
Streaming and Communication Complexity of Load-Balancing

via Matching Contractors

Sepehr Assadi∗

University of Waterloo

Aaron Bernstein†

New York University

Zachary Langley
Rutgers University

Lap Chi Lau‡

University of Waterloo

Robert Wang
University of Waterloo

Abstract

In the load-balancing problem, we have an n-vertex bipartite graph G = (L,R,E) between a set of
clients and servers. The goal is to find an assignment of all clients to the servers, while minimizing the
maximum load on each server, where load of a server is the number of clients assigned to it. Motivated
by understanding the streaming complexity of this problem, we study load-balancing in the one-way
(two-party) communication model: the edges of the input graph are partitioned between Alice and Bob,
and Alice needs to send a short message to Bob for him to output a solution of the entire graph.

We show that settling the one-way communication complexity of load-balancing is equivalent to a
natural sparsification problem for load-balancing, which can alternatively be interpreted as sparsification
for vertex-expansion. We then prove a dual interpretation of this sparsifier, showing that the minimum
density of a sparsifier is effectively the same as the maximum density one can achieve for an extremal graph
family that is new to this paper, called Matching-Contractors; these graphs are intimately connected to
the well-known Ruzsa-Szemerédi graphs and generalize them in certain aspects. Our chain of equivalences
thus shows that the one-way communication complexity of load-balancing can be reduced to a purely
graph theoretic question: what is the maximum density of a Matching-Contractor on n vertices?

As our final result, we present a novel combinatorial construction of some-what dense Matching-
Contractors, which implies a strong one-way communication lower bound for load-balancing: any

one-way protocol (even randomized) with Õ(n) communication cannot achieve a better than n
1
4
−o(1)-

approximation. Previously, no non-trivial lower bounds were known for protocols with even O(n logn)
bits of communication (a better-than 2-approximation lower bound is trivial). Our result also implies
the first non-trivial lower bounds for semi-streaming load-balancing in the edge-arrival model, ruling out

n
1
4
−o(1)-approximation in a single-pass.

∗(sepehr@assadi.info) Supported in part by a Sloan Research Fellowship, an NSERC Discovery Grant, a University of

Waterloo startup grant, and a Faculty of Math Research Chair grant.

†(bernstei@gmail.com) Supported in part by a Sloan Research Fellowship, a Google Research Fellowship, NSF Grant 1942010,

and a Charles S. Baylis endowment from NYU.

‡(lapchi@uwaterloo.ca) Supported by an NSERC Discovery Grant.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Contents

1 Introduction 1

1.1 Our Contributions . 1

1.2 Previous Work . 3

1.3 Roadmap and Technical Overview . 3

2 Preliminaries 4

2.1 One-Way Communication Complexity . 5

3 Load-Balancing Sparsifiers 5

3.1 Equivalence Between Sparsifier and One-Way Communication Complexity 6

3.2 Equivalent Notions of Sparsification . 7

3.3 Matching-Contractors . 8

4 Relating Matching-Contractors to Load-Balancing Sparsifiers 9

4.1 Linear Programming Relaxation for Load-Balancing Sparsification 9

4.2 Constructing Matching-Contractor from Dual Solution . 11

4.2.1 Proof Ideas . 11

4.2.2 Construction from Fractional Dual Solution . 12

4.2.3 Analysis . 12

5 A Construction of Matching-Contractors 14

6 Communication Complexity of Load-Balancing 16

6.1 Encoding Graphs and the Hard Input Distribution . 16

6.2 Analysis of the Input Distribution . 17

6.2.1 A Quick Refresher on Information Theory . 18

6.2.2 Proof of Theorem 4 . 18

6.3 Proofs of Corollaries 6.1 and 6.2 . 19

6.4 Proof of Theorem 1: Sparsifiers = One-Way Communication 20

A Deferred Proofs 24

A.1 Proof of Proposition 3.4 . 24

A.2 Reducing the Number of Servers . 24

A.3 Proof of Proposition 5.2 . 25

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

1 Introduction

We study the load-balancing problem. Given a bipartite graph G = (L,R,E), an assignment maps each
vertex in L to one of its neighbors in R. The load of vertex in R is the number of vertices in L assigned to
it. The goal is to find an assignment that minimizes the maximum load. We often refer to vertices in L as
clients and the ones in R as servers.

