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Astroviruses are a family of genetically diverse viruses associated with disease in
humans and birds with significant health effects and economic burdens. Astrovirus
taxonomic classification includes two genera, Avastrovirus and Mamastrovirus.
However, with next-generation sequencing, broader interspecies transmission
has been observed necessitating a reexamination of the current host-based
taxonomic classification approach. In this study, a novel taxonomic
classification method is presented for emergent and as yet unclassified
astroviruses, based on whole genome sequence k-mer composition in addition
to host information. An optional component responsible for identifying
recombinant sequences was added to the method’s pipeline, to counteract the
impact of genetic recombination on viral classification. The proposed three-
pronged classification method consists of a supervised machine learning
method, an unsupervised machine learning method, and the consideration of
host species. Using this three-pronged approach, we propose genus labels for
191 as yet unclassified astrovirus genomes. Genus labels are also suggested for an
additional eight as yet unclassified astrovirus genomes for which incompatibility
was observedwith the host species, suggesting cross-species infection. Lastly, our
machine learning-based approach augmented by a principal component analysis
(PCA) analysis provides evidence supporting the hypothesis of the existence of
human astrovirus (HAstV) subgenus of the genus Mamastrovirus, and a goose
astrovirus (GoAstV) subgenus of the genus Avastrovirus. Overall, this multipronged
machine learning approach provides a fast, reliable, and scalable prediction
method of taxonomic labels, able to keep pace with emerging viruses and the
exponential increase in the output of modern genome sequencing technologies.
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1 Introduction

Astroviruses are a genetically diverse virus family notably responsible for the second
most common cause of nosocomial diarrhea following rotaviruses (Meyer et al., 2015), as
well as substantial economic losses in the poultry industry (Karlsson et al., 2015; Li et al.,
2023). Also, astrovirus infection has been associated with encephalitis and meningitis in
immunocompromised patients (Vu et al., 2017) and astrovirus infection has been shown to
be present in the brains of some mammals (Chae et al., 2023). According to several studies
(Resque et al., 2007; Meyer et al., 2015; Keita et al., 2023), the prevalence of astroviruses
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among human populations ranges from 2% to 9% at any given time.
In developing countries, this percentage can be significantly higher,
affecting up to 30% of the population (De Benedictis et al., 2011).
Infants between 3 and 8 months of age (Herrmann et al., 1991;
Shastri et al., 1998; Dennehy et al., 2001; Jeong et al., 2012; Chhabra
et al., 2013), and the elderly (Babkin et al., 2012) along with
immunocompromised patients are primarily infected (Grohmann
et al., 1993; Palombo and Bishop, 1996; Liste et al., 2000). Outbreaks
have been reported for immunocompetent adults (Midthun et al.,
1993; Oishi et al., 1994; Jarchow-Macdonald et al., 2015). Astrovirus
transmission occurs exclusively through the fecal-oral route
(Lefkowitz et al., 2017), with notable interspecies transmission
(De Benedictis et al., 2011). Astrovirus genetic diversity is linked
to the proposed replication via the class III PI3K pathway during
autophagy (Bub et al., 2023) and genetic recombination associated
with cross-species transmission through abiotic vectors such as
drinking water, sewage, and other contaminated systems (Abad
et al., 1997; Le Cann et al., 2004). The increasing interspecies
transmission enhances the risk of extraintestinal infections in
humans as reported in animal populations (Qureshi et al., 2023).
Genetic recombination elevates genetic diversity in the context of a
concurrent multiplicity of infections for viruses of different genera
given cross-species transmissions.

The International Committee on the Taxonomy of Viruses
(ICTV) structures the family Astroviridae into two genera,
Avastrovirus and Mamastrovirus (Lefkowitz et al., 2017), and
determines taxonomic classification by defining species
intragroups as strains with a minimum amino acid identity of
75% in the open reading frame 2 (ORF2) region. The two genera
include many host-associated astroviruses and the number of
known animal hosts has reached over 160, spanning 13 classes of
organisms. Next-generation sequencing continues to achieve rapid
detection of new astroviruses and the identification of new host
species (Vu et al., 2017; Zheng et al., 2017), with a steadily increasing
number of astrovirus genomes on the National Center for
Biotechnology Information (NCBI) awaiting classification at the
genus level.

Urgency and need to refine the taxonomy of family Astroviridae
is accelerated by reports of astrovirus recombination during
concomitant infections (Pantin-Jackwood et al., 2012; Lefkowitz
et al., 2017), including some involving HAstVs (Vu et al., 2017).
Also, avian and mammalian astrovirus species have been found in
nonhuman primates (Cortez et al., 2017), and inter-species
crossover between humans and various animals, such as felines,
cats, pigs, California sea lions, dogs, sheep, and turkeys have been
identified (Jiang et al., 1993; Meliopoulos et al., 2014; Karlsson et al.,
2015; Cortez et al., 2017). These observations complicate a
taxonomic classification based solely on host species and
nucleotide sequence identity. Moreover, with the emergence of
interspecies transmission, confusion has arisen in classifying
astroviruses based on their origins. Due to classification at the
species level based on sequence identity, some inter-cluster
species of different genera, namely, HAstVs, show more
relatedness than those of the same intra-cluster genus (Jiang
et al., 1993). This has led to a call for standardized methods of
classification for family Astroviridae (Cortez et al., 2017).

Recent years have seen a rapid growth in the volume of
accessible genomic data, due to notable advancements in

next-generation sequencing (NGS) technologies and a reduction
in sequencing costs (Schwende and Pham, 2014). Consequently,
there is an increasing demand for computationally efficient and
scalable methods to handle large genomic datasets (Shendure et al.,
2004; Katz et al., 2022). Earlier attempts to tackle genomic
classification/clustering problems can be categorized into two
approaches: “alignment-based” and “alignment-free” methods.
The high computational cost and the reliance on sequence
homology of alignment-based techniques make alignment-free
methods a more suitable choice for addressing the virus
classification problem. Consequently, a multitude of alignment-
free classification (Solis-Reyes et al., 2018; Fabijańska and
Grabowski, 2019; Randhawa et al., 2019; Jiang et al., 2023) and
clustering methods (Girgis, 2022; Millán Arias et al., 2022; Millan
Arias et al., 2023) suitable for viral genomic sequence datasets have
emerged, and initial studies demonstrated their effectiveness and
scalability compared to traditional alignment-based methods
(Thompson et al., 1994; Edgar, 2004).

