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Abstract 

Extreme environments impose strong mutation and selection pressures that drive distinctive, yet understudied, genomic adaptations in ex- 
tremophiles. In this study, we identify 15 bacterium–archaeon pairs that exhibit highly similar k-mer-based genomic signatures despite maximal 
tax onomic div ergence, suggesting that shared en vironmental conditions can produce con v ergent, genome-wide sequence patterns that tran- 
scend e v olutionary distance. To unco v er these patterns, w e de v eloped a computational pipeline to select a composite genome pro xy assembled 
from noncontiguous subsequences of the genome. Using supervised machine learning on a curated dataset of 693 extremophile microbial 
genomes, w e f ound that 6-mers and 100 kbp genome proxy lengths provide the best balance between classification accuracy and computa- 
tional efficiency. Our results provide conclusive evidence of the pervasive nature of k-mer-based patterns across the genome, and uncover the 
presence of taxonomic and environmental components that persist across all regions of the genome. The 15 bacterium–archaeon pairs identified 
by our method as having similar genomic signatures were validated through multiple independent analyses, including 3-mer frequency profile 
comparisons, phenot ypic trait similarit y, and geographic co-occurrence data. These complementary validations confirmed that extreme environ- 
mental pressures can o v erride traditionally recogniz ed tax onomic components at the whole-genome le v el. Together, these findings re v eal that 
adaptation to extreme conditions can carry robust, taxonomic domain-spanning imprints on microbial genomes, offering new insight into the 
relationship between environmental impacts and genome sequence composition convergence. 
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he study of extremophiles, organisms capable of thriving
n Earth’s most extreme environments, provides crucial in-
ights into genetic adaptations for survival under harsh con-
itions. These organisms have evolved to withstand extreme
nvironmental conditions such as high temperature, pH, pres-
ure, salinity, and radiation levels and, notably, they are of-
en unable to survive outside of these physiologically extreme
nvironmental conditions [ 1 , 2 ]. Recent attention to micro-
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bial extremophiles has highlighted their value across diverse
applications, including biotechnology, particularly in biore-
fineries and as sources of industrial extremozymes for high-
temperature or high-pH processes [ 3–7 ], environmental biore-
mediation of metal-contaminated, saline, or radioactive envi-
ronments [ 6 ], as well as agriculture and soil enhancement [ 8 ],
and veterinary medicine [ 9 ]. Additionally, interest has grown
in the ability of microbial extremophiles to survive the ex-
treme conditions of outer space [ 10 , 11 ]. 
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Extremophiles have evolved specific genomic and pro-
teomic adaptations to survive in environments with extreme
conditions [ 12 , 13 ]. At the genomic level, they frequently ex-
hibit gene duplications [ 14 , 15 ] and reduced genome sizes, par-
ticularly in thermophilic species [ 16 ]. The nucleotide compo-
sition of these organisms displays environment-specific pat-
terns in G + C content and purine load [ 15 , 17 , 18 ]. Mul-
tiple molecular mechanisms, including gene duplication and
horizontal gene transfer [ 19–21 ], also contribute to the ge-
nomic adaptation of extremophiles. Recent research has fur-
ther emphasized the critical role of genomic regulatory el-
ements in these environmental adaptations [ 6 , 22 , 23 ], as
well as efficient DNA repair systems in extremophiles ex-
posed to high radiation [ 7 ]. At the proteomic level, features
such as codon usage bias and amino acid composition have
been linked to thermal adaptation and have recently been
used in machine learning models to predict optimal growth
temperature [ 24 ]. 

A recent study applied supervised and unsupervised ma-
chine learning algorithms to explore the genomes of micro-
bial extremophiles, uncovering both taxonomic and environ-
mental components embedded within their genomic signa-
tures [ 25 ]. In this approach, genomic signatures were derived
from 500 kbp (contiguous) representative DNA fragments
randomly selected from each genome, by computing the k -
mer frequency vector of each fragment. Here, a k -mer is a
DNA sequence of length k , and the k -mer frequency vector of
a DNA fragment is a numerical vector comprising the counts
of the occurrences of all possible k -mers in that fragment (in
lexicographic order). These vectors enabled highly accurate
classification and clustering tasks that revealed environmental
components for extremophiles inhabiting environments with
extreme temperature and/or pH conditions. While this ap-
proach provided valuable insights, it had some notable lim-
itations. Firstly, the selection of the DNA fragment selected
to act as a genome proxy was not entirely random (see the
‘Selecting a genome proxy’ section), which could potentially
introduce bias in the derived genomic signatures. Secondly, the
study did not quantitatively test the hypothesis of the perva-
siveness of the environmental components across the entire
genome. 

This paper addresses these limitations by first refining the
process of selecting a genomic signature to enhance the accu-
racy of organism classification based on genomic data. We fo-
cus on three key areas: (i) improving the genome coverage and
randomness of the representative DNA fragment by replac-
ing it with a composite genome proxy constructed through
the pseudo-concatenation of several randomly selected (non-
contiguous) DNA fragments, (ii) comprehensively testing the
hypothesis of the pervasiveness of taxonomic and environ-
mental components across a genome, and (iii) analyzing the
impact of varying k -mer sizes and composite genome proxy
lengths, ranging from 10 kbp to entire genomes. Through a
series of computational experiments involving several genome
proxy selection methods, k -mer sizes, and fragment lengths,
we aimed to identify the optimal parameters for extremophile
genomic signature analysis. The results of these analyses
were then used to design a multilayered pipeline that iden-
tified multiple bacterium–archaeon pairs with similar ge-
nomic signatures in spite of their maximal taxonomic diver-
gence, potentially due to the shared characteristics of their
extreme environments. The main contributions of this paper

are: 
(1) Conclusive evidence of the pervasiveness of a k -mer- 
based genomic signature throughout an extremophile 
genome. 

(2) A broadly applicable method for the selection of a 
composite genome proxy (hereafter referred to sim- 
ply as ‘genome proxy’) assembled from noncontiguous 
subsequences of the genome. Empirical determination 

of the optimal k -mer size (k = 6 ) and genome proxy 
length (100 000 bp) for fast and accurate taxonomic 
and environment-type classifications. 

(3) Discovery of 15 maximally divergent bacterium–
archaeon pairs with similar genomic signatures linked 

to the characteristics of their extreme environment,
through a multilayered filtering process used in con- 
junction with unsupervised machine learning. 

(4) Validation of the above computational findings 
through additional analyses, including 3-mer fre- 
quency profile analyses demonstrating agreement with 

known adaptative patterns in extremophiles, statisti- 
cal confirmation of 3-mer frequency profiles similar- 
ity of the identified pairs using Spearman’s rank cor- 
relation analysis [ 26 ], and analysis of geographic co- 
occurrence data confirming that identified bacterium–
archaeon pairs naturally co-occur in the same extreme 
environments. 

Materials and methods 

This section outlines the methodology used in the compu- 
tational experiments for this study. It includes a description 

of the genome sequence datasets and an explanation of how 

genomic signatures were calculated. The methodology also 

details the selection of a suitable genome proxy for taxo- 
nomic and environment-type machine learning classifications,
including the empirical optimization of both the k -mer value 
and proxy length. Finally, it describes the multilayer approach 

used to identify bacterium–archaeon pairs that exhibit similar 
genomic signatures despite belonging to highly divergent taxa,
with the goal of uncovering shared genomic characteristics as- 
sociated with extreme environments. 

Dataset 

In the quest to evaluate genome-wide genomic signatures po- 
tentially shaped by similar extreme environments for maxi- 
mally divergent microbes, it is essential to determine the op- 
timal genome proxy to represent each genome. This selection 

is crucial for ensuring accurate k -mer-based classification and 

clustering. 
For this reason, and in order to be able to perform apples- 

to-apples comparisons with existing results, we utilized the 
dataset from [ 25 ]. The dataset consists of 693 high-quality 
extremophile microbial genome assemblies curated via a com- 
prehensive review of primary literature and cross-referenced 

with the Genome Taxonomy Database [ 27 ]. These microbial 
genomes were grouped into two different environment-type 
datasets, one based on the organisms’ optimal growth tem- 
perature (psychrophiles, mesophiles, thermophiles, hyperther- 
mophiles; see Table 1 ) and the other based on their optimal 
growth pH levels (acidophiles and alkaliphiles; see Table 2 ). 

The first dataset, called the ‘Temperature dataset’, is com- 
posed of 598 genomes including 148 psychrophile genomes,
190 mesophile genomes, 183 thermophile genomes, and 77 
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Table 1. The ‘Temperature dataset’: taxonomic diversity of archaea and bacteria across temperature categories 

Domain Temperature category # Phyla # Classes # Orders # Families # Genera # Species 

Archaea Psychrophiles 2 4 4 5 7 8 
Mesophiles 4 6 7 20 45 84 
Thermophiles 6 11 14 21 41 67 
Hyperthermophiles 5 6 8 15 31 70 

Bacteria Psychrophiles 4 4 6 13 19 140 
Mesophiles 3 3 6 10 14 106 
Thermophiles 15 19 24 27 47 116 
Hyperthermophiles 5 5 5 5 5 7 

The four temperature categories are defined, based on the optimal temperature for growth (OTG). These categories are as follows: Psychrophiles (OTG of 
< 20 ◦C), Mesophiles (OTG of 20–45 ◦C), Thermophiles (OTG of 45–80 ◦C), and Hyperthermophiles (OTG of > 80 ◦C) [ 25 ]. 

