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Abstract

Extreme environments impose strong mutation and selection pressures that drive distinctive, yet understudied, genomic
adaptations in extremophiles. In this study, we identify 15 bacterium-archaeon pairs that exhibit highly similar k-mer-
based genomic signatures despite maximal taxonomic divergence, suggesting that shared environmental conditions can
produce convergent, genome-wide sequence patterns that transcend evolutionary distance. To uncover these patterns, we
developed a computational pipeline to select a composite genome proxy assembled from non-contiguous subsequences
of the genome. Using supervised machine learning on a curated dataset of 693 extremophile microbial genomes, we
found that 6-mers and 100 kbp genome proxy lengths provide the best balance between classification accuracy and
computational efficiency. Our results provide conclusive evidence of the pervasive nature of k-mer-based patterns across
the genome, and uncover the presence of taxonomic and environmental components that persist across all regions of the
genome. The 15 bacterium-archaeon pairs identified by our method as having similar genomic signatures were validated
through multiple independent analyses, including 3-mer frequency profile comparisons, phenotypic trait similarity, and
geographic co-occurrence data. These complementary validations confirmed that extreme environmental pressures can
override traditionally recognized taxonomic components at the whole-genome level. Together, these findings reveal that
adaptation to extreme conditions can carry robust, taxonomic domain-spanning imprints on microbial genomes, offering
new insight into the relationship between environmental impacts and genome sequence composition convergence.

Key words: extremophiles, k-mer frequency profile, genomic signature, taxonomic classification, environment-type
classification, machine learning

1. Introduction

The study of extremophiles, organisms capable of thriving

in Earth’s most extreme environments, provides crucial

insights into genetic adaptations for survival under harsh

conditions. These organisms have evolved to withstand extreme

environmental conditions such as high temperature, pH,

pressure, salinity, and radiation levels and, notably, they

are often unable to survive outside of these physiologically

extreme environmental conditions (1; 2). Recent attention

to microbial extremophiles has highlighted their value across

diverse applications, including biotechnology, particularly in

biorefineries and as sources of industrial extremozymes for high-

temperature or high-pH processes (3; 4; 5; 6; 7), environmental

bioremediation of metal-contaminated, saline, or radioactive

environments (6), as well as agriculture and soil enhancement

(8), and veterinary medicine (9). Additionally, interest has

grown in the ability of microbial extremophiles to survive the

extreme conditions of outer space (10; 11).

Extremophiles have evolved specific genomic and proteomic

adaptations to survive in environments with extreme conditions

(12; 13). At the genomic level, they frequently exhibit gene

duplications (14; 15) and reduced genome sizes, particularly

in thermophilic species (16). The nucleotide composition of

these organisms displays environment-specific patterns in G+C

content and purine load (17; 18; 15). Multiple molecular

mechanisms, including gene duplication and horizontal gene

transfer (19; 20; 21), also contribute to the genomic adaptation

of extremophiles. Recent research has further emphasized

the critical role of genomic regulatory elements in these

environmental adaptations (22; 23; 6), as well as efficient DNA

repair systems in extremophiles exposed to high radiation (7).

At the proteomic level, features such as codon usage bias and

amino acid composition have been linked to thermal adaptation
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and have recently been used in machine learning models to

predict optimal growth temperature (24).

A recent study applied supervised and unsupervised

machine learning algorithms to explore the genomes of

microbial extremophiles, uncovering both taxonomic and

environmental components embedded within their genomic

signatures (25). In this approach, genomic signatures were

derived from 500 kbp (contiguous) representative DNA

fragments randomly selected from each genome, by computing

the k-mer frequency vector of each fragment. Here, a

k-mer is a DNA sequence of length k, and the k-mer

frequency vector of a DNA fragment is a numerical vector

comprising the counts of the occurrences of all possible k-

mers in that fragment (in lexicographic order). These vectors

enabled highly accurate classification and clustering tasks

that revealed environmental components for extremophiles

inhabiting environments with extreme temperature and/or pH

conditions. While this approach provided valuable insights, it

had some notable limitations. Firstly, the selection of the DNA

fragment selected to act as a genome proxy was not entirely

random (see Section 2.3), which could potentially introduce

bias in the derived genomic signatures. Secondly, the study did

not quantitatively test the hypothesis of the pervasiveness of

the environmental components across the entire genome.

This paper addresses these limitations by first refining

the process of selecting a genomic signature to enhance the

accuracy of organism classification based on genomic data. We

focus on three key areas: (i) improving the genome coverage and

randomness of the representative DNA fragment by replacing

it with a composite genome proxy constructed through

the pseudo-concatenation of several randomly selected (non-

contiguous) DNA fragments, (ii) comprehensively testing the

hypothesis of the pervasiveness of taxonomic and environmental

components across a genome, and (iii) analyzing the impact

of varying k-mer sizes and composite genome proxy lengths,

ranging from 10 kbp to entire genomes. Through a series

of computational experiments involving several genome proxy

selection methods, k-mer sizes, and fragment lengths, we aimed

to identify the optimal parameters for extremophile genomic

signature analysis. The results of these analyses were then

used to design a multi-layered pipeline that identified multiple

bacterium-archaeon pairs with similar genomic signatures in

spite of their maximal taxonomic divergence, potentially due to

the shared characteristics of their extreme environments. The

main contributions of this paper are:

1. Conclusive evidence of the pervasiveness of a k-mer-based

genomic signature throughout an extremophile genome.

2. A broadly applicable method for the selection of a

composite genome proxy (hereafter referred to simply

as “genome proxy”) assembled from non-contiguous

subsequences of the genome. Empirical determination of

the optimal k-mer size (k = 6) and genome proxy

length (100, 000 bp) for fast and accurate taxonomic and

environment-type classifications.

3. Discovery of 15 maximally divergent bacterium-archaeon

pairs with similar genomic signatures linked to the

characteristics of their extreme environment, through a

multi-layered filtering process used in conjunction with

unsupervised machine learning.

4. Validation of the above computational findings through

additional analyses, including 3-mer frequency profile

analyses demonstrating agreement with known adaptative

patterns in extremophiles, statistical confirmation of 3-mer

frequency profiles similarity of the identified pairs using

Spearman’s rank correlation analysis (26), and analysis of

geographic co-occurrence data confirming that identified

bacterium-archaeon pairs naturally co-occur in the same

extreme environments.

2. Materials and Methods

This section describes the methodology employed in this

study’s computational experiments: Section 2.1 provides a

detailed description of the genome sequence datasets utilized

in this study; Section 2.2 provides an explanation of genomic

signatures, Section 2.3 outlines the procedure employed for

selecting a genome proxy to represent a genome for the purpose

of taxonomic and environment-type based machine learning

classifications, and the methods used to empirically optimize

the k-mer value and genome proxy length; Section 2.4 describes

the multi-layer process utilized to discover microbes that share

environmental genomic component in spite of belonging to

different taxa of maximal evolutionary divergence.

2.1. Dataset
In the quest to evaluate genome-wide genomic signatures

potentially shaped by similar extreme environments for

maximally divergent microbes, it is essential to determine the

optimal genome proxy to represent each genome. This selection

is crucial for ensuring accurate k-mer-based classification and

clustering.

For this reason, and in order to be able to perform

apples-to-apples comparisons with existing results, we utilized

the dataset from (25). The dataset consists of 693 high-

quality extremophile microbial genome assemblies curated

via a comprehensive review of primary literature and cross-

referenced with the Genome Taxonomy Database (27).

These microbial genomes were grouped into two different

environment-type datasets, one based on the organisms’

optimal growth temperature (psychrophiles, mesophiles,

thermophiles, hyperthermophiles, see Table 1) and the other

based on their optimal growth pH levels (acidophiles and

alkaliphiles, see Table 2).

The first dataset, called the Temperature Dataset, is

composed of 598 genomes including 148 psychrophile genomes,

190 mesophile genomes, 183 thermophile genomes, and 77

hyperthermophile genomes. The second dataset, called the pH

Dataset, is composed of 186 genomes, including 100 acidophile

genomes and 86 alkaliphile genomes. There are 91 genomes that

are present in both datasets, falling into one of two categories:

mesophiles that live in acidic or alkaline environments (8

genomes), and polyextremophiles, that thrive in environments

that are both acidic/alkaline and at extreme temperatures (83

genomes). The details of the samples that are in both datasets

can be found in the Supplementary Materials, Section A.

