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Abstract. In this paper we define and investigate the binary word oper-
ation of strong-θ-catenation (denoted by ⊗) where θ is an antimorphic
involution modelling the Watson-Crick complementarity of DNA single
strands. When iteratively applied to a word u, this operation generates
all the strong-θ-powers of u (defined as any word in {u, θ(u)}+), which
amount to all the Watson-Crick powers of u when θ = θDNA (the anti-
morphic involution on the DNA alphabet ∆ = {A,C,G, T} that maps
A to T and C to G). In turn, the Watson-Crick powers of u represent
DNA strands usually undesirable in DNA computing, since they attach to
themselves via intramolecular Watson-Crick complementarity that binds
u to θDNA(u), and thus become unavailable for other computational
interactions. We find necessary and sufficient conditions for two words u
and v to commute with respect to the operation of strong-θ-catenation.
We also define the concept of ⊗-primitive root pair of a word, and prove
that it always exists and is unique.

Keywords. DNA computing, molecular computing, binary word operations,
algebraic properties

1 Introduction

Periodicity and primitivity of words are fundamental properties in combinatorics
on words and formal language theory. Motivated by DNA computing, and the
properties of information encoded as DNA strands, Czeizler, Kari, and Seki pro-
posed and investigated the notion of pseudo-primitivity (and pseudo-periodicity)
of words in [1, 7]. The motivation was that one of the particularities of information-
encoding DNA strands is that a word u over the DNA alphabet {A,C,G, T}
contains basically the same information as its Watson-Crick complement. Thus,
in a sense, a DNA word and its Watson-Crick complement are “identical,” and
notions such as periodicity, power of a word, and primitivity can be generalized by
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replacing the identity function (producing powers of a word), by a function that
models Watson-Crick complementarity (producing pseudo-powers). Traditionally,
Watson-Crick complementarity has been modelled mathematically by the anti-
morphic involution θDNA over the DNA alphabet Σ = {A,C,G, T}, that maps
A to T , C to G and viceversa. Recall that a function θ is an antimorphism on Σ∗

if θ(uv) = θ(v)θ(u), for all u, v ∈ Σ∗, and is an involution on Σ if θ(θ(a)) = a,
for all a ∈ Σ. In [1], a word w was called a θ-power or pseudo-power of u if
w ∈ u{u, θ(u)}∗ for some u ∈ Σ+, and θ-primitive or pseudo-primitive if it was
not a pseudo-power of any such word, [1]. Pseudo-powers of words over the
DNA alphabet have been extensively investigated as a model of DNA strands
that can bind to themselves via Watson-Crick complementarity, rendering them
unavailable for programmed computational interactions in most types of DNA
computing algorithms, [3, 10, 11, 13]. However, given that biologically there is no
distinction between a DNA strand and its Watson-Crick complement, the issue
remains that there is no biologically-motivated rationale for excluding from the
definition of pseudo-power strings that are repetitions of u or θ(u) but start with
θ(u).

This paper fills the gap by introducing the notion of strong-θ-power of a
word u, defined as any word belonging to the set {u, θ(u)}+. In the particular
case when θ = θDNA, the Watson-Crick complementarity involution, this will
be called a Watson-Crick power of the word. Similar with the operation of θ-
catenation which was defined and studied in [4] as generating all pseudo-powers
of a word, here we define and study a binary operation called strong-θ-catenation
(denoted by ⊗) which, when iteratedly applied to a single word u, generates all
its strong-θ-powers. We find, for example, necessary and sufficient conditions for
two words u and v to commute with respect to ⊗ (Corollary 17). We also define
the concept of ⊗-primitive root pair of a word, and prove that it always exists
and it is unique (Proposition 24).

The paper is organized as follows. Section 2 introduces definitions and no-
tations and recalls some necessary results. Section 3 defines the operation ⊗
(strong-θ-catenation), and lists some of its basic properties. Section 4 studies
some word equations that involve both words and their Watson-Crick comple-
ments, Section 5 investigates conjugacy and commutativity with respect to ⊗,
and Section 6 explores the concept of ⊗-primitivity, and that of ⊗-primitive root
pair of a word.