Table 2. The ‘pH dataset’: taxonomic diversity of archaea and bacteria across pH categories 

Domain pH Category # Phyla # Classes # Orders # Families # Genera # Species 

Archaea Acidophiles 4 5 7 11 24 39 
Alkaliphiles 2 5 5 9 18 30 

Bacteria Acidophiles 10 12 13 13 32 61 
Alkaliphiles 12 14 25 30 36 56 

The two pH categories are defined based on the optimal growth pH (OGpH). These are acidophiles (OGpH < pH 5) and alkaliphiles (OGpH > pH 9) [ 25 ]. 
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yperthermophile genomes. The second dataset, called the
pH dataset’, is composed of 186 genomes, including 100 aci-
ophile genomes and 86 alkaliphile genomes. There are 91
enomes that are present in both datasets, falling into one of
wo categories: mesophiles that live in acidic or alkaline en-
ironments (8 genomes), and polyextremophiles, that thrive
n environments that are both acidic/alkaline and at extreme
emperatures (83 genomes). The details of the samples that are
n both datasets can be found in the Supplementary Materials,
ection A. 

enomic signature 

ue to the massive lengths of genomic sequences and the high
omputational demands of alignment-based methods [ 28 ], re-
earchers are now using alignment-free methods leveraging
genomic signatures’ for efficient genome classification or clus-
ering. The genomic signature of an organism is typically rep-
esented by a k -mer frequency vector [ 29 ], derived from the
ntire genome or a ‘sufficiently long’ DNA fragment that cap-
ures the pervasiveness of the signature [ 30 ]. These signatures
ave proven effective in differentiating species and have been
pplied in various contexts, including microbial diversity anal-
sis [ 31–35 , 36 ], classification or subtyping of viral genomes
 33 , 37–41 ], and metagenomic classification and profiling [ 35 ,
2 ]. 
Chaos Game Representation (CGR) of DNA sequences,

rst introduced by Jeffrey in 1990 [ 43 ], has emerged as a par-
icularly effective method for calculating and visualizing ge-
omic signatures. Figure 1 (left panel) provides a brief illus-
ration of the process of generating the CGR of the sample
NA sequence ‘ACG’. A quantified version of CGR, called
requency Chaos Game Representation (FCGR) [ 44 ], pro-
uces a 2 

k × 2 

k grayscale image, where the pixel intensities
orrespond to k -mer frequencies. The patterns in an FCGR of
 genomic sequence reflect its composition, and several studies
ave demonstrated the effectiveness of FCGR images in tax-
nomic classification at various taxonomic levels [ 45–47 ]. As
xpected, the FCGRs of an archaeon and a bacterial species
re visually different, which is consistent with the genetic dif-
ference anticipated for species of two different domains of life
(Fig. 1 , right panel). 

The capability of genomic signatures to differentiate be-
tween organisms across taxonomic levels, combined with the
visualization power of FCGRs, makes genomic signatures par-
ticularly suitable for the analysis of extremophiles, where we
seek to understand how environmental adaptations might in-
fluence genomic signatures across different taxa. In this study,
FCGR is employed for the quantitative evaluation of candi-
date bacterium–archaeon pairs (see the ‘FCGR comparison of
candidate pairs’ section), while k -mer frequency vectors serve
as the primary genomic signature throughout all classification
and clustering analyses. 

Selecting the genome proxy, and empirically 

optimizing the k-mer value and genome proxy 

length 

This section begins by proposing a new procedure for the se-
lection of a genome proxy. Using this selection method, along
with supervised learning methods applied to the ‘Tempera-
ture dataset’ and ‘pH dataset’, we then assessed the effect of
genome proxy selection on classification accuracy, and empir-
ically determined the optimal values for k -mer size and repre-
sentative genome proxy length. 

Selecting a genome proxy 
While genomic signatures have been shown to be effective for
classification and clustering of genomic sequences, the valid-
ity and accuracy of such analysis highly depend on the se-
lection of representative DNA fragments capable of serving
as a genome proxy. The approach utilized in [ 25 ] had no-
table limitations that our current methodology aims to ad-
dress. Specifically, the selection process was not completely
random, since the selected representative was a contiguous
long fragment of the genome and the selection process pri-
oritized longer contigs over shorter ones. Recall that the se-
lection process in [ 25 ] starts from the list of contigs sorted
in decreasing order of their length. If the longest contig ex-
ceeded 500 kbp in length, a 500 kbp subfragment was ran-
domly chosen from that contig as the representative DNA
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Figure 1 . Lef t: CGR of the DNA sequence ‘ACG’. ( a-1 ) T he CGR is generated within a square with corners labeled A, C, G, T. T he plot is generated b y 
reading the sequence from left to right, and iteratively plotting the midpoint between the current point and the corner labeled by the nucleotide being 
read (the start point is the square’s center). For example, the sequence ACG consists of three points generated in the order illustrated by the arrows. 
( a-2 ) The resulting CGR, where the square regions labeled by A , AC , and ACG are the regions where the k-mers A, A C, A CG would be plotted, regardless 
of their position in the sequence. Right: FCGRs of randomly selected 100 kbp genomic fragments belonging to organisms from two different domains of 
life, ( b-1 ) Esc heric hia fergusonii (bacterium) and ( b-2 ) Halomicrobium mukohataei (archaeon). Both species live in similar habitats with moderate 
temperatures (optimal growth temperature of 20 − 45 ◦C). The value of k is 8, and thus each image is a 256 × 256 grayscale grid ( 2 8 = 256 ), where each 
pixel represents the frequency of a specific 8-mer in the DNA fragment. Darker (lighter) pixels indicate higher (lower) numbers of occurrences of the 
corresponding 8-mers in the respective sequences. The unique patterns in each image reflect the genome sequence composition for that species. 
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fragment of that genome. Otherwise, the contigs were pseudo-
concatenated one after another, until the pseudo-concatenated
sequence reached a length of 500 kbp, and this sequence was
taken to be the representative DNA fragment of that genome.
Here, the pseudo-concatenation of DNA sequences is defined
as listing them one after another, with a separator letter ‘N’ be-
tween every two consecutive sequences. Pseudo-concatenation
prevents the formation of spurious k -mers during the pro-
cess, and k -mers containing the letter ‘N’ are not counted
when computing the k -mer frequency vector of the pseudo-
concatenated sequence, with ‘N’ not being counted towards
the pseudo-concatenated sequence length. One potential lim-
itation of this selection process is that it biases the choice to-
wards representative DNA fragments extracted from longer
contigs. Another potential limitation is that, if the first con-
tig is sufficiently large, the representative fragment will be se-
lected from a single region of the genome. These limitations
introduce a bias in the selection of the representative DNA
fragment, which presupposed a genome-wide pervasive na-
ture of a genomic signature and could potentially affect the
classification accuracy. 

To address these limitations, we propose a procedure for
selecting a composite genome proxy that ensures that all frag-
ments in the genome have an equal probability of being in-
cluded in the final genome proxy. In addition, this proce-
dure ensures that the final genome proxy includes multiple
sequences from various locations in the genome. The method
of selecting a genome proxy has three steps: 

(1) Empirically determining the optimal values for n (the
number of nonoverlapping genomic subfragments that
comprise a genome proxy s ), and for len (s ) , the total
length of the genome proxy s . 

(2) Pseudo-concatenating all contigs into a single large se-
quence, if the genome sequence is composed of multi-
ple contigs; 

(3) Pseudo-concatenating n different, randomly selected,
nonoverlapping subfragments of length len (s ) /n from
either the genome (if it consists of a single contig), or
from the pseudo-concatenated sequence obtained in
the preceding step (if the genome consists of multiple 
contigs). 

Figure 2 illustrates the selection process of a genome proxy 
when the genome consists of only one contig, n = 3 , and 

len (s ) = 15 . 

Determining the optimal k -mer size and genome proxy length 

After selecting the genome proxy in a way that ensured ran- 
domness, we evaluated the impact of the following three fac- 
tors on the supervised classifier accuracies (i) the choice of 
genome proxy, (ii) k -mer size, and (iii) genome proxy length.
The feature vectors used as an input for these classifiers were 
canonical k -mer frequency vectors. Here, a ‘canonical k -mer’ 
is defined as the first, in alphabetical order, of a k -mer and 

its Watson–Crick complement. For any DNA sequence, the 
final frequency vector was computed by averaging the k -mer 
counts of the sequence with k -mer counts of its Watson–Crick 

reverse complement [ 25 ]. In the remainder of this paper, only 
the canonical k -mer will be listed. 

