again since

t appears as the first component of every state after Rule (iv) is used. Finally, N ′
moves to the third row and follows the transitions of D′2. Note that Rule (iv) cannot

be used again because of t. While the NFA N ′ has eight states, converting it to

a DFA and minimizing this DFA results in D′2. The NFA N ′ accepts the overlap

assembly of L(D2) and L(D′2). In general, the following result holds:

Proposition 1. Let Lm and L′n be two regular languages accepted by the DFAs

defined above, and let the NFA N be the automaton constructed as above. NFA N
has the following properties:

(1) If uv ∈ Lm and vw ∈ L′n, then r0
uvw−−−→ rf in N where rf ∈ FN .

(2) If r0
z−→ rf in N , then there exist u,w ∈ Σ∗, v ∈ Σ+ such that z = uvw, where

uv ∈ Lm and vw ∈ L′n.

(3) N accepts Lm � L′n.

Proof. (1) For the first claim, let v = ax, where a ∈ Σ. If uv ∈ Lm then 0
uax−−→ fi,

for some fi ∈ F in Dm. So there exist qi and qj in Qm such that 0
u−→ qi

a−→
qj

x−→ fi in Dm. Similarly, if vw ∈ Ln, then there exist q′k and q′` in Q′n such

that 0′
a−→ q′k

x−→ q′`
w−→ f ′j , for some f ′j ∈ F ′ in D′n.

By construction we have in N :

(0, s′)
u−→
(i)

(qi, s
′)

a−−→
(ii)

(qj , q
′
k)

x−−→
(iii)

(fi, q
′
`)

ε−−→
(iv)

(t, q′`)
w−−→
(v)

(t, f ′j),

which proves our first claim.

(2) Suppose that r0
z−→ rf in N , where rf ∈ FN . By the construction of N , such

a path must proceed by i applications of rule (i), one application of rule (ii), j

applications of rule (iii), one ε-transition via rule (iv), and k applications of rule

(v), where i, j, k ≥ 0. Thus there exist u, v, and w in Σ∗ such that z = uvw,

|u| = i, |v| = j + 1, and |w| = k. Owing to the construction of N , there must

exist paths 0
uv−→ fi in Dm and 0′

vw−−→ f ′j in D′n, which means uv ∈ Lm and

vw ∈ L′n.

(3) If x ∈ Lm and y ∈ L′n, then by (1), for every u, v, w where x = uv and

y = vw, uvw is recognized by N ; so Lm � Ln ⊆ L(N ). Conversely, if a word z

is recognized by N , then by (2), z = uvw for some u, v, w where uv ∈ Lm and

vw ∈ Ln; so L(N ) ⊆ Lm � Ln. Hence L(N ) = Lm � Ln.

Figure 3 shows the overall structure of the NFA N , with examples of transitions

of different types.

4. The State Complexity of Overlap Assembly in the General Case

To establish the state complexity of overlap assembly we need to determinize the

ε-NFA N = (R,Σ, η, r0, FN ) defined in Sec. 3, and then minimize the resulting
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(0, s′)

(0, 0′) . . . (0, (n-1)′)

...

(f, s′)

(f, 0′) . . . (f, (n-1)′)

(t, s′)

(t, 0′) . . . (t, (n-1)′)

...

(m-1, s′)

(m-1, 0′) . . . (m-1, (n-1)′)

ε (iv)

a (ii)

a (iii)

a (i)

a (v)

Fig. 3. The structure of the NFA that accepts the overlap assembly of two regular languages Lm

and L′
n, with example transitions of every type. Assume that Dm has the transition 0

a−→ f , that

D′
n has the transition 0′ a−→ (n − 1)′ and that f is one of the final states of Dm. The first of

these two transitions gives rise to (0, s′) a−→ (f, s′) (type (i)), while the first and second transition

together give rise to (0, s′) a−→ (f, (n− 1)′) (type (ii)) and (0, 0′) a−→ (f, (n− 1)′) (type (iii)). Since

f is final, a transition (f, j′) ε−→ (t, j′) (type (iv)) exists for all 0 ≤ j ≤ (n− 1). Lastly, the second

transition gives rise to (t, 0′) a−→ (t, (n− 1)′) (type (v)).

4. The State Complexity of Overlap Assembly in the General Case

To establish the state complexity of overlap assembly we need to determinize the

ε-NFA N = (R,Σ, η, r0, FN ) defined in Section 3, and then minimize the resulting

DFA. The first step is to find an upper bound on the number of subsets S of the

set R of states of N . We begin by characterizing the reachable subsets of R. They

all have the form

S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′), (1)

where q ∈ Qm, T ′ ⊆ S′ ⊆ Q′
n if q /∈ F , T ′ = S′ ⊆ Q′

n if q ∈ F , and S′ is non-empty

unless S = {(0, s′)}. We call q the selector of S, subset S′ \ {0′} is its core, and

subset T ′ is its subcore.
We illustrate this using the NFA of Figure 2. The initial subset is {(0, s′)}; this

has form (1) with S′ = T ′ = ∅. From this initial subset we reach by b the sub-

set {(0, s′), (0, 0′)} = {0, s′} ∪ ({0} × {0′}); here T ′ = ∅ and S′ = {0′}. By a we

Fig. 3. The structure of the NFA that accepts the overlap assembly of two regular languages

Lm and L′n, with example transitions of every type. Assume that Dm has the transition 0
a−→ f ,

that D′n has the transition 0′ a−→ (n− 1)′ and that f is one of the final states of Dm. The first of

these two transitions gives rise to (0, s′) a−→ (f, s′) (type (i)), while the first and second transition

together give rise to (0, s′) a−→ (f, (n− 1)′) (type (ii)) and (0, 0′) a−→ (f, (n− 1)′) (type (iii)). Since

f is final, a transition (f, j′) ε−→ (t, j′) (type (iv)) exists for all 0 ≤ j ≤ (n− 1). Lastly, the second

transition gives rise to (t, 0′) a−→ (t, (n− 1)′) (type (v)).