Load-balancing has a rich history under different names. It is studied in the scheduling literature as job
scheduling with restricted assignment [Hor73,BCS74,LST90,LL04,HLLT06,JR17,JR20], in the distributed
computing literature as backup placement problem [CHSW12,HKPSR18,OBL18,BO20,ABL20,ALPZ21],
and in graph algorithms as the semi-matching problem [HLLT06, KR13a, FLN14]. From an optimization
perspective, it serves as a canonical example of a mixed packing-covering problem, with packing constraints
on the servers and covering constraints on the clients.

This work focuses on the load-balancing problem in the semi-streaming model [FKM+05], where the
edges of the input graph G arrive one-by-one in a stream, and the algorithm is allowed to process these
edges using O(n · polylog(n)) memory, where n is the total number of vertices. In addition, the algorithm
is limited to a single pass (or a few passes) over the stream. These constraints capture several challenges of
processing massive graphs, including I/O-efficiency and efficiently monitoring evolving graphs. As such, the
semi-streaming model has been at the forefront of the research on massive graphs in recent years.

Load-balancing can be seen as a natural and useful problem between two of the most well-studied families
of problems in the semi-streaming model: matching problems (see e.g. [FKM+05,GKK12,AG11,AKLY16,
FMU22,A24]) and coverage problems (see e.g. [DIMV14,AKL16,MV17,KKA23]). Yet, in sharp contrast
to these problems, our understanding of semi-streaming load-balancing is quite limited. Over a decade ago,
Konrad and Rosén [KR13a] initiated the study of load-balancing in this model, presenting a simple O(

√
n)-

approximation algorithm in a single-pass and an O(log n)-approximation algorithm in O(log n) passes. The
latter algorithm was only recently improved to an O(1)-approximation in O(log n) passes [ABL23]. At this
point, there is no evidence why even a 2-approximation cannot be achieved in a single pass!1

1.1 Our Contributions A main consequence of this work is that Konrad and Rosén’s single-pass O(
√
n)-

approximation algorithm cannot be significantly improved.

Result 1. There is no semi-streaming algorithm that obtains a n
1
4−o(1)-approximation to the load-

balancing problem with success probability at least 2
3 .

This result stems from a series of reductions and equivalences that we describe below. Ultimately, we
reduce the problem to a question in extremal graph theory and present a novel construction to establish the
streaming complexity lower bound.

One-Way Communication Complexity and Load-Balancing Sparsifiers Inspired by previous work
on matchings and coverage problems [GKK12,KR13a,AKL16,FNSZ20], we study the one-way communication
complexity of the load balancing problem. In this communication model, the input graph is edge-
partitioned between Alice and Bob. Alice sends a single Õ(n)-bit message to Bob, and Bob then
outputs an approximately optimal solution to the entire graph. Semi-streaming algorithms imply one-way
communication protocols (but not vice versa), so a lower bound on the one-way communication complexity
translates to a lower bound on the semi-streaming complexity.

Our first equivalence shows that the one-way communication complexity of load-balancing is nearly
equal to the minimum density of load-balancing sparsifiers, which were called semi-matching skeletons
in [KR13a]. For a graph G = (L,R,E) and approximation ratio α ⩾ 1, we define an α-approximate
load-balancing sparsifier of G to be any spanning subgraph H of G that can preserve the value of optimal
load-balancing for every subset of clients in L up to a factor of α (see Definition 3.1 for the formal definition).