2 Preliminaries

An alphabet Σ is a finite non-empty set of symbols. The set of all words over
Σ, including the empty word λ is denoted by Σ∗ and Σ+ = Σ∗ \ {λ} is the set
of all non-empty words over Σ. The length of a word w ∈ Σ∗ is the number of
symbols in the word and is denoted by |w|. We denote by |u|a, the number of
occurrences of the letter a in u and by Alph(u), the set of all symbols occurring
in u. A word w ∈ Σ+ is said to be primitive if w = ui implies w = u and i = 1.
Let Q denote the set of all primitive words.
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For every word w ∈ Σ+, there exists a unique word ρ(w) ∈ Σ+, called the
primitive root of w, such that ρ(w) ∈ Q and w = ρ(w)n for some n ≥ 1.

A function φ : Σ∗ → Σ∗ is called a morphism on Σ∗ if for all words u, v ∈ Σ∗
we have that φ(uv) = φ(u)φ(v), an antimorphism on Σ∗ if φ(uv) = φ(v)φ(u) and
an involution if φ(φ(x)) = x for all x ∈ Σ∗.

A function φ : Σ∗ → Σ∗ is called a morphic involution on Σ∗ (respectively, an
antimorphic involution on Σ∗) if it is an involution on Σ extended to a morphism
(respectively, to an antimorphism) on Σ∗. For convenience, in the remainder of
this paper we use the convention that the letter φ denotes an involution that
is either morphic or antimorphic (such a function will be termed (anti)morphic
involution), that the letter θ denotes an antimorphic involution, and that the
letter µ denotes a morphic involution.

Definition 1. For a given u ∈ Σ∗, and an (anti)morphic involution φ, the set
{u, φ(u)} is denoted by uφ, and is called a φ-complementary pair, or φ-pair for
short. The length of a φ-pair uφ is defined as |uφ| = |u| = |φ(u)|.

Note that if θDNA is the Watson-Crick complementarity function over the
DNA alphabet {A,C,G, T}, that is, the antimorphic involution that maps A
to T , C to G, and viceversa, then a θDNA-complementary pair {u, θDNA(u)}
models a pair of Watson-Crick complementary DNA strands.

A φ-power of u (also called pseudo-power in [1]) is a word of the form
u1u2 · · ·un for some n ≥ 1, where u1 = u and for any 2 ≤ i ≤ n, ui ∈ {u, φ(u)}.
A word w ∈ Σ∗ is called a palindrome if w = wR, where the reverse, or mirror
image operator is defined as λ = λR and (a1a2 . . . an)R = an . . . a2a1, where
ai ∈ Σ for all 1 ≤ i ≤ n. A word w ∈ Σ∗ is called a φ-palindrome if w = φ(w),
and the set of all φ-palindromes is denoted by Pφ. If φ = µ is a morphic involution
on Σ∗ then the only µ-palindromes are the words over Σ′, where Σ′ ⊆ Σ, and µ
is the identity on Σ′. Lastly, if φ = θ is the identity function on Σ extended to
an antimorphism on Σ∗, then a θ-palindrome is a classical palindrome, while if
φ = µ is the identity function on Σ extended to a morphism on Σ∗, then every
word is a µ-palindrome. For more definitions and notions regarding words and
languages, the reader is referred to [8]. We recall some results from [9].

Lemma 2. [9] Let u, v, w ∈ Σ+ be such that, uv = vw, then for k ≥ 0, x ∈ Σ+

and y ∈ Σ∗, u = xy, v = (xy)kx, w = yx.

Two words u and v are said to commute if uv = vu. We recall the following
result from [5] characterizing θ-conjugacy and θ-commutativity for an antimorphic
involution θ (if θ = θDNA, these are called Watson-Crick conjugacy, respectively
Watson-Crick commutativity). Recall that u is said to be a θ-conjugate of w if
uv = θ(v)w for some v ∈ Σ+, and u is said to θ-commute with v if uv = θ(v)u.

Proposition 3. [5] For u, v, w ∈ Σ+ and θ an antimorphic involution,

1. If uv = θ(v)w, then either there exists x ∈ Σ+ and y ∈ Σ∗ such that u = xy
and w = yθ(x), or u = θ(w).
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2. If uv = θ(v)u, then u = x(yx)i, v = yx, for some i ≥ 0 and θ-palindromes
x ∈ Σ∗, y ∈ Σ+.

We recall the following from [6].

Proposition 4. [6] Let x, y ∈ Σ+ and θ an antimorphic involution, such that
xy = θ(y)θ(x) and yx = θ(x)θ(y). Then, one of the following holds:

1. x = αi, y = αk for some α ∈ Pθ
2. x = [θ(s)s]iθ(s), y = [sθ(s)]ks for some s ∈ Σ+, i, k ≥ 0.