This paper presents a novel machine-learning classification
method hereafter called the Three-Pronged Classification Method
(3PCM) to classify astrovirus sequences that are as yet unclassified.
The method utilizes the primary sequence composition of the entire
genome in the form of k-mer frequency vectors, where k is set to 6.
In this paper, k = 6 was empirically found to achieve the best balance
between accuracy and computational complexity. An initial optional
component was incorporated into 3PCM’s pipeline to detect
potential recombinant sequences and exclude them from the
analysis. This step aims to prevent any noise caused by inter-
species crossover, which could otherwise confound machine-
learning models. 3PCM consists of three main components:
Prong 1 (a supervised classification method utilizing Quadratic
SVM), Prong 2 (an unsupervised clustering technique based on
K-means++); and Prong 3 (the identification of host labels at the
class level from relevant literature for the as yet unclassified viral
sequences). In this paper, taxonomic classification was suggested
when all three prongs of 3PCM agreed on a taxonomic label. When
Prong 1 and Prong 2 concurred on a classification that differed from
Prong 3, a taxonomic classification was suggested, subject to
independent confirmation.

The design of 3PCM utilizes genome composition information
from astrovirus sequences with known taxonomic labels to classify/
cluster astrovirus sequences with mammalian or avian hosts that are
as yet unclassified. Although the default output of 3PCM is based on
the consensus prediction of the three prongs, the individual prongs
can be used independently in cases where one or two prongs are not
applicable or do not agree. For instance, Prong 1 is not suitable for
classifying as yet unclassified astrovirus sequences with non-
mammalian non-avian hosts, due to the absence of ground truth
labels which are necessary for training a supervised model. In such a
situation, Prong 2 can be used in conjunction with Prong 3 to
investigate the classification of the sequences. In this and other
scenarios, other analyses such as genome composition analysis can
be employed to validate the results.

The main contributions of this paper are:

• Proposing genus labels (Mamastrovirus or Avastrovirus) for
191 as yet unclassified astrovirus genome sequences for which
the results of Prongs 1, 2, and 3 all agree.
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• Suggesting genus labels (Mamastrovirus or Avastrovirus) for
8 additional as yet unclassified astrovirus genome sequences,
for which incompatibility was observed between the
taxonomic label proposed by Prong 1 and Prong 2, and the
host label provided by Prong 3. This may be due to cross-
species transmission, and further investigation is needed to
resolve the contrasting labels associated with these sequences.

• Providing evidence supporting the hypothesis of the existence
of a human astrovirus subgenus of the genus Mamastrovirus
and a goose astrovirus subgenus of the genus Avastrovirus,
through the application of the proposed machine learning-
based approach, enhanced by a principal component analysis
(PCA) of the sequence composition.

Overall, this multipronged machine learning approach
provides a fast, reliable, and scalable prediction method of
taxonomic labels, able to keep pace with emerging viruses and
the exponential increase in the output of modern genome
sequencing technologies.

2 Materials and methods

The first part of this section, Materials, provides an overview of
the dataset used in this study. The second subsection, Methods,
describes the technical and implementation details of three prongs
of the proposed classification method. Moreover, the evaluation
metrics used to evaluate the proposed methodology will be discussed
throughout the Methods section.

2.1 Materials: datasets

The dataset used in this study consists of RNA sequences from
the viral family, Astroviridae downloaded from the NCBI database.
In the RNA sequence, Ns replaced all sequence characters other than
adenine (A), cytosine (C), guanine (G), and uracil (U). The N in an
RNA sequence means that any of the four bases could occupy the
position in question. All sequences were uploaded to a folder in
Genbank. These were then exported as a single multifasta file for
further testing.

A total of 1,039 sequences from the family Astroviridae were
downloaded from the NCBI database on 27th July 2022. The
sequences included in this study were between 5 and 10 kbps in
length. The host for each virus sequence was identified from the
literature where a publication was available. In the absence of

published records, the organism listed in the NCBI database
submission was considered the host. We excluded 47 out of
1,039 sequences from our analysis due to the lack of information
regarding the host of the virus given collection from sewage, rivers,
and streams. Patent sequences were also excluded. Following the
removal of these sequences, 992 sequences were used in this study as
the primary dataset (Dataset 1, described in Table 1). Among the
992 sequences in this dataset, 308 are as yet unclassified at the genus
level. The individual host species were ascribed to their respective
class and genus. The final dataset contains Astrovirus genomes
found in 13 unique host classes and 96 unique host genera.

In addition to Dataset 1, two other subsets of this dataset are
used throughout the paper, as described below. Dataset 2 (described
in Table 2) comprises the 684 genomes in Dataset 1 that belong to
either Avastrovirus or Mamastrovirus genus. Dataset 2 was used
both as the main training dataset and as the dataset employed for
determining different parameters of the proposed three-pronged
classification method.

With a goal to predict genus level labels for the 308 as yet
unclassified sequences, we investigated the current information
about these sequences, that is, their hosts. Please see
Supplementary Material S1 (Analysis of Astroviruses of
Unknown Genus Label), for the distribution of hosts for all the
308 Astrovirus genomes with unknown genus level labels. For
purposes described in the Results section, Dataset 3 was created,
consisting of 187 astrovirus genomes in Dataset 1 with unknown
genus level labels and mammalian hosts, and 42 astrovirus genomes
in Dataset 1 with unknown genus level labels and avian hosts
(see Table 3).

2.2 Methods

2.2.1 Overview of the methodological pipeline
We herein propose a three-pronged classification method

(3PCM) for the taxonomic classification of emergent but as yet
unclassified astrovirus sequences.

An optional initial component of 3PCM aims to eliminate
recombinant sequences from the training and testing datasets, for
scenarios where their presence may confound the machine learning
process. The main methodological pipeline consists of three prongs,
as illustrated in Figure 1:

1. Prong 1 (supervised learning): training a classification model
using the whole genome sequence for astroviruses with known
taxonomic classification in the training phase and leveraging the

TABLE 1 Description of Dataset 1 containing 992 viral genomes belonging to the family Astroviridae.

Genus No. of sequences Min. sequence length (bp) Avg. sequence length (bp) Max. sequence length (bp)

Avastrovirus 213 5,130 7,146 7,799

Mamastrovirus 471 5,003 6,395 7,353

Unknown 308 5,030 6,536 8,840

All/Average 992 5,003 6,600 8,840

Avastrovirus and Mamastrovirus are two genera currently designated within family Astroviridae. Of the 992 sequences, 308 lack a genus label as they have as yet not been classified at this

taxonomic level.
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TABLE 2 Description of Dataset 2, a subset of Dataset 1 consisting of sequences with available ground truth.

Genus No. of sequences Min. sequence length (bp) Avg. sequence length (bp) Max. sequence length (bp)

Avastrovirus 213 5,130 7,146 7,799

Mamastrovirus 471 5,003 6,395 7,353

All/Average 684 5,003 6,629 7,799

There are 684 sequences in Dataset 2 which belong to one of the two established genera of this viral family, Avastrovirus and Mamastrovirus.