2.2. Genomic signature
Due to the massive lengths of genomic sequences and the

high computational demands of alignment-based methods (28),

researchers are now using alignment-free methods leveraging

“genomic signatures” for efficient genome classification or

clustering. The genomic signature of an organism is typically

represented by a k-mer frequency vector (29), derived from

the entire genome or a “sufficiently long” DNA fragment

that captures the pervasiveness of the signature (30). These

signatures have proven effective in differentiating species and



Life at the extremes 3

Table 1. The Temperature Dataset: Taxonomic diversity of archaea and bacteria across temperature categories. The four temperature

categories are defined, based on the optimal temperature for growth (OTG). These categories are as follows: Psychrophiles (OTG of < 20◦C),

Mesophiles (OTG of 20−45◦C), Thermophiles (OTG of 45−80◦C), and Hyperthermophiles (OTG of > 80◦C) (25).

Domain

Temperature

Category # Phyla # Classes # Orders # Families # Genera # Species

Archaea

Psychrophiles 2 4 4 5 7 8

Mesophiles 4 6 7 20 45 84

Thermophiles 6 11 14 21 41 67

Hyperthermophiles 5 6 8 15 31 70

Bacteria

Psychrophiles 4 4 6 13 19 140

Mesophiles 3 3 6 10 14 106

Thermophiles 15 19 24 27 47 116

Hyperthermophiles 5 5 5 5 5 7

Table 2. The pH Dataset: Taxonomic diversity of archaea and bacteria across pH categories. The two pH categories are defined based on

the optimal growth pH (OGpH). These are: Acidophiles (OGpH < pH 5) and Alkaliphiles (OGpH > pH 9) (25).

Domain

pH

Category # Phyla # Classes # Orders # Families # Genera # Species

Archaea
Acidophiles 4 5 7 11 24 39

Alkaliphiles 2 5 5 9 18 30

Bacteria
Acidophiles 10 12 13 13 32 61

Alkaliphiles 12 14 25 30 36 56

have been applied in various contexts, including microbial

diversity analysis (31; 32; 33; 34; 35; 36; 37), classification

or subtyping of viral genomes (38; 39; 33; 40; 41; 42), and

metagenomic classification and profiling (43; 35).

Chaos Game Representation (CGR) of DNA sequences,

first introduced by Jeffrey in 1990 (44), has emerged as a

particularly effective method for calculating and visualizing

genomic signatures. Figure 1, left panel, provides a brief

illustration of the process of generating the CGR of the sample

DNA sequence “ACG.” A quantified version of CGR, called

Frequency Chaos Game Representation (FCGR) (45), produces

a 2k×2k grayscale image, where the pixel intensities correspond

to k-mer frequencies. The patterns in an FCGR of a genomic

sequence reflect its composition, and several studies have

demonstrated the effectiveness of FCGR images in taxonomic

classification at various taxonomic levels (46; 47; 48). As

expected, the FCGRs of an archaeon and a bacterial species are

visually different, which is consistent with the genetic difference

anticipated for species of two different domains of life (Figure 1,

right panel).

The capability of genomic signatures to differentiate

between organisms across taxonomic levels, combined with

the visualization power of FCGRs, makes genomic signatures

particularly suitable for the analysis of extremophiles, where

we seek to understand how environmental adaptations might

influence genomic signatures across different taxa. In this

study, FCGR is employed for the quantitative evaluation of

candidate bacterium-archaeon pairs (Section 2.4.2), while k-

mer frequency vectors serve as the primary genomic signature

throughout all classification and clustering analyses.

2.3. Selecting the genome proxy, and empirically
optimizing the k-mer value and genome proxy
length

This section begins by proposing a new procedure for the

selection of a genome proxy (Section 2.3.1). Using this selection

method, along with supervised learning methods applied to the

Temperature Dataset and pH Dataset, we then assessed the

effect of genome proxy selection on classification accuracy, and

empirically determined the optimal values for k-mer size and

representative genome proxy length (Section 2.3.2).

2.3.1. Selecting a genome proxy

While genomic signatures have been shown to be effective for

classification and clustering of genomic sequences, the validity

and accuracy of such analysis highly depend on the selection of

representative DNA fragments capable of serving as a genome

proxy. The approach utilized in (25) had notable limitations

that our current methodology aims to address. Specifically,

the selection process was not completely random, since the

selected representative was a contiguous long fragment of the

genome and the selection process prioritized longer contigs over

shorter ones. Recall that the selection process in (25) starts

from the list of contigs sorted in decreasing order of their

length. If the longest contig exceeded 500 kbp in length, a

500 kbp subfragment was randomly chosen from that contig as

the representative DNA fragment of that genome. Otherwise,

the contigs were pseudo-concatenated one after another, until

the pseudo-concatenated sequence reached a length of 500 kbp,

and this sequence was taken to be the representative DNA

fragment of that genome. Here, the pseudo-concatenation of

DNA sequences is defined as listing them one after another,

with a separator letter ‘N’ between every two consecutive

sequences. Pseudo-concatenation prevents the formation of

spurious k-mers during the process, and k-mers containing the

letter ‘N’ are not counted when computing the k-mer frequency

vector of the pseudo-concatenated sequence, with ‘N’ not being

counted towards the pseudo-concatenated sequence length. One

potential limitation of this selection process is that it biases

the choice towards representative DNA fragments extracted

from longer contigs. Another potential limitation is that, if

the first contig is sufficiently large, the representative fragment

will be selected from a single region of the genome. These

limitations introduce a bias in the selection of the representative

DNA fragment, which presupposed a genome-wide pervasive
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Fig. 1. Left: Chaos Game Representation (CGR) of the DNA sequence “ACG.” a-1: The CGR is generated within a square with corners labelled A, C,

G, T. The plot is generated by reading the sequence from left to right, and iteratively plotting the midpoint between the current point and the corner

labelled by the nucleotide being read (the start point is the square’s center). For example, the sequence ACG consists of three points generated in the

order illustrated by the arrows. a-2: The resulting CGR, where the square regions labelled by A, AC, and ACG are the regions where the k-mers A,

AC, ACG would be plotted, regardless of their position in the sequence. Right: FCGRs of randomly selected 100 kbp genomic fragments belonging to

organisms from two different domains of life, b-1: E. fergusonii (bacterium) and b-2: H. mukohataei (archaeon). Both species live in similar habitats with

moderate temperatures (optimal growth temperature of 20 − 45◦C). The value of k is 8, and thus each image is a 256 × 256 grayscale grid (28 = 256),

where each pixel represents the frequency of a specific 8-mer in the DNA fragment. Darker (lighter) pixels indicate higher (lower) numbers of occurrences

of the corresponding 8-mers in the respective sequences. The unique patterns in each image reflect the genome sequence composition for that species.

nature of a genomic signature and could potentially affect the

classification accuracy.

To address these limitations, we propose a procedure for

selecting a composite genome proxy that ensures that all

fragments in the genome have an equal probability of being

included in the final genome proxy. In addition, this procedure

ensures that the final genome proxy includes multiple sequences

from various locations in the genome. The method of selecting

a genome proxy has three steps:

1. Empirically determining the optimal values for n (the

number of non-overlapping genomic subfragments that

comprise a genome proxy s), and for len(s), the total length

of the genome proxy s.

2. Pseudo-concatenating all contigs into a single large

sequence, if the genome sequence is composed of multiple

contigs;

3. Pseudo-concatenating n different, randomly selected, non-

overlapping subfragments of length len(s)/n from either

the genome (if it consists of a single contig), or from the

pseudo-concatenated sequence obtained in the preceding

step (if the genome consists of multiple contigs).

Figure 2 illustrates the selection process of a genome proxy

when the genome consists of only one contig, n = 3, and

len(s) = 15.

2.3.2. Determining the optimal k-mer size and genome
proxy length

After selecting the genome proxy in a way that ensured

randomness, we evaluated the impact of the following three

factors on the supervised classifier accuracies (i) the choice of

genome proxy, (ii) k-mer size, and (iii) genome proxy length.

The feature vectors used as an input for these classifiers were

canonical k-mer frequency vectors. Here, a “canonical k-mer”

is defined as the first, in alphabetical order, of a k-mer and its

Watson-Crick complement. For any DNA sequence, the final

frequency vector was computed by averaging the k-mer counts

of the sequence with k-mer counts of its Watson-Crick reverse

complement (25). In the remainder of this paper, only the

canonical k-mer will be listed.

