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Abstract. This paper establishes formal mathematical foundations
linking Chaos Game Representations (CGR) of DNA sequences to
their underlying k-mer frequencies. We prove that the Frequency CGR
(FCGR) of order k is mathematically equivalent to a discretization
of CGR at resolution 2k × 2k, and its vectorization corresponds to
the k-mer frequencies of the sequence. Additionally, we characterize
how symmetry transformations of CGR images correspond to specific
nucleotide permutations in the originating sequences. Leveraging these
insights, we introduce an algorithm that generates synthetic DNA
sequences from prescribed k-mer distributions by constructing Eulerian
paths on De Bruijn multigraphs. This enables reconstruction of sequences
matching target k-mer profiles with arbitrarily high precision, facilitating
the creation of synthetic CGR images for applications such as data
augmentation for machine learning-based taxonomic classification of
DNA sequences. Numerical experiments validate the effectiveness of
our method across both real genomic data and artificially sampled
distributions. To our knowledge, this is the first comprehensive framework
that unifies CGR geometry, k-mer statistics, and sequence reconstruction,
offering new tools for genomic analysis and visualization. The web
application implementing the reconstruction algorithm is available
at https://tinyurl.com/kmer2cgr.

Keywords: DNA sequence, Genomic signature, Chaos Game
Representation CGR, Frequency Chaos Game Representation FCGR,
k-mer frequency vector, synthetic DNA.

1 Introduction

The increased availability of complete genome sequences has motivated a paradigm
shift in comparative genomics, from homology-based to whole-genome analyses
based on sequence composition patterns [33, 8]. The observation of different
structural patterns in DNA sequences dates back to 1990, when Jeffrey applied
concepts from chaotic dynamics to DNA sequences and introduced Chaos Game
Representations (CGR) of DNA sequences [13]. A CGR is visualized within a
unit square, with each of the four vertices labelled by one of the nucleotides

https://tinyurl.com/kmer2cgr
https://tinyurl.com/kmer2cgr
https://arxiv.org/abs/2506.22172v2
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(A, C, G, and T ). The plotting process follows a simple iterative procedure: the
first nucleotide in the sequence is plotted at the midpoint between the center
of the square and the vertex corresponding to that nucleotide. Each subsequent
nucleotide is then plotted at the midpoint between the previously plotted point
and the vertex representing the current nucleotide.

The appearance of interesting geometric patterns in CGRs of real DNA
sequences, such as fractals and parallel lines, motivated further research in the
field [14, 7, 11, 9]. Notably, Oliver et al. [25] computed the first discretization of
CGRs. In these representations, referred to hereafter as Frequency Chaos Game
Representations (FCGR), the unit square is divided into a 2k × 2k grid, and
the CGR is discretized by counting the number of points in a given cell. Each
cell is associated with a particular subword of length k (k-mer), and in [25] it
was suggested that the count in each cell must be equal to the frequency of the
corresponding k-mer in the DNA sequence. Similarly, Hao introduced k-frames
[10], a class of self-similar and self-overlapping fractals mapping each k-mer to a
cell inside the unit square using the Kronecker product.

A T

C G

(a)

A T

C G

(b)

A T

C G

(c)

Fig. 1: (a) CGR of a 100,000 bp DNA sequence randomly extracted from the complete
genome of Pseudomonas aeruginosa strain PAO1 (RefSeq NC_002516.2); (b) CGR of a
100,000 bp DNA sequence randomly selected from human chromosome 4 (GRCh38.p14
primary assembly, RefSeq NC_000004.12); (c) CGR of a computer-generated DNA
sequence that is random in all other aspects except that the dinucleotide GC is absent.

Independent of CGR research, in 1995, Karlin and Burge introduced the notion
of a genomic signature [17], as an umbrella term for any numerical quantity that
shows greater similarity among DNA sequences of closely related organisms
compared to those of more distantly related organisms. In that work, dinucleotide
relative abundance profiles (DRAP) were proposed as genomic signatures, as
they were effective in capturing expected variations between some species and
similarities within the genome of a single species. Building on this concept, in
1999, Deschavanne et al. [4], characterized both CGR and FCGR as genomic
signatures and showed that the variation between FCGR images of sequences
along a genome was smaller than the variation between FCGR images of sequences
taken from different genomes. For example, as seen in Figures 1a and 1b, the
CGR of a DNA sequence from the genome of P. aeruginosa exhibits visual
patterns that are significantly different from patterns in the CGR of a DNA
sequence from human chromosome 4. Subsequently, these CGR studies lead to
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the generalization of genomic signatures across various orders k, introduced in
2005 by Wang et al.[31] where, e.g., k = 2 corresponds to DRAP. In [31], it was
shown that higher-order FCGRs capture sequence features that are not encoded
by the DRAPs that had initially been proposed as genomic signatures.

The concepts of CGR, FCGR of order k, and k-mer frequency vector of a
sequence (the latter comprising the counts of all its k-mers) collectively referred
to here as genomic signature, have been widely used in comparative genomics as
an alternative or a complement to alignment-based methods. For example, CGRs
have inspired numerous alignment-free methods for taxonomic classification
[27, 16, 15, 20, 28], clustering [22, 1], and phylogenetic analyses [12, 29, 19].
Similarly, distance measures between k-mer frequency profiles serve as robust
proxies for evolutionary relatedness, making them the core component in similar
applications [33, 30, 32, 5].

Despite the interchangeable use of these representations of DNA sequences
in many applications [2, 22, 8], a formalization of their interconnections is still
missing. In this work, we introduce a theoretical and algorithmic framework that
rigorously links these genomic signatures. The main contributions of this paper
are that it: (i) formally establishes two-way connections between a symmetry
transformation of the CGR of a sequence and a morphism applied to the
underlying sequence (Section 2), (ii) demonstrates the mathematical equivalence
between a CGR of resolution 2k × 2k of a DNA sequence s, and the Frequency
Chaos Game Representation (FCGR) of order k of that sequence, as well as
k-mer frequency vector of the sequence (Section 3), (iii) provides an algorithm
and a software tool that computes a CGR and the corresponding synthetic DNA
sequence, from a target k-mer frequency vector (Section 4).

1.1 Notation

Throughout this paper, Σ will denote the DNA alphabet, namely the set
Σ = {A,C,G, T}. The cardinality of a set A will be denoted by card(A). A
non-empty word (string) over Σ, w = a1a2...an, n ≥ 1, is a concatenation of
letters ai ∈ Σ, 1 ≤ i ≤ n. The empty word is denoted by λ, by Σ+ we denote
the set of all non-empty words over Σ, and Σ∗ = Σ+ ∪ {λ}, while for k ≥ 1 we
have that Σk is the set of words of length k over Σ. The length of a word w is
denoted by |w|, and |λ| = 0. For a given k ≥ 1, a word w ∈ Σk will be called a
k-mer. The number of occurrences of the k-mer w in the DNA sequence s will
be denoted by occ(s, w). For a word w ∈ Σ+, we will denote by subk(w) the set
of all subwords of length k in the word w. We use ∆n−1 to denote the standard
simplex {(x1, . . . , xn) : xi ≥ 0 for all i = 1, . . . , n,

∑n
i=1 xi = 1} in Rn.

2 CGR Symmetries and DNA Letter Permutations

This section first recalls the formal definition of the Chaos Game Representation
(CGR) of a DNA sequence [13] (Definition 2) and introduces several other
definitions and notations. Subsequently, Theorem 1 shows that, if a CGR is the
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image of another CGR via a symmetry transformation of the square, then their
originating DNA sequences are connected by a certain letter permutation, and
viceversa. In addition, Theorem 2 establishes the correspondence between the
k-mers avoided in each of the sequences underlying two CGRs that are obtained
from one another by a symmetry transformation of the square.

Definition 1 (CGR square). A CGR square is the square centred at the origin

{(x, y)| − 1 < x < 1,−1 < y < 1}

with corners (−1,−1), (−1, 1), (1, 1), (1,−1), each labeled by the labeling function
label : Σ −→ Z2

label(A) = (−1,−1), label(C) = (−1, 1), label(G) = (1, 1), label(T ) = (1,−1)

Note that the CGR square defined above has a side length of 2, whereas the
original CGR square defined in [14] is a unit square with side length 1.

Definition 2 (CGR representation of a DNA sequence). Let n ≥ 1 and
let s = a1a2...an be a sequence of length n over the DNA alphabet Σ. The CGR
representation of the sequence s is the set of points CGR(s) = {p0, p1, .., pn} ⊆ Q2

whose coordinates are defined recursively by

p0 = (x0, y0) = (0, 0), and pi =
pi−1 + label(ai)

2
for all 1 ≤ i ≤ n.

The dihedral group [6] of degree 4 and order 8 is the symmetry group of a
square D8 =

{
e, r, r2, r3, s, sr, sr2, sr3

}
, and it comprises rotations, reflections

across the horizontal and vertical axis, as well as reflections across the diagonals.
The symmetries of the axis-aligned CGR square, centered at the origin, can be
represented by 2× 2 permutation matrices, acting on the plane by multiplication

on column vectors of coordinates
[
x
y

]
. The group composition operation is

represented as matrix multiplication. .

Definition 3. For two words u,w ∈ Σn and a symmetry h ∈ D8, we will say
that CGR(u) = h · CGR(w) if and only if, for all 1 ≤ i ≤ n, we have that
qu,i = h · pw,i where qu,i is the ith point in the generation of CGR(u) and pw,i is
the ith point in the generation of CGR(w).