TABLE 3 Description of Dataset 3, consisting of 187 astrovirus genomes in Dataset 1 that are as yet unclassified (unknown genus) and have amammalian host, and
42 astrovirus genomes in Dataset 1 that are as yet unclassified (unknown genus) and have an avian host.

Genus Host No. of sequences Min. sequence length (bp) Avg. sequence length (bp) Max. sequence length (bp)

Unknown Mammalia 187 5,209 6,348 7,426

Unknown Aves 42 5,084 6,806 8,417

All/Average — 229 5,084 6,432 8,417

FIGURE 1
An overview of the proposed Three-Pronged Classification Method (3PCM). The input is an as yet unclassified genomic sequence. As an initial
elective step, a component within the pipeline gives the option to eliminate recombinant sequences from the dataset. Prong 1 employs a supervised
predictive model trained on genomic sequences with known taxonomic labels. Prong 2 uses an unsupervised predictive model trained on the same
genomic sequences, but it does not use their taxonomic labels for training. Prong 3 uses the host label of the input genomic sequence. All three
prongs of 3PCM must agree in their prediction, in order to produce a suggested taxonomic label.
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trained predictive model to predict the labels of as yet unclassified
astroviruses in the testing phase.

2. Prong 2 (unsupervised learning): training a clustering model
using the whole genomes of astroviruses in the training phase and
using the trained predictive model to predict taxonomic labels of
as yet unclassified astroviruses in the testing phase. Taxonomic
labels are not used in the training phase, therefore, this model is
less vulnerable to inaccuracies of current taxonomic labels and
classifications.

3. Prong 3 (identifying host label): identifying the class label
(Mammalia, Aves, etc.) of the host from which the as yet
unclassified viral sample was obtained.

In the event that the predictions of all three prongs agree,
taxonomic labels are proposed for as yet unclassified sequences.
If there is agreement only between Prong 1 and Prong 2, taxonomic
labels are proposed with recommendations for further investigation.

2.2.2 An optional initial component of eliminating
recombinant sequences

3PCM can be used both with comprehensive datasets and with
versions of those datasets where known or presumed recombinant
sequences have been removed. This option was added because
astroviruses exhibit genetic diversity in part through
recombination, which is further complicated by concurrent
infections with multiple astrovirus taxa and recombination with
up to three genomes at once (Wei et al., 2023). The nature of this
recombination significantly enhances the genetic diversity of
astroviruses and hinders the reconstruction of astrovirus
evolutionary history. To evaluate the impact of recombinant
genomes on machine learning-based classification methods, the
aligned sequences of this viral family were uploaded to the
Recombination Detection Program RDP4 (Martin et al., 2015).
RDP4 employed various tools such as RDP, GENECONV,
BOOTSCAN, MaxChi, SiScan, CHIMEARA, and TOPAL to assess
all possible sequence triplets and determine the recombinant
sequence, major parent, and minor parent involved. In this
study, the only recombination events that were considered were
those where the parents were identified by two or more of the seven
aforementioned tools, with a level of significance p < 0.05
(statistically significant). For further information please refer to
Supplementary Material S2 (Identification and Analysis of
Candidate Recombinant Astrovirus Genome Sequences).

2.2.3 Prong 1: supervised machine learning
The first prong makes use of existing and established knowledge

regarding astroviruses to train a supervised machine learning model
based on the complete genomes of astroviruses with known
taxonomic labels (Dataset 2) in the training phase. We then used
the trained model to predict the labels of as yet unclassified
astroviruses (Dataset 3) during the testing phase.

The features used in the supervised learning methods in this
study were the k-mer frequency vector of each astrovirus genome.
The k-mers containing an N (not specifically one of the four bases in
RNA) were not included. The performance of Prong 1 for values of k
in the range [1, 9] in terms of classification accuracy and running
time can be found in Supplementary Material S3 (Performance
Results of 3PCM Using Different Classification/Clustering

Algorithms). The value k = 6 was empirically found to achieve
the best balance between accuracy and computational complexity
for the datasets and computational experiments in this paper. To
avoid potential effects of sequence length variation (astrovirus
genome lengths range between 5,003 and 8,840 bp), the feature
vectors were normalized to the interval [0, 1] by dividing each vector
by the length of the originating RNA sequence.

By utilizing a supervised model trained on the astrovirus
sequences with known taxonomic labels, we were able to take
advantage of established knowledge about this virus family. The
supervised classification algorithms tested in this study are 10-
Nearest Neighbours (Altman, 1992), Nearest Centroid Mean
(Tibshirani et al., 2002), Nearest Centroid Median (Tibshirani
et al., 2002), Logistic Regression (McCullagh and Nelder, 1989),
Linear Support Vector Machines (SVM) (Cristianini and Shawe-
Taylor, 2000), SVM with quadratic polynomial kernel (Quadratic
SVM) (Cristianini and Shawe-Taylor, 2000), SVM with cubic
polynomial kernel (Cubic SVM) (Cristianini and Shawe-Taylor,
2000), SVM with stochastic gradient descent learning and linear
kernel function (SGD) (Cristianini and Shawe-Taylor, 2000),
Decision Tree (Breiman et al., 1984), Random Forest (Breiman,
2001), AdaBoost (Freund and Schapire, 1997), Gaussian Naive
Bayes (Chan et al., 1982), Linear Discriminant Analysis (LDA)
(Hastie et al., 2009), Quadratic Discriminant Analysis (QDA)
(Hastie et al., 2009), and Multilayer Perceptron (MLP) (Hinton,
1990; Kingma and Ba, 2015). Python library scikit-learn’s
implementations of the fifteen aforementioned classifiers
(Pedregosa et al., 2011) were used. Supplementary Material S3
(Performance Results of 3PCM Using Different Classification/
Clustering Algorithms) list the experimental results of these
fifteen candidate algorithms used in Prong 1 of 3PCM.

Only astrovirus RNA sequences in Dataset 2 with existing labels
(described in Table 2) were used for training and testing for our
initial experiment in order to select the most effective supervised
classification algorithm among sixteen candidates as well as to
demonstrate the effectiveness of Prong 1. As the testing dataset
consisted only of sequences with known taxonomic labels, we could
determine classification accuracy by comparing the predicted labels
with the true labels. In order to assess the accuracy of the classifiers,
we used Stratified 10-Fold Cross-Validation (Refaeilzadeh et al.,
2009; Pedregosa et al., 2011). Based on the results presented in
Supplementary Material S3 (Performance Results of 3PCM Using
Different Classification/Clustering Algorithms), most of the model’s
predictions match the true label (fourteen of sixteen algorithms
achieved accuracy greater than 90%). Quadratic SVM and Cubic
SVM were the most accurate algorithms for classifying astrovirus

TABLE 4 Classification accuracy of 3PCM’s Prong 1 against two state-of-the-art
alignment-free machine-learning viral genome classification methods (ML-
DSP, VGDC) using 10-fold cross-validation technique.