The classifier used to evaluate the impact of factor (i)

was the Support Vector Machine (SVM) with a Radial Basis

Function (RBF) kernel, which has been shown to achieve

high accuracies in genome sequence classification across various

fields (25; 49; 50). To investigate the impact of factors (ii)

and (iii), we expanded our analysis to include six classifiers:

SVM with RBF kernel, Random Forest with 100 estimators,

and an Artificial Neural Network (ANN) with two hidden

layers (sizes 256 and 64, and a learning rate of 0.001).

Additionally, three variations of the Machine Learning with

Digital Signal Processing (MLDSP) algorithm (MLDSP-1,

MLDSP-2, and MLDSP-3)(33) were also included. Other deep

learning classifiers, such as CNNs, were not considered because

the number of samples in our dataset was insufficient to reliably

train such models.

In these computational experiments, we explored nine k-

mer sizes ranging from 1 to 9, to find the optimal value of

k. Larger k-mer sizes were avoided to prevent sparsity in the

feature vector, which can undermine classification accuracy.

Six genome proxy lengths (len(s)) were evaluated: 10 kbp, 50

kbp, 100 kbp, 250 kbp, 500 kbp, and 1,000 kbp. The fragment

lengths were chosen to include both short sequences (e.g., 10

kbp, approximately 3% of the average sequence length in our

dataset) and longer sequences, allowing for a comprehensive

comparison while also considering computational costs. For all

experiments, the number of sub-fragments (n) comprising the

sequence s was set to 10, a value empirically determined as

optimal for the datasets used. This choice is supported by

existing studies indicating that the minimum sequence length

necessary to capture genomic patterns is of the order of 103

(44), making n = 10 an effective choice for ensuring that

each sub-fragment independently captures the relevant genomic

patterns, particularly in the case of shorter fragments.

In the experiment for evaluating the impact of factor (i),

we repeated the following process 10 times: First, a random

genome proxy was selected for each sequence. Then, for

each combination of k-mer size and fragment length (9 × 6
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Fig. 2. The selection process of a genome proxy s, comprising n = 3 non-overlapping sub-fragments, and with total length len(s) = 15. Top: Full

genome, consisting of only one contig. Middle: n non-overlapping sub-fragments (here n = 3) randomly selected from the genome. Bottom: The genome

proxy of length len(s) = 15 obtained by pseudo-concatenating the sub-fragments.

combinations), we performed classification using an SVM with

10-fold cross-validation. To assess the performance of the

classification, the accuracy was defined as the ratio of the

number of sequences with correctly predicted labels to the total

number of sequences classified. The variance of the classification

accuracy over these ten runs of the classification was then

calculated to determine if the accuracy was dependent on the

choice of random genome proxy.

Following the observation that classification accuracy is not

dependent on the choice of genome proxy (see Section 3.1 for

details), finding the optimal k-mer size (factor (ii)), and finding

the optimal fragment length (factor (iii)), were carried out by

running classification experiments using the six classifiers with

all combinations of k-mer sizes and fragment lengths. Note that,

for each fragment length, a fixed randomly selected genome

proxy was utilized.

In addition, a separate experiment was performed using

the full DNA genome (maximal sequence length) and the

determined optimal k-mer size, to evaluate the impact

of considering the information from the whole genome on

classification accuracy, as opposed to a random shorter

fragment.

The computational experiments were performed for the

two different datasets, the Temperature Dataset and the pH

Dataset. All classifications were conducted under two distinct

supervised training scenarios: genome proxies labelled with

taxonomic labels (bacteria or archaea), and genome proxies

labelled with environment-type labels (for the Temperature

Dataset, psychrophiles, mesophiles, thermophiles, and

hyperthermophiles; for the pH Dataset, acidophiles and

alkaliphiles).

Taxonomic analyses employed stratified 10-fold cross-

validation. For environment-type classifications, tests were

conducted under two scenarios: a “standard” scenario and a

“bias mitigation” scenario.

In the standard scenario, conventional stratified 10-fold

cross-validation was applied, and the average classification

accuracy was reported across the ten folds. The bias mitigation

scenario was designed to separate genus-level taxonomic signals

from environment-specific genomic patterns. Here, folds were

constructed so that all sequences from the same genus were

placed in the same fold, while the distribution of all labels in

each fold remained the same as in the entire dataset. The fact

that sequences from the same genus were not split between folds

ensured that the environment-type labels of test sequences were

predicted due to their environment-specific similarities, rather

than due to genus-specific similarities with sequences in the

training set.

2.4. Finding bacterium-archaeon pairs with similar
genomic signatures, linked to their extreme
environments

Once the performance of the optimal parameters was validated,

the main objective of this study was to identify, if any, microbe

pairs from two different taxonomic domains (archaea and

bacteria) that shared similarities in their genomic signatures

that were linked to their shared extreme environment types.

A multi-layered approach was used to identify bacterium-

archaeon pairs of sequences with similar genomic signatures.

The first layer involved the generation of “candidate bacterium-

archaeon pairs,” i.e., maximally different microbe pairs

clustered together by non-parametric unsupervised clustering

machine learning algorithms (Section 2.4.1). To eliminate

potential clustering algorithm errors, this candidate pair list

was subjected to a second selection layer, comprising a

quantitative comparison of the FCGRs of members of each

candidate pair, which resulted in pairs with similar genomic

signatures called “confirmed candidate pairs” (Section 2.4.2).

Finally, we used the confirmed candidate pairs to test the

hypothesis that genomic similarities of pair members were due

to shared environmental pressures, by exploring the isolating

environment metadata of the members of each pair, resulting

in a list of “environment-related pairs” (Section 2.4.3).

We then further investigated the environment-related pairs

by analyzing the 3-mer frequency profiles of the pair members

and corroborating the results with biological findings of over-

and under-representation of codons in extremophile microbes

(Section 2.4.4), as well as by exploring the geographic habitat

co-occurrence of pair members (Section 2.4.5).

2.4.1. Non-parametric clustering

In this section, our primary objective was to identify pairs

of archaea and bacteria (if any) that clustered together

based on similar genomic signatures, despite their maximal

taxonomic divergence. To achieve this, we first sought to

determine clustering methods that could reliably reproduce

known taxonomic relationships at the genus level (the lowest

taxonomic level in our datasets). These validated clustering

algorithms were then applied to identify exceptional cross-

domain clustering cases. The rationale behind this approach is

that if a clustering algorithm could successfully group sequences

by genus, then any instance where it grouped bacteria and
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archaea together was more likely to reflect a true cross-domain

genomic signature similarity rather than being a computational

artifact. To this end, only non-parametric unsupervised

clustering algorithms were used, since they have the advantage

of not needing the expected number of clusters as an input

parameter. Specifically, the five algorithms used were the non-

parametric version of the iDeLUCS algorithm (31), and four

other non-parametric algorithms (HDBSCAN (51), Affinity

Propagation (52), MeanShift (53) and iterative medoids (54)).

These algorithms were applied in conjunction with two different

dimensionality reduction techniques, Variational Autoencoders

(VAE) (54), and Uniform Manifold Approximation and

Projection (UMAP) (55).

We tested different combinations of dimensionality reduction

techniques and clustering algorithms to find those that best

reproduced clusters matching true genera in our datasets.

Their performance was measured using completeness and

contamination. Completeness refers to the proportion of true

members within a cluster (cluster members belonging to the

same genus) relative to the total cluster size, and contamination

indicates the proportion of incorrect members (cluster members

that belong to a different genus) relative to the total cluster

size.

Only those clusters were accepted as “genus-accurate” that

had completeness greater than 50% and contamination less

than 50%. The next step was to rank the aforementioned

combinations by the ratio of the number of genus-accurate

clusters to the total number of generated clusters. The

top five combinations were selected, namely: VAE+iterative

medoids (IM), VAE+ Affinity Propagation, VAE+HDBSCAN,

UMAP+HDBSCAN, and iDeLUCS.

In the final step, we used all output clusters from the

selected top five combinations to identify pairs of archaea and

bacteria that clustered together. Specifically, for each of the

top five combinations, we ran the clustering process 10 times,

each time with a different random seed, each time producing

the pairs of maximally divergent microbes that were clustered

together. From the resulting set of pairs, the pairs that

appeared in more than five runs, and were clustered together by

the majority of the five combinations, were retained, as being

“candidate bacterium-archaeon pairs,” subjected to the next

layer of analysis.

