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Abstract

Extreme environments impose strong mutation and selection pressures that drive distinctive, yet understudied, genomic
adaptations in extremophiles. In this study, we identify 15 bacterium-archaeon pairs that exhibit highly similar k-mer-
based genomic signatures despite maximal taxonomic divergence, suggesting that shared environmental conditions can
produce convergent, genome-wide sequence patterns that transcend evolutionary distance. To uncover these patterns, we
developed a computational pipeline to select a composite genome proxy assembled from non-contiguous subsequences
of the genome. Using supervised machine learning on a curated dataset of 693 extremophile microbial genomes, we
found that 6-mers and 100 kbp genome proxy lengths provide the best balance between classification accuracy and
computational efficiency. Our results provide conclusive evidence of the pervasive nature of k-mer-based patterns across
the genome, and uncover the presence of taxonomic and environmental components that persist across all regions of the
genome. The 15 bacterium-archaeon pairs identified by our method as having similar genomic signatures were validated
through multiple independent analyses, including 3-mer frequency profile comparisons, phenotypic trait similarity, and
geographic co-occurrence data. These complementary validations confirmed that extreme environmental pressures can
override traditionally recognized taxonomic components at the whole-genome level. Together, these findings reveal that
adaptation to extreme conditions can carry robust, taxonomic domain-spanning imprints on microbial genomes, offering
new insight into the relationship between environmental impacts and genome sequence composition convergence.

Key words: extremophiles, k-mer frequency profile, genomic signature, taxonomic classification, environment-type
classification, machine learning

1. Introduction grown in the ability of microbial extremophiles to survive the

extreme conditions of outer space (10; 11).
The study of extremophiles, organisms capable of thriving . P ( 3 11) X i
. X . . . Extremophiles have evolved specific genomic and proteomic
in Earth’s most extreme environments, provides -crucial . L . . .
L. . . . . adaptations to survive in environments with extreme conditions
insights into genetic adaptations for survival under harsh . .
.. . . (12; 13). At the genomic level, they frequently exhibit gene
conditions. These organisms have evolved to withstand extreme . . .
. e . duplications (14; 15) and reduced genome sizes, particularly
environmental conditions such as high temperature, pH, X . . . o
L. L. in thermophilic species (16). The nucleotide composition of
pressure, salinity, and radiation levels and, notably, they . . 8 K .
. . . . these organisms displays environment-specific patterns in G4+C
are often unable to survive outside of these physiologically . .
. L. . content and purine load (17; 18; 15). Multiple molecular
extreme environmental conditions (1; 2). Recent attention hani includi duplicati d hori tal
mechanisms, including gene duplication an orizontal gene
to microbial extremophiles has highlighted their value across €8 . p . g.
. . . . . . . transfer (19; 20; 21), also contribute to the genomic adaptation
diverse applications, including biotechnology, particularly in X X
. . . . . of extremophiles. Recent research has further emphasized
biorefineries and as sources of industrial extremozymes for high- . . .
. . the critical role of genomic regulatory elements in these
temperature or high-pH processes (3; 4; 5; 6; 7), environmental X ; R
. L. . . . . environmental adaptations (22; 23; 6), as well as efficient DNA
bioremediation of metal-contaminated, saline, or radioactive K K K . .
R . . repair systems in extremophiles exposed to high radiation (7).
environments (6), as well as agriculture and soil enhancement . .
. L. .. . At the proteomic level, features such as codon usage bias and
(8), and veterinary medicine (9). Additionally, interest has R . O K .
amino acid composition have been linked to thermal adaptation
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and have recently been used in machine learning models to
predict optimal growth temperature (24).

A recent study applied supervised and unsupervised
machine learning algorithms to explore the genomes of
microbial extremophiles, uncovering both taxonomic and
environmental components embedded within their genomic
signatures (25). In this approach, genomic signatures were
derived from 500 kbp

fragments randomly selected from each genome, by computing

(contiguous) representative DNA

the k-mer frequency vector of each fragment. Here, a
k-mer is a DNA sequence of length k, and the k-mer
frequency vector of a DNA fragment is a numerical vector
comprising the counts of the occurrences of all possible k-
mers in that fragment (in lexicographic order). These vectors
enabled highly accurate classification and clustering tasks
that revealed environmental components for extremophiles
inhabiting environments with extreme temperature and/or pH
conditions. While this approach provided valuable insights, it
had some notable limitations. Firstly, the selection of the DNA
fragment selected to act as a genome proxy was not entirely
random (see Section 2.3), which could potentially introduce
bias in the derived genomic signatures. Secondly, the study did
not quantitatively test the hypothesis of the pervasiveness of
the environmental components across the entire genome.

This paper addresses these limitations by first refining
the process of selecting a genomic signature to enhance the
accuracy of organism classification based on genomic data. We
focus on three key areas: (4) improving the genome coverage and
randomness of the representative DNA fragment by replacing
it with a composite genome proxry constructed through
the pseudo-concatenation of several randomly selected (non-
contiguous) DNA fragments, (%) comprehensively testing the
hypothesis of the pervasiveness of taxonomic and environmental
components across a genome, and (7it) analyzing the impact
of varying k-mer sizes and composite genome proxy lengths,
ranging from 10 kbp to entire genomes. Through a series
of computational experiments involving several genome proxy
selection methods, k-mer sizes, and fragment lengths, we aimed
to identify the optimal parameters for extremophile genomic
signature analysis. The results of these analyses were then
used to design a multi-layered pipeline that identified multiple
bacterium-archaeon pairs with similar genomic signatures in
spite of their maximal taxonomic divergence, potentially due to
the shared characteristics of their extreme environments. The

main contributions of this paper are:

1. Conclusive evidence of the pervasiveness of a k-mer-based
genomic signature throughout an extremophile genome.

2. A broadly applicable method for the selection of a
composite genome proxy (hereafter referred to simply
as “genome proxy”) assembled from non-contiguous

subsequences of the genome. Empirical determination of

the optimal k-mer size (k = 6) and genome proxy
length (100,000 bp) for fast and accurate taxonomic and
environment-type classifications.

3. Discovery of 15 maximally divergent bacterium-archaeon
pairs with similar genomic signatures linked to the
characteristics of their extreme environment, through a
multi-layered filtering process used in conjunction with
unsupervised machine learning.

4. Validation of the above computational findings through
additional analyses, including 3-mer frequency profile

analyses demonstrating agreement with known adaptative

patterns in extremophiles, statistical confirmation of 3-mer

frequency profiles similarity of the identified pairs using
Spearman’s rank correlation analysis (26), and analysis of
geographic co-occurrence data confirming that identified
bacterium-archaeon pairs naturally co-occur in the same
extreme environments.

2. Materials and Methods

This section describes the methodology employed in this
study’s computational experiments: Section 2.1 provides a
detailed description of the genome sequence datasets utilized
in this study; Section 2.2 provides an explanation of genomic
signatures, Section 2.3 outlines the procedure employed for
selecting a genome proxy to represent a genome for the purpose
of taxonomic and environment-type based machine learning
classifications, and the methods used to empirically optimize
the k-mer value and genome proxy length; Section 2.4 describes
the multi-layer process utilized to discover microbes that share
environmental genomic component in spite of belonging to
different taxa of maximal evolutionary divergence.

2.1. Dataset

In the quest to evaluate genome-wide genomic signatures
potentially shaped by similar extreme environments for
maximally divergent microbes, it is essential to determine the
optimal genome proxy to represent each genome. This selection
is crucial for ensuring accurate k-mer-based classification and
clustering.

For this reason, and in order to be able to perform
apples-to-apples comparisons with existing results, we utilized
the dataset from (25). The dataset consists of 693 high-
quality extremophile microbial genome assemblies curated
via a comprehensive review of primary literature and cross-
referenced with the Genome Taxonomy Database (27).
These microbial genomes were grouped into two different
environment-type datasets, one based on the organisms’

optimal growth mesophiles,
thermophiles, hyperthermophiles, see Table 1) and the other
based on their optimal growth pH levels (acidophiles and
alkaliphiles, see Table 2).

The first dataset, called the Temperature Dataset, is

temperature (psychrophiles,

composed of 598 genomes including 148 psychrophile genomes,
190 mesophile genomes, 183 thermophile genomes, and 77
hyperthermophile genomes. The second dataset, called the pH
Dataset, is composed of 186 genomes, including 100 acidophile
genomes and 86 alkaliphile genomes. There are 91 genomes that
are present in both datasets, falling into one of two categories:
mesophiles that live in acidic or alkaline environments (8
genomes), and polyextremophiles, that thrive in environments
that are both acidic/alkaline and at extreme temperatures (83
genomes). The details of the samples that are in both datasets
can be found in the Supplementary Materials, Section A.