3 A binary operation generating Watson-Crick powers

A binary operation ◦ is mapping ◦ : Σ∗×Σ∗ → 2Σ
∗
. A binary word (bw, in short)

operation with right identity, called φ-catenation, and which generates pseudo-
powers of a word u (φ-powers, where φ is either a morphic or an antimorphic
involution) when iteratively applied to it, was defined and studied in [4]. However,
one can observe (See Remark 1) that φ-catenation does not generate all the
words in {u, φ(u)}+. After exploring several binary word operations that each
generates a certain subset of {u, φ(u)}+, we select the binary word operation,
called strong-φ-catenation, which generates the entire set, and discuss some of
its properties.

For a given binary operation ◦, the i-th ◦-power of a word is defined by :

u◦(0) = {λ}, u◦(1) = u ◦ λ, u◦(n) = u◦(n−1) ◦ u, n ≥ 2

Note that, depending on the operation ◦, the i-th power of a word can be a
singleton word, or a set of words.

Remark 1 Let u, v ∈ Σ+ and θ be an antimorphic involution. The following are
possible binary operations that, when θ = θDNA is iteratively applied to a word u,
generate various sets of Watson-Crick powers of u (these operations include the
θ-catenation operation � defined in [4]).

1. The operation � and �′ and their corresponding n-th power, n ≥ 1:

u� v = {uv, uθ(v)} , u�′ v = {uv, θ(u)v}

u�(n) = u{x1x2 · · ·xn−1 : xi = u or xi = θ(u)}

u�
′(n) = {un} ∪ {xiyi : xi = [θ(u)]i, yi = un−i, 1 ≤ i ≤ n− 1}

2. The operation 	 and 	′ and their corresponding n-th power, n ≥ 1:

u	 v = uθ(v) , u	′ v = θ(u)v

u	(n) = u[θ(u)]n−1 , u	
′(n) = θ(u)un−1
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3. The operation ⊕ and its corresponding n-th power, n ≥ 1:

u⊕ v = {uv, uθ(v), θ(u)v}

u⊕(n) = {x1x2 · · ·xn : xi = u or xi = θ(u)} \ {[θ(u)]n}

4. The operation ⊗ and its corresponding n-th power, n ≥ 1:

u⊗ v = {uv, uθ(v), θ(u)v, θ(u)θ(v)}

u⊗(n) = {x1x2 · · ·xn : xi = u or xi = θ(u)}

Note that, when θ = θDNA is iteratively applied to a word u, the operations
	,	′,�,�′,⊕ generate some, but not all, Watson-Crick powers of u. The only
operation that generates all the Watson-Crick powers of u is ⊗. Thus, in the
remainder of this paper, we will restrict our discussion to the study of the operation
⊗, which we call strong-φ-catenation. We now give the formal definition.

Definition 5. Given a morphic or an antimorphic involution φ on Σ∗ and two
words u, v ∈ Σ∗, we define the strong-φ-catenation operation with respect to φ as

u⊗ v = {uv, uφ(v), φ(u)v, φ(u)φ(v)}.

Observe now that u⊗(n) = {u, φ(u)}n is the set comprising all the nth strong-
φ-powers of u with respect to φ. When φ = θDNA is the Watson-Crick comple-
mentarity involution, this set comprises all the Watson-Crick powers of u.

Even though, for simplicity of notation, the notation for strong-φ-catenation
and strong-φ-power does not explicitly include the function φ, these two notions
are always defined with respect to a given fixed (anti)morphic involution φ. For
a given (anti)morphic involution φ, and a given n ≥ 1, the following equality
relates the set of all strong-φ-powers of u with respect to φ (generated by strong-
φ-catenation), to the set of all φ-powers of u with respect to φ (generated by
φ-catenation):

u⊗(n) = u�(n) ∪ φ(u)�(n)

As an example, consider the case of θDNA, the Watson-Crick complementary
function, and the words u = ATC, v = GCTA. Then,

u⊗ v = {ATC GCTA,ATC TAGC,GAT GCTA,GAT TAGC},

which is the set of all catenations that involve the word u and the word v (in
this order) and their images under θDNA and

u⊗(n) = {u1u2 · · ·un : ui = ATC or ui = GAT, 1 ≤ i ≤ n}

Note that |u⊗ v| = 4 iff u, v /∈ Pφ. It is clear from the above definition that
for u, v ∈ Σ+, u⊗ v = uφvφ.