DFA. The first step is to find an upper bound on the number of subsets S of the

set R of states of N . We begin by characterizing the reachable subsets of R. They

all have the form

S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′), (1)

where q ∈ Qm, T ′ ⊆ S′ ⊆ Q′n if q /∈ F , T ′ = S′ ⊆ Q′n if q ∈ F , and S′ is non-empty

unless S = {(0, s′)}. We call q the selector of S, subset S′\{0′} is its core, and

subset T ′ is its subcore.

We illustrate this using the NFA of Fig. 2. The initial subset is {(0, s′)}; this

has form (1) with S′ = T ′ = ∅. From this initial subset we reach by b the subset

{(0, s′), (0, 0′)} = {0, s′} ∪ ({0} × {0′}); here T ′ = ∅ and S′ = {0′}. By a we

reach {(1, s′)} ∪ {(1, 1′)} ∪ {(t, 1′)} = {(1, s′)} ∪ ({1} × {1′}) ∪ ({t} × {1′}); here

S′ = T ′ = {1′}.
We now proceed to prove the claim about form (1).
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Lemma 2. Let m ≥ 2, n ≥ 1, and let D be the DFA obtained by determinization

of the NFA for the overlap assembly Lm�Ln. Every reachable subset of D is of the

form (1). Moreover, if q /∈ F, then S cannot be distinguished from S ∪ {(q, 0′)}.

Proof. First we show that every reachable subset S ⊆ R is of the desired form. We

prove this claim by induction. The initial subset {(0, s′)} has this form. Suppose

that S has this form, consider a letter a ∈ Σ, and the subset U = η(S, a). Observe

that (δm(q, a), s′) is the only pair in U containing s′, because of the transitions (i)

and because Dm is deterministic. Also, every state (q, p′),where p′ ∈ Q′n ∪ {s′}, is

mapped to a state (δm(q, a), r′) ∈ {δm(q, a)} ×Q′n by the transitions (ii) and (iii).

Finally, the states in {t} × T ′ are mapped only to states from {t} × Q′n by the

transitions (iv) and (v).

Note that subsets S with S′ = ∅ are not reachable, unless S is the initial subset

{(0, s′)}.
We show that if S = {(q, s′)}∪ ({q}×S′)∪ ({t}×T ′) is reachable, then T ′ ⊆ S′.

Let r′ ∈ T ′. Then there exists a word xy such that:

(0, s)
x−→ (q1, p

′)
ε−→ (t, p′)

y−→ (t, r′),

where q1 ∈ F . We also have:

(q1, p
′)

y−→ (q2, r
′).

Thus (q2, r
′) ∈ S, and so r′ ∈ S′.

We observe that if q ∈ F , then by ε-transitions (transitions (iv)), every state

(q, r′) ∈ S is mapped to (t, r′); thus T ′ = S′, which concludes the characterization

of reachable subsets.

Finally, we show that if q /∈ F , then S cannot be distinguished from S∪{(q, 0′)}.
Indeed, let a ∈ Σ be any letter. Then η((q, 0′), a) = η((q, s′), a) because the transi-

tions (iii) and (ii) coincide. Since (q, s′) ∈ S, we have η(S, a) = η(S ∪ {(q, 0′)}, a).

From Lemma 2 two reachable subsets with a different selector, or a different

core, or a different subcore are potentially distinguishable. If two reachable subsets

have the same selector, core, and subcore, then they can differ only by state (q, 0′)
if the selector q is not in F ; thus they cannot be distinguished. If two reachable

subsets have the same selector q that is in F , then they cannot differ just by (q, 0′),
as by ε-transitions from (q, 0′) we immediately obtain (t, 0′).

Theorem 3. For m ≥ 2 and n ≥ 1, the state complexity of Lm � Ln is at most

2(m− 1)3n−1 + 2n.

Proof. Using Lemma 2, we count the number of potentially reachable and distin-

guishable subsets S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′).
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Reachable subsets: For every state q ∈ Qm, we count the number of potentially

reachable subsets with selector q. There are 2 cases:

• If q is non-final, we can choose any non-empty set S′ ⊆ Q′n of cardinality k and

any subset T ′ of S′. The number of ways of doing this is
∑n

k=1

(
n
k

)
2k.

• If q is final, again we choose any non-empty set S′, but now T ′ = S′ is fixed. The

number of ways of doing this is 2n − 1.

There is also the initial subset {(0, s′)} which contributes 1 to the sum. In total,

this yields:

(m− |F |) ·
(

n∑
k=1

(
n

k

)
2k

)
+ |F | · (2n − 1) + 1.