2.2. Genomic signature

Due to the massive lengths of genomic sequences and the
high computational demands of alignment-based methods (28),
researchers are now using alignment-free methods leveraging
“genomic signatures” for efficient genome classification or
clustering. The genomic signature of an organism is typically
represented by a k-mer frequency vector (29), derived from
the entire genome or a “sufficiently long” DNA fragment
that captures the pervasiveness of the signature (30). These
signatures have proven effective in differentiating species and
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The Temperature Dataset: Taxonomic diversity of archaea and bacteria across temperature categories. The four temperature

categories are defined, based on the optimal temperature for growth (OTG). These categories are as follows: Psychrophiles (OTG of < 20°C),
Mesophiles (OTG of 20—45°C), Thermophiles (OTG of 45—80°C), and Hyperthermophiles (OTG of > 80°C) (25).

Temperature
Domain Category # Phyla # Classes # Orders # Families # Genera # Species
Psychrophiles 2 4 4 5 7 8
Mesophiles 4 6 7 20 45 84
Archaea .
Thermophiles 6 11 14 21 41 67
Hyperthermophiles 5 6 8 15 31 70
Psychrophiles 4 4 6 13 19 140
Bacteria Mesophiles 3 3 6 10 14 106
Thermophiles 15 19 24 27 47 116
Hyperthermophiles 5 5 5 5 5 7

Table 2. The pH Dataset: Taxonomic diversity of archaea and bacteria across pH categories. The two pH categories are defined based on
the optimal growth pH (OGpH). These are: Acidophiles (OGpH < pH 5) and Alkaliphiles (OGpH > pH 9) (25).

pH
Domain Category # Phyla # Classes # Orders # Families # Genera # Species
Arch Acidophiles 4 5 7 11 24 39
rehaca Alkaliphiles 2 5 5 9 18 30
Bacteri Acidophiles 10 12 13 13 32 61
acteria Alkaliphiles 12 14 25 30 36 56

have been applied in various contexts, including microbial
diversity analysis (31; 32; 33; 34; 35; 36; 37), classification
or subtyping of viral genomes (38; 39; 33; 40; 41; 42), and
metagenomic classification and profiling (43; 35).

Chaos Game Representation (CGR) of DNA sequences,
first introduced by Jeffrey in 1990 (44), has emerged as a
particularly effective method for calculating and visualizing
genomic signatures. Figure 1, left panel, provides a brief
illustration of the process of generating the CGR of the sample
DNA sequence “ACG.” A quantified version of CGR, called
Frequency Chaos Game Representation (FCGR) (45), produces
a 2% x 2* grayscale image, where the pixel intensities correspond
to k-mer frequencies. The patterns in an FCGR of a genomic
sequence reflect its composition, and several studies have
demonstrated the effectiveness of FCGR images in taxonomic
classification at various taxonomic levels (46; 47; 48). As
expected, the FCGRs of an archaeon and a bacterial species are
visually different, which is consistent with the genetic difference
anticipated for species of two different domains of life (Figure 1,
right panel).

The capability of genomic signatures to differentiate
between organisms across taxonomic levels, combined with
the visualization power of FCGRs, makes genomic signatures
particularly suitable for the analysis of extremophiles, where
we seek to understand how environmental adaptations might
In this

study, FCGR is employed for the quantitative evaluation of

influence genomic signatures across different taxa.

candidate bacterium-archaeon pairs (Section 2.4.2), while k-
mer frequency vectors serve as the primary genomic signature
throughout all classification and clustering analyses.

2.3. Selecting the genome proxy, and empirically
optimizing the k-mer value and genome proxy
length

This section begins by proposing a new procedure for the

selection of a genome proxy (Section 2.3.1). Using this selection

method, along with supervised learning methods applied to the

Temperature Dataset and pH Dataset, we then assessed the

effect of genome proxy selection on classification accuracy, and
empirically determined the optimal values for k-mer size and
representative genome proxy length (Section 2.3.2).

2.8.1. Selecting a genome prozy

While genomic signatures have been shown to be effective for
classification and clustering of genomic sequences, the validity
and accuracy of such analysis highly depend on the selection of
representative DNA fragments capable of serving as a genome
proxy. The approach utilized in (25) had notable limitations
that our current methodology aims to address. Specifically,
the selection process was not completely random, since the
selected representative was a contiguous long fragment of the
genome and the selection process prioritized longer contigs over
shorter ones. Recall that the selection process in (25) starts
from the list of contigs sorted in decreasing order of their
length. If the longest contig exceeded 500 kbp in length, a
500 kbp subfragment was randomly chosen from that contig as
the representative DNA fragment of that genome. Otherwise,
the contigs were pseudo-concatenated one after another, until
the pseudo-concatenated sequence reached a length of 500 kbp,
and this sequence was taken to be the representative DNA
fragment of that genome. Here, the pseudo-concatenation of
DNA sequences is defined as listing them one after another,
with a separator letter ‘N’ between every two consecutive
sequences. Pseudo-concatenation prevents the formation of
spurious k-mers during the process, and k-mers containing the
letter ‘N’ are not counted when computing the k-mer frequency
vector of the pseudo-concatenated sequence, with ‘N’ not being
counted towards the pseudo-concatenated sequence length. One
potential limitation of this selection process is that it biases
the choice towards representative DNA fragments extracted
from longer contigs. Another potential limitation is that, if
the first contig is sufficiently large, the representative fragment
will be selected from a single region of the genome. These
limitations introduce a bias in the selection of the representative
DNA fragment, which presupposed a genome-wide pervasive



4 M. Safari et al.

a
c G C —
ve CC | GC e
AC | TC
A
A T A T

A

T A T
b-1 b-2

Bacteria - Escherichia fergusonii Archaea - Halomicrobium mukohataei

Fig. 1. Left: Chaos Game Representation (CGR) of the DNA sequence “ACG.” a-1: The CGR is generated within a square with corners labelled A, C,
G, T. The plot is generated by reading the sequence from left to right, and iteratively plotting the midpoint between the current point and the corner

labelled by the nucleotide being read (the start point is the square’s center). For example, the sequence ACG consists of three points generated in the

order illustrated by the arrows. a-2: The resulting CGR, where the square regions labelled by A, AC, and ACG are the regions where the k-mers A,

AC, ACG would be plotted, regardless of their position in the sequence. Right: FCGRs of randomly selected 100 kbp genomic fragments belonging to

organisms from two different domains of life, b-1: E. fergusonit (bacterium) and b-2: H. mukohataei (archaeon). Both species live in similar habitats with

moderate temperatures (optimal growth temperature of 20 — 45°C). The value of k is 8, and thus each image is a 256 X 256 grayscale grid (28 = 256),

where each pixel represents the frequency of a specific 8-mer in the DNA fragment. Darker (lighter) pixels indicate higher (lower) numbers of occurrences

of the corresponding 8-mers in the respective sequences. The unique patterns in each image reflect the genome sequence composition for that species.

nature of a genomic signature and could potentially affect the
classification accuracy.

To address these limitations, we propose a procedure for
selecting a composite genome proxy that ensures that all
fragments in the genome have an equal probability of being
included in the final genome proxy. In addition, this procedure
ensures that the final genome proxy includes multiple sequences
from various locations in the genome. The method of selecting
a genome proxy has three steps:

1. Empirically determining the optimal values for n (the
number of non-overlapping genomic subfragments that
comprise a genome proxy s), and for len(s), the total length
of the genome proxy s.

2. Pseudo-concatenating all contigs into a single large
sequence, if the genome sequence is composed of multiple
contigs;

3. Pseudo-concatenating n different, randomly selected, non-
overlapping subfragments of length len(s)/n from either
the genome (if it consists of a single contig), or from the
pseudo-concatenated sequence obtained in the preceding
step (if the genome consists of multiple contigs).

Figure 2 illustrates the selection process of a genome proxy
when the genome consists of only one contig, n = 3, and
len(s) = 15.