Remark 2 For any u ∈ Σ+, we have that u�(n) ⊂ u⊗(n) and θ(u)�(n) ⊂ u⊗(n).
However, if u ∈ Pφ, then u�(n) = θ(u)�(n) = u⊗(n).
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Note that for the operation ⊗, λ⊗ u = u⊗ λ 6= u. Hence, the operation ⊗ does
not have an identity. We have the following observation.

Lemma 6. For u ∈ Σ+, and φ (anti)morphic involution, the following state-
ments hold.

1. For all n ≥ 1, we have that α ∈ {u, φ(u)}n iff α ∈ u⊗(n).
2. For all n ≥ 1, we have that u⊗(n) = φ(u⊗(n)) = φ(u)

⊗(n)
.

3. For all m,n ≥ 1, we have that (u⊗(m))⊗(n) = (u⊗(n))⊗(m) = u⊗(mn).

A bw-operation ◦ is called length-increasing if for any u, v ∈ Σ+ and w ∈ u◦v,
|w| > max{|u|, |v|}. A bw-operation ◦ is called propagating if for any u, v ∈ Σ∗,
a ∈ Σ and w ∈ u ◦ v, |w|a = |u|a + |v|a. In [4], these notions were generalized
to incorporate an (anti)morphic involution φ, as follows. A bw-operation ◦ is
called φ-propagating if for any u, v ∈ Σ∗, a ∈ Σ and w ∈ u ◦ v, |w|a,φ(a) =
|u|a,φ(a) + |v|a,φ(a). It was shown in [4] that the operation φ-catenation is not
propagating but is φ-propagating.

A bw-operation ◦ is called left-inclusive if for any three words u, v, w ∈ Σ∗
we have

(u ◦ v) ◦ w ⊇ u ◦ (v ◦ w)

and is called right-inclusive if

(u ◦ v) ◦ w ⊆ u ◦ (v ◦ w).

Similar to the properties of the operation φ-catenation investigated in [4], one
can easily observe that the strong-φ-catenation operation is length increasing, not
propagating and φ-propagating. In [4] it was shown that for a morphic involution
the φ-catenation operation is trivially associative, whereas for an antimorphic
involution the φ-catenation operation is not associative. In contrast, the strong-φ-
catenation operation is right inclusive, left inclusive, as well as associative, when
φ is a morphic as well as an antimorphic involution.

Since the Watson-Crick complementarity function θDNA is an antimorphic in-
volution, in the remainder of this paper we only investigate antimorphic involution
mappings φ = θ.

4 Watson-Crick conjugate equations

In this section we discuss properties of words that satisfy some Watson-Crick
conjugate equations, that is, word equations that involve both words and their
Watson-Crick complements. It is well known that any two distinct words satisfying
a non-trivial equation are powers of a common word. We discuss several examples
of word equations over two distinct words x and y that are either power of a
θ-palindrome, or a product of θ-palindromes, where θ is an antimorphic involution
on Σ∗. We observe that, in most cases, words satisfying a non-trivial conjugacy
relation are powers of a common θ-palindromic word. We have the following
lemmas which we use later.
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Lemma 7. Let θ be an antimorphic involution and let x, y ∈ Σ+ be such that x
and y satisfy one of the following :

1. xxy = yθ(x)x
2. θ(x)xy = yxx
3. xxy = yxθ(x)
4. xθ(x)y = yxx
5. xy = θ(y)x and yx = xθ(y)

Then, x = αm and y = αn for some m,n ≥ 1 and α ∈ Pθ.

Proof. We only prove for the case xxy = yθ(x)x and omit the rest as they are
similar. Let, xxy = yθ(x)x then, by Lemma 2 we have xx = pq, y = (pq)ip and
θ(x)x = qp where i ≥ 0. We now have the following cases.

1. If |p| = |q|, then x = p = q = θ(x) and hence, x = αm, y = αn such that
m,n ≥ 1 and α ∈ Pθ.

2. If |p| > |q|, then x = p1 = p2q and θ(x)x = θ(q)θ(p2)p1 = qp which implies
q ∈ Pθ and p1p2 = θ(p2)p1. Thus by Lemma 2 there exist words s, t such
that p2 = ts, p1 = (st)js and θ(p2) = st which implies that s, t ∈ Pθ and
p = (st)j+1s ∈ Pθ. Also, qp = θ(x)x = θ(p1)p2q = θ(p)q = pq. Thus p and q
are powers of a common θ-palindromic word. Hence, the result.