2.4.2. FCGR comparison of candidate pairs

To address the errors inherent in any unsupervised clustering

method, we then analyzed the candidate bacterium-archaeon

pairs identified in Section 2.4.1 by investigating the similarities

of the FCGR patterns of the members of each candidate

pair. For this analysis, FCGR images of candidate pairs

were generated from the selected genome proxy using the

optimal k-mer size determined previously. Subsequently, three

distinct distance metrics were used, Descriptor (56), structural

dissimilarity index measure (DSSIM) (57), and learned

perceptual image patch similarity (LPIPS) (58) to calculate the

distances between each pair of candidate bacterium-archaeon

pairs that were clustered together. The refined set of candidate

pairs was selected based on the similarity of their FCGR images.

Specifically, pairs were selected if the distance between their

FCGRs was below certain distance-dependent thresholds for

all three distance metrics. The distance-dependent thresholds

were 0.190211 for the Descriptor distance, 0.501385 for DSSIM,

and 0.177668 for LPIPS, and were empirically determined as

detailed below.

The thresholds for the distance metrics were determined

based on the idea that two members of a bacterium-archaeon

pair will be considered similar if their FCGR distance is

less than the distance among FCGRs of species of the same

genus. To this end, the intra-genus distance in the dataset

was computed as follows. First, we selected all unique genera

from both the Temperature dataset and pH dataset, excluding

those with only a single sample, which resulted in 92 unique

genera. Then, for each genus, the pairwise distances between

the FCGRs of all sequences were calculated. The average of

these distances within each genus was deemed to be the intra-

genus distance for that genus. Of the obtained intra-genus

distances, 10% of the distances were excluded as outliers (the

top and bottom 5%). In the final step, the 90th percentile

of these average intra-genus distances was considered as the

empirical threshold for FCGR comparison for that distance.

More details of intra-genus distance computations can be found

in Supplementary Materials, Section B. This approach ensured

that the identified microbial pairs clustered together based on

genomic signature similarity in the previous layer, and also

exhibited significant similarities in their FCGR patterns. The

output of this layer was a list of “confirmed candidate pairs”.

2.4.3. Hypothesis testing using isolating environment
metadata of confirmed candidate pairs

After identifying confirmed candidate pairs with similar

genomic signatures, we explored the hypothesis that this

similarity was environment-related. To do so, we examined

the environmental type of the habitats where the members of

each pair were isolated. This process involved comparing the

environmental labels assigned to each species within a pair (e.g.,

temperature and pH). Microbial pairs with matching (implying

the same temperature and/or pH labels, i.e. both species

are acidophiles) or nearly matching (similar temperature

and/or pH labels, i.e. both species inhabit high-temperature

environments, though one is thermophilic and the other is

hyperthermophilic) environmental labels were considered to

be “environment-related pairs” and were retained for further

analysis. We also conducted a more detailed analysis, where

we retrieved the original studies that first characterized these

microbes from PubMed (https://pubmed.ncbi.nlm.nih.gov/).

The growth parameters and environmental metadata, such as

optimal pH and temperature ranges, were compared across

species. Additionally, we examined phenotypic traits and

habitat-specific characteristics to gain a deeper understanding

of shared environmental adaptations and similar phenotype

features of the pairs.

2.4.4. Analysis of 3-mer frequency profiles of
environment-related bacterium-archaeon pairs

Following the refinement steps, we conducted a comprehensive

3-mer usage bias analysis by comparing the 3-mer frequency

profiles of the environment-related pairs. We selected k = 3

for this analysis because this k-mer length effectively captures

codon usage bias, amino acid bias, and protein-associated

phenotypic adaptations (25; 59; 60). Our analysis consisted of

four main components. First, for each 3-mer, we calculated

its average frequency across all samples in the Temperature

Dataset and pH Dataset, then calculated the deviation of the 3-

mer frequency of each member of the environment-related pairs

from its dataset average. This approach revealed patterns of

similar 3-mer over- and under-representation in pair members

compared to the entire dataset, allowing us to investigate

https://pubmed.ncbi.nlm.nih.gov/
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whether similar environmental conditions induced comparable

patterns of 3-mer usage across microbial pairs. Second, we

tested the correlation between the 3-mer counts of members

of the confirmed pair in each group using Spearman’s rank

correlation coefficient, a nonparametric measure of the strength

and direction of association between two variables measured on

an ordinal scale (26; 40; 61; 62; 63). This step investigated the

pairwise correlation of 3-mer representation among confirmed

pairs, providing a p-value to assess the significance of similarity

or dissimilarity in the 3-mer over- and under-representation.

Third, we identified the specific 3-mers that influenced

environmental label prediction in supervised classification for

each microbial species in the environment-related pairs. We

used the SHapley Additive exPlanations (SHAP) (64) feature

importance method to quantify each 3-mer’s contribution

to the model’s environmental classification decisions. SHAP

is a model-agnostic explainability method that assigns

importance values to individual features based on their

marginal contributions to the prediction outcome. Specifically,

SHAP quantifies how much each 3-mer frequency increases

or decreases the probability of correctly classifying the

environment-type relative to the baseline (average) prediction.

We referred to these 3-mers as “environment-relevant 3-mers”

due to their impact on the model’s ability to distinguish

between sequences belonging to organisms living in different

environmental conditions.

Finally, we treated the “environment-relevant 3-mers” as

quasi-codons and translated them to corresponding amino acids

(65). This translation step enabled direct comparisons between

the environment-relevant 3-mers discovered by our method and

both codon and amino acid usage biases previously reported

in the literature for the respective extremophilic groups. This

comparative analysis serves to validate our methodology by

demonstrating that the 3-mers we identified as important for

environmental-based classification align with known adaptive

patterns in extremophiles reported in the literature (25).

2.4.5. Geographic habitat co-occurrence analysis of
environment-related pairs

In this analysis, the Microbe Atlas Project (MAP) database

(66), cataloging 16S rRNA reads of microbes isolated from a

wide range of environments, was used to analyze the geographic

habitat co-occurrence of species in environment-related pairs.

16S rRNA is a gene encoding a ribosomal subunit highly

conserved between different prokaryotes (including bacteria and

archaea) (67). The sequencing of this gene permits highly

sensitive taxonomic classification/identification of prokaryotic

samples, proving extremely helpful in identifying species found

in diverse microbiomes. The MAP tool compiles millions of

samples isolated across the world, along with their taxonomic

classifications down to the species level, and geographic

metadata (including coordinate information) associated with

the sample collection site. The MAP was thus employed

to identify the location data of 16S rRNA read occurrences

of each species in the environment-related pairs list. After

identifying the 16S rRNA sample reads catalogued for a

particular species, the read locations, along with project

and sample IDs (linking to project descriptions on the MAP

database, which further characterize the geographic metadata),

were exported to a spreadsheet. In the next step, the project

IDs associated with the reads of each species within each

respective group were cross-referenced to identify samples

isolated from the same project ID (i.e., the same geographic

location or microbiome). The projects found to contain 16S

rRNA reads for each of the species within the final groups were

identified via their respective ID in the MAP tool. Finally,

environmental metadata, including environmental descriptors

and longitude and latitude coordinates for each particular read,

were identified. Through this process, we investigated the

geographic habitat co-occurrence (referred to simply as “co-

occurrence” throughout the remainder of the paper) of the

pairs of environment-related pairs, as well as descriptions of the

unique environments that organisms in these groups inhabit.

3. Results

In the following section, Section 3.1 provides the results of

assessing the effect of the random selection of a genome proxy

on classification accuracy. Section 3.2 details the findings from

the second experiment, focusing on the optimal values for k-

mer size and genome proxy length, as well as the supervised

classification accuracy using these optimal parameters. Finally,

Section 3.3 presents the candidate bacterium-archaeon pairs

identified through non-parametric methods, the results of

filtering layers, the confirmed set of bacterium-archaeon pairs,

the analysis of 3-mer frequency profile in these pairs, and the

results of co-occurrence of confirmed bacterium-archaeon pairs.

3.1. Genome proxy
As described in Section 2.3.2, we conducted an experiment

to assess the impact of a randomly selected genome proxy

on taxonomic and environment-type classification under two

different scenarios: the bias mitigation scenario and the

standard scenario. For each scenario, we used 10-fold cross-

validation classification with SVM classifier and repeated the

classification process 10 times for each genome proxy length.

To evaluate the results, we calculated the average accuracy

and variance over the 10 runs for each genome proxy length.