2.8.2. Determining the optimal k-mer size and genome
proxy length

After selecting the genome proxy in a way that ensured
randomness, we evaluated the impact of the following three
factors on the supervised classifier accuracies (%) the choice of
genome proxy, (i) k-mer size, and (74) genome proxy length.
The feature vectors used as an input for these classifiers were
canonical k-mer frequency vectors. Here, a “canonical k-mer”
is defined as the first, in alphabetical order, of a k-mer and its
Watson-Crick complement. For any DNA sequence, the final
frequency vector was computed by averaging the k-mer counts
of the sequence with k-mer counts of its Watson-Crick reverse

complement (25). In the remainder of this paper, only the
canonical k-mer will be listed.

The classifier used to evaluate the impact of factor (%)
was the Support Vector Machine (SVM) with a Radial Basis
Function (RBF) kernel, which has been shown to achieve
high accuracies in genome sequence classification across various
fields (25; 49; 50). To investigate the impact of factors (%)
and (i), we expanded our analysis to include six classifiers:
SVM with RBF kernel, Random Forest with 100 estimators,
and an Artificial Neural Network (ANN) with two hidden
layers (sizes 256 and 64, and a learning rate of 0.001).
Additionally, three variations of the Machine Learning with
Digital Signal Processing (MLDSP) algorithm (MLDSP-1,
MLDSP-2, and MLDSP-3)(33) were also included. Other deep
learning classifiers, such as CNNs, were not considered because
the number of samples in our dataset was insufficient to reliably
train such models.

In these computational experiments, we explored nine k-
mer sizes ranging from 1 to 9, to find the optimal value of
k. Larger k-mer sizes were avoided to prevent sparsity in the
feature vector, which can undermine classification accuracy.
Six genome proxy lengths (len(s)) were evaluated: 10 kbp, 50
kbp, 100 kbp, 250 kbp, 500 kbp, and 1,000 kbp. The fragment
lengths were chosen to include both short sequences (e.g., 10
kbp, approximately 3% of the average sequence length in our
dataset) and longer sequences, allowing for a comprehensive
comparison while also considering computational costs. For all
experiments, the number of sub-fragments (n) comprising the
sequence s was set to 10, a value empirically determined as
optimal for the datasets used. This choice is supported by
existing studies indicating that the minimum sequence length
necessary to capture genomic patterns is of the order of 103
(44), making n = 10 an effective choice for ensuring that
each sub-fragment independently captures the relevant genomic
patterns, particularly in the case of shorter fragments.

In the experiment for evaluating the impact of factor (%),
we repeated the following process 10 times: First, a random
genome proxy was selected for each sequence. Then, for
each combination of k-mer size and fragment length (9 X 6
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Fig. 2. The selection process of a genome proxy s, comprising n = 3 non-overlapping sub-fragments, and with total length len(s) = 15. Top: Full

genome, consisting of only one contig. Middle: n non-overlapping sub-fragments (here n = 3) randomly selected from the genome. Bottom: The genome

proxy of length len(s) = 15 obtained by pseudo-concatenating the sub-fragments.

combinations), we performed classification using an SVM with
10-fold cross-validation. To assess the performance of the
classification, the accuracy was defined as the ratio of the
number of sequences with correctly predicted labels to the total
number of sequences classified. The variance of the classification
accuracy over these ten runs of the classification was then
calculated to determine if the accuracy was dependent on the
choice of random genome proxy.

Following the observation that classification accuracy is not
dependent on the choice of genome proxy (see Section 3.1 for
details), finding the optimal k-mer size (factor (4¢)), and finding
the optimal fragment length (factor (ui:)), were carried out by
running classification experiments using the six classifiers with
all combinations of k-mer sizes and fragment lengths. Note that,
for each fragment length, a fixed randomly selected genome
proxy was utilized.

In addition, a separate experiment was performed using
the full DNA genome (maximal sequence length) and the
determined optimal k-mer size, to evaluate the impact
of considering the information from the whole genome on
classification accuracy, as opposed to a random shorter
fragment.

The computational experiments were performed for the
two different datasets, the Temperature Dataset and the pH
Dataset. All classifications were conducted under two distinct
supervised training scenarios: genome proxies labelled with
taxonomic labels (bacteria or archaea), and genome proxies
labelled with environment-type labels (for the Temperature
Dataset,
hyperthermophiles;
alkaliphiles).

Taxonomic analyses employed

psychrophiles, mesophiles, thermophiles, and
for the pH Dataset, acidophiles and
stratified 10-fold cross-
validation. For environment-type classifications, tests were
conducted under two scenarios: a “standard” scenario and a
“bias mitigation” scenario.

In the standard scenario, conventional stratified 10-fold
cross-validation was applied, and the average classification
accuracy was reported across the ten folds. The bias mitigation
scenario was designed to separate genus-level taxonomic signals
from environment-specific genomic patterns. Here, folds were
constructed so that all sequences from the same genus were
placed in the same fold, while the distribution of all labels in
each fold remained the same as in the entire dataset. The fact
that sequences from the same genus were not split between folds
ensured that the environment-type labels of test sequences were
predicted due to their environment-specific similarities, rather

than due to genus-specific similarities with sequences in the
training set.

2.4. Finding bacterium-archaeon pairs with similar
genomic signatures, linked to their extreme
environments

Once the performance of the optimal parameters was validated,
the main objective of this study was to identify, if any, microbe
pairs from two different taxonomic domains (archaea and
bacteria) that shared similarities in their genomic signatures
that were linked to their shared extreme environment types.

A multi-layered approach was used to identify bacterium-
archaeon pairs of sequences with similar genomic signatures.
The first layer involved the generation of “candidate bacterium-
archaeon pairs,” i.e., maximally different microbe pairs
clustered together by non-parametric unsupervised clustering
machine learning algorithms (Section 2.4.1). To eliminate
potential clustering algorithm errors, this candidate pair list
was subjected to a second selection layer, comprising a
quantitative comparison of the FCGRs of members of each
candidate pair, which resulted in pairs with similar genomic
signatures called “confirmed candidate pairs” (Section 2.4.2).
Finally, we used the confirmed candidate pairs to test the
hypothesis that genomic similarities of pair members were due
to shared environmental pressures, by exploring the isolating
environment metadata of the members of each pair, resulting
in a list of “environment-related pairs” (Section 2.4.3).

We then further investigated the environment-related pairs
by analyzing the 3-mer frequency profiles of the pair members
and corroborating the results with biological findings of over-
and under-representation of codons in extremophile microbes
(Section 2.4.4), as well as by exploring the geographic habitat
co-occurrence of pair members (Section 2.4.5).

2.4.1. Non-parametric clustering

In this section, our primary objective was to identify pairs
of archaea and bacteria (if any) that clustered together
based on similar genomic signatures, despite their maximal
taxonomic divergence. To achieve this, we first sought to
determine clustering methods that could reliably reproduce
known taxonomic relationships at the genus level (the lowest
taxonomic level in our datasets). These validated clustering
algorithms were then applied to identify exceptional cross-
domain clustering cases. The rationale behind this approach is
that if a clustering algorithm could successfully group sequences
by genus, then any instance where it grouped bacteria and
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archaea together was more likely to reflect a true cross-domain
genomic signature similarity rather than being a computational
To this end,
clustering algorithms were used, since they have the advantage

artifact. only non-parametric unsupervised
of not needing the expected number of clusters as an input
parameter. Specifically, the five algorithms used were the non-
parametric version of the :DeLUCS algorithm (31), and four
other non-parametric algorithms (HDBSCAN (51), Affinity
Propagation (52), MeanShift (53) and iterative medoids (54)).
These algorithms were applied in conjunction with two different
dimensionality reduction techniques, Variational Autoencoders
(VAE) (54), and Uniform Manifold Approximation and
Projection (UMAP) (55).

We tested different combinations of dimensionality reduction
techniques and clustering algorithms to find those that best
reproduced clusters matching true genera in our datasets.
Their performance was measured using completeness and
contamination. Completeness refers to the proportion of true
members within a cluster (cluster members belonging to the
same genus) relative to the total cluster size, and contamination
indicates the proportion of incorrect members (cluster members
that belong to a different genus) relative to the total cluster
size.

Only those clusters were accepted as “genus-accurate” that
had completeness greater than 50% and contamination less
than 50%. The next step was to rank the aforementioned
combinations by the ratio of the number of genus-accurate
clusters to the total number of generated clusters. The
top five combinations were selected, namely: VAE+iterative
medoids (IM), VAE+ Affinity Propagation, VAE+HDBSCAN,
UMAP+HDBSCAN, and :DeLUCS.