Distinguishable subsets: The above formula gives the number of potentially reach-

able subsets but overestimates the state complexity because not all subsets are

distinguishable. Recall that by Lemma 2 if the selector q is not in F , then S cannot

be distinguished from S∪{(q, 0′)}. Thus we do not need to count subsets S without

0′, as S ∪ {(q, 0′)} is potentially reachable and always equivalent to S. Hence, for

a given q ∈ Qm\F we choose S′ to be any subset of Q′n that contains 0′, and again

let T ′ be any subset of S′. This can be done in
∑n

k=1

(
n−1
k−1
)
2k ways. Thus the total

number of potentially reachable and distinguishable subsets is at most

(m− |F |) ·
(

n∑
k=1

(
n− 1

k − 1

)
2k

)
+ |F | · (2n − 1) + 1.

By algebra, we have
∑n

k=1

(
n−1
k−1
)
2k = 2 · 3n−1, which is greater than 2n − 1; so

this formula is maximized when |F | = 1, and we conclude that the maximum state

complexity of overlap assembly is 2(m− 1)3n−1 + 2n.

Theorem 4. At least n letters are required to meet the bound from Theorem 3.

Proof. Let q ∈ F be a final state of Dm. For each p′ ∈ Q′n we consider the subset

Tp′ = {(q, s′), (q, p′), (t, p′)}.

If the upper bound is met, then, in particular, all subsets S with q ∈ F must be

reachable in view of Lemma 2. These subsets were counted in the upper bound, and

there are no other subsets of reachable form that could be equivalent to them when

the upper bound is met. Hence, in particular, all subsets Tp′ must be reachable.

Suppose that Tp′ is reachable by a word wp′ap′ , for some letter ap′ . Note that

(q, p′) is the only one of the three states in Tp′ that can be reached by transitions (ii)

of the NFA. Consider η(r0, wp′); it must contain (r, s′) for some r ∈ Qm, because

by Lemma 2 every reachable subset has exactly one such pair. Thus, (r, s′) must

be mapped by transitions (ii) induced by ap′ to (q, p′). Therefore, δ′n(0′, ap′) = p′,
which proves that ap′ are different for every p′.
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We define the witness DFAs for m,n ≥ 2. Let Σ = {a0, . . . , an−1}. Let Wm =

(Qm,Σ, δm, 0, F ) be defined as follows:

• F = {0};
• ai : 1m for i ∈ {0, 2, . . . , n− 1}, where 1m is the identity transformation on Qm;

• a1 : (0, 1, . . . ,m− 1) is a cyclic permutation of Qm.

Let W ′n = (Q′n,Σ, δ
′
n, 0
′, F ′) be defined as follows:

• F = {(n− 1)′};
• a0 : (Q′n → 0′) maps all the states of Q′n to 0′;
• ai : (1′, 2′, 3′, . . . , (i−1)′, 0′, i′, . . . , (n−1)′) for i ∈ {1, . . . , n−1}. Here ai permutes

the states of Q′n, mapping 1′ to 2′, 2′ to 3′, etc., then (i− 1)′ to 0′, 0′ to i′, and

then i′ to (i+ 1)′, etc., and (n− 1)′ to 1′.

The transitions of these DFAs with m = 3 and n = 4 states are illustrated in Fig. 4.

Let Lm and L′n be the languages of Wm and W ′n, respectively.

By a cyclic shift of a core subset S′ ⊆ {1′, . . . , (n − 1)′} we understand any

subset obtained by shifting the states along the cycle (1′, . . . , (n− 1)′), i positions

clockwise, i.e. the subset {(((p− 1 + i) mod (n− 1)) + 1)′ | p′ ∈ S′} for any i ≥ 0.

The next and previous cyclic shifts correspond to i = 1 and i = n− 2, respectively.

The transitions of letters a1, a2, . . . , an−1 produce next cyclic shifts of the states

in {1′, . . . , (n − 1)′}, with the exception that state 0′ replaces one of the states in

August 12, 2020 14:6 WSPC/INSTRUCTION FILE overlap-ijfcss
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be mapped by transitions (ii) induced by ap′ to (q, p′). Therefore, δ′n(0
′, ap′) = p′,

which proves that ap′ are different for every p′.

We define the witness DFAs for m,n ≥ 2. Let Σ = {a0, . . . , an−1}. Let Wm =

(Qm,Σ, δm, 0, F ) be defined as follows:

• F = {0};
• ai : 1m for i ∈ {0, 2, . . . , n− 1}, where 1m is the identity transformation on

Qm;

• a1 : (0, 1, . . . ,m− 1) is a cyclic permutation of Qm.

Let W ′
n = (Q′

n,Σ, δ
′
n, 0

′, F ′) be defined as follows:

• F = {(n− 1)′};
• a0 : (Q

′
n → 0′) maps all the states of Q′

n to 0′;
• ai : (1

′, 2′, 3′, . . . , (i − 1)′, 0′, i′, . . . , (n − 1)′) for i ∈ {1, . . . , n − 1}. Here ai
permutes the states of Q′

n, mapping 1′ to 2′, 2′ to 3′, etc., then (i − 1)′ to
0′, 0′ to i′, and then i′ to (i+ 1)′, etc., and (n− 1)′ to 1′.