Definition 4. Let CGR(w) be the CGR of a DNA sequence w ∈ Σ∗. The image
of a CGR(w) via a transformation h ∈ D8 is defined as {h · x| x ∈ CGR(w)},
the set obtained by multiplying the matrix h with each point in CGR(w).

Consider a permutation σ : Σ → Σ of the letters in the DNA alphabet Σ, and
consider that σ(λ) = λ, where λ denotes the empty word. Such a permutation σ
can be extended to a morphism σ : Σ∗ → Σ∗ by the morphism property whereby
σ(uv) = σ(u)σ(v), for all u, v ∈ Σ∗. We now explore the relationships between
such morphisms applied to a DNA sequence and symmetry transformations in
D8 applied to its CGR.
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Definition 5. Let S be the following set of permutations extended to morphisms
on Σ∗:

S = {(), (A, T,G,C), (A,G)(C, T ),

(A,C,G, T ), (A,C)(G,T ), (C, T ), (A, T )(C,G), (A,G)}

In Definition 5, in the customary cyclic notation, () denotes the identity
permutation on {A,C,G, T}, and, e.g., (A, T,G,C) denotes a circular permutation
that maps A to T , T to G, G to C, and C to A. Note also that S is a subset of
the S4, set of all 24 permutations of {A,C,G, T}.

Recall that, [6, Section 1.2], the dihedral group D8 is connected to a subgroup
of the permutation group S4 of all permutations of four elements, by the
mapping f : D8 → S4 defined as f(e) = (), f(r) = (A, T,G,C), f(r2) =
(A,G)(C, T ), f(r3) = (A,C,G, T ), f(s) = (A,C)(G,T ), f(sr) = (A,G), f(sr2) =
(A, T )(C,G), f(sr3) = (C, T ).

The following theorem proves that, if a CGR is observed to be the image
of another CGR via one of the symmetry transformations in D8, then their
originating DNA sequences are connected by one of the letter permutations in S
(see Definition 5).

Theorem 1. Let u,w ∈ Σn be two DNA sequences of length n, and let σ ∈ S
be one of the morphisms in S. Then u = σ(w) if and only if CGR(u) = f−1(σ) ·
CGR(w).

In other words, Theorem 1 states that, given two DNA sequences u and w
and a letter permutation σ ∈ S, then u = σ(w) iff CGR(u) can be obtained
from CGR(w) via the symmetry f−1(σ) in D8. A direct consequence of this
result is that the image of a CGR of a DNA sequence under some symmetry
transformation h ∈ D8 is still a CGR of another DNA sequence, i.e., the set of
CGRs of DNA sequences is closed under transformations in D8.

Corollary 1. Given a word u ∈ Σn and a symmetry transformation h ∈ D8,
there exists a word w ∈ Σn such that CGR(w) = h · CGR(u). Constructively,
this word can be computed as w = f(h) · u, with f : D8 → S4 as defined above.

A DNA sequence s is said to avoid a word w if s does not contain any
occurrence of w as a subword. We now investigate the mathematical connection
between k-mer avoidance in DNA sequences and the family of CGR images
related by the symmetry group D8. This question is of interest because the CGR
of a DNA sequence that avoids a k-mer w has a similar visual appearance as the
CGR of a real DNA sequence in which the word w is under-represented, but not
completely absent. For instance, Figures 1b and 1c illustrate that avoiding the
dinucleotide GC produces the same “double-scoop” CGR pattern as that observed
in CGRs of human DNA sequences (characterized by an under-representation
of GC). Given the CGR of a DNA sequence that avoids a certain k-mer, and
another CGR obtained from the first through a symmetry transformation in D8,
the following theorem identifies the k-mer avoided by the underlying sequence of
the second CGR.
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Theorem 2. Let w, u ∈ Σn be two DNA words of length n, and let α, β ∈ Σk be
two k-mers, k < n, such that subk(w) = Σk\{α} and subk(u) = Σk\{β}. Then,
for any permutation morphism σ ∈ S, we have that CGR(u) = f−1(σ) ·CGR(w)
implies β = σ(α).

3 Frequency CGR, and Equivalence to k-mer Frequencies

In this section, we first recall the definition of FCGRk(s) [4], the frequency CGR
of order k, of a sequence s, which is discretized version of CGR(s) at resolution
2k × 2k. We formalize the discretization process of CGR(s) (Proposition 1), and
establish several properties of this discretized version of CGR(s). Lastly, we prove
that FCGRk(s) can be equivalently computed either by discretizing CGR(s) at
resolution 2k × 2k, or by directly counting the occurrences of all k-mers in the
sequence s (Theorem 3 and its Corollary 2).

We start by describing the discretizing process of the CGR of a DNA sequence,
by subdividing the CGR square (of size 2× 2) into 2k × 2k equal sub-squares of
size 1/2k−1.

Definition 6 (grid cell of order k). Given a CGR square, k ≥ 1, and indices
0 ≤ i, j ≤ 2k − 1, the grid cell (i, j) of order k, denoted by cellk(i, j), is the region
of the square defined by

cellk(i, j) = {(x, y) : xi −
1

2k
< x < xi +

1

2k
, yj −

1

2k
< y < yj +

1

2k
}

where the center of the grid cell cellk(i, j) is the point

(xj , yi) =

(
−2k − 1

2k
+

j

2k−1
,
2k − 1

2k
− i

2k−1

)
. (1)

Note that the size of each grid cell cellk(i, j) of order k is 1
2k−1 × 1

2k−1 . Observe
also that each grid cell cellk(i, j) (without boundary) i = 0, . . . , 2k − 1, j =
0, . . . , 2k − 1, is uniquely determined by its center (xj , yi), where the indices i
and j are swapped so as to match the indexing convention of matrices. Lastly,
note that grid cells of order k correspond to an image resolution of 2k × 2k.

We can now define the Frequency Chaos Game Representation of order k of
a DNA sequence.

Definition 7 (FCGR of order k, of a sequence s). Let k ≥ 1 and n ≥ k. A
Frequency Chaos Game Representation of order k, of a sequence s ∈ Σn, is a
matrix FCGRk(s) ∈ N2k×2k whose entries are defined as

FCGRk(s)(i, j) = card (CGR(s) ∩ cellk(i, j)) for all 0 ≤ i, j ≤ 2k − 1.

The FCGRk(s) matrix provides a compressed representation of the sequence
s. Definition 7 can be viewed as a discretization of CGR(s) into 2k × 2k cells,
each counting the number of points of CGR(s) that fall inside that cell. We
will show later that counting the points in a grid cell of order k is equivalent to
calculating the number of occurrences of a specific k-mer in the sequence s. For
that, we need to define the notion of a CGR cell associated with a k-mer.
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Definition 8. Let n ≥ 1 and s ∈ Σn. The last point of the CGR representation
of s, CGR(s) = {p0, p1, . . . , pn}, is defined as plast(s) = pn.

Let plast(w) = (xw, yw) be the last point in CGR(w) of a word w = a1a2...ak,
where k ≥ 1, and assume that label(al) = (xl, yl) for all 1 ≤ l ≤ k. By the
definition of CGR(s), it is easy to see that

xw =
Σk

l=1xl · 2l−1

2k
, yw =

Σk
l=1yl · 2l−1

2k
. (2)

As observed in [12], distinct sequences s ∈ Σ+ have distinct last points plast(s)
in their respective CGR representations.

Definition 9 (CGR cell associated with a k-mer). Let k ≥ 1, let w be a
k-mer in Σk, and let plast(w) = (xw, yw) be the last point of CGR(w). The CGR
cell associated with the k-mer w is

c(w) = {(x, y)| xw − 1

2|w| < x < xw +
1

2|w| , yw − 1

2|w| < y < yw +
1

2|w| }.

Figure 2a illustrates c(ACG), the CGR cell associated with the 3-mer ACG.
It is easy to see that, for a k-mer w, the last point plast(w) of CGR(w) is the
center of the sub-square c(w). Note also that for two different k-mers w1 and w2,
the cells c(w1) and c(w2) do not intersect.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

A

C G

T

P

PA

PAC

PACG

(a) (b)

Fig. 2: (a) The cell c(ACG) associated with the 3-mer ACG is marked in green. Its
center PACG coincides with plast(ACG), the last point in the CGR representation of
ACG. (b) Illustration of the hierarchical structure of CGR cells described by Lemma 2
and Proposition 3 (adapted from [20]).

The following result now establishes the correspondence between the grid cells
of order k (Definition 6) and the CGR cells associated with a k-mer (Definition 9).
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Proposition 1. Let k ≥ 1, let w = a1 · · · ak be a k-mer, and assume that
label(al) = (xl, yl) where xl, yl ∈ {−1, 1}, for all 1 ≤ l ≤ k. Then c(w) =
cellk(i, j), that is, the CGR cell associated with the k-mer w equals the grid cell
(i, j) of order k with indices

j =
2k − 1 +Σk

l=1xl · 2l−1

2
, i =

2k − 1−Σk
l=1yl · 2l−1

2
. (3)

For a given k, Proposition 1 establishes a bijection between the set of CGR
cells associated with k-mers (Definition 9) and the set of grid cells of order k
(Definition 6). Observe that, in both Definition 6 and Definition 9, the respective
cells do not include their boundaries. The next proposition, aided by the following
lemma, proves that no point of CGR(s) falls on the boundary of a cell associated
with a k-mer, for any k with 1 ≤ k ≤ n, where |s| = n (ensuring thus that the
FCGRk(s) as defined in Definition 7 does not miscount).