In the final step, we used all output clusters from the
selected top five combinations to identify pairs of archaea and
bacteria that clustered together. Specifically, for each of the
top five combinations, we ran the clustering process 10 times,
each time with a different random seed, each time producing
the pairs of maximally divergent microbes that were clustered
together. From the resulting set of pairs, the pairs that
appeared in more than five runs, and were clustered together by
the majority of the five combinations, were retained, as being
“candidate bacterium-archaeon pairs,” subjected to the next
layer of analysis.

2.4.2. FCGR comparison of candidate pairs

To address the errors inherent in any unsupervised clustering
method, we then analyzed the candidate bacterium-archaeon
pairs identified in Section 2.4.1 by investigating the similarities
of the FCGR patterns of the members of each candidate
pair. For this analysis, FCGR images of candidate pairs
were generated from the selected genome proxy using the
optimal k-mer size determined previously. Subsequently, three
distinct distance metrics were used, Descriptor (56), structural
dissimilarity index measure (DSSIM) (57),
perceptual image patch similarity (LPIPS) (58) to calculate the
distances between each pair of candidate bacterium-archaeon

and learned

pairs that were clustered together. The refined set of candidate
pairs was selected based on the similarity of their FCGR images.
Specifically, pairs were selected if the distance between their
FCGRs was below certain distance-dependent thresholds for
all three distance metrics. The distance-dependent thresholds
were 0.190211 for the Descriptor distance, 0.501385 for DSSIM,
and 0.177668 for LPIPS, and were empirically determined as
detailed below.

The thresholds for the distance metrics were determined
based on the idea that two members of a bacterium-archaeon
pair will be considered similar if their FCGR distance is
less than the distance among FCGRs of species of the same
genus. To this end, the intra-genus distance in the dataset
was computed as follows. First, we selected all unique genera
from both the Temperature dataset and pH dataset, excluding
those with only a single sample, which resulted in 92 unique
genera. Then, for each genus, the pairwise distances between
the FCGRs of all sequences were calculated. The average of
these distances within each genus was deemed to be the intra-
genus distance for that genus. Of the obtained intra-genus
distances, 10% of the distances were excluded as outliers (the
top and bottom 5%). In the final step, the 90th percentile
of these average intra-genus distances was considered as the
empirical threshold for FCGR comparison for that distance.
More details of intra-genus distance computations can be found
in Supplementary Materials, Section B. This approach ensured
that the identified microbial pairs clustered together based on
genomic signature similarity in the previous layer, and also
exhibited significant similarities in their FCGR patterns. The
output of this layer was a list of “confirmed candidate pairs”.

2.4.8. Hypothesis testing using isolating environment
metadata of confirmed candidate pairs

After identifying confirmed candidate pairs with similar
genomic signatures, we explored the hypothesis that this
similarity was environment-related. To do so, we examined
the environmental type of the habitats where the members of
each pair were isolated. This process involved comparing the
environmental labels assigned to each species within a pair (e.g.,
temperature and pH). Microbial pairs with matching (implying
the same temperature and/or pH labels, i.e. both species
are acidophiles) or nearly matching (similar temperature
and/or pH labels, i.e. both species inhabit high-temperature
environments, though one is thermophilic and the other is
hyperthermophilic) environmental labels were considered to
be “environment-related pairs” and were retained for further
analysis. We also conducted a more detailed analysis, where
we retrieved the original studies that first characterized these
microbes from PubMed (https://pubmed.ncbi.nlm.nih.gov/).
The growth parameters and environmental metadata, such as
optimal pH and temperature ranges, were compared across
species. Additionally, we examined phenotypic traits and
habitat-specific characteristics to gain a deeper understanding
of shared environmental adaptations and similar phenotype
features of the pairs.

2.4.4. Analysis of 3-mer frequency profiles of
environment-related bacterium-archaeon pairs
Following the refinement steps, we conducted a comprehensive
3-mer usage bias analysis by comparing the 3-mer frequency
profiles of the environment-related pairs. We selected k£ = 3
for this analysis because this k-mer length effectively captures
codon usage bias, amino acid bias, and protein-associated
phenotypic adaptations (25; 59; 60). Our analysis consisted of
four main components. First, for each 3-mer, we calculated
its average frequency across all samples in the Temperature
Dataset and pH Dataset, then calculated the deviation of the 3-
mer frequency of each member of the environment-related pairs
from its dataset average. This approach revealed patterns of
similar 3-mer over- and under-representation in pair members
compared to the entire dataset, allowing us to investigate


https://pubmed.ncbi.nlm.nih.gov/

whether similar environmental conditions induced comparable
patterns of 3-mer usage across microbial pairs. Second, we
tested the correlation between the 3-mer counts of members
of the confirmed pair in each group using Spearman’s rank
correlation coefficient, a nonparametric measure of the strength
and direction of association between two variables measured on
an ordinal scale (26; 40; 61; 62; 63). This step investigated the
pairwise correlation of 3-mer representation among confirmed
pairs, providing a p-value to assess the significance of similarity
or dissimilarity in the 3-mer over- and under-representation.

Third, we identified the specific 3-mers that influenced
environmental label prediction in supervised classification for
each microbial species in the environment-related pairs. We
used the SHapley Additive exPlanations (SHAP) (64) feature
importance method to quantify each 3-mer’s contribution
to the model’s environmental classification decisions. SHAP
is a model-agnostic explainability method that assigns
importance values to individual features based on their
marginal contributions to the prediction outcome. Specifically,
SHAP quantifies how much each 3-mer frequency increases
or decreases the probability of correctly -classifying the
environment-type relative to the baseline (average) prediction.
We referred to these 3-mers as “environment-relevant 3-mers”
due to their impact on the model’s ability to distinguish
between sequences belonging to organisms living in different
environmental conditions.

Finally, we treated the “environment-relevant 3-mers” as
quasi-codons and translated them to corresponding amino acids
(65). This translation step enabled direct comparisons between
the environment-relevant 3-mers discovered by our method and
both codon and amino acid usage biases previously reported
in the literature for the respective extremophilic groups. This
comparative analysis serves to validate our methodology by
demonstrating that the 3-mers we identified as important for
environmental-based classification align with known adaptive
patterns in extremophiles reported in the literature (25).

2.4.5. Geographic habitat co-occurrence analysis of
environment-related pairs

In this analysis, the Microbe Atlas Project (MAP) database
(66), cataloging 16S rRNA reads of microbes isolated from a
wide range of environments, was used to analyze the geographic
habitat co-occurrence of species in environment-related pairs.
16S rRNA is a gene encoding a ribosomal subunit highly
conserved between different prokaryotes (including bacteria and
archaea) (67). The sequencing of this gene permits highly
sensitive taxonomic classification/identification of prokaryotic
samples, proving extremely helpful in identifying species found
in diverse microbiomes. The MAP tool compiles millions of
samples isolated across the world, along with their taxonomic
classifications down to the species level, and geographic
metadata (including coordinate information) associated with
the sample collection site. The MAP was thus employed
to identify the location data of 16S rRNA read occurrences
of each species in the environment-related pairs list. After
identifying the 16S rRNA sample reads catalogued for a
particular species, the read locations, along with project
and sample IDs (linking to project descriptions on the MAP
database, which further characterize the geographic metadata),
were exported to a spreadsheet. In the next step, the project
IDs associated with the reads of each species within each
respective group were cross-referenced to identify samples
isolated from the same project ID (i.e., the same geographic
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location or microbiome). The projects found to contain 16S
rRNA reads for each of the species within the final groups were
identified via their respective ID in the MAP tool. Finally,
environmental metadata, including environmental descriptors
and longitude and latitude coordinates for each particular read,
were identified. Through this process, we investigated the

«

geographic habitat co-occurrence (referred to simply as “co-
occurrence” throughout the remainder of the paper) of the
pairs of environment-related pairs, as well as descriptions of the

unique environments that organisms in these groups inhabit.

3. Results

In the following section, Section 3.1 provides the results of
assessing the effect of the random selection of a genome proxy
on classification accuracy. Section 3.2 details the findings from
the second experiment, focusing on the optimal values for k-
mer size and genome proxy length, as well as the supervised
classification accuracy using these optimal parameters. Finally,
Section 3.3 presents the candidate bacterium-archaeon pairs
identified through non-parametric methods, the results of
filtering layers, the confirmed set of bacterium-archaeon pairs,
the analysis of 3-mer frequency profile in these pairs, and the
results of co-occurrence of confirmed bacterium-archaeon pairs.