The classifier used to evaluate the impact of factor (i) was 
the support vector machine (SVM) with a Radial Basis Func- 
tion (RBF) kernel, which has been shown to achieve high 

accuracies in genome sequence classification across various 
fields [ 25 , 48 , 49 ]. To investigate the impact of factors (ii) and 

(iii), we expanded our analysis to include six classifiers: SVM 

with RBF kernel, Random Forest with 100 estimators, and 

an Artificial Neural Network (ANN) with two hidden layers 
(sizes 256 and 64, and a learning rate of 0.001). Addition- 
ally, three variations of the Machine Learning with Digital 
Signal Processing (MLDSP) algorithm (MLDSP-1, MLDSP-2,
and MLDSP-3) [ 33 ] were also included. Other deep learning 
classifiers, such as CNNs, were not considered because the 
number of samples in our dataset was insufficient to reliably 
train such models. 

In these computational experiments, we explored nine k - 
mer sizes ranging from 1 to 9, to find the optimal value of k .
Larger k -mer sizes were avoided to prevent sparsity in the fea- 
ture vector, which can undermine classification accuracy. Six 

genome proxy lengths ( len (s ) ) were evaluated: 10, 50, 100,
250, 500, and 1000 kbp. The fragment lengths were chosen 



Maximally divergent microbes with similar genomic signatures linked to extreme environments 5 

A A A A A A AA AC C G T T C C C T T G G C C G T C T T

A AC G T A T T GC AC C G T

Full genome

A AC G T A T T GC AC C G TN N

Short selected sub-fragments

Final composite genome proxy

...... ....CC T G A C T

Figure 2. The selection process of a genome proxy s, comprising n = 3 nonoverlapping sub-fragments, and with total length l en (s) = 15 . Top: Full 
genome, consisting of only one contig. Middle: n nono v erlapping sub-fragments (here n = 3 ) randomly selected from the genome. B ottom: T he genome 
proxy of length l en (s) = 15 obtained by pseudo-concatenating the sub-fragments. 
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o include both short sequences (e.g. 10 kbp, ∼3% of the av-
rage sequence length in our dataset) and longer sequences,
llowing for a comprehensive comparison while also consid-
ring computational costs. For all experiments, the number of
ub-fragments ( n ) comprising the sequence s was set to 10, a
alue empirically determined as optimal for the datasets used.
his choice is supported by existing studies indicating that the
inimum sequence length necessary to capture genomic pat-

erns is of the order of 10 

3 [ 43 ], making n = 10 an effective
hoice for ensuring that each sub-fragment independently cap-
ures the relevant genomic patterns, particularly in the case of
horter fragments. 

In the experiment for evaluating the impact of factor (i),
e repeated the following process 10 times: First, a random

enome proxy was selected for each sequence. Then, for each
ombination of k -mer size and fragment length ( 9 × 6 combi-
ations), we performed classification using an SVM with 10-
old cross-validation. To assess the performance of the classi-
cation, the accuracy was defined as the ratio of the number
f sequences with correctly predicted labels to the total num-
er of sequences classified. The variance of the classification
ccuracy over these 10 runs of the classification was then cal-
ulated to determine if the accuracy was dependent on the
hoice of random genome proxy. 

Following the observation that classification accuracy is not
ependent on the choice of genome proxy (see the ‘Genome
roxy’ section for details), finding the optimal k -mer size [fac-
or (ii)], and finding the optimal fragment length [factor (iii)],
ere carried out by running classification experiments using

he six classifiers with all combinations of k -mer sizes and
ragment lengths. Note that, for each fragment length, a fixed
andomly selected genome proxy was utilized. 

In addition, a separate experiment was performed using the
ull DNA genome (maximal sequence length) and the deter-
ined optimal k -mer size, to evaluate the impact of consider-

ng the information from the whole genome on classification
ccuracy, as opposed to a random shorter fragment. 

The computational experiments were performed for the
wo different datasets, the ‘Temperature dataset’ and the ‘pH
ataset’. All classifications were conducted under two distinct
upervised training scenarios: genome proxies labeled with
axonomic labels (bacteria or archaea), and genome prox-
es labeled with environment-type labels (for the ‘Temper-
ture dataset’, psychrophiles, mesophiles, thermophiles, and
yperthermophiles; for the ‘pH dataset’, acidophiles and al-
aliphiles). 
Taxonomic analyses employed stratified 10-fold cross-

alidation. For environment-type classifications, tests were
onducted under two scenarios: a ‘standard’ scenario and a
bias mitigation’ scenario. 
In the standard scenario, conventional stratified 10-fold
cross-validation was applied, and the average classification ac-
curacy was reported across the ten folds. The bias mitigation
scenario was designed to separate genus-level taxonomic sig-
nals from environment-specific genomic patterns. Here, folds
were constructed so that all sequences from the same genus
were placed in the same fold, while the distribution of all la-
bels in each fold remained the same as in the entire dataset.
The fact that sequences from the same genus were not split
between folds ensured that the environment-type labels of test
sequences were predicted due to their environment-specific
similarities, rather than due to genus-specific similarities with
sequences in the training set. 

Finding bacterium–archaeon pairs with similar 
genomic signatures, linked to their extreme 

environments 

Once the performance of the optimal parameters was vali-
dated, the main objective of this study was to identify, if any,
microbe pairs from two different taxonomic domains (archaea
and bacteria) that shared similarities in their genomic signa-
tures that were linked to their shared extreme environment
types. 

A multilayered approach was used to identify bacterium–
archaeon pairs of sequences with similar genomic signa-
tures. The first layer involved the generation of ‘candidate
bacterium–archaeon pairs’, i.e. maximally different microbe
pairs clustered together by nonparametric unsupervised clus-
tering machine learning algorithms. To eliminate potential
clustering algorithm errors, this candidate pair list was sub-
jected to a second selection layer, comprising a quantitative
comparison of the FCGRs of members of each candidate pair,
which resulted in pairs with similar genomic signatures called
‘confirmed candidate pairs’. Finally, we used the confirmed
candidate pairs to test the hypothesis that genomic similarities
of pair members were due to shared environmental pressures,
by exploring the isolating environment metadata of the mem-
bers of each pair, resulting in a list of ‘environment-related
pairs’. 

We then further investigated the environment-related pairs
by analyzing the 3-mer frequency profiles of the pair members
and corroborating the results with biological findings of over-
and under-representation of codons in extremophile microbes,
as well as by exploring the geographic habitat co-occurrence
of pair members. 

Nonparametric clustering 
In this section, our primary objective was to identify pairs of
archaea and bacteria (if any) that clustered together based
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on similar genomic signatures, despite their maximal taxo-
nomic divergence. To achieve this, we first sought to deter-
mine clustering methods that could reliably reproduce known
taxonomic relationships at the genus level (the lowest taxo-
nomic level in our datasets). These validated clustering algo-
rithms were then applied to identify exceptional cross-domain
clustering cases. The rationale behind this approach is that if
a clustering algorithm could successfully group sequences by
genus, then any instance where it grouped bacteria and ar-
chaea together was more likely to reflect a true cross-domain
genomic signature similarity rather than being a computa-
tional artifact. To this end, only nonparametric unsupervised
clustering algorithms were used, since they have the advan-
tage of not needing the expected number of clusters as an in-
put parameter. Specifically, the five algorithms used were the
nonparametric version of the i DeLUCS algorithm [ 31 ], and
four other nonparametric algorithms (HDBSCAN [ 50 ], Affin-
ity Propagation [ 51 ], MeanShift [ 52 ], and iterative medoids
[ 53 ]). These algorithms were applied in conjunction with two
different dimensionality reduction techniques, variational au-
toencoders (VAE) [ 53 ], and uniform manifold approximation
and projection (UMAP) [ 54 ]. 

We tested different combinations of dimensionality reduc-
tion techniques and clustering algorithms to find those that
best reproduced clusters matching true genera in our datasets.
Their performance was measured using completeness and con-
tamination. Completeness refers to the proportion of true
members within a cluster (cluster members belonging to the
same genus) relative to the total cluster size, and contami-
nation indicates the proportion of incorrect members (cluster
members that belong to a different genus) relative to the total
cluster size. 

Only those clusters were accepted as ‘genus-accurate’ that
had completeness > 50% and contamination < 50%. The next
step was to rank the aforementioned combinations by the
ratio of the number of genus-accurate clusters to the total
number of generated clusters. The top five combinations were
selected, namely: VAE + iterative medoids (IM), VAE + Affin-
ity Propagation, VAE + HDBSC AN, UMAP + HDBSC AN, and
i DeLUCS. 

In the final step, we used all output clusters from the se-
lected top five combinations to identify pairs of archaea and
bacteria that clustered together. Specifically, for each of the
top five combinations, we ran the clustering process 10 times,
each time with a different random seed, each time produc-
ing the pairs of maximally divergent microbes that were clus-
tered together. From the resulting set of pairs, the pairs that
appeared in > 5 runs, and were clustered together by the ma-
jority of the five combinations, were retained, as being ‘can-
didate bacterium–archaeon pairs’, subjected to the next layer
of analysis. 