The results for the bias mitigation scenario are summarized in

Table 3 (Temperature Dataset) and Table 4 (pH Dataset). For

each tested genome proxy length, we reported the maximum

average accuracy across the k-mer values and the value of k for

which it was obtained. The results for the standard scenario

are similar and can be found in the Supplementary Materials,

Section C.

In spite of the fact that each experiment was repeated 10

times, each time using a different randomly selected genome

proxy, the maximum average accuracies are consistently high

for taxonomy classifications and medium-high for environment-

type classifications, with low variance across 10 different

runs. These results support the hypothesis that the genomic

signature, herein defined as the k-mer frequency vector of

a short genomic fragment, is pervasive across the genome.

Overall, these results indicate that selecting and pseudo-

concatenating random regions of the genome into a contiguous

genome proxy does not affect the taxonomic and environment-

type classification accuracy, and is thus a valid selection method

for these purposes.

The notable difference in environment-type classification

accuracy between the two datasets can be partially attributed

to the complexity of the classification task. Indeed, the

Temperature Dataset has four unique labels while the pH

Dataset has only two, making the latter an inherently simpler

classification task.
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Table 3. Maximum average accuracy across six genome proxy lengths in ten repeated SVM classification trials on the Temperature Dataset

under the bias mitigation scenario, for k-mer sizes 1 to 9. The table lists the highest average accuracy for each genome proxy length, alongside

the k-mer size that achieved this accuracy and the variance in percentage. The Temperature Dataset has 598 samples, consisting of 369

bacteria and 229 archaea. There are 148 psychrophiles, 190 mesophiles, 183 thermophiles, and 77 hyperthermophiles in this dataset.

Genome proxy length Class labelling type Max avg accuracy (%) Variance (%) k-value

10 kbp
Taxonomy 98.35 0.0010 5

Temperature 67.39 0.0267 6

50 kbp
Taxonomy 99.03 0.0001 6

Temperature 72.36 0.0224 7

100 kbp
Taxonomy 99.13 0.0000 6

Temperature 73.18 0.0209 7

250 kbp
Taxonomy 99.15 0.0000 6

Temperature 75.31 0.0035 9

500 kbp
Taxonomy 99.15 0.0000 6

Temperature 76.97 0.0035 9

1,000 kbp
Taxonomy 99.15 0.0000 6

Temperature 76.91 0.0013 9

Table 4. Maximum average accuracy across six genome proxy lengths in ten repeated SVM classification trials on the pH Dataset under

the bias mitigation scenario, for k-mer sizes 1 to 9. The table lists the highest average accuracy for each genome proxy length alongside the

k-mer size that achieved this accuracy and the variance in percentage. The pH Dataset has 186 samples, consisting of 117 bacteria and 69

archaea. There are 100 acidophiles and 86 alkaliphiles in this dataset.

Genome proxy length Class labelling type Max avg accuracy (%) Variance (%) k-value

10 kbp
Taxonomy 97.18 0.0041 5

pH 83.17 0.0469 6

50 kbp
Taxonomy 98.25 0.0022 7

pH 84.89 0.0040 7

100 kbp
Taxonomy 98.63 0.0006 7

pH 85.61 0.0092 8

250 kbp
Taxonomy 98.62 0.0012 8

pH 85.41 0.0053 9

500 kbp
Taxonomy 98.94 0.0000 9

pH 86.20 0.0030 9

1,000 kbp
Taxonomy 98.94 0.0000 9

pH 85.74 0.0035 9

3.2. Optimal k-mer size and genome proxy length
The aim of this experiment is to identify the optimal k-mer

size and the optimal genome proxy length for the purpose

of taxonomy and environment-type classifications. To achieve

this, we began by first determining the optimal k-mer size

and then proceeded to determine the optimal genome proxy

length. Our approach, especially when analyzing the various

k-mer sizes, was to find a balance between computational time

complexity/memory usage and classification accuracy.

Figure 3 presents the classification accuracy results of SVM

classifiers applied to both the Temperature Dataset and the pH

Dataset under the bias mitigation scenario, with taxonomy and

environment-type labelling, respectively. This figure illustrates

how the classification accuracy changes as the value of k

increases, for the six different genome proxy lengths analyzed.

The classification accuracies for the other five classifiers, and

for all six classifiers under the standard scenario, for both the

Temperature Dataset and the pH Dataset are similar, and can

be found in the Supplementary Materials, Section D.

As seen in Figure 3, increasing the length of k-mer from 1 to

6 leads to a significant improvement in classification accuracy.

For values of k higher than 6, the changes in accuracy depend on

the genome proxy length. For longer genome proxies (100 kbp,

250 kbp, 500 kbp, and 1,000 kbp), the taxonomic classification

accuracy remains stable for increasing values of k from k =

6 to k = 9, and the environment-type classification accuracy

increases with the increase in k-mer size. However, for shorter

genome proxies (10 kbp and 50 kbp), both the taxonomic and

environment-type accuracies decrease with the increase of k-

mer sizes from 6 to 9.

The decline of classification accuracy with the k-mer size

increase, when k is higher than a certain threshold, is due

to the fact that the increase in the length of the k-mer

frequency feature vector is exponential in k. For small values

of k, this increase results in more information available to the

classifier. However, the number of k-mers that actually occur

in the sequence is bound by the length of the sequence. Thus,

after k passes a certain threshold, the feature vector becomes

so sparse that it increasingly fails to capture the genomic

patterns necessary for an accurate classification. This threshold

is reached earlier for shorter sequences (10 kbp or 50 kbp) than

for longer sequences.
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Fig. 3. Classification accuracy of SVM classifier under bias mitigation scenario. a: Temperature Dataset with taxonomy labels. b: Temperature Dataset

with environment-type labels. c: pH Dataset with taxonomy labels. d: pH Dataset with environment-type labels. Each subfigure shows accuracy across

nine k-mer sizes and six genome proxy lengths.

Since, for all genome proxy lengths considered, the

classification accuracies increase until k = 6, we concluded that

the value of k should be 6 at the minimum, and performed a

detailed analysis for values k = 6, 7, 8, 9.

The detailed analysis for k-mer sizes of 6 to 9 for

the Temperature Dataset shows that the highest taxonomic

classification accuracy for the six fragment lengths considered

in the bias mitigation scenario ranges from 98.15% to 99.50%,

and the highest environment-type classification accuracy ranges

from 70.29% to 78.14%. Also, the results for the pH Dataset

indicate that the highest taxonomic classification accuracy

for different fragment lengths ranges from 97.89% to 98.95%,

and for environment-type classification ranges from 83.30% to

87.10%. The classifier’s performance in the standard scenario

is similar.

The detailed results of these experiments for both

bias mitigation and standard scenarios can be found in

Supplementary Materials, Section E. Overall, one observes

that increasing the value of k from 6 to 9 does not result in

significant increases in classification accuracy. This, combined

with the fact that increasing k leads to an exponential increase

in memory usage (the feature vector size increases from 212 to

218) and time complexity, leads to the conclusion that k = 6 is

the optimal choice for the k-mer size in this context.

In the next step, we maintained a fixed k-mer size of

k = 6 and assessed the effectiveness of six classifiers for the six

genome proxy lengths considered in this study. This allowed

us to identify the optimal genome proxy length for both the

Temperature Dataset and pH Dataset. Table 5 displays the

highest classification accuracy achieved for each genome proxy

length, for both the standard scenario and the bias mitigation

scenario. As observed in Table 5, a fragment length of 100 kbp

achieves the highest accuracy in three of the classification tasks:

the standard taxonomic classification for both datasets and the

bias mitigation taxonomic classification for the Temperature

Dataset. In the remaining cases, the difference between the best

performance and the 100 kbp performance was less than 0.5%

in the standard scenario and less than 1% in the bias mitigation

scenario. Thus, a genome proxy length of 100 kbp (at k = 6) is

the optimal overall selection.

In our last experiment, our objective was to determine

whether using a short genome proxy might lead to any loss
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Table 5. Comparison of the best classification accuracy across all classifiers, using k = 6, the optimal chosen value for k, for all six genome

proxy lengths. All occurrences of maximum accuracy are shown in bold, and the performance for a fragment length of 100 kbp is shown as

underlined.