3.1. Genome proxy

As described in Section 2.3.2, we conducted an experiment
to assess the impact of a randomly selected genome proxy
on taxonomic and environment-type classification under two
different scenarios: the bias mitigation scenario and the
standard scenario. For each scenario, we used 10-fold cross-
validation classification with SVM classifier and repeated the
classification process 10 times for each genome proxy length.
To evaluate the results, we calculated the average accuracy
and variance over the 10 runs for each genome proxy length.
The results for the bias mitigation scenario are summarized in
Table 3 (Temperature Dataset) and Table 4 (pH Dataset). For
each tested genome proxy length, we reported the maximum
average accuracy across the k-mer values and the value of k for
which it was obtained. The results for the standard scenario
are similar and can be found in the Supplementary Materials,
Section C.

In spite of the fact that each experiment was repeated 10
times, each time using a different randomly selected genome
proxy, the maximum average accuracies are consistently high
for taxonomy classifications and medium-high for environment-
type classifications, with low variance across 10 different
runs. These results support the hypothesis that the genomic
signature, herein defined as the k-mer frequency vector of
a short genomic fragment, is pervasive across the genome.
Overall, these results indicate that selecting and pseudo-
concatenating random regions of the genome into a contiguous
genome proxy does not affect the taxonomic and environment-
type classification accuracy, and is thus a valid selection method
for these purposes.

The notable difference in environment-type classification
accuracy between the two datasets can be partially attributed
to the complexity of the classification task. Indeed, the
Temperature Dataset has four unique labels while the pH
Dataset has only two, making the latter an inherently simpler
classification task.
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Table 3. Maximum average accuracy across six genome proxy lengths in ten repeated SVM classification trials on the Temperature Dataset
under the bias mitigation scenario, for k-mer sizes 1 to 9. The table lists the highest average accuracy for each genome proxy length, alongside
the k-mer size that achieved this accuracy and the variance in percentage. The Temperature Dataset has 598 samples, consisting of 369
bacteria and 229 archaea. There are 148 psychrophiles, 190 mesophiles, 183 thermophiles, and 77 hyperthermophiles in this dataset.

Genome proxy length Class labelling type Max avg accuracy (%) Variance (%) k-value
10 kbp Taxonomy 98.35 0.0010 5
Temperature 67.39 0.0267 6
50 kbp Taxonomy 99.03 0.0001 6
Temperature 72.36 0.0224 7
100 kbp Taxonomy 99.13 0.0000 6
Temperature 73.18 0.0209 7
250 kbp Taxonomy 99.15 0.0000 6
Temperature 75.31 0.0035 9
500 kbp Taxonomy 99.15 0.0000 6
Temperature 76.97 0.0035 9
T 99.15 0.0000 6
1,000 kbp axonomy
Temperature 76.91 0.0013 9

Table 4. Maximum average accuracy across six genome proxy lengths in ten repeated SVM classification trials on the pH Dataset under
the bias mitigation scenario, for k-mer sizes 1 to 9. The table lists the highest average accuracy for each genome proxy length alongside the
k-mer size that achieved this accuracy and the variance in percentage. The pH Dataset has 186 samples, consisting of 117 bacteria and 69

archaea. There are 100 acidophiles and 86 alkaliphiles in this dataset.

Genome proxy length Class labelling type Max avg accuracy (%) Variance (%) k-value
10 kbp Taxonomy 97.18 0.0041 5
pH 83.17 0.0469 6
50 kbp Taxonomy 98.25 0.0022 7
pH 84.89 0.0040 7
100 kbp Taxonomy 98.63 0.0006 7
pH 85.61 0.0092 8
250 kbp Taxonomy 98.62 0.0012 8
pH 85.41 0.0053 9
Taxonomy 98.94 0.0000 9
kb
500 kbp pH 86.20 0.0030 9
Taxonomy 98.94 0.0000 9
1 kb
/000 kbp pH 85.74 0.0035 9

3.2. Optimal k-mer size and genome proxy length

The aim of this experiment is to identify the optimal k-mer
size and the optimal genome proxy length for the purpose
of taxonomy and environment-type classifications. To achieve
this, we began by first determining the optimal k-mer size
and then proceeded to determine the optimal genome proxy
length. Our approach, especially when analyzing the various
k-mer sizes, was to find a balance between computational time
complexity /memory usage and classification accuracy.

Figure 3 presents the classification accuracy results of SVM
classifiers applied to both the Temperature Dataset and the pH
Dataset under the bias mitigation scenario, with taxonomy and
environment-type labelling, respectively. This figure illustrates
how the classification accuracy changes as the value of k
increases, for the six different genome proxy lengths analyzed.
The classification accuracies for the other five classifiers, and
for all six classifiers under the standard scenario, for both the
Temperature Dataset and the pH Dataset are similar, and can
be found in the Supplementary Materials, Section D.

As seen in Figure 3, increasing the length of k-mer from 1 to
6 leads to a significant improvement in classification accuracy.

For values of k higher than 6, the changes in accuracy depend on
the genome proxy length. For longer genome proxies (100 kbp,
250 kbp, 500 kbp, and 1,000 kbp), the taxonomic classification
accuracy remains stable for increasing values of k from k =
6 to k = 9, and the environment-type classification accuracy
increases with the increase in k-mer size. However, for shorter
genome proxies (10 kbp and 50 kbp), both the taxonomic and
environment-type accuracies decrease with the increase of k-
mer sizes from 6 to 9.

The decline of classification accuracy with the k-mer size
increase, when k is higher than a certain threshold, is due
to the fact that the increase in the length of the k-mer
frequency feature vector is exponential in k. For small values
of k, this increase results in more information available to the
classifier. However, the number of k-mers that actually occur
in the sequence is bound by the length of the sequence. Thus,
after k passes a certain threshold, the feature vector becomes
so sparse that it increasingly fails to capture the genomic
patterns necessary for an accurate classification. This threshold
is reached earlier for shorter sequences (10 kbp or 50 kbp) than
for longer sequences.
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Fig. 3. Classification accuracy of SVM classifier under bias mitigation scenario. a: Temperature Dataset with taxonomy labels. b: Temperature Dataset

with environment-type labels. c: pH Dataset with taxonomy labels. d: pH Dataset with environment-type labels. Each subfigure shows accuracy across

nine k-mer sizes and six genome proxy lengths.

Since, for all genome proxy lengths considered, the
classification accuracies increase until k = 6, we concluded that
the value of k should be 6 at the minimum, and performed a
detailed analysis for values k = 6,7,8,9.

The detailed analysis for k-mer sizes of 6 to 9 for
the Temperature Dataset shows that the highest taxonomic
classification accuracy for the six fragment lengths considered
in the bias mitigation scenario ranges from 98.15% to 99.50%,
and the highest environment-type classification accuracy ranges
from 70.29% to 78.14%. Also, the results for the pH Dataset
indicate that the highest taxonomic classification accuracy
for different fragment lengths ranges from 97.89% to 98.95%,
and for environment-type classification ranges from 83.30% to
87.10%. The classifier’s performance in the standard scenario
is similar.

The detailed results of these experiments for both
bias mitigation and standard scenarios can be found in
Supplementary Materials, Section E. Overall, one observes
that increasing the value of k£ from 6 to 9 does not result in
significant increases in classification accuracy. This, combined
with the fact that increasing k leads to an exponential increase

in memory usage (the feature vector size increases from 212 to
218) and time complexity, leads to the conclusion that k£ = 6 is
the optimal choice for the k-mer size in this context.

In the next step, we maintained a fixed k-mer size of
k = 6 and assessed the effectiveness of six classifiers for the six
genome proxy lengths considered in this study. This allowed
us to identify the optimal genome proxy length for both the
Temperature Dataset and pH Dataset. Table 5 displays the
highest classification accuracy achieved for each genome proxy
length, for both the standard scenario and the bias mitigation
scenario. As observed in Table 5, a fragment length of 100 kbp
achieves the highest accuracy in three of the classification tasks:
the standard taxonomic classification for both datasets and the
bias mitigation taxonomic classification for the Temperature
Dataset. In the remaining cases, the difference between the best
performance and the 100 kbp performance was less than 0.5%
in the standard scenario and less than 1% in the bias mitigation
scenario. Thus, a genome proxy length of 100 kbp (at k = 6) is
the optimal overall selection.