FCGR comparison of candidate pairs 
To address the errors inherent in any unsupervised clustering
method, we then analyzed the candidate bacterium–archaeon
pairs identified in the pervious section by investigating the sim-
ilarities of the FCGR patterns of the members of each candi-
date pair. For this analysis, FCGR images of candidate pairs
were generated from the selected genome proxy using the opti-
mal k -mer size determined previously . Subsequently , three dis-
tinct distance metrics were used, Descriptor [ 55 ], structural
dissimilarity index measure (DSSIM) [ 56 ], and learned per-
ceptual image patch similarity (LPIPS) [ 57 ] to calculate the
distances between each pair of candidate bacterium–archaeon 

pairs that were clustered together. The refined set of candidate 
pairs was selected based on the similarity of their FCGR im- 
ages. Specifically, pairs were selected if the distance between 

their FCGRs was below certain distance-dependent thresholds 
for all three distance metrics. The distance-dependent thresh- 
olds were 0.190211 for the Descriptor distance, 0.501385 for 
DSSIM, and 0.177668 for LPIPS, and were empirically deter- 
mined as detailed below. 

The thresholds for the distance metrics were determined 

based on the idea that two members of a bacterium–archaeon 

pair will be considered similar if their FCGR distance is less 
than the distance among FCGRs of species of the same genus.
To this end, the intra-genus distance in the dataset was com- 
puted as follows. First, we selected all unique genera from 

both the ‘Temperature dataset’ and ‘pH dataset’, excluding 
those with only a single sample, which resulted in 92 unique 
genera. Then, for each genus, the pairwise distances between 

the FCGRs of all sequences were calculated. The average of 
these distances within each genus was deemed to be the intra- 
genus distance for that genus. Of the obtained intra-genus dis- 
tances, 10% of the distances were excluded as outliers (the top 

and bottom 5%). In the final step, the 90th percentile of these 
average intra-genus distances was considered as the empiri- 
cal threshold for FCGR comparison for that distance. More 
details of intra-genus distance computations can be found in 

Supplementary Materials, Section B. This approach ensured 

that the identified microbial pairs clustered together based on 

genomic signature similarity in the previous layer, and also 

exhibited significant similarities in their FCGR patterns. The 
output of this layer was a list of ‘confirmed candidate pairs’. 

Hypothesis testing using isolating environment metadata of 
confirmed candidate pairs 
After identifying confirmed candidate pairs with similar ge- 
nomic signatures, we explored the hypothesis that this similar- 
ity was environment-related. To do so, we examined the envi- 
ronmental type of the habitats where the members of each pair 
were isolated. This process involved comparing the environ- 
mental labels assigned to each species within a pair (e.g. tem- 
perature and pH). Microbial pairs with matching (implying 
the same temperature and/or pH labels, i.e. both species are 
acidophiles) or nearly matching (similar temperature and/or 
pH labels, i.e. both species inhabit high-temperature envi- 
ronments, though one is thermophilic and the other is hy- 
perthermophilic) environmental labels were considered to 

be ‘environment-related pairs’ and were retained for fur- 
ther analysis. We also conducted a more detailed analysis,
where we retrieved the original studies that first character- 
ized these microbes from PubMed ( https://pubmed.ncbi.nlm. 
nih.gov/). The growth parameters and environmental meta- 
data, such as optimal pH and temperature ranges, were com- 
pared across species. Additionally, we examined phenotypic 
traits and habitat-specific characteristics to gain a deeper un- 
derstanding of shared environmental adaptations and similar 
phenotype features of the pairs. 

Analysis of 3-mer frequency profiles of environment-related 

bacterium–archaeon pairs 
Following the refinement steps, we conducted a comprehen- 
sive 3-mer usage bias analysis by comparing the 3-mer fre- 
quency profiles of the environment-related pairs. We selected 

k = 3 for this analysis because this k -mer length effectively 

https://pubmed.ncbi.nlm.nih.gov/
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aptures codon usage bias, amino acid bias, and protein-
ssociated phenotypic adaptations [ 25 , 58 , 59 ]. Our anal-
sis consisted of four main components. First, for each 3-
er, we calculated its average frequency across all samples

n the ‘Temperature dataset’ and ‘pH dataset’, then calcu-
ated the deviation of the 3-mer frequency of each member
f the environment-related pairs from its dataset average.
his approach revealed patterns of similar 3-mer over- and
nder-representation in pair members compared to the entire
ataset, allowing us to investigate whether similar environ-
ental conditions induced comparable patterns of 3-mer us-

ge across microbial pairs. Second, we tested the correlation
etween the 3-mer counts of members of the confirmed pair
n each group using Spearman’s rank correlation coefficient,
 nonparametric measure of the strength and direction of as-
ociation between two variables measured on an ordinal scale
 26 , 39 , 60–62 ]. This step investigated the pairwise correlation
f 3-mer representation among confirmed pairs, providing a
 -value to assess the significance of similarity or dissimilarity

n the 3-mer over- and under-representation. 
Third, we identified the specific 3-mers that influenced en-

ironmental label prediction in supervised classification for
ach microbial species in the environment-related pairs. We
sed the SHapley Additive exPlanations (SHAP) [ 63 ] feature
mportance method to quantify each 3-mer’s contribution to
he model’s environmental classification decisions. SHAP is a
odel-agnostic explainability method that assigns importance

alues to individual features based on their marginal contribu-
ions to the prediction outcome. Specifically, SHAP quantifies
ow much each 3-mer frequency increases or decreases the
robability of correctly classifying the environment-type rela-
ive to the baseline (average) prediction. We referred to these
-mers as ‘environment-relevant 3-mers’ due to their impact
n the model’s ability to distinguish between sequences be-
onging to organisms living in different environmental condi-
ions. 

Finally, we treated the ‘environment-relevant 3-mers’ as
uasi-codons and translated them to corresponding amino
cids [ 64 ]. This translation step enabled direct compar-
sons between the environment-relevant 3-mers discovered by
ur method and both codon and amino acid usage biases
reviously reported in the literature for the respective ex-
remophilic groups. This comparative analysis serves to val-
date our methodology by demonstrating that the 3-mers we
dentified as important for environmental-based classification
lign with known adaptive patterns in extremophiles reported
n the literature [ 25 ]. 

eographic habitat co-occurrence analysis of environment-
elated pairs 
n this analysis, the Microbe Atlas Project (MAP) database
 65 ], cataloging 16S ribosomal RNA (rRNA) reads of mi-
robes isolated from a wide range of environments, was used
o analyze the geographic habitat co-occurrence of species in
nvironment-related pairs. 16S rRNA is a gene encoding a ri-
osomal subunit highly conserved between different prokary-
tes (including bacteria and archaea) [ 66 ]. The sequencing
f this gene permits highly sensitive taxonomic classifica-
ion/identification of prokaryotic samples, proving extremely
elpful in identifying species found in diverse microbiomes.
he MAP tool compiles millions of samples isolated across

he world, along with their taxonomic classifications down
o the species level, and geographic metadata (including co-
ordinate information) associated with the sample collection
site. The MAP was thus employed to identify the location
data of 16S rRNA read occurrences of each species in the
environment-related pairs list. After identifying the 16S rRNA
sample reads cataloged for a particular species, the read loca-
tions, along with project and sample IDs (linking to project
descriptions on the MAP database, which further characterize
the geographic metadata), were exported to a spreadsheet. In
the next step, the project IDs associated with the reads of each
species within each respective group were cross-referenced to
identify samples isolated from the same project ID (i.e. the
same geographic location or microbiome). The projects found
to contain 16S rRNA reads for each of the species within the
final groups were identified via their respective ID in the MAP
tool. Finally, environmental metadata, including environmen-
tal descriptors and longitude and latitude coordinates for each
particular read, were identified. Through this process, we in-
vestigated the geographic habitat co-occurrence (referred to
simply as ‘co-occurrence’ throughout the remainder of the pa-
per) of the pairs of environment-related pairs, as well as de-
scriptions of the unique environments that organisms in these
groups inhabit. 

Results 

In the following section, we first present the results of assess-
ing the effect of randomly selecting a genome proxy on classi-
fication accuracy. We then detail the findings from the second
experiment, focusing on the optimal values for k -mer size and
genome proxy length, as well as the supervised classification
accuracy achieved using these optimal parameters. Finally, we
describe the candidate bacterium–archaeon pairs identified
through nonparametric methods, the results of subsequent fil-
tering steps, the confirmed set of bacterium–archaeon pairs,
the analysis of 3-mer frequency profiles in these pairs, and the
results of co-occurrence analysis for the confirmed bacterium–
archaeon pairs. 

Genome proxy 

As described in the ‘Materials and methods’ section, we con-
ducted an experiment to assess the impact of a randomly
selected genome proxy on taxonomic and environment-type
classification under two different scenarios: the bias mitiga-
tion scenario and the standard scenario. For each scenario,
we used 10-fold cross-validation classification with SVM clas-
sifier and repeated the classification process 10 times for each
genome proxy length. To evaluate the results, we calculated
the average accuracy and variance over the 10 runs for each
genome proxy length. The results for the bias mitigation sce-
nario are summarized in Table 3 (‘Temperature dataset’) and
Table 4 (‘pH dataset’). For each tested genome proxy length,
we reported the maximum average accuracy across the k -mer
values and the value of k for which it was obtained. The re-
sults for the standard scenario are similar and can be found in
the Supplementary Materials, Section C. 