Dataset Genome proxy length Label type
Standard scenario

accuracy (%)

Bias mitigation scenario

accuracy (%)

Temperature

10 kbp
Taxonomy 98.50 98.20

Environment 82.00 70.30

50 kbp
Taxonomy 99.50 99.00

Environment 83.80 72.80

100 kbp
Taxonomy 99.50 99.20

Environment 85.10 74.80

250 kbp
Taxonomy 99.50 99.20

Environment 84.80 74.30

500 kbp
Taxonomy 99.50 99.20

Environment 84.80 74.40

1,000 kbp
Taxonomy 99.50 99.20

Environment 85.30 75.10

pH

10 kbp
Taxonomy 97.80 97.90

Environment 89.20 83.30

50 kbp
Taxonomy 98.40 98.40

Environment 91.30 84.90

100 kbp
Taxonomy 98.40 98.40

Environment 93.10 85.50

250 kbp
Taxonomy 98.40 98.90

Environment 93.00 86.00

500 kbp
Taxonomy 98.40 98.90

Environment 92.00 86.00

1,000 kbp
Taxonomy 98.40 97.90

Environment 93.50 86.00

of information compared to using the whole genome. To

evaluate this, we performed taxonomic and environment-type

classification using entire genomes, while maintaining the

same setup as our previous supervised experiment, under bias

mitigation scenarios with k equal to 6. Our findings show that

for taxonomic classification of whole genomes with k = 6, the

accuracy was 99.15% (compared to 99.20% using random 100

kbp genome proxies) for the Temperature Dataset, and 98.42%

(compared to 98.40%) for the pH Dataset. For environment-

type classification, the best accuracy for whole genomes was

75.51% (compared to 73.00%) for the Temperature Dataset,

and 84.35% (compared to 85.50%) for the pH Dataset. These

results indicate that classification accuracy using a genome

proxy of length 100 kbp is comparable to using the entire

genome, which in our datasets has an average length of 3,500

kbp (the genome proxy is 35 times shorter on average).

3.3. A multi-layered pipeline to find
bacterium-archaeon pairs with similar genomic
signatures

The identification of bacterium-archaeon pairs is a multi-

layered filtering process that progressively narrows down the

candidate pairs generated through unsupervised clustering, to

reach the environment-related bacterium-archaeon pairs.

Figure 4 illustrates the details of this multi-layered filtering

approach. We further investigated the 3-mer usage bias in these

15 environment-related bacterium-archaeon pairs (which passed

all filtering layers) and found that they demonstrate a similar

genomic signature linked to their extreme environment despite

their maximal taxonomic differences. As the last analysis, we

also studied the co-occurrence of environment-related pairs.

3.3.1. Layer 1: non-parametric clustering

We initiated the process using non-parametric clustering

algorithms in combination with dimensionality reduction

methods. As described in Section 2.4.1, we evaluated

the contamination and completeness scores of the clusters

and identified the top five performing clustering methods,

selecting those that performed best at generating clusters that

correspond to true genera.

From the clusters obtained using the chosen algorithms, a

set of candidate pairs, consisting of bacterium-archaeon pairs

whose genomic signatures were consistently clustered together

by the majority of the algorithms, was identified for each

dataset. To ensure robustness, we repeated the above analysis

(clustering and selecting bacterium-archaeon pairs) 10 times.

We then selected the bacterium-archaeon pairs that appeared in

at least 5 of the 10 runs. This initial step generated 78 candidate

bacterium-archaeon pairs (38 unique genera, 85 unique species).

3.3.2. Layer 2: FCGR comparison of candidate pairs

In the second layer, we filtered the candidate pairs based

on their FCGR distances. As described in Section 2.4.2,

we calculated the FCGR images for each pair of sequences,

using a genome proxy length of 100 kbp and a k value of

6, and measured the distances between these FCGRs using

three distance metrics. We selected bacterium-archaeon pairs

with distances below empirically determined thresholds for the

majority of distance metrics.

After this filtering layer, we identified 40 confirmed

candidate pairs (32 unique genera, 48 unique species), with

similar FCGR images, determined by the three distance

metrics. The members of each of these confirmed pairs can now



Life at the extremes 11

A AC G T A T T GC AC C G TN N ........

A AT G T C T G GC AC T G TN N ........

....

DSSIM

Descriptor

d

Optimal length

5 models

Layer 1

Layer 2

Bacteria

Archaea

Cluster

FCGR

image

78 candidate pairs

40 confirmed candidate

pairs

Dataset

k-mer frequency vectors

Hypothesis Testing

using environmental

metadata comparison

d < threshold

LPIPS

15 environment-related

bacterium-

archaeon pairs
Confirmed candidate

pairs with similar

genomic signatures

Fig. 4. Multi-layered pipeline for identifying bacterium-archaeon pairs with similar genomic signatures. Layer 1: Five selected non-parametric clustering

methods identify clusters of organisms with similar genomic signatures. The clusters containing both bacteria and archaea (green) generate a list of 78

candidate bacterium-archaeon pairs, grouped by these algorithms based on their similar genomic signatures. Layer 2: The candidate pairs from Layer 1

undergo pairwise distance calculations between their FCGRs using four different distance metrics. Only 40 pairs, with the majority of distances below

empirically determined thresholds, are retained. Hypothesis Testing: after identifying confirmed candidate bacterium-archaeon pairs with similar genomic

signatures, a biological analysis is conducted. This includes checking environment labels and examining metadata about their living environments to

select pairs isolated from similar types of extreme environments. The final output is a list of 15 environment-related bacterium-archaeon pairs (comprising

16 unique genera and 20 unique species) that have similar genomic signatures and passed the hypothesis testing. These pairs can confidently be proposed

as maximally taxonomically divergent microbes (from different domains, Bacteria and Archaea) that share similar genomic signatures associated with

their living environments.

be confidently considered as having similar genomic signatures

(see Supplementary Materials, Section F for details). Figure 5

shows the FCGR images of two pairs, one extremophile

(Thermotoga petrophila and Geoglobus acetivorans)

and one polyextremophile pair (Thermoanaerobacterium

thermosaccharolyticum and Caldisphaera lagunensis). For

better visualization, the value k = 8 was used, and the images

confirmed that the FCGRs show visual pattern similarities,

in addition to the distance between FCGRs being below the

empirically determined threshold.

3.3.3. Hypothesis testing using isolating environment
metadata of confirmed candidate pairs

As outlined in Section 2.4.3, to test the hypothesis that

the genomic signature similarities between these confirmed

candidate pairs result from shared environmental pressures,

we conducted a comparison of environmental metadata of

their isolation habitats. Out of 40 confirmed candidate pairs

obtained from the multi-layered pipeline, 18 pairs initially

passed hypothesis testing. However, three bacterium-archaeon

pairs were excluded because the archaeon’s reference genome

was recently suppressed on NCBI (see Supplementary Materials

Section F). This left a final set of 15 confirmed candidate

pairs, representing 16 unique genera and 20 unique species.

These pairs, validated by their isolation environment metadata

and labels, are proposed as environment-related bacterium-

archaeon associations. The details of the environmental data of

the selected pairs can be found in the Supplementary Materials,

Section G.

Since these pairs revealed cases where multiple archaea were

grouped with a single bacterium, we organized these pairs into

5 groups based on the bacterial species. Notably, Groups 1, 2,

and 3 include sequences of organisms isolated from extreme

environments, while the majority of organisms in Groups 4

and 5 are associated with normal temperature (mesophiles)

and normal pH (absent from the pH Dataset) conditions. We

further examined the 3-mer usage bias of species in these

confirmed 15 pairs, as well as their co-occurrences. For Groups

4 and 5, we also investigated any potential extreme conditions

in their environments other than extreme temperature or pH.

The details of these five groups are shown in Figure 6, and

their FCGR images can be found in Supplementary Materials,

Section H.
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b-1
Bacteria - Thermoanaerobacterium 

thermosaccharolyticum

b-2 
Archaea - Caldisphaera lagunensis

a-1
Bacteria - Thermotoga petrophila
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Archaea - Geoglobus acetivorans

a b Hyperthermophile
Thermophile
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Fig. 5. FCGR images of two confirmed candidate pairs (four unique species), with a resolution of k = 8. The first pair includes a-1: a hyperthermophilic

bacterium and a-2: a hyperthermophilic archaeon, while the second pair consists of b-1: an acidophilic thermophilic bacterium and b-2: an acidophilic

thermophilic archaeon. The first pair was drawn from the Temperature Dataset, and the second pair appears in both Temperature Dataset and pH

Dataset. In both candidate pairs, the FCGRs display strikingly similar patterns between the two species, despite belonging to different taxonomic

domains (Bacteria and Archaea).
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Fig. 6. Environment-related pairs, grouped by the bacterial species. Each bacterium-archaeon pair belonged to the same cluster generated by the

clustering algorithms, and passed both the FCGR comparison and the hypothesis testing layers. The environment-related pairs set comprises 20 species,

including five bacteria and 15 archaea from 16 unique genera. Among these, two species are poly-extremophiles (acidophilic thermophiles), 10 are

extremophiles (eight hyperthermophiles and two thermophiles), and the remaining eight are mesophiles.