The transitions of these DFAs with m = 3 and n = 4 states are illustrated in

Figure 4. Let Lm and L′
n be the languages of Wm and W ′

n, respectively.

W3 : W ′
4 :

0 1 2

a0 a0 a0

0 1 2
a1 a1

a1

0 1 2

a2 a2 a2

0 1 2

a3 a3 a3

0′ 1′ 2′ 3′

a0

a0

a0
a0

0′ 1′ 2′ 3′
a1 a1 a1

a1

0′ 1′ 2′ 3′

a2

a2

a2

a2

0′ 1′ 2′ 3′

a3

a3

a3

a3

Fig. 4. The actions of the letters in W3 and W ′
4.

Fig. 4. The actions of the letters in W3 and W ′4.
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the cycle. The idea behind the witness is that we can add an arbitrary state to the

core using these letters and produce arbitrary cyclic shifts as well, as will be shown

later. Letter a0 plays an important role of reset, which is necessary to reach small

subsets. The main difficulty is that a1 shares both roles of producing cyclic shifts

and switching the selector.

Theorem 5. For m ≥ 2 and n ≥ 3, Lm � L′n meets the upper bound.

Proof. Reachability : It is enough to show that all subsets S from Lemma 2 are

reachable, with the exception that if q /∈ F then it suffices to show reachability of

either S\{(q, 0′)} or S ∪ {(q, 0′)}.
• First we show that for all subsets

S = {(q, s′)} ∪ ({q} × S′),
where q ∈ Qm\{0} and ∅ 6= S′ ⊆ Q′n\{0′}, either S\{(q, 0′)} or S ∪ {(q, 0′)} is

reachable. These subsets have core S′ and an empty subcore.

We prove this by induction on the size |S′| of the core. For |S′| = 0, apply aq1a0
to (0, s′); this yields {(q, s′), (q, 0′)}.

Consider |S′| = 1. If q = 1, then we just use a1, which yields {(1, s′), (1, 1′)}. To

meet the other subsets {(1, s′), (1, p′)} for p ≥ 2, from {(1, s′), (1, 1′)} we use a0ap.

For q ≥ 2, we use aq−11 a0a1, which yields {(q, s′), (q, 1′)}. Then to meet the other

subsets {(q, s′), (q, p′)} for p ≥ 2, from {(q, s′), (q, 1′)} we also use a0ap.

Consider |S′| ≥ 2 and assume the induction hypothesis for subsets S with

a smaller core. Since S′ contains at least two states different from 0′, there is a state

p′ ∈ S′\{1′}. Let X ′ be the previous cyclic shift of S′\{p′}. Since p′ /∈ S′\{p′}, X ′
does not contain (p−1)′, but this is its only difference from the previous cyclic shift

of S′. By the inductive assumption, {(q, s′)} ∪ ({q} × X ′) is reachable. We apply

ap to this subset, which maps X ′ to its next cyclic shift, and also (q, s′) to (q, p′),
which yields {(q, s′)} ∪ ({q} × S′).
• Now we show reachability of subsets

S = {(0, s′)} ∪ ({0} × S′) ∪ ({t} × S′),
where ∅ 6= S′ ⊆ Q′n. These are all potentially reachable subsets with selector 0.

First consider the case 0′ /∈ S′. For {(m−1, s′), (m−1, 1′)} we apply a0a1, which

yields {(0, s′), (0, 1′), (t, 1′)}. Then we continue the induction on |S′| as before when

|S′| ≥ 2, with just {t} × S′ added to the subsets.

Now consider the case 0′ ∈ S′. The case S′ = {0′} is easily covered by applying

a0 to {(0, s′), (0, 1′), (t, 1′)}. If S′ = {0′, 1′}, then from {(m−1, s′), (m−1, (n−1)′)}
we apply a1 and get {(0, s′), (0, 0′), (0, 1′), (t, 0′), (t, 1′)} as desired. Let S′ 6= {0′, 1′}.
We already know that {(0, s′)}∪ ({0, t}×X ′) is reachable, where X ′ is the previous

cyclic shift of S′\{0′}. Since |S′| ≥ 2 and S′ 6= {0′, 1′}, there is a p′ ∈ S′\{1′}.
We apply ap to {(0, s′)} ∪ ({0, t} ×X ′). We have X ′\{(p− 1)′} mapped to S′\{p′}
and (p− 1)′ mapped to 0′, which gives ({0} × (S′ ∪ {0′}\{p′}) by transitions (iii),
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and (0, p′) is added by transitions (ii). Thus, after completing by ε-transitions this

yields {(0, s′)} ∪ ({0, t} × S′).
• Finally, we show that for all subsets

S = {(q, s′)} ∪ ({q} × S′) ∪ ({t} × T ′),
where q 6= 0 and ∅ 6= T ′ ⊆ S′ ⊆ Q′n, either S\{(q, 0′)} or S ∪ {(q, 0′)} is reachable.

Consider the special case S′ = T ′ = {0′}. We reach it from {(0, s′), (0, 0′), (t, 0′)}
by applying aq1a0. For the rest, assume that S′\{0′} is non-empty.