In spite of the fact that each experiment was repeated
10 times, each time using a different randomly selected
genome proxy, the maximum average accuracies are consis-
tently high for taxonomy classifications and medium-high
for environment-type classifications, with low variance across
10 different runs. These results support the hypothesis that
the genomic signature, herein defined as the k -mer frequency
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Table 3. Maximum a v erage accuracy across six genome proxy lengths in ten repeated SVM classification trials on the ‘Temperature dataset’ under the 
bias mitigation scenario, for k-mer sizes 1–9 

Genome proxy length Class labeling type Max avg accuracy (%) Variance (%) k -value 

10 kbp Taxonomy 98.35 0.0010 5 
Temperature 67.39 0.0267 6 

50 kbp Taxonomy 99.03 0.0001 6 
Temperature 72.36 0.0224 7 

100 kbp Taxonomy 99.13 0.0000 6 
Temperature 73.18 0.0209 7 

250 kbp Taxonomy 99.15 0.0000 6 
Temperature 75.31 0.0035 9 

500 kbp Taxonomy 99.15 0.0000 6 
Temperature 76.97 0.0035 9 

1000 kbp Taxonomy 99.15 0.0000 6 
Temperature 76.91 0.0013 9 

The table lists the highest average accuracy for each genome proxy length, alongside the k -mer size that achieved this accuracy and the variance in percentage. 
The ‘Temperature dataset’ has 598 samples, consisting of 369 bacteria and 229 archaea. There are 148 psychrophiles, 190 mesophiles, 183 thermophiles, and 
77 hyperthermophiles in this dataset. 

Table 4. Maximum a v erage accuracy across six genome proxy lengths in ten repeated SVM classification trials on the ‘pH dataset’ under the bias 
mitigation scenario, for k-mer sizes 1–9 

Genome proxy length Class labeling type Max avg accuracy (%) Variance (%) k -value 

10 kbp Taxonomy 97.18 0.0041 5 
pH 83.17 0.0469 6 

50 kbp Taxonomy 98.25 0.0022 7 
pH 84.89 0.0040 7 

100 kbp Taxonomy 98.63 0.0006 7 
pH 85.61 0.0092 8 

250 kbp Taxonomy 98.62 0.0012 8 
pH 85.41 0.0053 9 

500 kbp Taxonomy 98.94 0.0000 9 
pH 86.20 0.0030 9 

1000 kbp Taxonomy 98.94 0.0000 9 
pH 85.74 0.0035 9 

The table lists the highest average accuracy for each genome proxy length alongside the k -mer size that achieved this accuracy and the variance in percentage. 
The ‘pH dataset’ has 186 samples, consisting of 117 bacteria and 69 archaea. There are 100 acidophiles and 86 alkaliphiles in this dataset. 
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vector of a short genomic fragment, is pervasive across the
genome. Overall, these results indicate that selecting and
pseudo-concatenating random regions of the genome into a
contiguous genome proxy does not affect the taxonomic and
environment-type classification accuracy, and is thus a valid
selection method for these purposes. 

The notable difference in environment-type classification
accuracy between the two datasets can be partially attributed
to the complexity of the classification task. Indeed, the ‘Tem-
perature dataset’ has four unique labels while the ‘pH dataset’
has only two, making the latter an inherently simpler classifi-
cation task. 

Optimal k-mer size and genome proxy length 

The aim of this experiment is to identify the optimal k -mer size
and the optimal genome proxy length for the purpose of tax-
onomy and environment-type classifications. To achieve this,
we began by first determining the optimal k -mer size and then
proceeded to determine the optimal genome proxy length. Our
approach, especially when analyzing the various k -mer sizes,
was to find a balance between computational time complex-
ity/memory usage and classification accuracy. 

Figure 3 presents the classification accuracy results of SVM
classifiers applied to both the ‘Temperature dataset’ and the
‘pH dataset’ under the bias mitigation scenario, with taxon-
omy and environment-type labeling, respectively. This figure
illustrates how the classification accuracy changes as the value 
of k increases, for the six different genome proxy lengths ana- 
lyzed. The classification accuracies for the other five classifiers,
and for all six classifiers under the standard scenario, for both 

the ‘Temperature dataset’ and the ‘pH dataset’ are similar, and 

can be found in the Supplementary Materials, Section D. 
As seen in Fig. 3 , increasing the length of k -mer from 1 to 6

leads to a significant improvement in classification accuracy.
For values of k higher than 6, the changes in accuracy de- 
pend on the genome proxy length. For longer genome prox- 
ies (100, 250, 500, and 1000 kbp), the taxonomic classifica- 
tion accuracy remains stable for increasing values of k from 

k = 6 to k = 9 , and the environment-type classification accu- 
racy increases with the increase in k -mer size. However, for 
shorter genome proxies (10 and 50 kbp), both the taxonomic 
and environment-type accuracies decrease with the increase of 
k -mer sizes from 6 to 9. 

The decline of classification accuracy with the k -mer size 
increase, when k is higher than a certain threshold, is due to 

the fact that the increase in the length of the k -mer frequency 
feature vector is exponential in k . For small values of k , this 
increase results in more information available to the classi- 
fier . However , the number of k -mers that actually occur in the 
sequence is bound by the length of the sequence. Thus, af- 
ter k passes a certain threshold, the feature vector becomes 
so sparse that it increasingly fails to capture the genomic pat- 
terns necessary for an accurate classification. This threshold is 
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Figure 3. Classification accuracy of SVM classifier under bias mitigation scenario. ( A ) ‘Temperature dataset’ with tax onom y labels. ( B ) ‘Temperature 
dataset’ with environment-type labels. ( C ) ‘pH dataset’ with tax onom y labels. ( D ) ‘pH dataset’ with environment-type labels. Each subfigure shows 
accuracy across nine k-mer sizes and six genome proxy lengths. 

r  

l
 

c  

v  

t
 

a  

a  

m  

h  

7  

d  

d  

a  

t  

n
 

g  

M  

v  

c  

c  

(  

c  

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/4/lqaf189/8402370 by guest on 27 D

ecem
ber 2025
eached earlier for shorter sequences (10 or 50 kbp) than for
onger sequences. 

Since, for all genome proxy lengths considered, the classifi-
ation accuracies increase until k = 6 , we concluded that the
alue of k should be 6 at the minimum, and performed a de-
ailed analysis for values k = 6 , 7 , 8 , 9 . 

The detailed analysis for k -mer sizes of 6–9 for the ‘Temper-
ture dataset’ shows that the highest taxonomic classification
ccuracy for the six fragment lengths considered in the bias
itigation scenario ranges from 98.15% to 99.50%, and the
ighest environment-type classification accuracy ranges from
0.29% to 78.14%. Also, the results for the ‘pH dataset’ in-
icate that the highest taxonomic classification accuracy for
ifferent fragment lengths ranges from 97.89% to 98.95%,
nd for environment-type classification ranges from 83.30%
o 87.10%. The classifier’s performance in the standard sce-
ario is similar. 
The detailed results of these experiments for both bias miti-

ation and standard scenarios can be found in Supplementary
aterials, Section E. Overall, one observes that increasing the

alue of k from 6 to 9 does not result in significant increases in
lassification accuracy. This, combined with the fact that in-
reasing k leads to an exponential increase in memory usage
the feature vector size increases from 2 

12 to 2 

18 ) and time
omplexity, leads to the conclusion that k = 6 is the optimal

hoice for the k -mer size in this context.  
In the next step, we maintained a fixed k -mer size of
k = 6 and assessed the effectiveness of six classifiers for the
six genome proxy lengths considered in this study. This al-
lowed us to identify the optimal genome proxy length for
both the ‘Temperature dataset’ and ‘pH dataset’. Table 5 dis-
plays the highest classification accuracy achieved for each
genome proxy length, for both the standard scenario and
the bias mitigation scenario. As observed in Table 5 , a frag-
ment length of 100 kbp achieves the highest accuracy in three
of the classification tasks: the standard taxonomic classifi-
cation for both datasets and the bias mitigation taxonomic
classification for the ‘Temperature dataset’. In the remaining
cases, the difference between the best performance and the
100 kbp performance was < 0.5% in the standard scenario
and < 1% in the bias mitigation scenario. Thus, a genome
proxy length of 100 kbp (at k = 6 ) is the optimal overall
selection. 