3.3.4. Analysis of 3-mer frequency profiles of
environment-related bacterium-archaeon pairs

To investigate potential biases in 3-mer usage associated with

environmental adaptation, we conducted a detailed analysis

of the 3-mer frequency profiles for the genome proxies of the

organisms in the environment-related bacterium-archaeon pairs

groups. We focused on k = 3 due to its biological relevance,

since the set of codons is a subset of the set of 3-mers.

Following the four-step analysis outlined in Section 2.4.4, this

section examines how 3-mer frequencies reflect environmental

adaptations across taxonomically divergent microbes. The

results of this analysis are summarized in Table 6 for each of

the five environment-related bacterium-archaeon pairs groups.

For each environment-related pair, the set of “shared

environment-relevant 3-mers” is defined as the intersection of

the set of environment-relevant 3-mers of the bacterium genome

proxy with that of the archaeon genome proxy. Among these

shared 3-mers, we calculated the proportion of 3-mers that

show the same pattern of over- or under-representation in both

species and reported it in Table 6. Additionally, we calculated

the Spearman rank correlation coefficient (rho) between the

3-mer representation patterns of the two organisms in each

pair. Notably, all correlations were statistically significant with

p < 10−5 for all pairs. Since the shared 3-mer ratio and

rho collectively represent the results of steps 1 to 3 of the

3-mer frequency profile analysis pipeline (see Section 2.4.4),

we calculated a combined score as the average of these two

values to provide an overall measure of 3-mer frequency profile
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similarity between the species of each pair. Based on the

combined score, we also assigned a descriptive term to each

pair for a clear comparison. Specifically, we labelled pairs as

“Compelling” for scores greater than or equal to 0.85, “Very

strong” for scores between 0.85 and 0.80, “Strong” for scores

between 0.80 and 0.75 and “Moderate” for scores between 0.75

and 0.70. These thresholds were determined empirically based

on the distribution of our results.

Finally, as outlined in the last step of the 3-mer frequency

profile analysis (see Section 2.4.4), we examined the biological

literature on codon usage to determine whether the observed

over- or under-representation of each shared environment-

relevant 3-mer had been previously reported in biological

literature. The final column of Table 6 reports the number

of shared 3-mers for which our findings in over- or under-

representation align with evidence from prior studies, providing

further validation of the observed similarities. Importantly, we

did not include this literature-based validation in the combined

score calculation, as low values in this step may only reflect

a lack of prior research in the literature rather than a true

biological absence.

The results revealed nine pairs with compelling 3-mer

similarity, four pairs with very strong similarity, one pair with

strong similarity and one pair with moderate similarity. No

pairs exhibited very low similarity (the minimum similarity

score is 0.71), indicating a moderate to high level of 3-mer

frequency profile similarity across all confirmed pairs. Notably,

the first three groups, which include poly-extremophile

or extremophiles, showed a higher average number of

shared environment-relevant 3-mers observed in the biological

literature (average: five) compared to Groups 4 and 5, which

predominantly consist of mesophiles (average: two).

Interestingly, despite being composed mainly of mesophiles,

Groups 4 and 5 included two pairs with compelling similarity

and four pairs with very strong similarity. This unexpected

finding suggests that factors beyond temperature or pH, such

as other environmental pressures, may contribute to genomic

sequence composition convergence in these pairs, which is

further discussed in Section 4. Detailed results of the 3-

mer frequency profile analysis are presented in Supplementary

Materials, Section I.

3.3.5. Co-occurrence of organisms from the confirmed
bacterium-archaeon pairs

In the final analysis, using the MAP tool (66), we analyzed the

habitats of all environment-related pairs within their respective

groups, to identify any shared environments, as outlined in

Section 2.4.5.

This analysis revealed distinct patterns of co-occurrence

across different groups. Both species in Group 1 were found

together in Washburn Hot Springs, a geothermal hot spring

in Yellowstone National Park, Wyoming, USA (68). Notably,

this co-occurrence habitat differs from the environments where

the species were originally isolated (69; 70; 71). Despite the

large geographic distances between the original isolation and

co-occurrence sites, these habitats have similar environmental

pressures and geochemical properties.

Similar observations were made for the species in the pair

of Group 2, which were found to co-occur in two distinct

habitats: Brothers Volcano, a submarine volcano in the Pacific

Ocean near New Zealand (72), and Juan de Fuca Ridge, a mid-

ocean ridge flank near Vancouver Island (73). Note that these

species were initially isolated from a deep Japanese oil reservoir

(74) and a deep-sea hydrothermal vent (75), respectively.

In Group 3, a subset of species co-occurred in environments

overlapping with those of Group 1 and Group 2, including

Brothers Volcano and Washburn Hot Springs. Additional

co-occurrence sites were found across Yellowstone National

Park. Similar to Group 1 and Group 2, the environmental

conditions of the co-occurrence habitats resemble the conditions

of isolating environments of the respective species. It is worth

mentioning that even though species from Groups 1, 2, and

3 were found to co-occur in the same habitat, our clustering

methods provide the sensitivity to detect specific 3-mer biases

within their genomic signatures. This enables classification

based on their evolved niche adaptations rather than their

current habitat, which explains why these groups were clustered

separately despite sometimes sharing the same environment.

Detailed geographic maps and co-occurrence data for these

three groups can be found in the Supplementary Materials

Section J.

Although the majority of species in Group 4 are mesophiles,

they co-occurred in multiple independent environments

characterized by other common extreme environment

conditions, such as anaerobic and methanogenic conditions.

These habitats include the Shengli Oil Field in China,

hypothesized to involve anaerobic, mesophilic microbiomes in

the “methanogenic degradation of hydrocarbons” (76), and a

Japanese bioreactor (77). No co-occurrence was identified for

Group 5 species. Detailed geographic maps and co-occurrence

for Group 4 and Group 5 can be found in Supplementary

Materials J.

Importantly, this co-occurrence analysis supports the

bacterium-archaeon pairs clusters identified by our multi-

layered approach. Indeed, it demonstrates that many of the

species pairs that were computationally grouped together by

our method, despite being originally isolated from different

environments, were later found to co-occur naturally in shared

environments distinct from their isolation sites.

4. Discussion

Our computational analysis revealed that both taxonomic and

environmental components can be pervasive throughout

extremophile prokaryotic genomes, suggesting that

environmental adaptations influence the entire genome

rather than specific genic or regulatory regions exclusively.

Indeed, our novel computational pipeline resulted in high

classification and clustering accuracies, despite using as

“genome proxy” a relatively short DNA fragment constructed

by the pseudo-concatenation of 10 randomly selected 10,000 bp

fragments (total length 100,000 bp, that is ≈ 35 times shorter

than a complete genome). This indicates that taxonomic

and environmental components are detectable even with

limited genomic samples, which has important implications for

studying environmental adaptations when complete genome

sequences are not available.

Our multi-layered approach identified 15 pairs of maximally

distant organisms that have similar genomic signatures,

grouped into five distinct categories. The statistically

significant 3-mer over-representation and under-representation

analysis further confirmed the genomic composition similarity

of these pairs. Notably, the identified environmentally-relevant

3-mer representation patterns align with known extremophile

adaptation mechanisms as detailed below.
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Table 6. Combined summary of 3-mer profile analysis for Groups 1 to 5. For each pair, we calculated the number of shared environment-

relevant 3-mers exhibiting similar over- or under-representation patterns between the two species of the pair, and reported the ratio out of 15.

The Spearman rank correlation coefficient (rho) was computed to quantify the correlation between the 3-mer representation patterns of each

pair; all correlations were statistically significant (p < 10−5). A combined score was calculated as the average of the shared environment-

relevant 3-mer ratio and rho to assess the overall similarity of each pair. For further validation, the last column reports the number of shared

environment-relevant 3-mers that have over- or under-representation patterns consistent with findings in the biological literature.