Classifier Classification accuracy (%)

Prong 1 (Quadratic SVM) 99.56

ML-DSP 99.00

VGDC 95.88

The values in this table are averages over 10 different validation datasets. Bold value in the

table indicate the highest value of the evaluation metric (classification accuracy).

Frontiers in Molecular Biosciences frontiersin.org05

Alipour et al. 10.3389/fmolb.2023.1305506

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1305506


whole genomes by achieving an accuracy of 99.56%. Consequently,
Quadratic SVM was selected as the classification algorithm in Prong
1 for the remainder of this paper.

To further assess the performance of 3PCM’s Prong 1, we
conducted a comparative analysis by benchmarking our
outcomes against two leading alignment-free machine-learning
genome classification methods suitable for viral classification:
Machine Learning with Digital Signal Processing (ML-DSP)
(Randhawa et al., 2019; Randhawa et al., 2020) and the Viral
Genome Deep Classifier (VGDC) (Fabijańska and Grabowski,
2019). The performance comparison between these two methods
and the proposed Prong 1 with Quadratic SVM is detailed in Table 4,
based on experiments using Dataset 2 with 10-fold cross-validation.
As seen in Table 4, Prong 1 achieves superior classification accuracy
compared to both ML-DSP and VGDC by margins of 0.56% and
3.68%, respectively.

2.2.4 Prong 2: unsupervised machine learning
Prong 2 of the proposed classification method is unsupervised

clustering, which is agnostic to and independent of taxonomic labels
and annotations. Taking into account the possibility that the current
classification of viruses based solely on their host may be flawed or
incomplete due to limited information, knowledge, or
characterization, it was necessary to use an alternate approach
that does not rely on current labels. The use of unsupervised
clustering alongside Prong 1 (supervised learning) allowed for the
flexible use of as yet unclassified and unannotated astrovirus
genomes in the training phase. Approximately one-third of
astrovirus sequences are as yet unclassified (308 out of 992) and
cannot be used in supervised models as they lack “ground truth”
taxonomic labels. The potential inclusion of these sequences in the
clustering model allows for the examination of the hypothesis that
astrovirus consists of more than two genera (Mamastrovirus and
Avastrovirus), which was not possible in Prong 1.

In Prong 2, the same feature vectors as in Prong 1 (k-mer counts)
were used. The performance of Prong 2 for different values of k in the
range [1, 9] in terms of classification accuracy and time can be found in
Supplementary Material S3 (Performance Results of 3PCM Using
Different Classification/Clustering Algorithms). The value k = 6 was
empirically found to achieve the best balance between accuracy and
computational complexity for the datasets and computational
experiments in this paper. Furthermore, to find the most suitable
clustering algorithm, we calculated and normalized the feature
vectors and then tested three different clustering algorithms,
K-means++ (Arthur and Vassilvitskii, 2007), Gaussian Mixture
Model (GMM) (Dempster et al., 1977), and Hierarchical Clustering
(Bridges Jr, 1966). We used Python library scikit-learn’s
implementations of the three candidate clustering algorithms
(Pedregosa et al., 2011). These algorithms were chosen due to their
effectiveness in RNA classification (Kraskov et al., 2005; Akhtar et al.,
2007; Aleb and Labidi, 2015; Hoang et al., 2015; Bustamam et al., 2017;
James et al., 2018; Mendizabal-Ruiz et al., 2018).

These three clustering algorithms were compared by calculating
the silhouette coefficient (Rousseeuw, 1987) as an internal
evaluation metric ranging from −1 to 1, with higher values
indicative of better clustering performance. In addition, we
calculated external evaluation metrics such as Normalized Mutual
Information (NMI) (Strehl and Ghosh, 2002), Adjusted Rand Index

(ARI) (Rand, 1971), and classification accuracy to further compare
the five clustering algorithms. NMI values range from 0 to 1, with
1 indicating perfect agreement and 0 indicating no agreement
between these two clusterings. ARI values range from −1 to 1,
where a value of 1 indicates perfect agreement between predicted
and true labels, a value of 0 indicates no agreement and negative
values indicate disagreement. We calculated classification accuracy
of the clustering algorithms by using the Hungarian algorithm
(Kuhn, 1955) in a post hoc step. This algorithm identifies the
optimal mapping between the numerical cluster labels obtained
by the clustering algorithms and the true taxonomic cluster labels. In
external evaluation metrics, the results of clustering are compared
with some known ground truth or with a reference set of labels.
Consequently, we focused on sequences that had already been
established as belonging to the Mamastrovirus and Avastrovirus
genera of the Astroviridae family (Dataset 2 described in Table 2)
and used this information for calculating external evaluation
metrics. Please refer to Supplementary Material S3 (Performance
Results for 3PCM Testing of Multiple Accuracy Classifiers) to see
implementation details and the performance results of the clustering
of the three clustering algorithm candidates measured in terms of
the aforementioned internal and external evaluation metrics.

Among the three clustering algorithms, K-means++ performs
the best in terms of all four evaluation metrics. K-means++
succeeded to achieve a classification accuracy of 88.16% NMI
of 0.45, ARI of 0.58, and silhouette coefficient of 0.08.
Consequently, K-means++ was selected as the clustering
algorithm in Prong 2 for the remainder of this study. Figure 2
displays the confusion matrix obtained from clustering Dataset
2 using the K-means++ algorithm in Prong 2 of 3PCM.
According to the figure, 448 out of 471 Mamastroviruses and
161 out of 213 Avastroviruses were clustered correctly. Major
misclustering occurred for 52 Avastroviruses that were grouped
with the majority ofMamastroviruses. It is possible that this is the
result of an over-representation of Mamastrovirus over

FIGURE 2
Confusion matrix for the clustering of Dataset 2, the astrovirus
whole genomes with available taxonomic labels (dataset described in
Table 2) into the Avastrovirus and Mamastrovirus genera using
K-means++ algorithm in Prong 2 of 3PCM.
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Avastrovirus in the dataset. Another possible explanation for this
misclustering is the possibility of the existence of additional
genera or subgenera inside the family Astroviridae which will
be investigated in the Results section.