3. The case when |p| < |q| is similar to the case |p| > |q| and we omit its
proof. ut

Using a proof technique similar to that of Lemma 7 one can prove the following.

Lemma 8. Let θ be an antimorphic involution and let x, y ∈ Σ+. If yxθ(x) =
θ(x)xy then one of the following hold:

1. x = αm and y = αn for some m,n ≥ 1 and α ∈ Pθ.
2. x = [sθ(s)]ms and y = [θ(s)s]nθ(s) for some s ∈ Σ+.

It is well known that if two words x and y commute (i.e.) xy = yx, both x
and y are powers of a common word, and the next result follows directly.

Lemma 9. For x, y ∈ Σ+, if yxx = xxy, then x = αm and y = αn for some
m,n ≥ 1 and α ∈ Σ+.

It was shown in [5] that if x θ-commutes with y (i.e.), xy = θ(y)x, then x is a θ-
palindrome and y can be expressed as a catenation of two θ-palindromes. Similarly,
we now show in Lemma 10 that if xx θ-commutes with y (i.e.), xxy = θ(y)xx
then x is a θ-palindrome and y can be expressed as a product of palindromes.
The proofs of the following results are similar to that of the proof of Lemma 9
and hence we omit them.

Lemma 10. Let θ be an antimorphic involution and let x, y ∈ Σ+. If xxy =
θ(y)xx then, one of the following hold :

1. x = αm and y = αn for some m,n ≥ 1 and α ∈ Pθ
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2. y = qx2 for q, x ∈ Pθ.
3. x = (st)ks, y = ts(st)ks for k ≥ 1 and s, t ∈ Pθ.

In the following we find the structure of x that results from xx being a
conjugate of θ(x)θ(x). We show that such words are either power of a θ-palindrome
or a catenation of two θ-palindromes.

Lemma 11. Let θ be an antimorphic involution and let x, y ∈ Σ+. If xxy =
yθ(x)θ(x) then one of the following is true:

1. x = αm and y = αn for some m,n ≥ 1 and α ∈ Pθ.
2. x = st and y = [st]ns for some n ≥ 0 and s, t ∈ Pθ.

5 Conjugacy and commutativity with respect to ⊗

In this section we discuss conditions on words u,w ∈ Σ+, such that u is a
⊗-conjugate of w, i.e., u ⊗ v = v ⊗ w for some v ∈ Σ+. We then discuss the
special case when u = w, i.e., u ⊗-commutes with v, and prove a necessary and
sufficient condition for ⊗-commutativity (Corollary 17).

Proposition 12. Let u, v, w ∈ Σ+ be such that uv = vw and u ⊗ v = v ⊗ w.
Then, either u = v = w or u = sm = w and v = sn, for s ∈ Pθ.

Proof. By definition, for u, v, w ∈ Σ+,

u⊗ v = {uv, uθ(v), θ(u)v, θ(u)θ(v)}

and similarly,
v ⊗ w = {vw, vθ(w), θ(v)w, θ(v)θ(w)}

Given that uv = vw and u ⊗ v = v ⊗ w. Then, by Lemma 2, we have u = xy,
v = (xy)ix and w = yx. We now have the following cases.

1. If uθ(v) = vθ(w) then, uθ(v) = (xy)(θ(x)θ(y))iθ(x) = (xy)ixθ(x)θ(y). If
i 6= 0, then x, y ∈ Pθ and xy = yx and hence, u, v and w are powers of a
common θ-palindrome. If i = 0 then, xyθ(x) = xθ(x)θ(y) and by Proposition
3, y = st and θ(x) = (st)js where s, t ∈ Pθ and hence, x ∈ Pθ. Thus,
u ⊗ v = {xyx, θ(y)xx} and v ⊗ w = {xyx, xxθ(y)}. Since, u ⊗ v = v ⊗ w,
θ(y)xx = xxθ(y) and by Lemma 9, x = pm1 , y = pm2 for p ∈ Pθ. Thus,
u = pm = w, v = pn for p ∈ Pθ.