In our last experiment, our objective was to determine
whether using a short genome proxy might lead to any loss
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Table 5. Comparison of the best classification accuracy across all classifiers, using k = 6, the optimal chosen value for k, for all six genome
proxy lengths. All occurrences of maximum accuracy are shown in bold, and the performance for a fragment length of 100 kbp is shown as

underlined.
Standard scenario Bias mitigation scenario
Dataset Genome proxy length Label type accuracy (%) accuracy (%)
10 kbp Taxc.)nomy 98.50 98.20
Environment 82.00 70.30
50 kbp Taxt.)nomy 99.50 99.00
Environment 83.80 72.80
100 kbp Tax?nomy 99.50 99.20
E— Environment 85.10 74.80
Temperature
Taxonomy 99.50 99.20
250 kbp .
Environment 84.80 74.30
500 kbp Tax(.)norny 99.50 99.20
Environment 84.80 74.40
Taxonomy 99.50 99.20
1 k
/000 kbp Environment 85.30 75.10
10 kbp Taxc.)norny 97.80 97.90
Environment 89.20 83.30
50 kbp Tax.onomy 98.40 98.40
Environment 91.30 84.90
100 kbp Taxc.)nomy 98.40 98.40
H E— Environment 93.10 85.50
P Taxonomy 98.40 98.90
250 kbp .
Environment 93.00 86.00
500 kbp Tax(.)nomy 98.40 98.90
Environment 92.00 86.00
Taxonomy 98.40 97.90
1,000 kb
’ P Environment 93.50 86.00

of information compared to using the whole genome. To
evaluate this, we performed taxonomic and environment-type
classification using entire genomes, while maintaining the
same setup as our previous supervised experiment, under bias
mitigation scenarios with k equal to 6. Our findings show that
for taxonomic classification of whole genomes with k = 6, the
accuracy was 99.15% (compared to 99.20% using random 100
kbp genome proxies) for the Temperature Dataset, and 98.42%
(compared to 98.40%) for the pH Dataset. For environment-
type classification, the best accuracy for whole genomes was
75.51% (compared to 73.00%) for the Temperature Dataset,
and 84.35% (compared to 85.50%) for the pH Dataset. These
results indicate that classification accuracy using a genome
proxy of length 100 kbp is comparable to using the entire
genome, which in our datasets has an average length of 3,500
kbp (the genome proxy is 35 times shorter on average).

3.3. A multi-layered pipeline to find
bacterium-archaeon pairs with similar genomic
signatures

The identification of bacterium-archaeon pairs is a multi-

layered filtering process that progressively narrows down the

candidate pairs generated through unsupervised clustering, to

reach the environment-related bacterium-archaeon pairs.
Figure 4 illustrates the details of this multi-layered filtering

approach. We further investigated the 3-mer usage bias in these

15 environment-related bacterium-archaeon pairs (which passed

all filtering layers) and found that they demonstrate a similar

genomic signature linked to their extreme environment despite
their maximal taxonomic differences. As the last analysis, we
also studied the co-occurrence of environment-related pairs.

8.8.1. Layer 1: non-parametric clustering

‘We initiated the process using non-parametric clustering
algorithms in combination with dimensionality reduction
methods. As described

the contamination and completeness scores of the clusters

in Section 2.4.1, we evaluated
and identified the top five performing clustering methods,
selecting those that performed best at generating clusters that
correspond to true genera.

From the clusters obtained using the chosen algorithms, a
set of candidate pairs, consisting of bacterium-archaeon pairs
whose genomic signatures were consistently clustered together
by the majority of the algorithms, was identified for each
dataset. To ensure robustness, we repeated the above analysis
(clustering and selecting bacterium-archaeon pairs) 10 times.
‘We then selected the bacterium-archaeon pairs that appeared in
at least 5 of the 10 runs. This initial step generated 78 candidate
bacterium-archaeon pairs (38 unique genera, 85 unique species).

8.8.2. Layer 2: FCGR comparison of candidate pairs

In the second layer, we filtered the candidate pairs based
on their FCGR distances. As described in Section 2.4.2,
we calculated the FCGR images for each pair of sequences,
using a genome proxy length of 100 kbp and a k value of
6, and measured the distances between these FCGRs using
three distance metrics. We selected bacterium-archaeon pairs
with distances below empirically determined thresholds for the
majority of distance metrics.

identified 40 confirmed
candidate pairs (32 unique genera, 48 unique species), with

After this filtering layer, we

similar FCGR images, determined by the three distance

metrics. The members of each of these confirmed pairs can now
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Fig. 4. Multi-layered pipeline for identifying bacterium-archaeon pairs with similar genomic signatures. Layer 1: Five selected non-parametric clustering

methods identify clusters of organisms with similar genomic signatures. The clusters containing both bacteria and archaea (green) generate a list of 78

candidate bacterium-archaeon pairs, grouped by these algorithms based on their similar genomic signatures. Layer 2: The candidate pairs from Layer 1

undergo pairwise distance calculations between their FCGRs using four different distance metrics. Only 40 pairs, with the majority of distances below

empirically determined thresholds, are retained. Hypothesis Testing: after identifying confirmed candidate bacterium-archaeon pairs with similar genomic

signatures, a biological analysis is conducted. This includes checking environment labels and examining metadata about their living environments to

select pairs isolated from similar types of extreme environments. The final output is a list of 15 environment-related bacterium-archaeon pairs (comprising

16 unique genera and 20 unique species) that have similar genomic signatures and passed the hypothesis testing. These pairs can confidently be proposed

as maximally taxonomically divergent microbes (from different domains, Bacteria and Archaea) that share similar genomic signatures associated with

their living environments.

be confidently considered as having similar genomic signatures
(see Supplementary Materials, Section F for details). Figure 5

shows the FCGR images of two pairs, one extremophile

(Thermotoga  petrophila and  Geoglobus  acetivorans)

and one polyextremophile pair (Thermoanaerobacterium

For
better visualization, the value k = 8 was used, and the images

thermosaccharolyticum and Caldisphaera lagunensis).

confirmed that the FCGRs show visual pattern similarities,
in addition to the distance between FCGRs being below the
empirically determined threshold.

3.8.8. Hypothesis testing using isolating environment
metadata of confirmed candidate pairs

As outlined in Section 2.4.3, to test the hypothesis that
the genomic signature similarities between these confirmed
candidate pairs result from shared environmental pressures,
we conducted a comparison of environmental metadata of
their isolation habitats. Out of 40 confirmed candidate pairs
obtained from the multi-layered pipeline, 18 pairs initially
passed hypothesis testing. However, three bacterium-archaeon
pairs were excluded because the archaeon’s reference genome
was recently suppressed on NCBI (see Supplementary Materials

Section F). This left a final set of 15 confirmed candidate
pairs, representing 16 unique genera and 20 unique species.
These pairs, validated by their isolation environment metadata
and labels, are proposed as environment-related bacterium-
archaeon associations. The details of the environmental data of
the selected pairs can be found in the Supplementary Materials,
Section G.

Since these pairs revealed cases where multiple archaea were
grouped with a single bacterium, we organized these pairs into
5 groups based on the bacterial species. Notably, Groups 1, 2,
and 3 include sequences of organisms isolated from extreme
environments, while the majority of organisms in Groups 4
and 5 are associated with normal temperature (mesophiles)
and normal pH (absent from the pH Dataset) conditions. We
further examined the 3-mer usage bias of species in these
confirmed 15 pairs, as well as their co-occurrences. For Groups
4 and 5, we also investigated any potential extreme conditions
in their environments other than extreme temperature or pH.
The details of these five groups are shown in Figure 6, and
their FCGR images can be found in Supplementary Materials,
Section H.
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Fig. 5. FCGR images of two confirmed candidate pairs (four unique species), with a resolution of k = 8. The first pair includes a-1: a hyperthermophilic
bacterium and a-2: a hyperthermophilic archaeon, while the second pair consists of b-1: an acidophilic thermophilic bacterium and b-2: an acidophilic
thermophilic archaeon. The first pair was drawn from the Temperature Dataset, and the second pair appears in both Temperature Dataset and pH
Dataset. In both candidate pairs, the FCGRs display strikingly similar patterns between the two species, despite belonging to different taxonomic
domains (Bacteria and Archaea).
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Fig. 6. Environment-related pairs, grouped by the bacterial species. Each bacterium-archaeon pair belonged to the same cluster generated by the
clustering algorithms, and passed both the FCGR comparison and the hypothesis testing layers. The environment-related pairs set comprises 20 species,
including five bacteria and 15 archaea from 16 unique genera. Among these, two species are poly-extremophiles (acidophilic thermophiles), 10 are
extremophiles (eight hyperthermophiles and two thermophiles), and the remaining eight are mesophiles.

the set of “shared
environment-relevant 3-mers” is defined as the intersection of