We need an auxiliary argument that from {(0, s′)} we can reach a subset with

selector q, core S′, and an empty subcore, using a word from {a1, a2, . . . , an−1}∗
(any word without a0). We prove this by induction on the core size |S′\{0′}|. For

|S′\{0′}| = 1, at the beginning we use a1, which yields {(1, s′), (1, 1′)}. Now we

can reach {(1, s′), (1, 0′), (1, p′)} for any p′ ∈ {2′, . . . , (n− 1)′} by using a2a3 . . . ap.

Then, from {(1, s′), (1, 0′), (1, (n − 1)′)} we reach {(2, s′), (2, 0′), (2, 1′)}, and it

remains to repeat the argument to reach every remaining subset of the form

{(q, s′), (q, 0′), (q, p′)} for q ∈ Qm\{0, 1} and p′ ∈ Q′n\{0′}. For |S′\{0′}| ≥ 2 we

follow the first part of the reachability argument as before, but we reach either

{(q, s′)}∪({q}×(S′\{0′}) or {(q, s′)}∪({q}×(S′∪{0′})), instead of just the former.

Let w ∈ {a1, a2, . . . , an−1}∗ be a word that reaches either {(q, s′)}∪({q}×(S′\{0′})
or {(q, s′)} ∪ ({q} × (S′ ∪ {0′})).

Suppose that we start from the subset

S0 = {(0, s′)} ∪ ({0, t} × T ′0),

where T ′0 is some subset such that ∅ 6= T ′0 ⊆ Q′n. We already know that for every

T ′0, subset S0 is reachable. After applying a1w, we reach either

Sq = {(q, s′)} ∪ ({q} × (S′ ∪ T ′q\{0′})) ∪ ({t} × T ′q),

or Sq ∪ {(q, 0′)}, where T ′q is obtained by applying some permutation π of Q′n to

T ′0. This is because {(0, s′)} is mapped by a1w to {(q, s′)} ∪ ({q} × (S′\{0′}) or

{(q, s′)} ∪ ({q} × (S′ ∪ {0′})), word a1w acts as a permutation on ({t} ×Q′q), and

{0}× T ′0 is mapped to ({q}× T ′q). Note that a1w does not depend on T ′0, so we can

choose T ′0 arbitrarily. Let T ′0 = π−1(T ′), so π(T ′0) = T ′. We obtain either

Sq = {(q, s′)} ∪ ({q} × ((S′\{0′}) ∪ T ′) ∪ ({t} × T ′),
or

Sq = {(q, s′)} ∪ ({q} × ((S′ ∪ {0′}) ∪ T ′) ∪ ({t} × T ′).
Recall that T ′ ⊆ S′ and if 0′ ∈ T , then also 0′ ∈ S′; hence (S′\{0′}) ∪ T ′ is either

S′ or S′\{0′}, and (S′ ∪ {0′}) ∪ T ′ = S′ ∪ {0′}. Thus, Sq is either S\{(q, 0′)} or

S ∪ {(q, 0′)}.
Distinguishability : Consider two reachable subsets

S1 = {(q1, s′)} ∪ ({q1} × S′1) ∪ ({t} × T ′1),
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and

S2 = {(q2, s′)} ∪ ({q2} × S′2) ∪ ({t} × T ′2),

with different selectors, different cores, or different subcores. Thus we have q1 6= q2,

or T ′1 6= T ′2, or (S′1\{(q1, 0′)}) 6= (S′2\{(q2, 0′}). These are precisely all the reachable

and potentially distinguishable subsets in view of Lemma 2. Note that the initial

subset also has this form, where q1 = 0 and S′1 and T ′1 are empty.

If q1 6= q2, then without loss of generality let q1 < q2. We apply am−q21 a0a
2
n−1.

For S1, first am−q21 a0 maps it to a subset {(q, s′), (0, s′)} or {(q, s′), (q, 0′), (t, 0′)}
(if T ′1 is non-empty) for some q 6= 0. Then a2n−1 results in a subset that from

the states from ({t} × Q′n) contains at most (t, 1′), which is not final. On the

other hand, S2 by am−q21 a0 is mapped to {(0, s′), (0, 0′), (t, 0′)}. Then a2n−1 yields

{(0, s′), (0, 0′), (t, 1′), (t, (n− 1)′)}, where (t, (n− 1)′) is final.

So suppose that q1 = q2. If q1 6= 0 and T ′1 6= T ′2, then we apply ain−1 for a suitable

i ≥ 0. Since an−1 acts cyclically on all states ({t} × Q′n) and no other states from

the subsets are mapped to ({t} ×Q′n), we can repeat the cycle so that exactly one

of η({t} × T ′1, ain−1) and η({t} × T ′2, ain−1) contains the final state (t, (n − 1)′). If

q1 = 0 and T ′1 6= T ′2, then also S′1 6= S′2, so it remains to cover this case.

Suppose that S′1 6= S′2. If q1 = q2 = 0, then also T ′1 6= T ′2. We apply a1, which

maps S1 to the subset

{(1, s′)} ∪ ({1} × (δm(S′1, a1) ∪ {2′})) ∪ ({t} × δ′n(T ′1, a1)),

and analogously S2. Since T ′1 6= T ′2 and a1 acts cyclically on Q′n, we have

δ′n(T ′1, a1) 6= δ′n(T ′1, a1). The case of these subsets has been already covered in the

previous paragraph.