In our last experiment, our objective was to determine
whether using a short genome proxy might lead to any loss of
information compared to using the whole genome. To evalu-
ate this, we performed taxonomic and environment-type clas-
sification using entire genomes, while maintaining the same
setup as our previous supervised experiment, under bias mit-
igation scenarios with = 6. Our findings show that for tax-
onomic classification of whole genomes with k = 6 , the ac-
curacy was 99.15% (compared to 99.20% using random
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Table 5. Comparison of the best classification accuracy across all classifiers, using k = 6 , the optimal chosen v alue f or k, f or all six genome proxy lengths 

Dataset Genome proxy length Label type Standard scenario Bias mitigation scenario 
accuracy (%) accuracy (%) 

Temperature 10 kbp Taxonomy 98.50 98.20 
Environment 82.00 70.30 

50 kbp Taxonomy 99.50 99.00 
Environment 83.80 72.80 

100 kbp Taxonomy 99.50 99.20 
Environment 85.10 74.80 

250 kbp Taxonomy 99.50 99.20 
Environment 84.80 74.30 

500 kbp Taxonomy 99.50 99.20 
Environment 84.80 74.40 

1000 kbp Taxonomy 99.50 99.20 
Environment 85.30 75.10 

pH 10 kbp Taxonomy 97.80 97.90 
Environment 89.20 83.30 

50 kbp Taxonomy 98.40 98.40 
Environment 91.30 84.90 

100 kbp Taxonomy 98.40 98.40 
Environment 93.10 85.50 

250 kbp Taxonomy 98.40 98.90 
Environment 93.00 86.00 

500 kbp Taxonomy 98.40 98.90 
Environment 92.00 86.00 

1000 kbp Taxonomy 98.40 97.90 
Environment 93.50 86.00 

All occurrences of maximum accuracy are shown in bold, and the performance for a fragment length of 100 kbp is shown as underlined. 
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100 kbp genome proxies) for the ‘Temperature dataset’, and
98.42% (compared to 98.40%) for the ‘pH dataset’. For
environment-type classification, the best accuracy for whole
genomes was 75.51% (compared to 73.00%) for the ‘Tem-
perature dataset’, and 84.35% (compared to 85.50%) for the
‘pH dataset’. These results indicate that classification accuracy
using a genome proxy of length 100 kbp is comparable to us-
ing the entire genome, which in our datasets has an average
length of 3500 kbp (the genome proxy is 35 times shorter on
average). 

A multilayered pipeline to find bacterium–archaeon 

pairs with similar genomic signatures 

The identification of bacterium–archaeon pairs is a multi-
layered filtering process that progressively narrows down
the candidate pairs generated through unsupervised cluster-
ing, to reach the environment-related bacterium–archaeon
pairs. 

Figure 4 illustrates the details of this multilayered filter-
ing approach. We further investigated the 3-mer usage bias
in these 15 environment-related bacterium–archaeon pairs
(which passed all filtering layers) and found that they demon-
strate a similar genomic signature linked to their extreme
environment despite their maximal taxonomic differences.
As the last analysis, we also studied the co-occurrence of
environment-related pairs. 

La y er 1: nonparametric clustering 
We initiated the process using nonparametric clustering algo-
rithms in combination with dimensionality reduction meth-
ods. As described in the ‘Materials and methods’ section, we
evaluated the contamination and completeness scores of the
clusters and identified the top five performing clustering meth-
ods, selecting those that performed best at generating clusters
that correspond to true genera. 
From the clusters obtained using the chosen algorithms, a 
set of candidate pairs, consisting of bacterium–archaeon pairs 
whose genomic signatures were consistently clustered together 
by the majority of the algorithms, was identified for each 

dataset. To ensure robustness, we repeated the above analysis 
(clustering and selecting bacterium–archaeon pairs) 10 times.
We then selected the bacterium–archaeon pairs that appeared 

in at least 5 of the 10 runs. This initial step generated 78 candi- 
date bacterium–archaeon pairs (38 unique genera, 85 unique 
species). 

La y er 2: FCGR comparison of candidate pairs 
In the second layer, we filtered the candidate pairs based on 

their FCGR distances. As described in the ‘Materials and 

methods’ section, we calculated the FCGR images for each 

pair of sequences, using a genome proxy length of 100 kbp 

and a k value of 6, and measured the distances between these 
FCGRs using three distance metrics. We selected bacterium–
archaeon pairs with distances below empirically determined 

thresholds for the majority of distance metrics. 
After this filtering layer, we identified 40 confirmed candi- 

date pairs (32 unique genera, 48 unique species), with simi- 
lar FCGR images, determined by the three distance metrics.
The members of each of these confirmed pairs can now be 
confidently considered as having similar genomic signatures 
(see Supplementary Materials, Section F for details). Figure 
5 shows the FCGR images of two pairs, one extremophile 
( Thermotoga petrophila and Geoglobus acetivorans ) and one 
polyextremophile pair ( Thermoanaerobacterium thermosac- 
charolyticum and Caldisphaera lagunensis ). For better visual- 
ization, the value k = 8 was used, and the images confirmed 

that the FCGRs show visual pattern similarities, in addition 

to the distance between FCGRs being below the empirically 
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Figure 4. Multila y ered pipeline f or identifying bacterium–archaeon pairs with similar genomic signatures. La y er 1: Fiv e selected nonparametric clustering 
methods identify clusters of organisms with similar genomic signatures. The clusters containing both bacteria and archaea (green) generate a list of 78 
candidate bacterium–archaeon pairs, grouped by these algorithms based on their similar genomic signatures. Layer 2: The candidate pairs from Layer 1 
undergo pairwise distance calculations between their FCGRs using four different distance metrics. Only 40 pairs, with the majority of distances below 

empirically determined thresholds, are retained. Hypothesis Testing: after identifying confirmed candidate bacterium–archaeon pairs with similar 
genomic signatures, a biological analysis is conducted. This includes c hec king environment labels and examining met adat a about their living 
environments to select pairs isolated from similar types of extreme environments. The final output is a list of 15 environment-related 
bacterium–archaeon pairs (comprising 16 unique genera and 20 unique species) that ha v e similar genomic signatures and passed the hypothesis testing. 
These pairs can confidently be proposed as maximally taxonomically divergent microbes (from different domains, Bacteria and Archaea) that share 
similar genomic signatures associated with their living environments. 

b-1
Bacteria - Thermoanaerobacterium 

thermosaccharolyticum

b-2 
Archaea - Caldisphaera lagunensis

a-1
Bacteria - Thermotoga petrophila

a-2 
Archaea - Geoglobus acetivorans

a b Hyperthermophile
Thermophile

Acidophile

Figure 5. FCGR images of two confirmed candidate pairs (four unique species), with a resolution of k = 8. The first pair includes ( a-1 ) a 
hyperthermophilic bacterium and ( a-2 ) a hyperthermophilic archaeon, while the second pair consists of ( b-1 ) an acidophilic thermophilic bacterium and 
( b-2 ) an acidophilic thermophilic archaeon. The first pair was drawn from the ‘Temperature dataset’, and the second pair appears in both ‘Temperature 
dataset’ and ‘pH dataset’. In both candidate pairs, the FCGRs display strikingly similar patterns between the two species, despite belonging to different 
taxonomic domains (Bacteria and Archaea). 
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Thermocrinis ruber
Thermotoga petrophilaThermoanaerobacterium 

thermosaccharolyticum

Caldisphaera lagunensis

Pyrococcus furiosus

Thermococcus litoralis
Geoglobus acetivorans

Rubrobacter indicoceani

Methanoculleus 
chikugoensis

Methanoculleus 
bourgensis

Methanolinea
 mesophila

Methanoculleus 
horonobensis

Methanoculleus 
taiwanensis

Methanoculleus 
thermophilus

Environment-related Pairs
Group 1

Hyperthermophile

Thermophile

Mesophile

Acidophile

Bacteria

Archaea

Thermofilum adornatum

 Thermococcus 
chitonophagus

Palaeococcus pacificus

Pseudothermotoga elfii

Methanobacterium paludis

Methanosarcina 
vacuolata

Environment-related Pairs
Group 2

Environment-related Pairs Group 3

Environment-related Pairs
Group 4 Environment-related Pairs Group 5

Figure 6. Environment-related pairs, grouped by the bacterial species. Each bacterium–archaeon pair belonged to the same cluster generated by the 
clustering algorithms, and passed both the FCGR comparison and the hypothesis testing layers. The environment-related pairs set comprises 20 
species, including five bacteria and 15 archaea from 16 unique genera. Among these, two species are poly-extremophiles (acidophilic thermophiles), 10 
are extremophiles (eight hyperthermophiles and two thermophiles), and the remaining eight are mesophiles. 
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Hypothesis testing using isolating environment metadata of
confirmed candidate pairs 
To test the hypothesis that the genomic signature similari-
ties between the confirmed candidate pairs result from shared
environmental pressures, we conducted a comparison of en-
vironmental metadata of their isolation habitats. Out of 40
confirmed candidate pairs obtained from the multilayered
pipeline, 18 pairs initially passed hypothesis testing. How-
ever, three bacterium–archaeon pairs were excluded because
the archaeon’s reference genome was recently suppressed on
NCBI (see Supplementary Materials, Section F). This left a
final set of 15 confirmed candidate pairs, representing 16
unique genera and 20 unique species. These pairs, validated by
their isolation environment metadata and labels, are proposed
as environment-related bacterium–archaeon associations. The
details of the environmental data of the selected pairs can be
found in the Supplementary Materials, Section G. 