2. The case when uθ(v) = θ(v)w is similar to case (1) and we omit it.
3. If uθ(v) = θ(v)θ(w) then, uθ(v) = xy(θ(x)θ(y))iθ(x) = (θ(x)θ(y))iθ(x)θ(x)θ(y) =
θ(v)θ(w). If i = 0 then, x ∈ Pθ and the case is similar to the previous one.
If i 6= 0 then x, y ∈ Pθ and yx = xy and hence, y = pj1 , x = pj2 . Thus,
u = w = pm and v = pn for p ∈ Pθ.

Hence, the result. ut

A similar proof works for the next result and hence, we omit it.
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Proposition 13. Let u, v, w ∈ Σ+ be such that uv = vθ(w) and u⊗ v = v ⊗ w.
Then, either u = v = θ(w) or u = αm = w and v = αn, for α ∈ Pθ.

The following proposition uses Lemma 7, 9 and 11.

Proposition 14. Let u, v, w ∈ Σ+ be such that uv = θ(v)w and u⊗ v = v ⊗ w.
Then, either u = θ(v) = θ(w) or u = αm = w and v = αn, for α ∈ Pθ.

Proof. Given that uv = θ(v)w and u⊗v = v⊗w. Then by Proposition 3, we have
either u = θ(w) and v = γw for some γ ∈ Pθ or u = xy, v = θ(x) , w = yθ(x) for
some x, y ∈ Σ∗.

1. If u = θ(w) and v = γw for γ ∈ Pθ, then

u⊗ v = {θ(w)γw, θ(w)θ(w)γ,wγw,wθ(w)γ}

= {γww, γwθ(w), θ(w)γw, θ(w)γθ(w)} = v ⊗ w

If γ = λ then, u = θ(v) = θ(w). If not, then we have the following cases.
– If θ(ww)γ = γww, then by Lemma 11 either θ(w) = αm and γ = αn

for some m,n ≥ 1 and α ∈ Σ+ or θ(w) = st and γ = [st]ns for some
n ≥ 0 and s, t ∈ Pθ. In the case when θ(w) = αm and γ = αn for some
m,n ≥ 1 and α ∈ Pθ, u, v and w are powers of a common θ palindrome
α. If θ(w) = st and γ = [st]ns for some n ≥ 0 and s, t ∈ Pθ, then u⊗ v =
{wγw,wθ(w)γ} = {ts(st)n+1s, ts(st)n+1s} = {γwθ(w), θ(w)γθ(w)} =
v⊗w = {(st)n+1sst, (st)n+1sst}. This implies that s and t are powers of
a common word and since, s, t ∈ Pθ, u,v and w are powers of a common
θ palindrome.

– If θ(ww)γ = γwθ(w) then by Lemma 7 we have w = αm and γ = αn for
some m,n ≥ 1 and α ∈ Pθ and hence, u, v and w are powers of α ∈ Pθ.

– If θ(ww)γ = θ(w)γθ(w), then γ and θ(w) are powers of a common word
and since γ ∈ Pθ, u, v and w are powers of a common θ palindrome.

2. If u = xy, v = θ(x), w = yθ(x) for some x, y ∈ Σ∗ then,

u⊗ v = {xyθ(x), xyx, θ(y)θ(x)θ(x), θ(y)θ(x)x}

= {θ(x)yθ(x), θ(x)xθ(y), xyθ(x), xxθ(y)} = v ⊗ w

If xyx = θ(x)yθ(x), then x ∈ Pθ and hence u ⊗ v = {xyx, θ(y)xx} =
{xyx, xxθ(y)} = v ⊗ w, which implies xxθ(y) = θ(y)xx. Then by Lemma 9,
x and θ(y) are powers of a common word α. Since, x ∈ Pθ, α ∈ Pθ.
The cases when xyx = θ(x)xθ(y) and xyx = xyθ(x) are similar. If xyx =
xxθ(y), then yx = xθ(y) and by Proposition 3, we have that y = st, x = (st)is
for some s, t ∈ Pθ and hence, x ∈ Pθ and the case is similar to the above.
Thus, in all cases x and y and hence u, v and w are powers of a common
θ-palindrome. ut

The proof of the following is similar to that of Proposition 14 and hence, we
omit it.
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Proposition 15. Let u, v, w ∈ Σ+ be such that uv = θ(v)θ(w) and u⊗v = v⊗w.
Then, either u = θ(v) = w or u = αm = w and v = αn, for α ∈ Pθ.

Based on the above results (Propositions 12, 13, 14 and 15), we give a neccessary
and sufficient condition on words u, v and w such that u⊗ v = v ⊗ w.