Lemma 1. Let n ≥ 1, k ≥ 1, and let u ∈ Σn, w ∈ Σk be two DNA sequences.
Let plast(u), plast(w) be the last points of CGR(u), CGR(w) respectively. Then,
the last point of CGR(uw) is

plast(uw) =
plast(u)

2|w| + plast(w).

Proposition 2. Let s be a sequence of length n over Σ, and let 1 ≤ k ≤ n. The
last point plast(s) of CGR(s) is not on the boundary of a cell c(w) associated
with any k-mer w in Σk.

Lemma 1 also serves as an aide to showing the hierarchical nested structure
of the CGR cells associated with a k-mer w, as defined in Definition 9. The next
result shows that the CGR cell associated with a given k-mer w includes all the
CGR cells associated with words ending in w.

Lemma 2. Let w1, w2 be words in Σ+. Then c(w1w2) ⊆ c(w2).

The closed CGR cell associated with a k-mer w is denoted by c(w) and is defined
as the union between c(w) and its boundaries (sides of the square). The next
result proves that, given n ≥ 1, the closed CGR cell associated with a k-mer w
equals the union of all closed CGR cells associated with words w′w with |w′| = n.
This hierarchical structure of the closed cells associated with k-mers is illustrated
in Figure 2b.

Proposition 3. Let k ≥ 1 and n ≥ 1. For a given k-mer w ∈ Σk we have that
c(w) =

⋃
w′∈Σn c(w′w).

Lemma 1 can now be used to show that the FCGRk(s) matrix defined in
Definition 7 through discretizing CGR(s) into grid cells of order k (i.e., at
resolution 2k × 2k), can also be obtained directly by counting the number of
occurrences of all k-mers in the sequence s.
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Theorem 3. Given a DNA sequence s ∈ Σn, and a k-mer w ∈ Σk, where
1 ≤ k ≤ n, we have that

occ(s, w) = card(CGR(s) ∩ c(w))

where occ(s, w) denotes the number of occurrences of the k-mer w in s.

Corollary 2. Let s ∈ Σn be a sequence, and let 1 ≤ k ≤ n be a k-mer length.
Computing FCGRk(s) by discretizing CGR(s) into grid cells of order k as defined
in Definition 7 (i.e., at resolution 2k × 2k) is equivalent to counting the number
of occurrences of k-mers in the sequence s.

Importantly, we now observe that in [10] one finds a definition of “FCGR of order
k of a sequence s” via Kronecker products that is different from our Definition 7.
The advantage of the concept as defined in Definition 7 is that, besides being
equivalent to computing the counts of k-mers, FCGRk(s) in Definition 7 is a
discretization of CGR(s), at resolution 2k×2k, and it is thus both visually similar
and obtainable from CGR(s). In contrast, the FCGR of order k of a sequence s
as defined in [10] is not connected to CGR(s), and it is visually different from
CGR(s). (see Appendix B.5 for a detailed comparison).

4 From k-mer Distributions to Synthetic DNA

In this section, we explore the concept of empirical k-mer distribution of a
sequence s, and formalize the correspondence with its FCGRk(s). We exploit
this correspondence to generate synthetic DNA sequences and their respective
CGRs by tracing an Eulerian path on the De Bruijn multigraph built from a
target k-mer distribution. The main result (Theorem 5) shows that, for any
target distribution on the standard probability simplex satisfying the structural
constraints imposed by the linear nature of DNA sequences, we can construct
a synthetic sequence s whose empirical k-mer distribution matches the target
with arbitrarily high precision. A computational tool implementing the algorithm
is available at https://tinyurl.com/kmer2cgr, and is used to empirically
evaluate the algorithm’s practical reconstruction accuracy through computational
experiments using both real and synthetic target distributions.

Definition 10. Given the DNA alphabet Σ = {A,C,G, T} and a k-mer w =
a1 . . . ak ∈ Σk, we define the index function idx : Σk → {0, 4k − 1} as:

idx(w) =
|w|∑
t=1

4|w|−t × ξ(at), (4)

where the labelling function ξ : Σ → {0, 1, 2, 3} assigns each nucleotide to an
integer as follows:

ξ(A) = 0, ξ(C) = 1, ξ(G) = 2, ξ(T ) = 3.

https://tinyurl.com/kmer2cgr
https://tinyurl.com/kmer2cgr
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The previous definition interprets each k-mer w as a base-4 numeral via the
digit assignment ξ(·). Note that idx(w) is a bijection between Σk and {0, 4k − 1},
with k = |w|. This bijection induces a natural ordering on Σk, where for u, v ∈ Σk,
we write u < v if and only if idx(u) < idx(v). Based on the label assignment
ξ(·), this ordering corresponds to the lexicographic order given by the nucleotide
ordering A < C < G < T .

Definition 11 (k-mer frequency vector). Given a DNA sequence s, its k-mer
frequency vector Fk(s) is a vector in N4k defined as:

Fk(s) = (occ(s, w0), occ(s, w1), . . . , occ(s, w4k−1))

where wi = idx−1(i) is the k-mer corresponding to index i under the mapping in
equation 4.

We now formalize the intuition that the k-mer frequency vector Fk(s) corresponds
to a vectorization of the FCGRk(s) matrix and compute the mapping between the
matrix coordinates and the vector positions. For that purpose, we use the label(·)
function (Definition 1) that links the coordinates of each corner in the CGR square
with each nucleotide. Recall that for each k-mer w = a1 · · · ak, label(al) = (xl, yl),
with xl, yl ∈ {−1, 1} for all 1 ≤ l ≤ k. Consequently, label−1(xl, yl) = al.

Lemma 3. Let k ≥ 1, and 0 ≤ i, j ≤ 2k−1. If i =
∑k−1

l=0 αl2
l and j =

∑k−1
l=0 βl2

l,
with αl, βl ∈ {0, 1} are the binary expansions of i and j, then cellk(i, j) =
c(a1 · · · ak) where c(a1...ak) is the cell associated with a1...ak constructed as

al = label−1(1− 2αl−1, 2βl−1 − 1), for 1 ≤ l ≤ k (5)

Proposition 4. Let k ≥ 1, n ≥ 1, s ∈ Σn and 0 ≤ i, j ≤ 2k − 1. If i =∑k−1
l=0 αl2

l and j =
∑k−1

l=0 βl2
l, with αl, βl ∈ {0, 1} (their binary expansions),

then FCGRk(s)(i, j) = occ(s, wτ ), where

τ =

k−1∑
l=0

4k−l−1 × ξ(label−1(1− 2αl−1, 2βl−1 − 1)) (6)

Proposition 4 confirms the intuition that the k-mer frequency vector Fk(s)
corresponds to a vectorization of the FCGRk(s) matrix. Furthermore, we now
have a connection between each word w, its corresponding point in the CGR
(plast(w)), the indices (i, j) in the FCGR matrix (Definition 7) and its position
in the k-mer frequency vector given by the lexicographic order, idx(w).

We will now proceed to define a probabilistic framework for comparing the
k-mer composition of sequences of different lengths, with the ultimate purpose of
generating synthetic DNA sequences from given k-mer frequency vectors.

Definition 12 (k-mer distribution). For a sequence s of length n, the empirical
k-mer distribution of s is defined as the probability vector

θs = (θs0, θ
s
1, . . . , θ

s
4k−1) =

1

n− k + 1
· Fk(s).
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In other words, θsi = occ(s,wi)
n−k+1 represents the normalized frequency of the

k-mer wi in s, where wi denotes the i-th k-mer in the lexicographic order. Given
θ ∈ ∆4k−1 and a k-mer w, we denote the component θidx(w) by θw.

Note that any θs is a point in the 4k-dimensional probability simplex ∆4k−1

and represents the empirical distribution of k-mers in s. However, not all points
θ ∈ ∆4k−1 correspond to an empirical k-mer distribution; in particular, the
points with at least one irrational coordinate do not correspond to an empirical
k-mer distribution.

Besides the normalization constraint, if θs ∈ ∆4k−1 is a valid k-mer distribution,
every internal (k − 1)-mer is shared by two overlapping k-mers. For example,
every occurrence of a k-mer w = a1a2 . . . ak must be followed sequentially
by a k-mer w′ = a2a3 . . . ak+1. This can be formalized by the requirement
suffix(w) = prefix(w′), where prefix(w) (respectively suffix(w)) is defined
as being the word consisting of the first (respectively last) |w| − 1 letters in w.
This condition imposes a marginalization constraint on all the k-mers, e.g.

θAXY + θCXY + θGXY + θTXY = θXYA + θXY C + θXYG + θXY T = θXY .

Thus, for each (k − 1)-mer v ∈ Σk−1 (except edge cases in finite sequences), the
sum of the frequencies of k-mers with v as a prefix must equal the sum of the
frequencies of k-mers with v as a suffix. When considered across all k-mers, this
condition imposes a set of additional marginal constraints that imply that θs
does not occupy the full 4k-dimensional simplex but rather a lower-dimensional
sub-polytope [24, 18]. Formally, for every v ∈ Σk−1,∑

a∈Σ

θsva =
∑
a∈Σ

θsav = θsv. (7)

Note that the constraints in equation 7 represent necessary conditions for a point
θ ∈ ∆4k−1 to be the k-mer distribution of a valid DNA sequence. We will later
show that these constraints are a sufficient condition for sequence reconstruction.