Group Bacterium Archaeon Shared

environment

relevant

3-mers (ratio)

rho Score Overall

3-mer

similarity

Biology literature

observed

shared

3-mers

Group 1
Thermoanaerobacterium

thermosaccharolyticum

Caldisphaera

lagunensis
0.83 0.96 0.89 Compelling 9

Group 2
Thermotoga

petrophila

Geoglobus

acetivorans
1.00 0.81 0.90 Compelling 4

Group 3
Thermocrinis

ruber

Thermofilum

adornatum
1.00 0.77 0.89 Compelling 5

Thermococcus

chitonophagus
1.00 0.81 0.90 Compelling 4

Palaeococcus

pacificus
0.90 0.76 0.83 Very strong 4

Pyrococcus

furiosus
0.89 0.81 0.85 Compelling 5

Thermococcus

litoralis
0.91 0.80 0.85 Compelling 4

Group 4
Pseudothermotoga

elfii

Methanobacterium

paludis
1.00 0.94 0.97 Compelling 1

Methanosarcina

vacuolata
0.75 0.95 0.85 Compelling 1

Group 5
Rubrobacter

indicoceani

Methanolinea

mesophila
0.60 0.83 0.71 Moderate 1

Methanoculleus

chikugoensis
0.77 0.93 0.8 Compelling 3

Methanoculleus

bourgensis
0.73 0.91 0.82 Very strong 2

Methanoculleus

horonobensis
0.69 0.95 0.82 Very strong 3

Methanoculleus

taiwanensis
0.64 0.92 0.78 Strong 3

Methanoculleus

thermophilus
0.78 0.89 0.83 Very strong 0

In Group 1, the over-representation of the 3-mer “CAA”

(corresponding to a glutamine codon) in the genome of

thermophilic acidophiles aligns with previous findings of codon

usage bias in acidophilic prokaryotes which prefer the “CAA”

codon when calling for glutamine (18). Moreover, the under-

representation of the 3-mer “ACG” (corresponding to a

threonine codon) in this group is consistent with amino acid

abundance patterns found in thermophilic prokaryotic proteins

which demonstrate a relative lack of threonine (78).

In Group 2 and Group 3, consisting of hyperthermophiles,

observations of the elevated representation of 3-mers

corresponding to arginine codons, and decreased representation

of 3-mers corresponding to asparagine and glutamine codons

align with previous observations related to amino acid

abundances in hyperthermophilic and thermophilic prokaryotic

proteins (17; 79; 80). Specifically, (hyper)thermophilic

proteins demonstrate an increased abundance of arginine, and

decreased abundance of asparagine and glutamine amino acids,

which is reflected by the relative representations of 3-mers

respectively. Note that several species in Group 3, specifically,

Thermocrinis ruber (bacteria) and three archaeal species

(Pyrococcus furiosus, Thermococcus litoralis, and Pyrococcus

chitonophagus), were previously identified as having similar

genomic signatures by using slightly different methods (25),

which further validates our multi-layered approach.

The 3-mer frequency profile analysis of Group 4 also

showed some agreement with known codon usage patterns. In

this group, all species, including the thermophilic bacterium,

exhibited an under-representation of 3-mers corresponding to a

serine codon. This pattern aligns for mesophilic species, which

demonstrate a codon usage bias against the 3-mer “AGC” when

calling for serine (81) and with the observed lower serine amino

acid in thermophilic proteins relative to mesophilic proteins

(82). The grouping of mesophilic species from maximally
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divergent taxa in Group 4, along with their similarity in

genomic compositions and 3-mer representations, suggests

the influence of extreme environmental pressures beyond

temperature and pH. Indeed, we observed that Group 4 species

co-occur in anaerobic, methanogenic environments and share

the phenotypic trait of oxygen intolerance (Supplementary

Materials Section F). This indicates that additional extreme

factors, such as high concentrations of endogenously-produced

methane, or exogenous hydrocarbons encountered in oil fields

or wells, could potentially influence extremophilic genomic

signature composition.

In Group 5, in contrast with Groups 1, 2, 3 and

4, our findings revealed unique genomic signature patterns

that differ from previous biological findings of extremophile

codon usage bias. In this group, our findings showed an

under-representation of the 3-mer “CTA,” which codes for

leucine. This was expected in mesophilic species of this group,

as mesophilic prokaryotes commonly exhibit a bias against

using this codon (81). However, surprisingly, we found the

same under-representation in the thermophilic species of this

group, in contrast with previous studies which showed “CTA”

to be typically abundant in other thermophiles (17). Our

finding contradicts previous assumptions of codon usage bias

in thermophilic prokaryotes, suggesting that the impact of

environmental adaptation on prokaryotic genomes may be

more nuanced than previously thought and needs further

investigation. Although no co-occurrence environments were

found for Group 5, their initial isolation from predominantly

methanogenic habitats, as described in their discovering papers,

suggests a potential role of methanogenic processes in shaping

the selection of, and thus the composition of genomic signatures

of these species (83). Further investigation is needed to clarify

these relationships.

It is worth noting that horizontal gene transfer, a

phenomenon in which one species can transfer genetic material

to another, is a major driver of adaptation in extreme

environments (84). However, a Basic Local Alignment Search

Tool (BLAST) (85) analysis showed little to no evidence of

extensive or localized transfer between species across the five

Groups in our study (see Supplementary Materials, Section

K, for details). Only the discontinuous megablast parameters

revealed a 1–2% query cover between archaeal genomes and

the bacterium in each Group. This indicates that the archaeal

genomes share minimal genetic material with the bacterial

genome in the same group, as expected. Moreover, within

these aligned regions, the genetic sequences show only moderate

similarity, which suggests that the genetic material is not highly

conserved. This finding contrasts with what we typically see

in extreme environments, where genes that provide survival

advantages are usually highly conserved (86). Thus, while

alignment-based approaches confirm the local absence of

shared genetic material between archaeon and bacterium pair

members, our techniques reveal the presence of shared genomic

composition patterns throughout their entire genomes.

Our computational approach also has some limitations.

For example, this k-mer-based method cannot capture long-

range genomic interactions, although this could potentially

be addressed through the use of transformer models (87).

Additionally, the exponential growth in the size of feature

vectors with increasing k-mer size limited our analysis to

k ≤ 9, potentially obscuring larger sequence patterns. Also,

while the parameters that were empirically determined to

be optimal proved effective for the classification/clustering

of this extremophile dataset, they may not generalize across

all genomic analyses, as they likely depend on dataset

characteristics and the complexity of the classification task.

Lastly, the choice of the distance thresholds can depend on the

datasets, and this choice is discussed in Supplemental Material

Section L.

A point that warrants further discussion is the choice of the

parameter n, which determines how many randomly selected

DNA sub-fragments are pseudo-concatenated into a single

composite genome proxy for computational analysis. In this

study, all experiments were conducted with n = 10. This being

said, as detailed in Section M of the Supplementary Materials, a

comprehensive analysis shows that larger values of n, up to n =

10,000 for a genome proxy length of 100,000, still capture the

global environmental and taxonomic components, even though

the resulting sub-fragments are as short as 10 bp. Remarkably,

these settings achieved classification accuracies of 99.16%

for taxonomic classification and 73.16% for environment-

type classification in the Temperature dataset, and 98.32%

and 83.27% for the pH dataset, respectively. These results

demonstrate that a 100,000 bp genome proxy constructed from

sub-fragments as short as 10 bp can still capture taxonomic

and environmental patterns. We also extended this analysis to

other genome proxy lengths (ranging from 10,000 bp to 1,000

kbp) and obtained consistent high classification performance

(over 97% for taxonomic and over 70% for environment-type

classification) with sub-fragments as short as 10 bp.

Overall, our findings demonstrate that extreme

environmental adaptation significantly impacts prokaryotic

genomic signature compositions, with environmental pressures

capable of overriding traditionally recognized taxonomic

influences. The biological significance of our approach is

highlighted by the discovery of 15 microbial species pairs

that share genomic signatures despite maximal taxonomic

divergence, suggesting that shared environmental pressures

can drive convergent genome sequence composition across

vastly different species. These results provide compelling

evidence that environment-driven genomic components

persist across diverse taxa, offering new perspectives on

how environment-associated mutagenesis and selection shape

microbial genomes. Our work broadens the field’s perspective

beyond the traditional focus on phenotype, proteome, and gene-

specific analyses to genome-wide considerations. By bridging

computational methods with biological context, this work

advances machine learning applications in genomics and our

understanding of extremophile adaptation mechanisms. Future

research will explore the biological mechanisms underlying

these shared genomic signatures and their implications

for evolutionary biology, biotechnology, and environmental

genomics.
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