3.8.4. Analysis of 3-mer frequency profiles of
environment-related bacterium-archaeon pairs

For each environment-related pair,

To investigate potential biases in 3-mer usage associated with the set of environment-relevant 3-mers of the bacterium genome

environmental adaptation, we conducted a detailed analysis
of the 3-mer frequency profiles for the genome proxies of the
organisms in the environment-related bacterium-archaeon pairs
groups. We focused on £k = 3 due to its biological relevance,
since the set of codons
Following the four-step analysis outlined in Section 2.4.4, this

is a subset of the set of 3-mers.

section examines how 3-mer frequencies reflect environmental
The
results of this analysis are summarized in Table 6 for each of

adaptations across taxonomically divergent microbes.

the five environment-related bacterium-archaeon pairs groups.

proxy with that of the archaeon genome proxy. Among these
shared 3-mers, we calculated the proportion of 3-mers that
show the same pattern of over- or under-representation in both
species and reported it in Table 6. Additionally, we calculated
the Spearman rank correlation coefficient (rho) between the
3-mer representation patterns of the two organisms in each
pair. Notably, all correlations were statistically significant with
p < 107% for all pairs. Since the shared 3-mer ratio and
rho collectively represent the results of steps 1 to 3 of the
3-mer frequency profile analysis pipeline (see Section 2.4.4),
we calculated a combined score as the average of these two
values to provide an overall measure of 3-mer frequency profile



similarity between the species of each pair. Based on the
combined score, we also assigned a descriptive term to each
pair for a clear comparison. Specifically, we labelled pairs as
“Compelling” for scores greater than or equal to 0.85, “Very
strong” for scores between 0.85 and 0.80, “Strong” for scores
between 0.80 and 0.75 and “Moderate” for scores between 0.75
and 0.70. These thresholds were determined empirically based
on the distribution of our results.

Finally, as outlined in the last step of the 3-mer frequency
profile analysis (see Section 2.4.4), we examined the biological
literature on codon usage to determine whether the observed
over- or under-representation of each shared environment-
relevant 3-mer had been previously reported in biological
literature. The final column of Table 6 reports the number
of shared 3-mers for which our findings in over- or under-
representation align with evidence from prior studies, providing
further validation of the observed similarities. Importantly, we
did not include this literature-based validation in the combined
score calculation, as low values in this step may only reflect
a lack of prior research in the literature rather than a true
biological absence.

The results revealed nine pairs with compelling 3-mer
similarity, four pairs with very strong similarity, one pair with
strong similarity and one pair with moderate similarity. No
pairs exhibited very low similarity (the minimum similarity
score is 0.71), indicating a moderate to high level of 3-mer
frequency profile similarity across all confirmed pairs. Notably,
the first three groups, which include poly-extremophile
or extremophiles, showed a higher average number of
shared environment-relevant 3-mers observed in the biological
literature (average: five) compared to Groups 4 and 5, which
predominantly consist of mesophiles (average: two).

Interestingly, despite being composed mainly of mesophiles,
Groups 4 and 5 included two pairs with compelling similarity
and four pairs with very strong similarity. This unexpected
finding suggests that factors beyond temperature or pH, such
as other environmental pressures, may contribute to genomic
sequence composition convergence in these pairs, which is
further discussed in Section 4. Detailed results of the 3-
mer frequency profile analysis are presented in Supplementary
Materials, Section I.

3.3.5. Co-occurrence of organisms from the confirmed
bacterium-archaeon pairs

In the final analysis, using the MAP tool (66), we analyzed the

habitats of all environment-related pairs within their respective

groups, to identify any shared environments, as outlined in

Section 2.4.5.

This analysis revealed distinct patterns of co-occurrence
across different groups. Both species in Group 1 were found
together in Washburn Hot Springs, a geothermal hot spring
in Yellowstone National Park, Wyoming, USA (68). Notably,
this co-occurrence habitat differs from the environments where
the species were originally isolated (69; 70; 71). Despite the
large geographic distances between the original isolation and
co-occurrence sites, these habitats have similar environmental
pressures and geochemical properties.

Similar observations were made for the species in the pair
of Group 2, which were found to co-occur in two distinct
habitats: Brothers Volcano, a submarine volcano in the Pacific
Ocean near New Zealand (72), and Juan de Fuca Ridge, a mid-
ocean ridge flank near Vancouver Island (73). Note that these
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species were initially isolated from a deep Japanese oil reservoir
(74) and a deep-sea hydrothermal vent (75), respectively.

In Group 3, a subset of species co-occurred in environments
overlapping with those of Group 1 and Group 2, including
Brothers Volcano and Washburn Hot Springs. Additional
co-occurrence sites were found across Yellowstone National
Park. Similar to Group 1 and Group 2, the environmental
conditions of the co-occurrence habitats resemble the conditions
of isolating environments of the respective species. It is worth
mentioning that even though species from Groups 1, 2, and
3 were found to co-occur in the same habitat, our clustering
methods provide the sensitivity to detect specific 3-mer biases
within their genomic signatures. This enables classification
based on their evolved niche adaptations rather than their
current habitat, which explains why these groups were clustered
separately despite sometimes sharing the same environment.
Detailed geographic maps and co-occurrence data for these
three groups can be found in the Supplementary Materials
Section J.

Although the majority of species in Group 4 are mesophiles,
in multiple independent environments
other
conditions, such as anaerobic and methanogenic conditions.
These habitats include the Shengli Oil Field in China,
hypothesized to involve anaerobic, mesophilic microbiomes in
the “methanogenic degradation of hydrocarbons” (76), and a
Japanese bioreactor (77). No co-occurrence was identified for

they co-occurred

characterized by common extreme environment

Group 5 species. Detailed geographic maps and co-occurrence
for Group 4 and Group 5 can be found in Supplementary
Materials J.

Importantly, this co-occurrence analysis supports the
bacterium-archaeon pairs clusters identified by our multi-
layered approach. Indeed, it demonstrates that many of the
species pairs that were computationally grouped together by
our method, despite being originally isolated from different
environments, were later found to co-occur naturally in shared
environments distinct from their isolation sites.

4. Discussion

Our computational analysis revealed that both taxonomic and

environmental components can be pervasive throughout
extremophile  prokaryotic  genomes, suggesting  that
environmental adaptations influence the entire genome

rather than specific genic or regulatory regions exclusively.
Indeed, our novel computational pipeline resulted in high
classification and clustering accuracies, despite using as
“genome proxy” a relatively short DNA fragment constructed
by the pseudo-concatenation of 10 randomly selected 10,000 bp
fragments (total length 100,000 bp, that is &~ 35 times shorter
than a complete genome). This indicates that taxonomic
and environmental components are detectable even with
limited genomic samples, which has important implications for
studying environmental adaptations when complete genome
sequences are not available.

Our multi-layered approach identified 15 pairs of maximally
distant organisms that have similar genomic signatures,
distinct

significant 3-mer over-representation and under-representation

grouped into five categories. The statistically
analysis further confirmed the genomic composition similarity
of these pairs. Notably, the identified environmentally-relevant
3-mer representation patterns align with known extremophile

adaptation mechanisms as detailed below.
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Table 6. Combined summary of 3-mer profile analysis for Groups 1 to 5. For each pair, we calculated the number of shared environment-
relevant 3-mers exhibiting similar over- or under-representation patterns between the two species of the pair, and reported the ratio out of 15.
The Spearman rank correlation coefficient (rho) was computed to quantify the correlation between the 3-mer representation patterns of each
pair; all correlations were statistically significant (p < 1075). A combined score was calculated as the average of the shared environment-
relevant 3-mer ratio and rho to assess the overall similarity of each pair. For further validation, the last column reports the number of shared
environment-relevant 3-mers that have over- or under-representation patterns consistent with findings in the biological literature.