Given a k-mer distribution θ, our objective is to reconstruct a sequence s,
whose empirical k-mer frequency vector approximates the target distribution θ
as closely as possible. Then, we can compute the CGR according to Definition 2 to
visualize the patterns corresponding to specific k-mer over- or under-representation.
A similar problem has been studied in the field of genome assembly [23], where
De Bruijn-graph–based methods have proven effective for assembling genomes
from fragmented reads [26, 3]. We will show that a suitable traversal of an
appropriately constructed De Bruijn graph , combined with corrections for
rounding error and violation of equation 7, produces a sequence that satisfies an
approximation criterion.

Definition 13. A directed multigraph M is a pair (V,E), where V is a set of
nodes, and E is a multiset of ordered pairs from V × V , called edges. Loops and
parallel edges are permitted.
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Definition 14. Let k ≥ 2, n > k, and s ∈ Σn. The De Bruijn multigraph,
denoted De Bruijn+

k (s), is the directed multigraph
(
Vk−1(s), Ek(s)

)
, where

Vk−1(s) =
{
v ∈ Σk−1

∣∣ v appears as a substring of s
}
,

Ek(s) = {(u, v) ∈ Vk−1(s)
2 | there exists a k-mer w ∈ Σk that appears in s

with Prefix(w) = u and Suffix(w) = v}.

In particular, for each (u, v) ∈ Vk−1(s)
2, the multiplicity of the edge (u, v) in

Ek(s) is exactly occ(s, w).

Based on Definition 14, De Bruijn+
k (s) is completely determined by the

collection of k-mers of s, so it can be constructed directly from a k-mer frequency
vector without explicit knowledge of the sequence s. With this framework in
place, assume a target distribution θs. It is then possible to rescale θs by n−k+1
to obtain an array of pseudo counts cs such that each component is defined
by csw = (n − k + 1) · θsw. Consequently, the problem of string reconstruction
reduces to finding a path in the De Bruijn multigraph (constructed from these
pseudo-counts) that traverses every edge exactly once, i.e., an Eulerian path.
Euler’s theorem provides the necessary and sufficient conditions for the existence
of such a path.

Theorem 4. (Euler) Let G = (V,E) be a directed graph, and for any vertex
v ∈ V let in(v) and out(v) denote its indegree and outdegree, respectively. Then
G contains an Eulerian cycle if and only if: (1) G is strongly connected, i.e., there
exists a directed path between any pair of vertices in G, and (2) for every vertex
v ∈ V , it holds that IN(v) = OUT(v).

Thus, for a directed graph G to contain an Eulerian cycle, it must be strongly
connected and balanced at every vertex. In our setting, this implies that the
hypothetical counts cw must satisfy the marginal constraint on the de Bruijn
graph to yield a valid DNA sequence s. In particular, if we associate each
(k− 1)-mer v with the k-mers that have v as a prefix or suffix, then the following
condition in equation 7 must hold for every vertex v, except for the unique vertices
corresponding to the start and end of an Eulerian path. We now formalize these
conditions in the following theorem:

Theorem 5. Let 1 < k < n ∈ Z, ϵ ∈ [0, 1], and let θ be a point in ∆4k−1

satisfying the marginal constraint in equation 7 for every vertex v. If n >
2(k−1)·4k

ϵ + k − 1, then there exists an algorithm that constructs a sequence
s whose empirical k-mer distribution θ̂s =

Fk(s)
∥Fk(s)∥1

satisfies ∥θ̂s − θ∥1 ≤ ϵ.

We validate the theoretical construction through numerical experiments, using
two different approaches. First, a fragment of 100,000 base pairs (bp) is sampled
from the reference genome of 100 different species, each representing a distinct
kingdom of life. For each sampled fragment, empirical k-mer distributions are
computed for k ∈ {2, . . . , 6}, and the average reconstruction error, measured by
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Fig. 3: (a) Reconstruction of sequences from k-mer distributions of real DNA
sequences. The reconstruction is computed across different values of k, and sequences
spanning species from each of the six kingdoms of life. For each kingdom, 100 genomes
were selected, and a single 100,000-long DNA fragment was randomly selected from each
genome. The mean error was computed for each pair (k, kingdom). (b) Reconstruction
of sequence from arbitrary k-mer distributions that satisfy the marginal
constraints. Each point is sampled from the standard probability simplex ∆4k−1

subject to the constraints in equation 7 for different values of k ∈ {2, . . . , 6}. The
sequence length nmin, calculated for ϵ = 0.01, ranges from 3,200 for k = 2, to 819,200
for k = 6. The reconstruction error is less than ϵ for all the values of k.

the total variation of k-mer distances, is determined for each kingdom. These
results are summarized in Figure 3a. Second, we sample arbitrary distributions
from the relevant sub-polytope of ∆4k−1. To this end, we employ a variation of
the hit–and–run sampling procedure [21], which operates within the null-space
defined by the linear constraints in equation 7. Here, the sequence length is
fixed at nmin = 2 · 4k/ϵ + k − 1 for ϵ = 0.01, and sampling is performed for
k ∈ {2, . . . , 6}. Figure 3b illustrates the reconstruction error for different values
of k over points sampled from the desired sub-polytope.

The results of our experiments indicate that the reconstruction algorithm is
capable of recovering sequences whose k-mer distributions closely approximate the
target distributions, regardless of whether the target is sampled from a reference
DNA sequence or sampled from the simplex. A computational tool implementing
the algorithm is available at https://tinyurl.com/kmer2cgr (see Figure 4).

5 Conclusions and Future Work

This work formalizes the connections between CGR, FCGRk, and k-mer frequency
vectors as genomic signatures. We note, however, that each genomic signature
has distinct features and that each has proven effective in specific applications,
depending on various factors such as sequence length or sequence dataset size.
The aforementioned demonstrated connections between these types of genomic
signatures could potentially aid in the determination of their suitability for
particular practical applications. We also present an algorithm that generates
synthetic DNA sequences and their corresponding CGRs from target k-mer

https://tinyurl.com/kmer2cgr
https://tinyurl.com/kmer2cgr
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Fig. 4: Snapshot of the functionality of the computational tool: (a) Input: Dinucleotide
(k = 2) distribution selected by a user via interactively adjusting 16 different sliders,
each corresponding to one dinucleotide. (b) Output: CGR of a reconstructed DNA
sequence whose k-mer distribution closely approximates the k-mer distribution in (a).

frequency vectors. This methodology opens a new avenue for synthetic DNA data
generation in contrastive machine learning pipelines for taxonomic classification
applications, whereby data augmentations (training samples artificially generated
from existing data), are used to learn meaningful representations of the DNA
sequences. Future work could explore the applicability of k-mer sampling for
data augmentation and the effect of less stringent constraints, e.g., information-
theoretic, on reconstruction guarantees.
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Appendix A: Technical Appendix

A.1 Proofs in Section 2

Theorem 1. Let u,w ∈ Σn be two DNA sequences of length n, and let σ ∈ S
be one of the morphisms in S. Then u = σ(w) if and only if CGR(u) = f−1(σ) ·
CGR(w).

Proof. Recall the labelling function label that associates each letter of the DNA
alphabet Σ to one of the corners of the CGR square. We start by proving the
following claim.

Claim 1. Let σ ∈ S be one of the letter permutations on Σ, extended to a
morphism on Σ∗, and let f : D8 → S be the mapping that associates to every
symmetry of the square in D8 one such letter permutation in S. Then, for any
letters a, b ∈ Σ, we have that

a = σ(b) ⇐⇒ label(a) = f−1(σ) · label(b).

Proof of Claim 1. Assume, without loss of generality, that b = G. This implies
label(b) = (1, 1). The following cases are possible for the morphism σ:
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1. σ = (), the identity permutation on Σ.
“=⇒" a = σ(b) = σ(G) = G implies label(a) = label(G) = (1, 1) and
f−1(σ) = e. Thus, f−1(σ) · label(b) = e · label(G) = label(G) = label(a).

“⇐=" f−1(σ) =

[
1 0
0 1

]
, which implies label(a) = f−1(σ) · label(b) = (1, 1),

further implying that a = G = σ(b).
2. σ = (A C G T ).

“=⇒" a = σ(G) = T implies label(a) = label(T ) = (1,−1) and f−1(σ) = r3.
Thus,

f−1(σ) · label(b) = r3 · (1, 1) =
[
0 1
−1 0

]
· (1, 1) = (1,−1) = label(a).

“⇐=" f−1(σ) =

[
0 1
−1 0

]
, which implies label(a) = f−1(σ) · label(b) = (1,−1),

which further implies that a = T = σ(b).
3. σ = (A G)(C T ).

“=⇒" a = σ(G) = A implies label(a) = label(A) = (−1,−1) and f−1(σ) = r2.
Thus,

f−1(σ) · label(b) = r2 · (1, 1) =
[
−1 0
0 −1

]
· (1, 1) = (−1,−1) = label(a).

“⇐=" f−1(σ) =

[
−1 0
0 −1

]
implies label(a) = f−1(σ) · label(b) = (−1,−1),

which further implies that a = A = σ(b).
4. σ = (A T G C).

“=⇒" a = σ(G) = C implies label(a) = label(C) = (−1, 1) and f−1(σ) = r.
Thus,

f−1(σ) · label(b) = r · (1, 1) =
[
0 −1
1 0

]
· (1, 1) = (−1, 1) = label(a).

“⇐=" f−1(σ) =

[
0 −1
1 0

]
implies l(a) = f−1(σ) · label(b) = (−1, 1), which

further implies that a = C = σ(b).
5. σ = (A C)(G T ).