1Obtaining a better-than-two approximation for load-balancing requires finding a perfect matching when it exists. As such,
one can borrow existing lower bounds for the latter problem to obtain that Ω(logn) passes are required for load-balancing in

this case.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

The original motivation of this definition in [KR13a] is that a good load-balancing sparsifier implies a
good one-way communication protocol. The protocol is the natural one: Alice sends Bob an α-approximate
sparsifier HA of her graph GA, and Bob outputs the optimal assignment A of the graph HA ∪GB . It is not
hard to check that A is an (α+1)-approximation to the optimal assignment in GA∪GB (see Proposition 3.4).

Our contribution is proving the other direction of the equivalence, showing that load-balancing sparsifiers
are the correct combinatorial objects for understanding the one-way communication complexity.

Result 2. For any α ⩾ 1 and large n ⩾ 1, the communication cost of the best one-way protocol
for α-approximate load-balancing, possibly with randomization and success probability 2

3 , is equal, up
to poly log (n) factors, to the smallest T such that any n-vertex graph contains a Θ(α)-approximate
load-balancing sparsifier with at most T edges.

Load-Balancing Sparsifiers and Matching Contractors Our key conceptual contribution is the
identification of a natural and interesting dual object for load-balancing sparsifiers. We say a bipartite
graph G = (L,R,E) is an α-Matching-Contractor if and only if its edges can be partitioned into a set
of matchings M1,M2, . . . ,Mk with the following property: vertex-set of each matching Mi in L is “heavily
contracting” if we do not use edges of Mi itself; more formally, the neighbor-set of L(Mi) in G \Mi has
size |Mi| /α only. Matching-Contractors can be roughly thought of as a more stringent version of Ruzsa-
Szemerédi graphs [RS78]: see Remark 3.11 for a more detailed comparison. Our second equivalence is
between the sparsity of a load-balancing sparsifier and the density of a Matching-Contractor.

Result 3. For any α ⩾ 1 and large n ⩾ 1, the minimum T such that every graph n-vertex graph G
contains an α-approximate load-balancing sparsifier with at most T edges, is equal, up to poly log (n)
factors, to the largest density of a Θ(α)-Matching-Contractor with n vertices.

Construction of Dense Matching-Contractors Result 2 and Result 3 reduce the one-way communi-
cation complexity of load balancing to a new question in extremal graph theory: what is the maximum
density of a Matching-Contractor on n vertices? Our key technical contribution is a novel construction of
somewhat-dense Matching-Contractors.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Result 4. For any sufficiently small ε > 0 and large integer n ⩾ 1, there exists an
(
n

1
4−O(ε)

)
-Matching-

Contractor with n1+Ω(ε2) edges.

Combining our results together implies that no Õ(n)-communication protocol can achieve n
1
4−Ω(1)-

approximation to load-balancing. This in turn implies Result 1 that the best approximation ratio achievable
by single-pass semi-streaming algorithms is only n

1
4−o(1), significantly improving the prior 2-approximation

lower bounds. Our lower bound also comes quite close to the n
1
3 one-way communication complexity upper

bound of [KR13a], and by the machinery developed in this paper, closing this gap now amounts to pinning
down the maximum density of Matching-Contractors.

1.2 Previous Work Konrad and Rosén [KR13a] made the first step in understanding the one-way
communication complexity of load-balancing. They defined load-balancing sparsifiers (called semi-matching
skeletons in [KR13a]) and showed that the existence of sparse load-balancing sparsifiers implies good

communication protocols. They then use this connection to obtain an n
1
3 -approximate one-way protocol

to load-balancing. Their result leaves two significant gaps. Firstly, while they showed a one-way relation
between load-balancing sparsifiers and communication protocols, they did not prove an equivalence between
the two, hence leaving it uncertain whether this is the “right” notion of sparsification. Secondly, their

lower bounds for both sparsifiers and communication protocols are quite limited. They show that a n
1

c+1 -
approximate one-way protocol requires cn bits, but this has no implication for protocols that communicate
O(n log(n)) bits, and hence no implication for semi-streaming in general.

Our work is heavily inspired by the pioneering work of [GKK12] for the closely related maximum
matching problem. [GKK12] initiated a systematic study of semi-streaming matchings through one-way
communication complexity. The two main discoveries of [GKK12] are as follows.