Group Bacterium Archaeon Shared rho Score Overall Biology literature
environment 3-mer observed
relevant similarity shared
3-mers (ratio) 3-mers
T ; ;
Group 1 hermoanaembact‘emum Caldzsphqera 0.83 0.96 0.89 Compelling 9
thermosaccharolyticum lagunensis
T
Group 2 L hermotoga Geoglobus 1.00 0.81 0.90 Compelling 4
petrophila acetivorans
Th l
ermofilum 1.00 0.77 0.89  Compelling 5
adornatum
G 3 Thermocrinis Thermococcus
roup ruber _ 1.00 0.81 0.90 Compelling 4
chitonophagus
Palaeococcus
. 0.90 0.76 0.83 Very strong 4
pacificus
Pyrococcus 0.89 0.81 0.85 Compelling 5
furiosus
Th
frermococeus 0.91 0.80 0.85 Compelling 4
litoralis
Meth bacteri
Pseudothermotoga ¢ ¢4zno actertum 1.00 0.94 0.97 Compelling 1
Group 4 . paludis
elfii
M :
ethanosarcina 0.75 0.95 0.85 Compelling 1
vacuolata
Meth Ui
crhanonmed 0.60 0.83 0.71  Moderate 1
mesophila
Meth i
Group 5 [tubrobacter ethanocuticus 0.77 093 0.8  Compelling 3
indicoceani chikugoensis
M
ethano?ulleus 0.73 0.91 0.82 Very strong 2
bourgensis
Meth Ul
erranocurieus 0.69 0.95 0.82  Very strong 3
horonobensis
Meth i
erhanocusieus 0.64 0.92  0.78 Strong 3
tatwanensts
Meth il
ethanocutieus 0.78 0.89 0.83  Very strong 0
thermophilus

In Group 1, the over-representation of the 3-mer “CAA”
(corresponding to a glutamine codon) in the genome of
thermophilic acidophiles aligns with previous findings of codon
usage bias in acidophilic prokaryotes which prefer the “CAA”
codon when calling for glutamine (18). Moreover, the under-
“ACG”
threonine codon) in this group is consistent with amino acid

representation of the 3-mer (corresponding to a
abundance patterns found in thermophilic prokaryotic proteins
which demonstrate a relative lack of threonine (78).

In Group 2 and Group 3, consisting of hyperthermophiles,
observations of the elevated representation of 3-mers
corresponding to arginine codons, and decreased representation
of 3-mers corresponding to asparagine and glutamine codons
align with previous observations related to amino acid
abundances in hyperthermophilic and thermophilic prokaryotic
(17; 79; 80).
proteins demonstrate an increased abundance of arginine, and

proteins Specifically, (hyper)thermophilic

decreased abundance of asparagine and glutamine amino acids,
which is reflected by the relative representations of 3-mers
respectively. Note that several species in Group 3, specifically,
Thermocrinis ruber (bacteria) and three archaeal species
(Pyrococcus furiosus, Thermococcus litoralis, and Pyrococcus
chitonophagus), were previously identified as having similar
genomic signatures by using slightly different methods (25),
which further validates our multi-layered approach.

The 3-mer frequency profile analysis of Group 4 also
showed some agreement with known codon usage patterns. In
this group, all species, including the thermophilic bacterium,
exhibited an under-representation of 3-mers corresponding to a
serine codon. This pattern aligns for mesophilic species, which
demonstrate a codon usage bias against the 3-mer “AGC” when
calling for serine (81) and with the observed lower serine amino
acid in thermophilic proteins relative to mesophilic proteins

(82).

The grouping of mesophilic species from maximally



divergent taxa in Group 4, along with their similarity in
genomic compositions and 3-mer representations, suggests
the influence of extreme environmental pressures beyond
temperature and pH. Indeed, we observed that Group 4 species
co-occur in anaerobic, methanogenic environments and share
the phenotypic trait of oxygen intolerance (Supplementary
Materials Section F). This indicates that additional extreme
factors, such as high concentrations of endogenously-produced
methane, or exogenous hydrocarbons encountered in oil fields
or wells, could potentially influence extremophilic genomic
signature composition.

3 and
4, our findings revealed unique genomic signature patterns

In Group 5, in contrast with Groups 1, 2,
that differ from previous biological findings of extremophile
codon usage bias. In this group, our findings showed an
under-representation of the 3-mer “CTA,” which codes for
leucine. This was expected in mesophilic species of this group,
as mesophilic prokaryotes commonly exhibit a bias against
using this codon (81). However, surprisingly, we found the
same under-representation in the thermophilic species of this
group, in contrast with previous studies which showed “CTA”
to be typically abundant in other thermophiles (17). Our
finding contradicts previous assumptions of codon usage bias
in thermophilic prokaryotes, suggesting that the impact of
environmental adaptation on prokaryotic genomes may be
more nuanced than previously thought and needs further
investigation. Although no co-occurrence environments were
found for Group 5, their initial isolation from predominantly
methanogenic habitats, as described in their discovering papers,
suggests a potential role of methanogenic processes in shaping
the selection of, and thus the composition of genomic signatures
of these species (83). Further investigation is needed to clarify
these relationships.

It is worth noting that horizontal gene transfer, a
phenomenon in which one species can transfer genetic material
to another, is a major driver of adaptation in extreme
environments (84). However, a Basic Local Alignment Search
Tool (BLAST) (85) analysis showed little to no evidence of
extensive or localized transfer between species across the five
Groups in our study (see Supplementary Materials, Section
K, for details). Only the discontinuous megablast parameters
revealed a 1-2% query cover between archaeal genomes and
the bacterium in each Group. This indicates that the archaeal
genomes share minimal genetic material with the bacterial
genome in the same group, as expected. Moreover, within
these aligned regions, the genetic sequences show only moderate
similarity, which suggests that the genetic material is not highly
conserved. This finding contrasts with what we typically see
in extreme environments, where genes that provide survival
advantages are usually highly conserved (86). Thus, while
alignment-based approaches confirm the local absence of
shared genetic material between archaeon and bacterium pair
members, our techniques reveal the presence of shared genomic
composition patterns throughout their entire genomes.

Our computational approach also has some limitations.
For example, this k-mer-based method cannot capture long-
range genomic interactions, although this could potentially
be addressed through the use of transformer models (87).
Additionally, the exponential growth in the size of feature
vectors with increasing k-mer size limited our analysis to
k < 9, potentially obscuring larger sequence patterns. Also,
while the parameters that were empirically determined to
be optimal proved effective for the classification/clustering
of this extremophile dataset, they may not generalize across
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all genomic analyses, as they likely depend on dataset
characteristics and the complexity of the classification task.
Lastly, the choice of the distance thresholds can depend on the
datasets, and this choice is discussed in Supplemental Material
Section L.

A point that warrants further discussion is the choice of the
parameter n, which determines how many randomly selected
DNA sub-fragments are pseudo-concatenated into a single
composite genome proxy for computational analysis. In this
study, all experiments were conducted with n = 10. This being
said, as detailed in Section M of the Supplementary Materials, a
comprehensive analysis shows that larger values of n, up ton =
10,000 for a genome proxy length of 100,000, still capture the
global environmental and taxonomic components, even though
the resulting sub-fragments are as short as 10 bp. Remarkably,
these settings achieved classification accuracies of 99.16%
for taxonomic classification and 73.16% for environment-
type classification in the Temperature dataset, and 98.32%
and 83.27% for the pH dataset, respectively. These results
demonstrate that a 100,000 bp genome proxy constructed from
sub-fragments as short as 10 bp can still capture taxonomic
and environmental patterns. We also extended this analysis to
other genome proxy lengths (ranging from 10,000 bp to 1,000
kbp) and obtained consistent high classification performance
(over 97% for taxonomic and over 70% for environment-type
classification) with sub-fragments as short as 10 bp.

Overall, our findings demonstrate that extreme
environmental adaptation significantly impacts prokaryotic
genomic signature compositions, with environmental pressures
capable of overriding traditionally recognized taxonomic
influences. The biological significance of our approach is
highlighted by the discovery of 15 microbial species pairs
that share genomic signatures despite maximal taxonomic
divergence, suggesting that shared environmental pressures
can drive convergent genome sequence composition across
vastly different species. These results provide compelling

evidence that environment-driven genomic components

persist across diverse taxa, offering new perspectives on
how environment-associated mutagenesis and selection shape
microbial genomes. Our work broadens the field’s perspective
beyond the traditional focus on phenotype, proteome, and gene-
specific analyses to genome-wide considerations. By bridging
computational methods with biological context, this work
advances machine learning applications in genomics and our
understanding of extremophile adaptation mechanisms. Future
research will explore the biological mechanisms underlying
these shared genomic signatures and their implications
for evolutionary biology, biotechnology, and environmental
genomics.

5. Data Availability

All sequence data used in this paper, unique assembly accession
IDs of all the sequences, and the metadata are available at
https://doi.org/10.5281/zenodo.17148766.

6. Code availability

All code used in this study is publicly available on GitHub
at https://github.com/Kari-Genomics-Lab/Extreme_Env_2 and
archived in the Zenodo repository at https://doi.org/10.5281/
zenodo.17172798.
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