To further evaluate the performance of 3PCM’s Prong 2, we
conducted a comparative analysis by contrasting our results with
three state-of-the-art alignment-free machine-learning genome
clustering methods suitable for viral sequences: Deep Learning
for Unsupervised Classification of DNA Sequences (DeLUCS)
(Millán Arias et al., 2022), its enhanced and interactive version
(iDeLUCS) (Millan Arias et al., 2023), and MeShClust v3.0
(Girgis, 2022). DeLUCS and iDeLUCS rely on deep learning to
uncover patterns (genomic signatures) within raw, unlabeled
primary RNA/DNA sequence data, while MeShClust employs
a mean-shift algorithm on pairwise alignment-free identity
scores. The performance comparison of these three clustering
methods and the proposed Prong 2 with K-means++ is presented
in Table 5, based on experiments utilizing Dataset 2 for both the
testing and the training phases.

The computational experiments involving DeLUCS and
iDeLUCS showed that increasing the mutation rate to pts =
10–3 and ptv = 0.5 × 10−3 (rather than the default values pts =
10–4 and ptv = 0.5 × 10−4) and using 9 mimic sequences (rather
than the default value of 3) increased the accuracy of astrovirus
genome clustering. Due to the variability in the results of
DeLUCS, the results reported in Table 5 are the average values
over 10 different runs. In contrast to the other methods,
MeShClust does not allow for the pre-setting of the number of
clusters due to its density-based nature. As a result, multiple
values were examined for the identity score threshold within the
range of [0, 1], and the value of 0.4005 was selected as it was the
one resulting in two clusters. Overall, as shown in Table 5, Prong
2 outperforms DeLUCS, iDeLUCS, and MeShClust in terms of
both internal and external evaluation metrics, with a
classification accuracy that is 21.76%–22.96% higher than the
other three methods.

The proposed methodology was further tested by collecting
1,450 genomes of the closest viral family to astrovirus, namely,
potyvirus (Potyviridae). Using potyvirus genome sequences, a
dataset consisting of all available astrovirus and potyvirus
genomes was created and classification/clustering of these two
viral families was tested using 3PCM. The exclusion of
recombinants from this dataset was not performed due to the
rarity of interspecific recombination within potyvirus.
Additionally, no recombination is anticipated between

potyvirus and astrovirus (Gibbs et al., 2020). Prong 1
(supervised) and Prong 2 (unsupervised) achieved accuracies
of 99.8% and 93.47%, respectively. The accuracies achieved
provide compelling evidence of the effectiveness of 3PCM in
the classification/clustering of viral genomes at different
taxonomic levels. Details of these computational experiments
can be found in Supplementary Material S4 (Astrovirus Near-
Neighbour Analysis: Potyvirus).

Lastly, 3PCM was used at a lower taxonomic level, for the
classification/clustering of Avastrovirus and Mamastrovirus genera
into different subgroups based on their host species. This test was
augmented by a principal component analysis (PCA) of the k-mer
composition of the astrovirus genomes, for k = 6.

2.3 Computational setup

The laptop used for data collection and recombinants analysis
was a Lenovo L-series ThinkPad with an intel core i5 processor and
32 GB ram. Datasets consisting of Astroviridae and Patatavirales in
this study were retrieved from the National Center for
Biotechnology Information (NBCI). Sequences were downloaded
using the application Geneious Prime 2022.1 https://www.geneious.
com/ via the NCBI nucleotide database.

We empirically selected the hyperparameters of different
classification/clustering algorithms that yielded the best
performance during the training procedure. Both Prong 1 and
Prong 2 of 3PCM are implemented in Python 3.10 and the source
code, as well as all the datasets used in this paper, are publicly
available in the GitHub repository https://github.com/
fatemehalipour/3PCM. All of the tests were performed on
Google Colab Pro environment [2 x Intel(R) Xeon(R) CPU @
2.20 GHz, 32 GB RAM] with NVIDIA A100 GPU.

3 Results

In this section, we showcase the outcomes achieved through
the pipeline explained in the preceding section, Materials and
Methods. First, the results of applying recombinant elimination
to astrovirus sequences will be discussed. Following that, we will
present the results of the novel classification method applied to
as yet unclassified astroviruses. Lastly, the existence of subgenera
within Mamastrovirus and Avastrovirus genera, as suggested by
our observations, will be explored.

TABLE 5 Performance of 3PCM’s Prong 2 against three state-of-the-art alignment-free machine-learning viral genome clustering methods (DeLUCS, iDeLUCS, and
MeShClust v3.0) for clustering DNA sequences of the family Astroviridae, with available taxonomic labels at the genera level (Dataset 2).

Clustering algorithm Classification accuracy (%) NMI [-1,1] ARI [-1,1] Silhouette coefficient [0,1]

Prong 2 (K-means++) 88.16 0.45 0.58 0.08

DeLUCS 66.40 0.17 0.11 0.08

iDeLUCS 66.01 0.11 0.10 0.04

MeShClust v3.0 65.20 0.03 −0.03 0.005

Classification accuracy, NMI [−1, 1], ARI [−1, 1], and silhouette coefficient [0, 1] were employed as evaluation metrics. Higher values indicate better performance for all evaluation metrics. Bold

values in the table indicate the highest value of the evaluation metrics (classification accuracy, NMI, ARI, and silhouette coefficient).
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3.1 Identification and elimination of
recombinant sequences

The optional component to eliminate recombinants was employed
to examine Dataset 1, the primary dataset used in this study. As a result,
54 sequences (5.4% of the dataset) involved in interspecific
recombination, associated with 34 recombination events, were
identified. Notably, out of these 54 recombinations, 7 were
intergeneric. Although the taxonomic classification task performed
in this study is at the genus level, the presence of a negligible
number (7) of intergeneric recombinations (which would yield
noticeable variations in evaluation metrics) led to the decision to
eliminate all 54 recombinants. For more detailed information, please

refer to Supplementary Material S2 (Identification and Analysis of
Candidate Recombinant Astrovirus Genome Sequences).

3.2 Classification of unclassified astroviruses
with mammal and avian hosts

Using 3PCM, we attempted to predict taxonomic classification
for as yet unclassified astrovirus sequences. The predictive models of
3PCM’s Prong 1 (supervised) and Prong 2 (unsupervised) were
trained on sequences with known taxonomic labels (Mamastrovirus
or Avastrovirus), and later used to predict the genus of as yet
unclassified astrovirus sequences. In Prong 3, the class level host

FIGURE 3
(A): Confusion matrix for the classification of as yet unclassified astroviruses including recombinants using Prong 1 (supervised). (B): Confusion
matrix for clustering as yet unclassified astroviruses including recombinants using Prong 2 (unsupervised). (C): Confusionmatrix for the classification of as
yet unclassified astroviruses excluding recombinants using Prong 1 (supervised). (D): Confusion matrix for clustering as yet unclassified astroviruses
excluding recombinants using Prong 2 (unsupervised). Prong 3, the host labels, was considered the ground truth for both confusion matrices.
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labels of the input as yet unclassified astrovirus sequences were
considered. In cases where all three labels agree, those labels were
proposed as genus labels for the respective as yet unclassified
astrovirus genomes. When the taxonomic labels predicted by
Prong 1 and Prong 2 agree, but they differ from the host label
found by Prong 3, they are considered tentative and subject to
further investigation.