There remains the case where T ′1 = T ′2, S′1 6= S′2, q1 = q2 6= 0. We follow the

induction on the selector q1 starting with q1 = m − 1 and decreasing it. We will

show for q1 = m − 1 that we can reach subsets with selector 0 that still have

different cores. We have already shown in the previous paragraph that the subsets

with selector 0 and different cores can be distinguished. For q1 < m − 1 we will

show that we can reach subsets with the same property but with selector q1 + 1,

which will follow by the inductive assumption. So let p be the largest index such

that, without loss of generality, p′ ∈ S′1 and p′ /∈ S′2. Note that p 6= 0, because then

the subsets cannot be distinguished. If p < n − 1, then we apply a1, which yields

subsets with the desired property. If p = n− 1, then we first apply a2, which yields

the subset with p′ = 1′, and then we can apply a1 as before.

5. Unary Alphabet

In this section, we consider overlap assembly of languages over a one-letter alphabet.

First note that if the longest word that is in a unary language L is of length n,

then the state complexity of L is exactly n+ 2. Similarly, if the longest word that is

not in a unary language L is of length n, then the state complexity of L is exactly

n+ 2 [34].
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Theorem 6. Let m,n ≥ 1, and let Lm and Ln be two unary languages of state

complexities m and n, respectively. The state complexity of Lm � Ln is at most

m + n, and this bound is met by Lm = {amk+n−1 | k ∈ Z,mk + n − 1 ≥ 0} and

Ln = {ank+m−1 | k ∈ Z, nk +m− 1 ≥ 0}.

Proof. We consider three cases:

Two infinite languages

Since languages Lm and Ln are regular and infinite, there are some i, j ≤ m and

i′, j′ ≤ n such that Lm ⊇ {aik+j | k ≥ 0} and Ln ⊇ {ai
′k′+j′ | k′ ≥ 0}.

Let t ≥ m + n − 1; we show that at ∈ Lm � Ln. Choose k and k′ to be the

maximum integers such that ik + j ≤ t and i′k′ + j′ ≤ t. The longest word in

aik+j � ai′k′+j′ is a(ik+j)+(i′k′+j′)−1. By definition of k, we have ik + j + i > t; so

ik + j ≥ t− i+ 1. Similarly, i′k′ + j′ ≥ t− i′ + 1. However,

(ik + j) + (i′k′ + j′)− 1 ≥ (t− i+ 1) + (t− i′ + 1)− 1

= 2t− i− i′ + 1 ≥ 2t−m− n+ 1 ≥ t.
Therefore for any t ≥ m+n−1, at ∈ aik+j�ai′k′+j′ . The longest word that might

not be in Lm � Ln is am+n−2, and so the state complexity of Lm � Ln is at most

m+ n.

Next, we prove that the bound is met by the languages given in the theorem.

Since we showed that Lm � Ln contains all at with t ≥ m+ n− 1, it is sufficient

to show that am+n−2 is not in Lm�Ln. Note that am+n−1 is in both Lm and Ln,

and we cannot obtain am+n−2 if either word in Lm or Ln has length ≥ m+n− 1.

Therefore we only need to consider the next longest words, which are an−1 ∈ Lm

and am−1 ∈ Ln. Since the longest word in an−1 � am−1 is am+n−3, we have

am+n−2 /∈ Lm � Ln. Therefore the state complexity is m+ n.

Two finite languages

Now the longest word in Lm is am−2 and the longest word in Ln is an−2. Therefore

the longest word in Lm � Ln is am+n−5. Hence the state complexity of Lm � Ln

is exactly m+ n− 3.

An infinite language and a finite one

We prove the following claim: Let m,n ≥ 1, let Lm be an infinite unary language,

and let Ln be a finite unary language. If m ≤ n− 2, then the state complexity of

Lm � Ln is at most n− 1. Otherwise, it is at most m+ n− 2.

We consider the following two cases:

(1) m ≤ n− 2

We show that for t ≥ n − 2, at ∈ Lm � Ln. By definition of Lm, there exists

as ∈ Lm with s ≤ t and t− s ≤ m− 1 ≤ n− 3. Hence at ∈ as � an−2 and so

at ∈ Lm � Ln. Therefore the state complexity of Lm � Ln is at most n− 1.
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(2) m > n− 2

We show that there is i ≥ 1 such that for all t ≥ n+m−2 we have at ∈ Lm�Ln

if and only if at−i ∈ Lm�Ln. This proves that the quotients of at and of at−i

are equal, so there exists a unary DFA (not necessarily minimal) recognizing

Lm � Ln with a cycle of length i and n+m− 2 states.

Let i be the length of the cycle in a minimal DFA of Lm. Then i ≤ m and

m− i is the number of states in the initial path in this DFA. Since Ln is finite,

an−2 is its longest word.

First assume that at ∈ Lm � Ln. Then there are aik+x ∈ Lm and ay ∈ Ln

such that k ≥ 0, x ≤ m−1, y ≤ n−2, and max{ik+x, y} ≤ t ≤ ik+x+y−1.

Because x + y − 1 ≤ m + n − 4 and t ≥ n + m − 2, it must be that k ≥ 1.