• They introduced matching covers as a natural notion of sparsifiers for matchings, and proved an
equivalence between matching covers and one-way communication complexity of matchings. Matching
covers have since found far reaching implications in streaming (e.g., in [Kap13,AB19,Ber20,ABKL23])
and beyond (e.g., in dynamic graph algorithms [ABKL23,BG24,AK24]).

• They formulated the natural “dual” connection between matching covers and Ruzsa-Szemerédi
graphs [RS78,FLN+02,AMS12], an extremal graph family with many large edge-disjoint induced match-
ings. They thus reduced the one-way communication problem to a problem in extremal graph theory: do
there exist dense Ruzsa-Szemerédi graphs? Extending known constructions of Ruzsa-Szemerédi graphs
in [FLN+02] for monotonicity testing lower bound, they proved the first non-trivial lower bound for ap-
proximation of matchings in the semi-streaming model. Remarkably, after [GKK12] first established this
connection, Ruzsa-Szemerédi graphs have become a central tool for proving semi-streaming lower bounds
for matchings and beyond (e.g., in [Kap13,AKLY16,AKL17,AR20,Kap21,CKP+21,AS23,AKNS24]).

1.3 Roadmap and Technical Overview In this work, we follow a similar chain of reduction and
equivalences as in [GKK12] to relate the one-way communication complexity of load-balancing to the density
of Matching-Contractors. In the following, we provide an outline of this paper and discuss the high-level
ideas in each step.

In Section 2 we introduce basic notation and preliminaries. In Section 3, we define the two crucial objects
of this paper: load-balancing sparsifiers (introduced in [KR13a]) and Matching-Contractors (introduced in
this work). We should think of load-balancing sparsifiers as the analog of matching covers in [GKK12], and
Matching-Contractors as the analog of Ruzsa-Szemerédi graphs. In Section 3.1, we provide some intuition on
the equivalence of load-balancing sparsifiers and one-way communication complexity; the proof is in Section 6
using information theory and Matching-Contractors. We show in Section 3.2 that load-balancing sparsifiers
are equivalent to a version of vertex expansion sparsifiers in bipartite graphs, suggesting that it is a natural
object of its own interest. We also formulate an equivalent operational definition that is simpler to work
with. In Section 3.3, we discuss the relation between Matching-Contractors and Ruzsa-Szemerédi graphs.

In Section 4, we prove Result 3 about the equivalence between the existence of sparse load-balancing
sparsifiers and the non-existence of dense Matching-Contractors. This section encapsulates the main

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

conceptual contribution of this paper, that Matching-Contractors is the dual object of load-balancing
sparsifiers in a precise sense. To prove this, we formulate a linear programming relaxation for finding a
load-balancing sparsifier of a bipartite graph, and prove that it is an O(log n)-approximation. Then we
construct the dual linear program and prove that one can construct a Matching-Contractor from a solution
to the dual LP. This equivalence is the analog of the equivalence between matching covers and Ruzsa-
Szemerédi graphs in [GKK12], and their proof is also based on linear programming duality. For our proof,
both steps are done by a randomized rounding argument using some problem-specific insights.

In Section 5, we show an explicit construction of Matching-Contractors (Result 4), which is the main
technical challenge in this paper. One reason is that the existence of dense Matching-Contractors is counter-
intuitive: For the complete bipartite graphs, one can prove that there are load-balancing sparsifiers with
O(n log n) edges by random sampling. These are known as magical graphs in [HLW06] and have applications
in error-correcting codes and super-concentrators. Given this and the recent successes of sparsification in
various settings, our initial effort was to prove that sparse load-balancing sparsifiers always exist (and hence
dense Matching-Contractors do not). Another challenge is that unlike for Ruzsa-Szemerédi graphs, there
were no known constructions of Matching-Contractors, and hence no clear starting point in terms of what
tools to use. As we discuss in Section 3.3, Matching-Contractor is an even more stringent version of Ruzsa-
Szemerédi graph, which is itself notoriously difficult to construct [FLN+02,AMS12]. Our construction idea
is to view each vertex as a string, and use the block structures of the vertices and a set family of small
pairwise intersection to argue about the contraction property. Even though the final construction and the
analysis are short and elementary, we see this as the key technical innovation in this paper.