For this analysis, only sequences with mammalian or avian hosts
were investigated, since the two supervised and unsupervised
predictive models were trained only on Mamastrovirus and
Avastrovirus genomes. The sequences obtained from 11 other
hosts were discarded, resulting in Dataset 3 comprising
229 astroviruses with mammalian or avian hosts, as the testing
dataset (Table 3). Details of the distribution of hosts for the 308 as
yet unclassified astrovirus RNA sequences can be found in
Supplementary Material S1 (Analysis of Astroviruses of
Unknown Genus Label).

Figure 3 displays the confusion matrices resulting from the use
of Prong 1 (supervised) and Prong 2 (unsupervised) for the
classification/clustering datasets including (top), respectively
excluding (bottom) recombinant sequences. Note that, out of
54 identified recombinant sequences, 41 were present in the

training set (Dataset 2), while the remaining 13 belong to the
testing set (Dataset 3). Table 6 summarizes the results of the
evaluation metrics for both Prong 1 (classification accuracy) and
Prong 2 (clustering accuracy, NMI, ARI, Silhouette Coefficient). As
seen from Figure 3 and Table 6, the accuracy of both Prong 1 and
Prong 2 increased slightly when the recombinant sequences were
removed from the training and test sets (by 1.59% in the case of
supervised learning, and by 1.48% in the case of unsupervised
clustering). This observation indicates the potential negative
impact that recombination events can have on machine learning-
based classification/clustering approaches. While the impact may
not be highly significant in this analysis, it is crucial to recognize that
this may not hold true in all cases. The effect of this elimination
process will correlate with the extent to which recombination
contributes to noise in the classification. This, in turn, varies
based on virus biology, frequency within the dataset, and the
taxonomic level of classification.

As seen in Table 7, when both the training and test datasets
include recombinant sequences, all three prongs agree on 83.41%
(191 out of 229) of the sequences in the testing dataset. For an
additional 3% (8 out of 229) of the sequences, the Prong 1 and Prong
2 predictions agree, but differ from the Prong 3 prediction. When

TABLE 6 Evaluationmetrics of Prong 1 and Prong 2 applied to the classification/clustering unclassified astroviruses intoMamastroviruses and Avastroviruseswhen
using datasets that include, respectively exclude recombinant sequences.

Method Recombinants Classification/Clustering
accuracy (%)

NMI [−1, 1] ARI [−1, 1] Silhouette coefficient
[0, 1]

Supervised
(Quadratic SVM)

Included 95.63 N/A N/A N/A

Supervised
(Quadratic SVM)

Excluded 97.22 N/A N/A N/A

Unsupervised (K-means++) Included 84.15 0.22 0.39 0.06

Unsupervised (K-means++) Excluded 85.63 0.25 0.43 0.06

Prong 3 host labels are considered the ground truth for calculating the external evaluation metrics [Normalized Mutual Information (NMI), Adjusted Rand Score (ARI), and Classification/

Clustering Accuracy]. Higher values indicate better performance for all evaluation metrics. Values within the brackets indicate the range of each evaluation metric. Bold values in the table

indicate the highest value of the evaluation metrics (classification accuracy, NMI, ARI, silhouette coefficient) in both supervised and unsupervised methods.

TABLE 7 Number of as yet unclassified viral genomes for which two or all three, of the prongs, agree in their genus label prediction.

Including recombinants

Prong 1 (supervised) ✓ ✓ ✓ ✗

Prong 2 (unsupervised) ✓ ✓ ✗ ✓

Prong 3 (host) ✓ ✗ ✓ ✓

# Viral Genomes Agreed 191 (229) 8 (229) 28 (229) 2 (229)

Excluding recombinants

Prong 1 (supervised) ✓ ✓ ✓ ✗

Prong 2 (unsupervised) ✓ ✓ ✗ ✓

Prong 3 (host) ✓ ✗ ✓ ✓

# Viral Genomes Agreed 185 (216) 6 (216) 25 (216) 0 (216)

A checkmark indicates agreement between the prongs. For example, the first column represents the case when agreement of all three prongs occurs, the second column represents the case when

Prong 1 and Prong 2 but not Prong 3 agree, etc. The numbers in parentheses represent the total size of the test dataset. Bold values in the table indicate the number of unclassified viral genomes

for which Prong 1 and Prong 2 agreed in their genus label prediction.
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recombinant sequences are excluded from both the training and
testing datasets, all three prongs agree on predictions for 85.65%
(185 out of 216) of the sequences in the testing dataset. Similarly, for
an additional 3% (6 out of 216) of the sequences, Prong 1 and Prong
2 agree in their predictions, while Prong 3 disagrees. The NCBI
accession IDs of the as yet unclassified 191 + 8 astrovirus sequences
when including recombinants and the as yet unclassified 185 +
6 astrovirus sequences when excluding recombinants, together with
the taxonomic labels (at the genus level) predicted by 3PCM can be
found in Supplementary Material S5 (Proposed Classification for as
yet Unclassified Astroviruses). The group of 185 + 6 sequences,
where 3PCM led to a genus level classification when excluding
recombinants, is a subset of 191 + 8 sequences for which a
classification was proposed using 3PCM when including
recombinants, with the exception of one sequence with accession
ID MT138006, for which the classification prediction was only
generated when recombinants were excluded from the analysis.

Although both sets of results (with and without recombinants)
are meaningful, we selected as the primary result of this paper the
191 + 8 genus label predictions obtained from the analysis that
includes recombinants. This decision was mainly influenced by the
fact that the majority of the recombination events observed are
intrageneric, and are thus not significant at genus level classification/
clustering.