Theorem 16. Let u, v, w ∈ Σ+. Then, u ⊗ v = v ⊗ w iff one of the following
holds:

1. u = θ(v) = w
2. u = v = w
3. u = θ(v) = θ(w)
4. u = v = θ(w)
5. u = sm = w and v = sn, for s ∈ Pθ.

Based on the above theorem one can deduce conditions on u and v such that
u and v ⊗ commute with each other. We have the following corollary.

Corollary 17. For an antimorphic involution θ and u, v ∈ Σ+, u⊗v = v⊗u iff
(i) u = v, or (ii) u = θ(v), or (iii) u and v are powers of a common θ-palindrome.

6 ⊗-primitive words, and a word’s ⊗-primitive root pair

In this section we introduce a special class of primitive words, using the binary
word operation ⊗. More precisely, similar to the primitive words defined in [8, 9]
based on the catenation operation, given an antimorphic involution θ we define
⊗-primitive words with respect to θ, based on the binary word operation ⊗.
We study several properties of ⊗-primitive words. We also define the notion
of ⊗-primitive root pair of a word w, and show that every word has a unique
⊗-primitive root pair, which is a θ-pair of ⊗-primitive words (Proposition 24).

Analogous to the definitions given in [2], we define the following.

Definition 18. Let θ be an antimorphic involution. A non-empty word w is
called ⊗-primitive with respect to θ if it cannot be expressed as a non-trivial
strong-θ-power of another word.

By Definition 18, a word w ∈ Σ+ is ⊗-primitive if the condition w ∈ u⊗(n)
for some word u and i ≥ 1 implies i = 1 and w ∈ uθ.

Example 19. Consider the Watson-Crick complementarity function θDNA and
the word w = ACTAGTAGTACTACTAGT . The word w is not ⊗-primitive
with respect to θDNA since w ∈ (ACT )⊗(6), whereas the word x = ACTAAG is
⊗-primitive with respect to θDNA.

We now relate the notion of ⊗-primitive word with respect to an (anti)morphic
involution θ, to that of θ-primitive words introduced in [1], whereby a word w
is called θ-primitive if it cannot be expressed as a non-trivial θ-power (pseudo-
power) of another word. One can observe that the word w in Example 19 is not
θ-primitive and the word x = ACTAAG is θ-primitive. The following holds.
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Remark 3 Given an antimorphic involution θ and a word u in Σ+, the following
are equivalent: (i) u is θ-primitive, (ii) u is ⊗-primitive with respect to θ, and
(iii) ([4]) u is �-primitive with respect to θ.

Thus, if Q⊗, Q� and Qθ denote the classes of all ⊗-primitive, �-primitive,
and θ-primitive words over Σ∗ respectively, then Q⊗ = Q� = Qθ. It was shown in
[1] that all θ-primitive words are primitive but the converse is not true in general.
It then follows that all ⊗-primitive words with respect to a given antimorphic
involution θ are primitive, but the converse does not generally hold. Thus, Q⊗ is
a strict subset of the class of primitive words. We now recall the following result
from [4].

Lemma 20. Let ◦ be a binary word operation that is plus-closed and φ-propagating.
Then, for every word w ∈ Σ+ there exists a ◦-primitive word u and a unique
integer n ≥ 1 such that w ∈ u◦(n).

Since the binary operation ⊗ is plus-closed and θ-propagating, by Lemma 20
we conclude the following.

Lemma 21. Let θ be an antimorphic involution on Σ∗. For all w ∈ Σ+, there
exists a word u which is ⊗-primitive with respect to θ, such that w ∈ u⊗(n) for
some n ≥ 1.

By Lemma 21, given a non-empty word w, there always exists a ⊗-primitive
word u such that w is a strong θ-power of u. In general, for a binary operation ◦,
the authors in [2] call a ◦-primitive word u a “◦-root of w,” if w ∈ u◦(n) for some
n ≥ 1. Note that a word w may have several ◦-roots. For example, for the word w
in Example 19, we have that w ∈ x⊗(6) = (ACT )⊗(6) = (θ(x))⊗(6) = (AGT )⊗(6),
that is, there are two ⊗-primitive words, x and θ(x), which are ⊗-roots of w.
However, uniqueness can still be ensured if we select the θ-pair xθ = {x, θ(x)},
such that x is ⊗-primitive and w ∈ x+θ . We give a formal definition in the
following.