“=⇒" a = σ(G) = T implies label(a) = label(T ) = (1,−1) and f−1(σ) = s.
Thus,

f−1(σ) · label(b) = s · (1, 1) =
[
1 0
0 −1

]
· (1, 1) = (1,−1) = label(a).

“⇐=" f−1(σ) =

[
1 0
0 −1

]
implies label(a) = f−1(σ) · label(b) = (1,−1), which

further implies that a = T = σ(b).
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6. σ = (A T )(C G).
“=⇒" a = σ(G) = C implies label(a) = label(C) = (−1, 1) and f−1(σ) = sr2.
Thus,

f−1(σ) · label(b) = sr2 · (1, 1) =
[
−1 0
0 1

]
· (1, 1) = (−1, 1) = label(a).

“⇐=" f−1(σ) =

[
−1 0
0 1

]
implies label(a) = f−1(σ) · label(b) = (−1, 1), which

further implies that a = C = σ(b).
7. σ = (C T ).

“=⇒" a = σ(G) = G implies label(a) = label(G) = (1, 1) and f−1(σ) = sr3.
Thus,

f−1(σ) · label(b) = sr3 · (1, 1) =
[
0 1
1 0

]
· (1, 1) = (1, 1) = label(a).

“⇐=" f−1(σ) =

[
0 1
1 0

]
implies label(a) = f−1(σ) · label(b) = (1, 1), which

further implies that a = G = σ(b).
8. σ = (A G).

“=⇒" a = σ(G) = A implies label(a) = label(A) = (−1,−1) and f−1(σ) = sr.
Thus,

f−1(σ) · label(b) = sr · (1, 1) =
[
0 −1
−1 0

]
(1, 1) = (−1,−1) = label(a).

“⇐=" f−1(σ) =

[
0 −1
−1 0

]
implies label(a) = f−1(σ) · label(b) = (−1,−1),

which further implies that a = A = σ(b).

The cases when b = T , b = A, and b = C can be proved similarly, and complete
proof of Claim 1.

The proof is now by induction on n, the length of the input strings u and w.
Assume w = b1b2 . . . bn and u = a1a2 . . . an, where n ≥ 1 and ai, bi are letters in
Σ for all 1 ≤ i ≤ n. Recall that CGR(u) = f−1(σ) ·CGR(w) iff, for all 1 ≤ i ≤ n,
we have qi = f−1(σ) · pi where qi is the i-th point in the generation of CGR(u),
and pi is the i-th point in the generation of CGR(w).

Base Case. n = 1. Then w = b ∈ Σ, and u = a ∈ Σ.
“=⇒" Assume a = σ(b). By the recursive definition of CGR, CGR(a) consists

of a single point q1 = label(a)
2 , and CGR(b) consists of a single point p1 = label(b)

2 .
By Claim 1, label(a) = f−1(σ) · label(b). Thus,

q1 =
label(a)

2
=

f−1(σ) · label(b)
2

= f−1(σ) · p1
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“⇐=" Assume CGR(a) = f−1(σ) · CGR(b). Since CGR(a) consists of one
point q1 = label(a)

2 , and CGR(b) consists of one point p1 = label(b)
2 , this implies

q1 =
label(a)

2
= f−1(σ) · p1 = f−1(σ) · label(b)

2
,

further implying label(a) = f−1(σ) · label(b). By Claim 1 this now implies that
a = σ(b).

Inductive step. Assume that the iff statement of Theorem 1 holds for words of
length (m − 1), with m ≥ 2 (Inductive Hypothesis, I.H.). Let w and u be two
words of length m, that is, w = b1b2 . . . bm−1bm and u = a1a2 . . . am−1am, where
ai, bi ∈ ∆ for all 1 ≤ i ≤ m.

“=⇒" Assume u = σ(w). By the definition of morphism, we have that
u = σ(w) iff ai = σ(bi), for all 1 ≤ i ≤ m.
Denote

w′ = b1b2 · · · bm−1, u′ = a1a2 · · · am−1.

By (I.H.), since u′ = σ(w′), we have that qi = f−1(σ) · pi, for all 1 ≤ i ≤ m− 1.
By the definition of CGR, the mth point of CGR(u) is qm, and the mth point of
CGR(w) is pm, where

qm =
qm−1 + label(am)

2
, and pm =

pm−1 + label(bm)

2
.

Since am = σ(bm), by Claim 1 we have that label(am) = f−1(σ) · label(bm). Thus,
by I.H. and Claim 1, we have

qm =
qm−1 + label(am)

2
=

f−1(σ) · pm−1 + f−1(σ) · label(bm)

2
=

f−1(σ) · pm−1 + label(bm)

2
= f−1(σ) · pm.

Since the equality qi = f−1(σ) · pi holds now for all 1 ≤ i ≤ m, it follows that
CGR(u) = f−1(σ) · CGR(w).

“⇐=" Assume that CGR(u) = f−1(σ) · CGR(w). This implies that, for all
1 ≤ i ≤ m we have that qi = f−1(σ) · pi.

The recursive definition of CGR(w) and the previous observation imply that:

qm = f−1(σ) · pm =
qm−1 + label(am)

2
, (8)

In parallel, the recursive definition of CGR and the fact that f−1(σ) is a
transformation in R2 imply that:

f−1(σ) · pm = f−1(σ) ·
(
pm−1 + label(bm)

2

)
(9)
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By transitivity of equality applied to equations 8 and 9 we get that:

qm−1 + label(am)

2
= f−1(σ) ·

(
pm−1 + label(bm)

2

)
This can be further simplified using the distributivity property of matrix multiplication:

qm−1 + label(am) = f−1(σ) · pm−1 + f−1(σ) · label(bm)

label(am) = f−1(σ) · label(bm)

which implies that am = σ(bm) by Claim 1.
By the (I.H.), since CGR(u′) = f−1(σ) · CGR(w′) we have that u′ = σ(w′).

Thus, by the definition of a morphism and the previously derived relation am =
σ(bm), we obtain that σ(w) = σ(w′)σ(bm) = u′am = u.

Corollary 1. Given a word u ∈ Σn and a symmetry transformation h ∈ D8,
there exists a word w ∈ Σn such that CGR(w) = h · CGR(u). Constructively,
this word can be computed as w = f(h) · u, with f : D8 → S4 as defined above.

Proof. It directly follows from Theorem 1.

Theorem 2. Let w, u ∈ Σn be two DNA words of length n, and let α, β ∈ Σk be
two k-mers, k < n, such that subk(w) = Σk\{α} and subk(u) = Σk\{β}. Then,
for any permutation morphism σ ∈ S, we have that CGR(u) = f−1(σ) ·CGR(w)
implies β = σ(α).

Proof. Let σ ∈ S be one of the permutation morphisms in S.

“=⇒” Since CGR(u) = f−1(σ) · CGR(w), by Theorem 1 we have u = σ(w).

Since σ is a morphism, it follows that subk(u) = subk(f(w)) = f(subk(w)).
Now let us show β = σ(α). We have that

subk(u) = Σk \ {β} = subk(σ(w)) = σ(subk(w)) = σ(Σk \ {α})

Since σ ∈ S is a permutation of the letters of Σ, we have that σ(Σk) = Σk,
and σ(Σk \ {α}) = Σk \ {σ(α)}. Together with the above equalities, this implies
β = σ(α).

A.2 Proofs in Section 3

Proposition 1. Let k ≥ 1, let w = a1 · · · ak be a k-mer, and assume that
label(al) = (xl, yl) where xl, yl ∈ {−1, 1}, for all 1 ≤ l ≤ k. Then c(w) =
cellk(i, j), that is, the CGR cell associated with the k-mer w equals the grid cell
(i, j) of order k with indices

j =
2k − 1 +Σk

l=1xl · 2l−1

2
, i =

2k − 1−Σk
l=1yl · 2l−1

2
. (10)
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Proof. We start by first observing that, for a given value of k and k-mer w, the
size of the CGR cell c(w) is the same as the size of cellk(i, j), a grid cell of order
k, where 0 ≤ i, j ≤ 2k−1. Therefore, for a given k and k-mer w, what remains
is to find indices 0 ≤ i, j ≤ 2k−1 such that the center (xj , yi) of the grid cell
cellk(i, j) coincides with the center plast(w) = (xw, yw) of c(w), if such indices
exist.

Let w = a1a2 · · · ak and let plast(w) be the last point in CGR(w).
Recall that plast(w) = (xw, yw) in equation 2 is the center of the c(w). For

any indexing (i, j), the center (xj , yi) of the cellk(i, j) is defined by equation 1.
Letting (xw, yw) = (xj , yi) leads to

xw =
Σk

l=1xl · 2l−1

2k
= xj = −2k − 1

2k
+

j

2k−1
,

yw =
Σk

l=1yl · 2l−1

2k
= yi =

2k − 1

2k
− i

2k−1
.

Solving for j and i gives

j =
2k − 1 +Σk

l=1xl · 2l−1

2
, i =

2k − 1−Σk
l=1yl · 2l−1

2
,

which is equation 10 as required. Since xl ∈ {−1, 1} for all l = 1, . . . , k, we have
that j is an integer. Furthermore, the minimum value of j is achieved when xl = −1
for all l = 1, . . . , k, and its maximum is achieved when xl = 1 for all l = 1, . . . , k,
which leads to j ∈ {0, . . . , 2k − 1}. By a similar reasoning, i ∈ {0, . . . , 2k − 1}.
Thus, for these values of i and j, we have that (xw, yw) = (xj , yi). Therefore,
the grid cell cellk(i, j) equals the CGR cell c(w) associated with the k-mer w, as
having the same size and the same center.