Then ai(k−1)+x ∈ Lm. We have t − i ≥ (n + m − 2) − m ≥ n − 2 ≥ y and

i(k−1)+x ≤ t−i, thus max{i(k−1)+x, y} ≤ t−i. Also, from t ≤ ik+x+y−1

we have t− i ≤ i(k − 1) + x+ y − 1. Therefore, ai(k−1)+x ∈ Lm and ay ∈ Ln

form at−i ∈ Lm � Ln.

Now assume that at−i ∈ Lm�Ln. Since at−i ∈ Lm�Ln, there are aik+x ∈
Lm and ay ∈ Ln such that k ≥ 0, x ≤ m− 1, y ≤ n− 2, and max{ik+x, y} ≤
t−i ≤ ik+x+y−1. If x ≤ m−i−1, then x+y−1 ≤ (m−i−1)+(n−2)−1 =

m + n − i − 4 but t − i ≥ n + m − 2 − i, which yields a contradiction. If

x ≥ m − i, then aik+x is accepted in a state in the cycle of the DFA of Lm.

Thus ai(k+1)+x ∈ Lm and, together with ay, ai(k+1)+x forms at ∈ Lm � Ln.

Hence the state complexity of Lm � Ln is at most m+ n− 2.

In summary, the largest upper bound occurs if both languages are infinite, and the

theorem holds.

6. Binary Alphabet

We define the following binary DFAs for m,n ≥ 2. Let Σ = {a0, a1}. Let

Bm(Qm,Σ, δm, 0, F ) be defined as follows:

• F = {0};
• a0 : 1m;

• a1 : (0, 1, . . . ,m− 1).

Let B′n(Q′n,Σ, δ
′
n, 0
′, F ′) be defined as follows:

• F = {(n− 1)′};
• a0 : (1′, . . . , (n− 1)′);
• a1 : (0′, 1′, . . . , (n− 1)′).

Theorem 7. For m ≥ 2 and n ≥ 3, the state complexity of L(Bm) � L(B′n) is at

least m(2n−1 − 2) + 2.

Proof. The proof is based on ideas similar to those in the proof of Theorem 5.
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• F = {(n− 1)′};
• a0 : (1

′, . . . , (n− 1)′);
• a1 : (0

′, 1′, . . . , (n− 1)′).

Bm

0 1 . . . m-1

a0 a0 a0 a0

a1 a1 a1

a1

B′
n

0′ 1′ . . . (n-1)′
a1 a0, a1 a0, a1

a1

a0

a0

Fig. 5. Binary automata Bm and B′
n such that L(Bm) ⊙ L(B′

n) has exponential state complexity.

Theorem 7. For m ≥ 2 and n ≥ 3, the state complexity of L(Bm) ⊙ L(B′
n) is at

least m(2n−1 − 2) + 2.

Proof. The proof is based on ideas similar to those in the proof of Theorem 5.

Reachability: We show that for each selector q ∈ Qm and each core ∅ 6= S′ ⊆
Q′

n \ {0′}, there exists a reachable subset S with some subcore, that is:

S = {(q, s′)} ∪ ({q} × (S′ ∪ {0′})) ∪ ({t} × T ′),

for some subcore T ′ ⊆ S′ ∪ {0′}.
First, we show that we can reach a subset of that form but for some selector

p ∈ Qm that is not necessarily q. We prove this by induction on |S′|. For S′ = {r′},
we apply a1a

r−1
0 , which yields {(1, s′), (1, 0′), (1, r′)}. Let |S′| ≥ 2 and assume that

the claim holds for smaller subsets S′. Let r′ ∈ S′ be a state and let X ′ = S′ \ {r′},
By assumption we can reach

X = {(p, s′)} ∪ ({p} × (X ′ ∪ {0′})) ∪ {{t} × Y ′},

for some Y ′ ⊆ X ′. We apply am−1−r
0 a1a

r−1
0 for X . This first maps X ′ to its cyclic

shift without state (m−1)′, then state 1′ is added by a1 and the selector is changed,

and we again cyclically shift to get X ′. Finally, we apply an−1
0 to ensure that (q, 0′)

is present; this yields the desired subset S.

Now, to change the selector from p to q we use the same technique. It is enough

to show that from a subset with selector p we can reach a subset with the selector

Fig. 5. Binary automata Bm and B′n such that L(Bm)�L(B′n) has exponential state complexity.

Reachability : We show that for each selector q ∈ Qm and each core ∅ 6= S′ ⊆
Q′n\{0′}, there exists a reachable subset S with some subcore, that is:

S = {(q, s′)} ∪ ({q} × (S′ ∪ {0′})) ∪ ({t} × T ′),

for some subcore T ′ ⊆ S′ ∪ {0′}.
First, we show that we can reach a subset of that form but for some selector

p ∈ Qm that is not necessarily q. We prove this by induction on |S′|. For S′ = {r′},
we apply a1a

r−1
0 , which yields {(1, s′), (1, 0′), (1, r′)}. Let |S′| ≥ 2 and assume that

the claim holds for smaller subsets S′. Let r′ ∈ S′ be a state and let X ′ = S′\{r′},
By assumption we can reach

X = {(p, s′)} ∪ ({p} × (X ′ ∪ {0′})) ∪ {{t} × Y ′},

for some Y ′ ⊆ X ′. We apply am−1−r0 a1a
r−1
0 for X. This first maps X ′ to its cyclic

shift without state (m−1)′, then state 1′ is added by a1 and the selector is changed,

and we again cyclically shift to get X ′. Finally, we apply an−10 to ensure that (q, 0′)
is present; this yields the desired subset S.