For the 191 sequences for which all three prongs agree, 26 are
predicted to belong to genus Avastrovirus, and the remainder 165 are
predicted to belong to genus Mamastrovirus. For these 191 sequences,
the proposed genus labels are more certain than for the 8 sequences for
which Prong 3’s host label disagreed with Prong 1 and Prong 2’s
predictions. For the latter, three out of eight sequences were classified as
Avastrovirus by Prong 1 and Prong 2 despite being obtained from
mammals. These three sequences are JN420353 [a California sea lion
astrovirus (Li et al., 2011)], MH933754 [a human astrovirus (Yinda
et al., 2019)], and NC_035758 [a human astrovirus (Orf et al., 2023)].
Regarding the remaining five sequences, obtained from an avian host,
the first two prongs predicted that they belonged to theMamastrovirus
genus. The five sequences are: KP663426 (Pankovics et al., 2015),
MT138010 (Shan et al., 2022), NC_027426 (Orf et al., 2023),
ON304005 (French et al., 2022), MK096773 (Fernández-Correa
et al., 2019). Further investigation is needed in order to determine
the origin, and the spectrum of natural host species, of these
eight sequences.

The genomes of as yet unclassified astroviruses with hosts other
than mammals and avians were also examined, to determine
whether they can be classified as belonging to the genera,
Mamastrovirus or Avastrovirus or to detect whether this family
of viruses has more than two genera. Prong 1 (supervised) was not
applicable to this problem, due to the absence of ground truth labels
in the training set. The clustering results obtained by using Prong 2
(unsupervised) showed no clear separation among the unclassified
astroviruses with non-mammalian/non-avian hosts, nor was there
any clear separation found between these genomes and
Avastroviruses or Mamastroviruses. This could potentially be due
to a lack of availability of sufficiently many genomes with non-
mammalian and non-avian hosts, which can negatively affect the
efficacy of machine learning methods. Details of these
computational experiments can be found in Supplementary
Material S1 (Analysis of Astroviruses of Unknown Genus Label).

3.3 A closer look at genera Mamastrovirus
and Avastrovirus

Given the mounting evidence for different serotypes, clades, and
genotypes associated with unique cross-species transmissions, different
rates of evolution and intraspecific recombination for human
astroviruses (HAstV) (Bosch et al., 2014; Donato and Vijaykrishna,
2017; Hargest et al., 2021; Perez et al., 2023) and goose astroviruses
(GoAstV) (Fei et al., 2022; Zhu and Sun, 2022), we further investigated
the sequences belonging to these two subgroups. Figure 4 displays a
visualization of the 6-mer counts of the genomes in Dataset 2
(Mamastrovirus and Avastrovirus genomes with established labels),
together with the 191 genomes with genus labels predicted by 3PCM
with the use of principal component analysis (PCA). For visualization
purposes, the first three principal components of the 6-mer counts for
each genome are utilized, preserving ~21% of the explained variance.

The first step in this analysis was to extract information about
the host species. The available 636 Mamastrovirus sequences with a
host label at the species level were obtained from 69 different species.
Of these, 362 sequences were obtained from the four most
representative hosts, 105 from Sus scrofa, 44 from Sus domesticus,
153 from Homo sapiens, and 60 from Bos taurus.

As seen in Figure 4, a separating plane exists that separates Cloud 1
(111 Mamastrovirus genomes) from the rest of the Mamastrovirus
genomes. A closer examination reveals that, while not all 163 HAstV
(human host) sequences are in Cloud 1, all 111 sequences in Cloud 1 are
HAstV sequences. This suggests that aHAstV subgenus exists within the
genusMamastrovirus. A comparison between Cloud 1 and the human
Mamastroviruses sequences analyzed in Perez et al. (2023) reveals that
all the 91 MAstV-Sp7G3 human astrovirus sequences included in our
analysis (not collected from sewage, not collected from an unknown
host, etc.) are located in Cloud 1. Moreover, all 13 MAstV-Sp6G2
sequences and all 18 MAstV-Sp6G7 sequences analyzed in Perez et al.
(2023) are separated from Cloud 1 and located in the main cloud (the
sequences located between the two separating planes). This suggests a
correspondence between the Cloud 1 sequences and MAstV-Sp7G3
sequences. The accession IDs of sequences in Cloud 1 can be found in
Supplementary Material S1 (Analysis of Astroviruses of Unknown
Genus Label).

To further examine this hypothesis, 3PCM was applied to the
genome sequences of the Mamastrovirus genus (the aforementioned
636Mamastrovirus genome sequences), with the labels beingHAstV and
Non-HAstV Mamastrovirus depending on the sequences’ host species.
The accuracies of applying Prong 1 (supervised) and Prong 2
(unsupervised) to this dataset, computed using Prong 3 (host labels)
as the ground truth, are shown in Table 8. The high classification
accuracy of Prong 1 (99.36%) and unsupervised clustering accuracy of
Prong 2 (80.88%), provide additional evidence supporting the hypothesis
of the existence of aHAstV subgenus of the genusMamastrovirus.Using
the available data, no separation is evident for the other hosts of
Mamastroviruses.

When investigating the host species of genus Avastrovirus, we
analyzed the 239 Avastroviruses with available host species labels,
obtained from 28 different species. Of these, 135 sequences were
obtained from the twomost representative hosts, 64 fromGoose and
71 from Chicken (Gallus gallus).

As seen in Figure 4, a separating plane exists that separates
Cloud 2 (66 Avastrovirus genomes) from the rest of the Avastrovirus
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genomes. Further investigation of Cloud 2 revealed that 59 of its
sequences have a Goose host (GoAstV sequences), amounting to
92% (59 out of 64) of the available GoAstV sequences. This suggests
that a GoAstV subgenus may exist within the genus Avastrovirus. A
comparison between the sequences in Cloud 2 and two established
genotypes of GoAstV (see Zhu and Sun, 2022) reveals that all
51 GoAstV-2 (G2) goose astrovirus sequences analyzed in Zhu
and Sun (2022) are located in Cloud 2, and all 5 GoAstV-1 (G1)
sequences analyzed in Zhu and Sun (2022) are separated from Cloud
2 and located in the main cloud (the sequences located between the
two separating planes). This suggests that the observed separation of
the Cloud 2 GoAstV sequences from the rest corresponds to the
aforementioned two genotypes of the GoAstV virus analyzed in Zhu
and Sun (2022). The accession IDs of sequences in Cloud 2 can be
found in Supplementary Material S1 (Analysis of Astroviruses of
Unknown Genus Label).

To further examine this hypothesis, 3PCM was applied to the
genome sequences in this dataset, with the labels being GoAstV and
Non-GoAstV Avastrovirus depending on the sequence’s host species.
The classification/clustering accuracies of applying Prong 1 (supervised)

and Prong 2 (unsupervised) to this dataset, computed using Prong 3
(host labels) as the ground truth, are shown in Table 9. The high
classification accuracy of Prong 1 (94.96%), and unsupervised clustering
accuracy of Prong 2 (94.98%), provide additional evidence supporting
the hypothesis of the existence of a GoAstV subgenus of the genus
Avastrovirus. According to the available data, no separation is apparent
for the other hosts of Avastroviruses.