Lemma 1. Let n ≥ 1, k ≥ 1, and let u ∈ Σn, w ∈ Σk be two DNA sequences.
Let plast(u), plast(w) be the last points of CGR(u), CGR(w) respectively. Then,
the last point of CGR(uw) is

plast(uw) =
plast(u)

2|w| + plast(w).

Proof. By induction on k.
Base Case. Let k = 1, that is, w = a, where a ∈ Σ. It follows from the definition
of CGR that

plast(ua) =
plast(u)

2
+

label(a)

2
=

plast(u)

2
+ plast(a).

Inductive step. Assume that the statement holds for an arbitrary k ≥ 1, and
let w ∈ Σk+1. Then w = w′ak+1 where w′ ∈ Σk, ak+1 ∈ Σ. By I.H., for all
u ∈ Σn1 , n1 ≥ 0, we have that the last point plast(uw

′) of CGR(uw′) is

plast(uw
′) =

plast(u)

2k
+ plast(w

′).
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The last point plast(uw) of CGR(uw) is

plast(uw) = plast(uw
′ak+1) =

plast(uw
′)

2
+

label(ak+1)

2
(by definition of CGR)

=
plast(u)

2k+1
+

plast(w
′)

2
+

label(ak+1)

2
(by I.H.)

=
plast(u)

2k+1
+ plast(w) (by definition of CGR)

Proposition 2. Let s be a sequence of length n over Σ, and let 1 ≤ k ≤ n. The
last point plast(s) of CGR(s) is not on the boundary of a cell c(w) associated
with any k-mer w in Σk.

Proof. First note that any point in CGR(s) of a sequence s is strictly inside the
CGR square. Indeed, for any s′ ∈ Σn, the x-coordinate of plast(s′) = (xs′ , ys′),
the last point of CGR(s′), is by definition of the form

xs′ =
±1

2
+

±1

22
+

±1

23
+ · · ·+ ±1

2n
.

It follows that the absolute values of xs′ and ys′ are both strictly less than 1,
therefore, plast(s′) is strictly inside the CGR square.

Let s = s′w where w is of length k. Then, by Lemma 1,

plast(s) =
plast(s

′)

2k
+ plast(w).

The proof is completed by the fact that the absolute values of xs′ and ys′ are
strictly less than 1.

Lemma 2. Let w1, w2 be words in Σ+. Then c(w1w2) ⊆ c(w2).

Proof. Let (x, y) ∈ c(w1w2), let plast(w1w2) = (xw1w2 , yw1w2), plast(w1) =
(xw1

, yw1
) and let plast(w2) = (xw2

, yw2
). Without loss of generality, we consider

the x-coordinates of all points. By the definition of c(w1w2), we have

−1/2|w1w2| < x− xw1w2
< 1/2|w1w2|.

By Lemma 1, we have that

xw1w2
=

xw1

2|w2|
+ xw2

.

By replacing xw1w2 into the previous inequality we obtain

−1/2|w1w2| + xw1
/2|w2| < x− xw2

< 1/2|w1w2| + xw1
/2|w2|.

Since xw1 ≤
∑|w1|

l=1 2l−1/2|w1| = (2|w1| − 1)/2|w1|, we have x− xw2 < 1/2|w1w2| +
xw1/2

|w2| ≤ 1/2|w2|. Similarly, we have −1/2|w2| ≤ −1/2|w1w2| + xw1/2
|w2| <

x− xw2
. Therefore, −1/2|w2| < x− xw2

< 1/2|w2|.
Since an analogous argument can be made for the y-coordinate, it follows

that the arbitrary point (x, y) from c(w1w2) is situated in c(w2).
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Proposition 3. Let k ≥ 1 and n ≥ 1. For a given k-mer w ∈ Σk we have that
c(w) =

⋃
w′∈Σn c(w′w).

Proof. By strong induction on n.
Base Case. For n = 1, we have to prove that

c(w) =
⋃
a∈Σ

c(aw).

Let plast(w) = (xw, yw) and let label(a) = (xa, ya). By definition of c(w),

c(w) = {(x, y)| − 1/2|w| ≤ x− xw ≤ 1/2|w|, −1/2|w| ≤ y − yw ≤ 1/2|w|}.

By Lemma 1 and the definition of c(aw), we have

c(aw) = {(x, y)| −1 + xa

2|w|+1
≤ x− xw ≤ 1 + xa

2|w|+1
,

−1 + ya
2|w|+1

≤ y − yw ≤ 1 + ya
2|w|+1

}.

Since xa, ya ∈ {−1, 1}, it suffices to consider all possible pairs in {−1, 1}×{−1, 1}.
Substituting each of these pairs into the preceding equation and taking their
union, leads to the desired range for points in c(w), from which it follows that
c(w) =

⋃
a∈Σ c(aw).

Inductive Step. Assume now that the statement holds for all 1 ≤ i ≤ j, and
show that it holds for j + 1. Note that⋃

w′∈Σj+1

c(w′w) =
⋃
a∈Σ

⋃
w′′∈Σj

c(w′′aw).

Since by the induction hypothesis, we have
⋃

w′′∈Σj c(w′′aw) = c(aw), and also
that c(w) =

⋃
a∈Σ c(aw), the proof of the inductive step is complete.

Theorem 3. Given a DNA sequence s ∈ Σn, and a k-mer w ∈ Σk, where
1 ≤ k ≤ n, we have that

occ(s, w) = card(CGR(s) ∩ c(w))

where occ(s, w) denotes the number of occurrences of the k-mer w in s.

Proof. Let k ≥ 1 and let w ∈ Σk be a k-mer. We first prove that occ(s, w) ≤
card(CGR(s) ∩ c(w)).

Consider an arbitrary occurrence of w in s. Then s = s1ws2 for some s1, s2 ∈
Σ∗, and let us denote s′ = s1w.

If s1 = λ, then plast(s
′) = plast(w) is the center of c(w) and thus is located

inside c(w).
If s1 ∈ Σ+, by applying Lemma 1 to s′, we have that the last point plast(s

′)
of CGR(s′) is

plast(s
′) = plast(s1w) =

plast(s1)

2k
+ plast(w).
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From the proof of Proposition 2, we have that plast(s1) is located inside the CGR
square, that is, plast(s1) ∈ {(x, y)| − 1 < x < 1,−1 < y < 1}. This implies that

plast(s
′) = plast(s1w) ∈ {plast(w)+(x, y)| −1/2k < x < 1/2k,−1/2k < y < 1/2k}.

By comparing this with Definition 9 of c(w), Definition 9, it follows that plast(s′)
is located inside c(w).

Since we reached the same conclusion in both possible cases, it follows that
any occurrence of w in s = s1ws2 corresponds to a CGR point plast(s1w) located
inside c(w). From this, It follows that occ(s, w) ≤ card(CGR(s) ∩ c(w)).

We now prove that occ(s, w) ≥ card(CGR(s) ∩ c(w)).
Consider a point of CGR(s) that is located inside c(w). This point is plast(s′),

the last point of CGR(s′), for some prefix s′ of s.
We first show that |s′| ≥ k. Assume, for the sake of contradiction, that

|s′| = k′ < k.
If s′ is not a proper suffix of w, then for any decomposition w = w1w2 with

|w2| = |s′|, we have that w2 ≠ s′. Then plast(s
′) will be located inside c(s′),

which does not overlap with c(w2), hence plast(s
′) is not located inside c(w2).

By Lemma 2, c(w) = c(w1w2) ⊆ c(w2). This implies that plast(s
′) is not located

inside c(w) - a contradiction. Thus, it must be the case that if s′ = k′ < k, then
s′ is a proper suffix of w, that is, s′ = w2 with w = w1w2, and w1 ̸= λ.

However, this leads to a contradiction, as follows. From Lemma 1, we have
plast(w2) − plast(w1w2) = plast(w1)

2k′ . For plast(s) to be located inside c(w), we
would need 2|w1| · plast(w1) ∈ (−1, 1) × (−1, 1), which cannot happen for any
w1 ̸= λ. Indeed, for the aforementioned relation to hold, the x-coordinate of
plast(w1) = (xw1 , yw1) should satisfy

2|w1| · xw1
=

|w1|∑
l=1

xl · 2l−1.

If xw1 = 1, then we have that 2|w1| · xw1 ≥ 1, and if xw1 = −1, then we have that
2|w1| · xw1

≤ −1. In both situations, the sum on the right-hand side cannot be
in the interval (−1, 1), while the quantity on the left-hand side is in (−1, 1) - a
contradiction.

Thus, it follows that k ≤ |s′| ≤ n, where s′ is a prefix of s. Let s′ = s1w
′

where s1 ∈ Σ∗, w′ ∈ Σk. If w′ ̸= w, using the same argument as before, one
can show that plast(s

′) will be in c(w′), which contradicts the fact that cells
associated with different k-mers are non-overlapping. Therefore s′ = s1w, which
means that the point in CGR(s) that we considered, plast(s′), corresponds to
the specific occurrence of w in s. Since distinct s′ result in distinct plast(s′), each
point in CGR(s) located inside c(w) corresponds to a distinct occurrence of w in
s. This further implies that card(CGR(s) ∩ c(w)) ≤ occ(s, w), which completes
the proof.