Now, to change the selector from p to q we use the same technique. It is enough

to show that from a subset with selector p we can reach a subset with the selector

(p + 1) mod m and the same core S′. We choose a state r′ ∈ S′, and then use

am−1−r0 a1a
r−1
0 . This first changes the core so that (m−1)′ is there, then the selector

is changed by a1, and the core is cyclically shifted back to S′.

Distinguishability : We will show that all the subsets above such that S′ 6= Q′n\{0′}
together with the initial subset and one of the subsets with S′ = Q′n\{0′} are

pairwise distinguishable. The number of non-empty and not full cores S′ is 2n−1−2,

which together with the m choices for the selector q yields m(2n−1−2). Adding the

initial subset and the subset with full S′ yields the desired formula.
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Without loss of generality, let

S1 = {(q1, s′)} ∪ ({q1} × (S′1 ∪ {0′})) ∪ {{t} × T ′1},
S2 = {(q2, s′)} ∪ ({q2} × (S′2 ∪ {0′})) ∪ {{t} × T ′2},

be such that ∅ 6= S′1 ( Q′n\{0′}, ∅ 6= S′2 ⊆ Q′n\{0′}, T ′1, T ′2 ⊆ Q′n, and S′1 6= S′2 or

q1 6= q2. Moreover, we can assume that |S′1| ≤ |S′2|.
First consider the case q1 6= q2. Let r′ be such that r′ ∈ S′1. As before, by

applying an−1−r0 a1a
r−1
0 , from S1 we reach a subset with selector (q1+1) mod m and

the same core S′1. Similarly S2 is mapped to a subset with selector (q2 + 1) mod m.

We repeat this procedure until S2 is mapped to a subset with selector (m − 1, s′),
that is, for S1 and S2 we apply (an−1−r0 a1a

r−1
0 )m−1−r. Since q1 6= q2, the first subset

obtained from S1 has selector q 6= m − 1. Now let p′ ∈ Q′n\(S′1 ∪ {0′}). We apply

an−1−p0 , which causes (n− 1)′ to be absent from the core of the first subset. Since

a subcore is always a subset of the core with (0, t′) added, (n − 1)′ is also absent

from the subcore of the first subset. We apply a1 and obtain:

X1 = {(q + 1, s′)} ∪ ({q + 1} × Y ′1) ∪ {{t} × Z ′1},
X2 = {(0, s′)} ∪ ({0} × Y ′2) ∪ {{t} × Z ′2},

for some Z ′1 ⊆ Y ′1 ⊆ Q′n and Z ′2 ⊆ Y ′2 ⊆ Q′n. Since (n−1)′ was not in the subcore of

the first subset and q + 1 6= 0, we have 0′ /∈ Z ′1. We apply an−10 . Since 0′ /∈ Z ′1 and

q + 1 6= 0, from X1 we obtain a subset that does not have final state (t, (n − 1)′).
On the other hand, from X2 state (0, s′) is mapped by a0 to (0, 1′) and then by

an ε-transition to (t, 1′). This is then mapped to final state (t, (n− 1)′) by an−20 .

Now consider the case q1 = q2 and S′1 6= S′2. Since S′2 is not a subset of S′1, there

is a state p′ such that p′ /∈ S′1 and p′ ∈ S′2. Let r′ ∈ S′1. We apply am−1−r0 a1a
r−1
0 as

before, which changes the selector to (q1 + 1) mod m, but does not change the core

S′1 of the first subset. We repeat this until selector 0 is reached. Then we still have

p′ /∈ S′1 but p′ ∈ Y ′2 , where Y ′2 is the core of the second subset. We apply an−1−p0 .

Then the first subset does not have final state (t, (n−1)′), but the second one does.

Finally, we need to distinguish the initial subset from the other subsets. For

the initial subset, we observe that applying either a0a1a
n−1
0 or a1a

n−1
0 results in

{(1, s′), (1, 0′), (1, 1′)}. On the other hand, every other subset that we have to con-

sider has a non-empty core S′2. If S′2 = {(n−1)′} then we apply a0a1a
n−1
0 , otherwise

a1a
n−1
0 . In both cases, this results in a subset that has a different core than {1′},

thus can be distinguished from {(1, s′), (1, 0′), (1, 1′)} as we showed before.

7. Conclusions

We have determined the state complexity of overlap assembly of regular languages.

The complexity is similar to that of the ordinary binary product (concatenation),

yet, in contrast with that, requires a growing linear alphabet to reach the maximum.

Nevertheless, a binary alphabet suffices for an exponential state complexity, quite

close to the upper bound, whereas for a unary alphabet it does not exceed m+ n.
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In the general case, we left the border cases of m = 1 or n ≤ 2, where our

general witness family does not work. When m = 1 or n = 1, one of the languages

is either universal or empty. An empty language causes the overlap assembly to be

empty. A universal language yields the overlap assembly equal to Σ∗Ln or LmΣ∗,
which are special cases of the product, and where the tight upper bounds on the

state complexity are 2n−1 and m, respectively. The case of n = 2 is left open.
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