Definition 22. Given an antimorphic involution θ, the ⊗-primitive root pair
of a word w ∈ Σ+ relative to θ (or simply the ⊗-primitive root pair of w) is
the θ-pair uθ = {u, θ(u)} which satisfies the property that u is ⊗-primitive and
w ∈ u⊗(n) for some n ≥ 1.

For example, in Example 19 the⊗-primitive root pair of w is xθ = {ACT,AGT}.
In the following we will prove that, for a given antimorphic involution θ, the
⊗-primitive root pair of a word w ∈ Σ+ always exists and it is unique. Indeed,
by Lemma 21 and Lemma 6, it follows that a ⊗-primitive root pair of a word
w ∈ Σ+ always exists. We now prove that every word w ∈ Σ+ has a unique
⊗-primitive root pair relative to θ, which we will denote by ρ⊗θ (w). We use the
following result from [1].

Theorem 23. [1] Let u, v, w ∈ Σ+ such that w ∈ u{u, θ(u)}∗ ∩ v{v, θ(v)}∗.
Then u and v have a common θ-primitive root.
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Proposition 24. Given an antimorphic involution θ and a word w ∈ Σ+, its
⊗-primitive root pair ρ⊗θ (w) is unique.

Proof. For w ∈ Σ+, by Lemma 21 there exists a ⊗-primitive word u such that
w ∈ u⊗(n), for some n ≥ 1. Suppose there exists another ⊗-primitive word v such
that w ∈ v⊗(m) for some m ≥ 1, i.e., w ∈ {u, θ(u)}n and w ∈ {v, θ(v)}m. We
then have the following cases:

1. If w ∈ u{u, θ(u)}n−1 and w ∈ v{v, θ(v)}m−1 then, by Theorem 23, u and v
have a common θ-primitive root t. That is u ∈ t�(k1) and v ∈ t�(k2) for some
θ-primitive t and k1, k2 ≥ 1. Hence, by Remark 2, u ∈ t⊗(k1) and v ∈ t⊗(k2).

2. If w ∈ u{u, θ(u)}n−1 and w ∈ θ(v){v, θ(v)}m−1 then, by Theorem 23, u and
θ(v) have a common θ-primitive root t. That is u ∈ t�(k1) and θ(v) ∈ t�(k2)
for some θ-primitive t and k1, k2 ≥ 1. Hence, by Remark 2, u ∈ t⊗(k1) and
θ(v) ∈ t⊗(k2) which implies v ∈ t⊗(k2).

3. The case when w ∈ θ(u){u, θ(u)n−1} ∩ θ(v){v, θ(v)}m−1 and the case when
w ∈ θ(u){u, θ(u)}n−1 ∩ v{v, θ(v)}m−1 are similar to the previous cases.

By Remark 3, we have that t is also ⊗-primitive and thus, in all three situations
above, both u and v are strong-φ-powers of t. Since both u and v are ⊗-primitive,
it follows that u, v ∈ {t, θ(t)}, which further implies that uθ = vθ. Thus, the
⊗-primitive root pair of w, denoted by ρ⊗θ (w), is unique. ut

We now try to find conditions on u and v such that u⊗m = v⊗n for m,n ≥ 1
and m 6= n. Without loss of generality, we assume that m < n and |u| > |v|.

Lemma 25. If u⊗m = v⊗n for some m,n ≥ 1 and m 6= n then, u = sk1 , v = sk2

for some s ∈ Pθ.

Proof. Let α1, α2 ∈ u⊗m such that α1 ∈ u{u, θ(u)}∗ and α2 ∈ θ(u){u, θ(u)}∗.
Since m 6= n, there exists β1, β2 ∈ v{v, θ(v)}∗ such that α1 = β1 and α2 = β2.
Then by Theorem 23, u, θ(u) and v have a common θ-primitive root. Hence, u
and v are powers of a common θ-palindrome. ut

7 Conclusions

This paper defines and investigates the binary word operation strong-θ-catenation
which, when iteratively applied to a word u, generates all the strong-θ-powers of
u (if θ = θDNA these become all the Watson-Crick powers of u). Future topics of
research include extending the strong-θ-catenation to languages and investigating
its properties, as well as exploring a commutative version of strong-θ-catenation,
similarly to the bi-catenation of words which extends the catenation operation,
and was defined in [12] as u ? v = {uv, vu}.
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