Corollary 2. Let s ∈ Σn be a sequence, and let 1 ≤ k ≤ n be a k-mer length.
Computing FCGRk(s) by discretizing CGR(s) into grid cells of order k as defined
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in Definition 7 (i.e., at resolution 2k × 2k) is equivalent to counting the number
of occurrences of k-mers in the sequence s.

Proof. It follows from Theorem 3, Proposition 1 and the bijection that it
establishes.

A.3 Proofs in Section 4

Lemma 3. Let k ≥ 1, and 0 ≤ i, j ≤ 2k−1. If i =
∑k−1

l=0 αl2
l and j =

∑k−1
l=0 βl2

l,
with αl, βl ∈ {0, 1} are the binary expansions of i and j, then cellk(i, j) =
c(a1 · · · ak) where c(a1...ak) is the cell associated with a1...ak constructed as

al = label−1(1− 2αl−1, 2βl−1 − 1), for 1 ≤ l ≤ k (11)

Proof. From Proposition 1, we know that

j =
2k + 1 +

∑k
l=1 xl · 2l−1

2
, i =

2k + 1−
∑k

l=1 yl · 2l−1

2
,

which can be rewritten as:

j =
1

2

(
k∑

l=1

2l−1 · (1 + xl) + 1

)
, i =

1

2

(
k∑

l=1

2l−1 · (1− yl) + 1

)
.

Now, considering the binary expansion of the indices, we get the following
equations:

j =

k−1∑
l=0

βl · 2t =
k∑

l=1

2l−1 · (1 + xl)

2
, i =

k−1∑
l=0

αl · 2l =
k∑

l=1

2l−1 · (1− yl)

2
,

which we solve for xl and yl to obtain the correspondence with the coefficients in
the binary expansion:

xl = 1− 2αl−1, yl = 2βl−1 − 1 (12)

Finally, by Definition 1 we get that: al = label−1(xl, yl) = label−1(1 −
2αl−1, 2βl−1 − 1)

Proposition 4. Let k ≥ 1, n ≥ 1, s ∈ Σn and 0 ≤ i, j ≤ 2k − 1. If i =∑k−1
l=0 αl2

l and j =
∑k−1

l=0 βl2
l, with αl, βl ∈ {0, 1} (their binary expansions),

then FCGRk(s)(i, j) = occ(s, wτ ), where

τ =

k−1∑
l=0

4k−l−1 × ξ(label−1(1− 2αl−1, 2βl−1 − 1)) (13)
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Proof. First, note the correspondence between each k-mer and its position in the
FCGRk matrix. In Lemma 3, we have found the correspondence between the
indices in the matrix (equation 11) so that each position (i, j) defines a k-mer
w = a1a2 · · · ak. Replacing equation 11 into equation 4, yields the corresponding
index τ of w in the lexicographic order.

Theorem 5. Let 1 < k < n ∈ Z, ϵ ∈ [0, 1], and let θ be a point in ∆4k−1

satisfying the marginal constraint in equation 7 for every vertex v. If n >
2(k−1)·4k

ϵ + k − 1, then there exists an algorithm that constructs a sequence
s whose empirical k-mer distribution θ̂s =

Fk(s)
∥Fk(s)∥1

satisfies ∥θ̂s − θ∥1 ≤ ϵ.

Proof. Let c be the rounded count vector obtained by rescaling θ by n− k + 1
and let G = (V,E) be the de Bruijn graph constructed from c. For each vertex
v ∈ V (corresponding to a (k − 1)-mer), define the flow imbalance

δ(v) =
∑
a∈Σ

cva −
∑
a∈Σ

cav.

Denote by V + = {v ∈ V : δ(v) > 0} the set of vertices with excess outgoing
edges, and by V − = {v ∈ V : δ(v) < 0} the set of vertices with excess incoming
edges. By conservation of the total edge count,

∑
v∈V δ(v) = 0; hence, the total

excess outdegree equals the total excess indegree.
To balance the graph and satisfy Euler’s condition, we add artificial edges.

Specifically, for every v ∈ V + and every w ∈ V − there is a directed path
Pv→w of length at most k − 1 edges (and hence k − 2 intermediate vertices
u1, . . . , uk−2). This can be seen from the De Bruijn multigraph associated with
the sequence vw ∈ Σ2k−2, it starts with vertex v and ends with vertex w. To
correct the imbalance of G at v and w, we add one edge connecting each node
in Pv→w, which increments the count of each edge in Pv→w by one. Doing
this δ(v) times for each v ∈ V + restores in- and out-degree balance at every
vertex (since intermediate nodes gain one in-edge and one out-edge, leaving their
imbalance unchanged). Denote by G′ = (V,E′) the resulting balanced graph. By
construction, every vertex in G′ now has equal indegree and outdegree. If G′

is strongly connected, Euler’s theorem guarantees the existence of an Eulerian
cycle. If not, at most 4k−1 additional artificial edges are needed to connect the
components. The sequence s′ is reconstructed by traversing the Eulerian path in
G’.

Error bound: Define δmax = maxv∈V |δ(v)|. Since the maximum rounding error
for any count is 1

2 and each (k − 1)-mer has at most 4 incoming and 4 outgoing
k-mers, we have δmax ≤ 4. Let nart denote the total number of artificial edges
added; then

nart =
∑

v∈V +

(k − 1) · δ(v) ≤ (k − 1) · δmax · |V +| ≤ (k − 1) · 4k.

Denote c = (c1, . . . , c4k) the original k-mer counts and by c′ = (c′1, . . . , c
′
4k) the

k-mer counts in the reconstructed sequence s′. Each artificial edge increases the
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corresponding k-mer count by 1, consequently, the error in the i-th component
of the empirical distribution is∣∣∣θ̂s′i − θi

∣∣∣ = ∣∣∣∣ c′i
|E|+ nart

− ci
|E|

∣∣∣∣ ,
which can be rewritten as:

|θ̂s
′

i − θi| =
∣∣∣∣c′i · |E| − ci · (|E|+ nart)

|E| · (|E|+ nart)

∣∣∣∣
=

∣∣∣∣c′i · |E| − ci · |E| − ci · nart

|E| · (|E|+ nart)

∣∣∣∣
=

∣∣∣∣ |E| · (c′i − ci)− ci · nart

|E| · (|E|+ nart)

∣∣∣∣ .
When we sum this over all k-mers, using the facts that

∑4k

i=1 |c′i − ci| = nart

and
∑4k

i=1 ci = |E|, we get:

4k∑
i=1

|θ̂s
′

i − θi| ≤
2nart

|E|+ nart
,

∥θ̂s′ − θ∥1 ≤ 2nart

|E|+ nart
.

Since |E| = n− k + 1 and nart ≤ (k − 1) · 4k, it follows that

∥θ̂s′ − θ∥1 ≤ 2 · (k − 1) · 4k

(n− k + 1) + (k − 1) · 4k
.

Imposing the condition n > 2·(k−1)·4k
ϵ + k − 1, ensures that ∥θ̂s′ − θ∥1 ≤ ϵ.
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Appendix B: Supplementary Information

B.4 Dihedral Group

The dihedral group [6] D8 =
{
e, r, r2, r3, s, sr, sr2, sr3

}
is the group of all symmetries

of the square, a group comprising rotations and reflections about lines joining
midpoints of opposite sides, respectively reflections about diagonals:

– e is the identity (no change)
– r (respectively r2, r3) is the rotation by π

2 (resp. π, 3π
2 ) counterclockwise.

– s is the reflection about the line bisecting the left and right sides of the
square (i.e. the line y1 = {(x, 0) : x ∈ R} shown in Figure 5.)

– sr is the reflection about the diagonal from the bottom-right to the top-left
vertex (i.e. the line y2 =

{
(x1, x2) ∈ R2 : x1 = −x2

}
shown in Figure 5.)

– sr2 is the reflection about the line bisecting the top and bottom sides of the
square (i.e. the line y3 = {(0, y) : y ∈ R} shown in Figure 5.)

– sr3 is the reflection about the diagonal from the top-right to the bottom-left
vertex (i.e. the line y4 =

{
(x1, x2) ∈ R2 : x1 = x2

})
shown in Figure 5.)

The following representations, using matrices in M2×2(R), will be used to
implement these symmetries.

e 7→
[
1 0
0 1

]
r 7→

[
0 −1
1 0

]
r2 7→

[
−1 0
0 −1

]
r3 7→

[
0 1
−1 0

]
s 7→

[
1 0
0 −1

]
sr 7→

[
0 −1
−1 0

]
sr2 7→

[
−1 0
0 1

]
sr3 7→

[
0 1
1 0

]

B.5 FCGR via Kronecker Products

Kronecker product ⊗ of A of size m1 × n1 with B of size m2 × n2 is a matrix of
size m1m2 × n1n2 defined as follows:

A⊗B =

 A11B · · · A1n1
B

...
. . .

...
Am11B · · · Am1n1B

 .

In [10], FCGR is defined via Kronecker products of the 2×2 matrix as follows.

M =

[
C G
A T

]
, M (k) = M ⊗M ⊗ · · · ⊗M︸ ︷︷ ︸

k times

.