Since these pairs revealed cases where multiple archaea
were grouped with a single bacterium, we organized these
pairs into 5 groups based on the bacterial species. Notably,
Groups 1, 2, and 3 include sequences of organisms isolated
from extreme environments, while the majority of organ-
isms in Groups 4 and 5 are associated with normal tem-
perature (mesophiles) and normal pH (absent from the ‘pH
dataset’) conditions. We further examined the 3-mer usage
bias of species in these confirmed 15 pairs, as well as their
co-occurrences. For Groups 4 and 5, we also investigated any
potential extreme conditions in their environments other than
extreme temperature or pH. The details of these five groups
are shown in Fig. 6 , and their FCGR images can be found in
Supplementary Materials, Section H. 

Analysis of 3-mer frequency profiles of environment-related
bacterium–archaeon pairs 
To investigate potential biases in 3-mer usage associated with
environmental adaptation, we conducted a detailed analysis of
the 3-mer frequency profiles for the genome proxies of the or- 
ganisms in the environment-related bacterium–archaeon pairs 
groups. We focused on k = 3 due to its biological relevance,
since the set of codons is a subset of the set of 3-mers. Fol- 
lowing the four-step analysis, this section examines how 3- 
mer frequencies reflect environmental adaptations across tax- 
onomically divergent microbes. The results of this analysis 
are summarized in Table 6 for each of the five environment- 
related bacterium–archaeon pairs groups. 

For each environment-related pair, the set of ‘shared 

environment-relevant 3-mers’ is defined as the intersection 

of the set of environment-relevant 3-mers of the bacterium 

genome proxy with that of the archaeon genome proxy.
Among these shared 3-mers, we calculated the proportion 

of 3-mers that show the same pattern of over- or under- 
representation in both species and reported it in Table 6 . Ad- 
ditionally, we calculated the Spearman rank correlation co- 
efficient ( rho) between the 3-mer representation patterns of 
the two organisms in each pair. Notably, all correlations were 
statistically significant with P < 10 

−5 for all pairs. Since the 
shared 3-mer ratio and rho collectively represent the results of 
steps 1–3 of the 3-mer frequency profile analysis pipeline (see 
the ‘Materials and methods’ section), we calculated a com- 
bined score as the average of these two values to provide an 

overall measure of 3-mer frequency profile similarity between 

the species of each pair. Based on the combined score, we also 

assigned a descriptive term to each pair for a clear comparison.
Specifically, we labeled pairs as ‘Compelling’ for scores ≥0.85,
‘Very strong’ for scores between 0.85 and 0.80, ‘Strong’ for 
scores between 0.80 and 0.75, and ‘Moderate’ for scores be- 
tween 0.75 and 0.70. These thresholds were determined em- 
pirically based on the distribution of our results. 

Finally, as outlined in the last step of the 3-mer frequency 
profile analysis, we examined the biological literature on 

codon usage to determine whether the observed over- or 
under-representation of each shared environment-relevant 3- 
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Table 6. Combined summary of 3-mer profile analysis for Groups 1–5 

Shared Overall 
Biology 
literature 

environment 3-mer observed 
relevant similarity shared 

Group Bacterium Archaeon 3-mers (ratio) rho Score 3-mers 

Group 1 T. thermosaccharolyticum C. lagunensis 0.83 0.96 0.89 Compelling 9 
Group 2 T. petrophila G. acetivorans 1.00 0.81 0.90 Compelling 4 
Group 3 Thermocrinis ruber Thermofilum 

adornatum 

1.00 0.77 0.89 Compelling 5 

Thermococcus 
chitonophagus 

1.00 0.81 0.90 Compelling 4 

Palaeococcus 
pacificus 

0.90 0.76 0.83 Very strong 4 

Pyrococcus furiosus 0.89 0.81 0.85 Compelling 5 
Thermococcus 
litoralis 

0.91 0.80 0.85 Compelling 4 

Group 4 Pseudothermotoga elfii Methanobacterium 

paludis 
1.00 0.94 0.97 Compelling 1 

Methanosarcina 
vacuolata 

0.75 0.95 0.85 Compelling 1 

Group 5 Rubrobacter indicoceani Methanolinea 
mesophila 

0.60 0.83 0.71 Moderate 1 

Methanoculleus 
c hikug oensis 

0.77 0.93 0.8 Compelling 3 

Methanoculleus 
bourgensis 

0.73 0.91 0.82 Very strong 2 

Methanoculleus 
horonobensis 

0.69 0.95 0.82 Very strong 3 

Methanoculleus 
taiwanensis 

0.64 0.92 0.78 Strong 3 

Methanoculleus 
thermophilus 

0.78 0.89 0.83 Very strong 0 

For each pair, we calculated the number of shared environment-relevant 3-mers exhibiting similar over- or under-representation patterns between the two 
species of the pair, and reported the ratio out of 15. The Spearman rank correlation coefficient ( rho) was computed to quantify the correlation between the 
3-mer representation patterns of each pair; all correlations were statistically significant ( P < 10 −5 ). A combined score was calculated as the average of the 
shared environment-relevant 3-mer ratio and rho to assess the overall similarity of each pair. For further validation, the last column reports the number of 
shared environment-relevant 3-mers that have over- or under-representation patterns consistent with findings in the biological literature. 
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er had been previously reported in biological literature. The
nal column of Table 6 reports the number of shared 3-mers
or which our findings in over- or under-representation align
ith evidence from prior studies, providing further validation
f the observed similarities. Importantly, we did not include
his literature-based validation in the combined score calcu-
ation, as low values in this step may only reflect a lack of
rior research in the literature rather than a true biological
bsence. 

The results revealed nine pairs with compelling 3-mer sim-
larity, four pairs with very strong similarity, one pair with
trong similarity and one pair with moderate similarity. No
airs exhibited very low similarity (the minimum similarity
core is 0.71), indicating a moderate to high level of 3-mer
requency profile similarity across all confirmed pairs. No-
ably, the first three groups, which include poly-extremophile
r extremophiles, showed a higher average number of shared
nvironment-relevant 3-mers observed in the biological liter-
ture (average: five) compared to Groups 4 and 5, which pre-
ominantly consist of mesophiles (average: two). 
Interestingly, despite being composed mainly of mesophiles,

roups 4 and 5 included two pairs with compelling similar-
ty and four pairs with very strong similarity. This unexpected
nding suggests that factors beyond temperature or pH, such
s other environmental pressures, may contribute to genomic
equence composition convergence in these pairs, which is fur-

her discussed in the ‘Discussion’ section. Detailed results of 
the 3-mer frequency profile analysis are presented in Supple-
mentary Materials, Section I. 

Co-occurrence of organisms from the confirmed bacterium–
archaeon pairs 
In the final analysis, using the MAP tool [ 65 ], we analyzed the
habitats of all environment-related pairs within their respec-
tive groups, to identify any shared environments. 

This analysis revealed distinct patterns of co-occurrence
across different groups. Both species in Group 1 were found
together in Washburn Hot Springs, a geothermal hot spring in
Yellowstone National Park, Wyoming, USA [ 67 ]. Notably, this
co-occurrence habitat differs from the environments where
the species were originally isolated [ 68–70 ]. Despite the large
geographic distances between the original isolation and co-
occurrence sites, these habitats have similar environmental
pressures and geochemical properties. 

Similar observations were made for the species in the pair
of Group 2 , which were found to co-occur in two distinct
habitats: Brothers Volcano, a submarine volcano in the Pa-
cific Ocean near New Zealand [ 71 ], and Juan de Fuca Ridge,
a mid-ocean ridge flank near Vancouver Island [ 72 ]. Note that
these species were initially isolated from a deep Japanese oil
reservoir [ 73 ] and a deep-sea hydrothermal vent [ 74 ], respec-
tively. 
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In Group 3 , a subset of species co-occurred in environ-
ments overlapping with those of Group 1 and Group 2, in-
cluding Brothers Volcano and Washburn Hot Springs. Addi-
tional co-occurrence sites were found across Yellowstone Na-
tional Park. Similar to Group 1 and Group 2, the environmen-
tal conditions of the co-occurrence habitats resemble the con-
ditions of isolating environments of the respective species. It
is worth mentioning that even though species from Groups 1,
2, and 3 were found to co-occur in the same habitat, our clus-
tering methods provide the sensitivity to detect specific 3-mer
biases within their genomic signatures. This enables classifi-
cation based on their evolved niche adaptations rather than
their current habitat, which explains why these groups were
clustered separately despite sometimes sharing the same en-
vironment. Detailed geographic maps and co-occurrence data
for these three groups can be found in the Supplementary Ma-
terials, Section J. 

Although the majority of species in Group 4 are mesophiles,
they co-occurred in multiple independent environments char-
acterized by other common extreme environment condi-
tions, such as anaerobic and methanogenic conditions. These
habitats include the Shengli Oil Field in China, hypothe-
sized to involve anaerobic, mesophilic microbiomes in the
‘methanogenic degradation of hydrocarbons’ [ 75 ], and a
Japanese bioreactor [ 76 ]. No co-occurrence was identified for
Group 5 species. Detailed geographic maps and co-occurrence
for Group 4 and Group 5 can be found in Supplementary Ma-
terials, Section J. 