4 Discussion

We introduce the Three-Pronged Classification Method
(3PCM), a novel approach that integrates both supervised and
unsupervised machine learning paradigms, along with
information about the originating species, to classify emerging
astroviruses. The main objective of this study was to suggest a
classification system for 229 as yet unclassified astrovirus sequences
acquired from avian and mammalian hosts. This approach was
taken due to the limited number of available sequences and the lack
of definitive information on other hosts. Out of the 229 as yet

FIGURE 4
Two views of 3D PCA data visualizations ofMamastrovirus and Avastrovirus sequences k-mer frequencies: astrovirus sequences in Dataset 2 (known
genus labels), together with the 191 astrovirus genomes with genus labels predicted by 3PCM. For comparison purposes, HAstV and GoAstV are
highlighted with different colors compared to the rest ofMamastroviruses (non-HAstV Mamastroviruses) respectively the rest of the Avastroviruses (non-
GoAstV Avastroviruses). The lavender plane illustrates the separation between two possible subgenera of Mamastrovirus. The grey plane illustrates
the separation between two possible subgenera of Avastrovirus. This visualization is based on the first three principal components of 6-mer counts for the
entire genome. In this figure, Clouds 1 and 2 represent possible subgenera of HAstV (Cloud 1) within genus Mamastrovirus, and GoAstV (Cloud 2) within
genus Avastrovirus.

TABLE 8 Evaluation metrics of Prong 1 and Prong 2 applied to the classification/clustering ofMamastrovirus sequences into HAstV and Non-HAstV Mamastrovirus.

Method Classification/Clustering accuracy (%) NMI [−1, 1] ARI [−1, 1] Silhouette coefficient [0, 1]

Supervised (Quadratic SVM) 99.36 N/A N/A N/A

Unsupervised (K-means++) 80.88 0.34 0.37 0.07

Prong 3 host labels are considered the ground truth for calculating the external evaluation metrics [Normalized Mutual Information (NMI), Adjusted Rand Score (ARI), and Classification/

Clustering Accuracy]. Higher values indicate better performance for all evaluation metrics. Values within the brackets indicate the range of each evaluation metric.
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unclassified sequences, the three-pronged classification yielded
consistent predictions for 191 of them, indicating a very high
level of reliability for the proposed classification. Furthermore,
among the as yet unclassified sequences, For 8 additional
sequences, the computational predictions of Prong 2 and Prong
2 coincided, but were different from the host information obtained
by Prong 3. In light of numerous supporting evidence regarding the
possibility of cross-species infection Pankovics et al. (2015), the
classification proposed by Prong 1 and Prong 2 takes precedence
over Prong 3. With the investigation in literature, we were able to
validate the taxonomic classification labels proposed by Prong 1 and
Prong 2, confirming the existence of cross-species infection in both
Mamastroviruses and Avastroviruses in these sequences.

3PCM’s versatility lies in its ability to employ each of the three
prongs independently or in combination, providing a highly adaptable
classification method suitable for various taxonomy tasks. The
hypothesis of the existence of additional Avastrovirus and
Mamastrovirus genera associated with astroviruses from Reptiles,
Amphibians, and Actinopterigii hosts was explored using Prong
2 and Prong 3, which are not reliant on sequence labels. The results
showed no clear separation between these three groups and
Mamastrovirus and Avastroviruses, but the reason for this could be
the limited availability of sequences. For a more comprehensive and
accurate analysis, the identification of more Astrovirus sequences from
hosts beyond avians and mammalians is necessary.

Elimination of recombinant sequences is an optional step in the
3PCM pipeline. We identified 54 instances of interspecies
recombination in Dataset 1, seven of which were intergeneric.
The classification/clustering accuracy of Prongs 1 and 2 increased
by 1%–2% after the 54 recombinant candidates were removed. Since
this study was concerned with genus level classification, of all
recombination events only intergeneric recombinations could
have an influence on the classification accuracy. As the number
of intergeneric recombination events detected in this dataset was low
(7 out of 992), the impact of the removal of recombinant sequences
on classification accuracies was expected to be negligible.
Nonetheless, the option to include this step in the pipeline is
essential, as its impact on classification accuracy may vary,
depending on the level of taxonomic classification and the
frequency and nature of genetic recombination in the virus
genomes being classified. The expert user can decide whether or
not to include this option, based on the specific virus biology
(including the propensity for recombination and whether it is
intra or intergeneric), the frequency of such recombinations in
the dataset, and the level of classification (e.g., genus or species).

Since the recognition of Astroviridae as a family in 1993, this group
of viruses infected over 140 hosts across the globe and is the second
largest cause of gastroenteritis in humans. Due to the rapid expansion of
infected hosts, frequent inter-species transmission, and genetic

recombination, traditional classification based solely on a host may
be insufficient. This paper presented 3PCM, a novel machine-learning
classification method utilizing both virus-host and whole-genome
composition. To enhance the effectiveness of 3PCM, an optional
component was added to the pipeline that is responsible for
eliminating recombinant sequences. Following the classification of
the as yet unclassified astroviruses using Prong 1 (supervised
classification) and Prong 2 (unsupervised clustering), the NCBI host
labels were used as possible ground truth to classify/cluster astrovirus
whole genome sequences, with an accuracy of 95.63%, and 84.15%,
respectively. From this classificationmethod, we propose 26 avian-host-
derived sequences and 165 mammalian host-derived sequences be
added to Avastrovirus and Mamastrovirus genera, respectively. A
taxonomic classification was also proposed for eight additional as
yet unclassified astrovirus sequences, which are not aligned with the
host species of the sequences and may be capable of transmitting across
species. As anticipated, the need for a rapid andmultipronged approach
for astrovirus classification continues to grow (the number of
unclassified genome sequences grew from 308 in July 2022 to 429 in
September 2023). The 3PCM pipeline is available for ongoing
classification of newly added sequences and its power increases with
the informative increase in the modeling.

Furthermore, 3PCM was used to investigate the hypothesis of the
existence of subgenera GoAstV and HAstV within Avastrovirus and
Mamastrovirus respectively. Using 3PCM for classification/clustering of
the genusMamastrovirus into HAstV and Non-HAstV Mamastrovirus,
accuracies of 99.36%, and 80.88% for Prong 1 and Prong 2 were
achieved. Furthermore, the accuracy of 94.96% and 94.98% were
achieved when Prong 1 and Prong 2 were used for classification/
clustering of the genus Avastrovirus into GoAstV and Non-GoAstV,
respectively. The results of these two experiments were further verified
by an investigation of the difference in the genome composition of the
subgroups. As a result, we propose that each of these subgroups is a
distinct sub-genus.
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