Definition 15 ([10]). A FCGRk of a sequence s ∈ Σn with order k with n ≥ k,
is a matrix FCGRk(s) ∈ R2k×2k such that its (i, j)th entry FCGRk(s)(i, j) is
the frequency of the k-mer M

(k)
ij .
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A T

C G

(a) e ()

A T

C G

(b) r (AT GC)

A T

C G

(c) r2 (AG)(C T )

A T

C G

(d) r3 (AC GT )

A T

C G

(e) s (AC)(GT )

A T

C G

(f) sr (AG)

A T

C G

(g) sr2 (AT )(C G)

A T

C G

(h) sr3 (C T )

Fig. 5: Visual correspondence between the eight elements of the permutation group S4

acting on {A,C,G, T} and the dihedral group D8. Panels (a) to (h) show Chaos Game
Representations of a 100 kb randomly selected fragment from human chromosome 4
(GRCh38.p14 primary assembly, RefSeq NC_000004.12) after applying the indicated
nucleotide permutation.

A T

C G

(a)

A T

C G

(b)

A T

C G

(c)

Fig. 6: A visual comparison of FCGRs of order k = 7 according to different definitions.
The intensity of the pixel represents the frequencies of 7-mers. Darker pixels mean
larger frequencies. (a) CGR of a 100,000 bp DNA sequence randomly selected from
human chromosome 4 (GRCh38.p14 primary assembly, RefSeq NC_000004.12, used
in Figure 1b). (b) FCGR of order 7 of the same sequence as in (a), according to our
Definition 7. (c) FCGR of order 7 of the same sequence as in (a), according to [10].

Note that Definition 15 and Definition 7 in Section 3 are not the same. As a
counterexample, consider the case k = 2. For a given s ∈ Σn, n ≥ k, the FCGR
entry FCGRk(s)(1, 2) will be the frequency of GC according to Definition 7
while according to Definition 15 from [10], FCGRk(s)(1, 2) will be the frequency
of CG instead. See Figure 6 for a visual comparison of FCGRs of order k = 7
according to these two definitions for the 100,000 bp DNA sequence from human
chromosome 4 (GRCh38.p14 primary assembly, RefSeq NC_000004.12, used in
Figure 1b).
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B.6 De Bruijn graphs and their applications in sequence
reconstruction

Definition 16 (De Bruijn graph). Let k ≥ 2, n > k and s ∈ Σn. The De
Bruijn graph De Bruijnk(s) is the directed graph (Vk−1(s), Ek(s)), defined as
follows:

– Vk−1(s) = {v ∈ Σk−1 | v appears as a substring of s}.
– Ek(s) = {(u, v) ∈ Vk−1(s)

2 | there exists a k-mer w ∈ Σk that appears in s
with Prefix(w) = u and Suffix(w) = v}.

An illustration of the graph De Bruijn2(ATCGTATCCA) is presented in Figure 7a).
In this construction, each edge uniquely corresponds to a specific k-mer in the
original string, so that every path through De Bruijnk(s) represents a substring
of s containing each k-mer exactly once. This characteristic, however, is insufficient
for our purposes, as in our application, the goal is to reconstruct a sequence that
preserves the target k-mer distribution; thus, it is necessary to employ a structure
that accommodates multiple occurrences of the same k-mer. In other words, when
a k-mer appears more than once in s, the standard De Bruijn graph is insufficient
for recovering any substring corresponding to those repeated k-mers.

To address this issue, we introduce the notion of De Bruijn multigraph in
Definition 14, a concept well established in the DNA sequence assembly literature.
Note that an edge from vertex u to vertex v exists if the k-mer associated with
that edge has u as its prefix and v as its suffix, with the edge’s multiplicity
corresponding to the frequency of the associated k-mer in s. Figure 7b) illustrates
the multigraph De Bruijn+

2 (ATCGTATCCA).

GT
GTA

CGT

TCG

TCC

CCA

ATC

TAT

AT

TA

TC CG

CC CA

(a) De Bruijn3(ATCGTATCCA)

GT
GTA

TCGATC

ATC

TAT

AT

TA

TC CG

CC CA

CGT

TCC

CCA

(b) De Bruijn+
3 (ATCGTATCCA)

Fig. 7: Comparison of De Bruijn graphs and multigraph of a sample string s =
ATCGTATCCA, for k = 3. Each vertex represents a unique 2-mer from the string, and each
edge represents a unique 3-mer. (a) De Bruijn graph: A walk in the graph corresponds
to a substring of s with each k-mer occurring exactly once. (b) De Bruijn multigraph:
The edge labels indicate the multiplicity of each 3-mer, thereby allowing the recovery
of any substring of s via an appropriate Eulerian path.
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B.7 Hit-and-run sampling from the standard probability
simplex with marginalization constraints

Let θs = (θw)w∈Σk , Σ = {A,C,G, T}, denote the empirical k-mer frequency
vector computed from a (linear) DNA sequence s. By construction,

θw ≥ 0,
∑

w∈Σk

θw = 1.

In addition to this normalization, θs satisfies a family of linear constraints induced
by contiguous overlaps. This is commonly called marginal consistency : for each
v ∈ Σk−1, ∑

a∈Σ

θva =
∑
a∈Σ

θav = θv, (14)

where θv is the frequency of the (k − 1)-mer v. Combining these with the
normalization yields a system

B θ = b, (15)

where:

– Row 0 of B is 1⊤, enforcing
∑

i xi = 1.
– For each (k − 1)-mer v, one row enforces

∑
a∈Σ xva −

∑
a∈Σ xav = 0.

– b = (1, 0, , . . . , 0)

Proposition 5. The matrix B defined by equation 15 has full row rank.

Proof. Let the rows of B be r0, rv1
, . . . , rvM , where r0 = 1⊤ and each rv has

nonzero entries only on indices corresponding to k-mers with prefix or suffix v.
For distinct v and u, their supports are disjoint, so rv are mutually orthogonal
and hence independent. Moreover, r0 cannot be expressed as a linear combination
of the zero-sum rows rv. Therefore no nontrivial linear relation among {r0, rv}
exists, and B has full row rank.

Let r = rank(B). The feasible set {x ≥ 0 : Bx = b} is an (4k − r)-dimensional
convex polytope. We sample approximately uniformly from this polytope via a
hit-and-run Markov chain as follows:

1. Compute an orthonormal basis N ∈ R4k×(4k−r) of ker(B) (e.g. via SVD).
2. Initialize θ(0) = (1/4k, . . . , 1/4k).
3. For each iteration t = 1, . . . , T :

(a) Draw z ∼ N (0, I4k−r) and set d = Nz/∥Nz∥.
(b) Find tmin ≤ tmax so that θ(t−1) + td ≥ 0 coordinate-wise.
(c) Sample t ∼ Unif[tmin, tmax].
(d) Update θ(t) = θ(t−1) + td.

4. Return θ(T ), which lies in the simplex and satisfies Bθ = b.

At each step, the direction d is drawn from a continuous distribution spanning
all of ker(B), so any two interior points can be connected by a finite sequence of
positive-probability moves. This procedure corresponds to a standard hit-and-run
sampling strategy, common in MCMC theory (e.g. [21]).
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B.8 Real data acquisition and preprocessing

All genome data were obtained on 24 April 2025 from the NCBI RefSeq FTP server
(ftp.ncbi.nlm.nih.gov/genomes/refseq). We considered eight taxonomic groups:
Archaea, Bacteria, Fungi, Plant, Protozoa, Invertebrate, Vertebrate_Mammalian
and Vertebrate_Other. The last three correspond to the kingdom Animalia.
For each taxonomic group, the summary file was downloaded and parsed into a
table of assembly metadata. Entries were grouped by the field organism_name,
and one assembly per species was selected by taking the first entry per group
and then randomly sampling 100 species without replacement (random seed =
42). Assemblies lacking a valid FTP path or marked incomplete were omitted.

For each selected assembly, the corresponding FASTA file was downloaded
via urllib (Python 3.11), decompressed with gzip, and parsed using Biopython
(v1.79). From each complete genome sequence, a single 100,000 bp fragment
was extracted by choosing a start position uniformly at random from (seed
= 42). Fragments shorter than 100 kbp were discarded. Each fragment was
saved in FASTA format and CGR images (256×256 px) were generated in NumPy
(v1.23.5) and Matplotlib (v3.7.1).

All steps were automated by a Python 3.9 script (available in Supplementary
Software) to ensure reproducibility.

B.9 Interactive synthetic CGR image generator

To facilitate visual exploration of compositional biases in synthetic DNA, the
research presented in this work is accompanied by an open-source, browser-based
tool that generates sequences whose k-mer frequency vector matches a user-specified
or a sampled distribution. The application supports rapid, visual inspection of
how local changes in dinucleotide or higher-order statistics alter global CGR
patterns as the binary Chaos Game Representation (CGR) of the generated
sequence is displayed to the user in each case.

The user may choose a value of k ∈ {2, . . . , 6}, a sequence length L and
may choose to generate the sequence from real DNA or to sample a point
from the standard simplex subject to the marginal constraints. Additionally,
for k=2, 16 log-scaled sliders can be adjusted to select a target probability
distribution (See Figure 4). The target frequency vector is converted to integer
counts (n− k + 1 observations) and embedded in a directed multigraph whose
nodes are (k − 1)-mers. A depth-first Eulerian traversal yields a linear sequence
that approximately produces the count multiset. The server returns a 256× 256
binary CGR (PNG, base-64 embedded). For k ≤ 3 it also returns a bar plot of
the sampled probabilities.

The tool is implemented in Python 3.11 using the following libraries: Flask
(v2.3), NumPy (1.23.5) and Matplotlib (v3.8). The typical runtime is < 1s
for n ≤ 105 and peak memory is less than 200MB on a standard laptop. The full
source code can be found on GitHub under the MIT license. see Figure 4.

ftp.ncbi.nlm.nih.gov/genomes/refseq
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