Importantly, this co-occurrence analysis supports the
bacterium–archaeon pairs clusters identified by our multi-
layered approach. Indeed, it demonstrates that many of the
species pairs that were computationally grouped together by
our method, despite being originally isolated from different
environments, were later found to co-occur naturally in shared
environments distinct from their isolation sites. 

Discussion 

Our computational analysis revealed that both taxonomic
and environmental components can be pervasive throughout
extremophile prokaryotic genomes, suggesting that environ-
mental adaptations influence the entire genome rather than
specific genic or regulatory regions exclusively. Indeed, our
novel computational pipeline resulted in high classification
and clustering accuracies, despite using as ‘genome proxy’ a
relatively short DNA fragment constructed by the pseudo-
concatenation of 10 randomly selected 10 000 bp fragments
(total length 100 000 bp, that is ≈ 35 times shorter than a
complete genome). This indicates that taxonomic and envi-
ronmental components are detectable even with limited ge-
nomic samples, which has important implications for studying
environmental adaptations when complete genome sequences
are not available. 

Our multilayered approach identified 15 pairs of maxi-
mally distant organisms that have similar genomic signatures,
grouped into five distinct categories. The statistically sig-
nificant 3-mer over-representation and under-representation
analysis further confirmed the genomic composition similar-
ity of these pairs. Notably, the identified environmentally-
relevant 3-mer representation patterns align with known ex-
tremophile adaptation mechanisms as detailed below. 

In Group 1 , the over-representation of the 3-mer ‘CAA’
(corresponding to a glutamine codon) in the genome of ther-
mophilic acidophiles aligns with previous findings of codon 

usage bias in acidophilic prokaryotes which prefer the ‘CAA’ 
codon when calling for glutamine [ 18 ]. Moreover, the under- 
representation of the 3-mer ‘ACG’ (corresponding to a threo- 
nine codon) in this group is consistent with amino acid abun- 
dance patterns found in thermophilic prokaryotic proteins 
which demonstrate a relative lack of threonine [ 77 ]. 

In Group 2 and Group 3 , consisting of hyperthermophiles,
observations of the elevated representation of 3-mers corre- 
sponding to arginine codons, and decreased representation 

of 3-mers corresponding to asparagine and glutamine codons 
align with previous observations related to amino acid abun- 
dances in hyperthermophilic and thermophilic prokaryotic 
proteins [ 17 , 78 , 79 ]. Specifically, (hyper)thermophilic pro- 
teins demonstrate an increased abundance of arginine, and de- 
creased abundance of asparagine and glutamine amino acids,
which is reflected by the relative representations of 3-mers 
respectively. Note that several species in Group 3, specifi- 
cally, T. ruber (bacteria) and three archaeal species ( P. furio- 
sus , T. litoralis , and Pyrococcus chitonophagus ), were previ- 
ously identified as having similar genomic signatures by us- 
ing slightly different methods [ 25 ], which further validates our 
multilayered approach. 

The 3-mer frequency profile analysis of Group 4 also 

showed some agreement with known codon usage patterns.
In this group, all species, including the thermophilic bac- 
terium, exhibited an under-representation of 3-mers corre- 
sponding to a serine codon. This pattern aligns for mesophilic 
species, which demonstrate a codon usage bias against the 3- 
mer ‘AGC’ when calling for serine [ 80 ] and with the observed 

lower serine amino acid in thermophilic proteins relative to 

mesophilic proteins [ 81 ]. The grouping of mesophilic species 
from maximally divergent taxa in Group 4, along with their 
similarity in genomic compositions and 3-mer representations,
suggests the influence of extreme environmental pressures be- 
yond temperature and pH. Indeed, we observed that Group 

4 species co-occur in anaerobic, methanogenic environments 
and share the phenotypic trait of oxygen intolerance (Supple- 
mentary Materials, Section F). This indicates that additional 
extreme factors, such as high concentrations of endogenously- 
produced methane, or exogenous hydrocarbons encountered 

in oil fields or wells, could potentially influence extremophilic 
genomic signature composition. 

In Group 5 , in contrast with Groups 1, 2, 3, and 4, our 
findings revealed unique genomic signature patterns that dif- 
fer from previous biological findings of extremophile codon 

usage bias. In this group, our findings showed an under- 
representation of the 3-mer ‘CTA’, which codes for leucine.
This was expected in mesophilic species of this group, as 
mesophilic prokaryotes commonly exhibit a bias against us- 
ing this codon [ 80 ]. However, surprisingly, we found the same 
under-representation in the thermophilic species of this group,
in contrast with previous studies which showed ‘CTA’ to 

be typically abundant in other thermophiles [ 17 ]. Our find- 
ing contradicts previous assumptions of codon usage bias 
in thermophilic prokaryotes, suggesting that the impact of 
environmental adaptation on prokaryotic genomes may be 
more nuanced than previously thought and needs further in- 
vestigation. Although no co-occurrence environments were 
found for Group 5, their initial isolation from predominantly 
methanogenic habitats, as described in their discovering pa- 
pers, suggests a potential role of methanogenic processes in 

shaping the selection of, and thus the composition of genomic 
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ignatures of these species [ 82 ]. Further investigation is needed
o clarify these relationships. 

It is worth noting that horizontal gene transfer, a phe-
omenon in which one species can transfer genetic material
o another, is a major driver of adaptation in extreme en-
ironments [ 83 ]. However, a Basic Local Alignment Search
ool (BLAST) [ 84 ] analysis showed little to no evidence of
xtensive or localized transfer between species across the five
roups in our study (see Supplementary Materials, Section
). Only the discontinuous megablast parameters revealed
 1%–2% query cover between archaeal genomes and the
acterium in each Group. This indicates that the archaeal
enomes share minimal genetic material with the bacterial
enome in the same group, as expected. Moreover, within
hese aligned regions, the genetic sequences show only mod-
rate similarity, which suggests that the genetic material is not
ighly conserved. This finding contrasts with what we typi-
ally see in extreme environments, where genes that provide
urvival advantages are usually highly conserved [ 85 ]. Thus,
hile alignment-based approaches confirm the local absence
f shared genetic material between archaeon and bacterium
air members, our techniques reveal the presence of shared ge-
omic composition patterns throughout their entire genomes.
Our computational approach also has some limitations. For

xample, this k -mer-based method cannot capture long-range
enomic interactions, although this could potentially be ad-
ressed through the use of transformer models [ 86 ]. Addition-
lly, the exponential growth in the size of feature vectors with
ncreasing k -mer size limited our analysis to k ≤ 9 , potentially
bscuring larger sequence patterns. Also, while the parame-
ers that were empirically determined to be optimal proved
ffective for the classification/clustering of this extremophile
ataset, they may not generalize across all genomic analyses,
s they likely depend on dataset characteristics and the com-
lexity of the classification task. Lastly, the choice of the dis-
ance thresholds can depend on the datasets, and this choice
s discussed in Supplemental Materials, Section L. 

A point that warrants further discussion is the choice of
he parameter n , which determines how many randomly se-
ected DNA sub-fragments are pseudo-concatenated into a
ingle composite genome proxy for computational analysis. In
his study, all experiments were conducted with n = 10 . This
eing said, as detailed in Section M of the Supplementary Ma-
erials, a comprehensive analysis shows that larger values of
 , up to n = 10 , 000 for a genome proxy length of 100 000,
till capture the global environmental and taxonomic compo-
ents, even though the resulting sub-fragments are as short as
0 bp. Remarkably, these settings achieved classification accu-
acies of 99.16% for taxonomic classification and 73.16% for
nvironment-type classification in the ‘Temperature dataset’,
nd 98.32% and 83.27% for the ‘pH dataset’, respectively.
hese results demonstrate that a 100 000 bp genome proxy
onstructed from sub-fragments as short as 10 bp can still
apture taxonomic and environmental patterns. We also ex-
ended this analysis to other genome proxy lengths (ranging
rom 10 000 bp to 1000 kbp) and obtained consistent high
lassification performance (over 97% for taxonomic and over
0% for environment-type classification) with sub-fragments
s short as 10 bp. 

Overall, our findings demonstrate that extreme environ-
ental adaptation significantly impacts prokaryotic genomic

ignature compositions, with environmental pressures capa-
le of overriding traditionally recognized taxonomic influ-
ences. The biological significance of our approach is high-
lighted by the discovery of 15 microbial species pairs that
share genomic signatures despite maximal taxonomic di-
vergence, suggesting that shared environmental pressures
can drive convergent genome sequence composition across
vastly different species. These results provide compelling ev-
idence that environment-driven genomic components per-
sist across diverse taxa, offering new perspectives on how
environment-associated mutagenesis and selection shape mi-
crobial genomes. Our work broadens the field’s perspec-
tive beyond the traditional focus on phenotype, proteome,
and gene-specific analyses to genome-wide considerations. By
bridging computational methods with biological context, this
work advances machine learning applications in genomics and
our understanding of extremophile adaptation mechanisms.
Future research will explore the biological mechanisms under-
lying these shared genomic signatures and their implications
for evolutionary biology , biotechnology , and environmental
genomics. 
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