Finally, in Section 6, we show the equivalence between the communication complexity of load-balancing
and the existence of dense Matching-Contractors. Combining with the equivalence in Result 3, this completes
Result 2. This equivalence is the analog of the equivalence between the communication complexity of
matchings and the existence of dense Ruzsa-Szemerédi graphs in [GKK12]. Our proof uses basic information
theoretic arguments and a simple modification of Matching-Contractors to establish the lower bound.

Overall, we find it interesting to have natural analogs of matching covers and Ruzsa-Szemerédi graphs in
load-balancing sparsifiers and Matching-Contractors. Given the large impact of [GKK12], we hope that these
new objects and equivalences can play a further role in understanding load-balancing in streaming and other
models. One promising direction is to establish lower bound on multi-pass semi-streaming algorithms for
the load balancing problem. We believe they also have the potential to shed light on other graph problems,
such as vertex expansion and matching conductance as discussed in Section 3.2.

2 Preliminaries

Notation. Given two functions f, g, we use f ≲ g to denote the existence of a positive constant c > 0,
such that f ⩽ c · g always holds. We use f ≍ g to denote f ≲ g and g ≲ f .

Graphs. We use G = (L,R,E) to denote a bipartite graph with sides L and R. For any vertex v, we
define NG(v) to be the set of neighbors of v in G, EG(v) to be the set of incident edges, NG(S) :=

⋃
v∈S N(v)

and EG(S) :=
⋃

v∈S E(v). Given subsets X ⊆ L and Y ⊆ R, we define EG(X,Y) := {(u, v) ∈ E | u ∈
X ∧ v ∈ Y } and we define G[X ∪ Y] to be the induced graph (X ∪ Y,EG(X,Y)). When clear from the
context, we may drop the subscript G in these notation.

We define a matching M ⊆ E to be a set of disjoint edges. We let L(M) denote the left endpoints of
edges in M , and R(M) the right endpoints. For any graph G, we let µ(G) denote the size of the maximum
matching in G. Finally, we say that a set X ⊆ V is matchable if there exists a matching for which every
vertex in X is matched.

Load Balancing. In the context of load balancing, we will often refer to vertices in L as clients and
vertices in R as servers. An assignment A assigns every client to some server: formally, A is a function
A : L → R such that for any client c ∈ L, we have A(c) ∈ N(c). For any server s ∈ R, we define
A−1(s) := {c ∈ L | A(c) = s}, and we define the load of a server to be loadA(s) := |A−1(s)|.

We define MaxLoad(A) := maxs∈R load(s). The goal of the load-balancing problem is to find an
assignment A that minimizes MaxLoad(A). To this end, we define OPTload(G) to be the load of
the optimal assignment on G. We say that assignment A for G is α-approximate if MaxLoad(A) ⩽

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

α ·OPTload(G).

We use the following generalization of Hall’s Theorem [Hal87], proved in [KR13b, Lemma 4].

Proposition 2.1 ([KR13b]). For any bipartite graph G = (L,R,E),

OPTload(G) = max
∅̸=X⊆L

⌈
|X|

|N(X)|

⌉
.

2.1 One-Way Communication Complexity We work with the standard one-way two-player communi-
cation complexity model of Yao [Yao79] (see the excellent textbooks by [KN97] and [RY20] for the background
on this model). Specifically, we are interested in the following problem.

Problem 1. An n-vertex bipartite graph G = (C, S,E) with bipartition C of clients and S of servers
is edge-partitioned (arbitrarily) between two players: Alice receives EA ⊆ E and Bob receives EB ⊆ E,
where EA ∪ EB = E and EA ∩ EB = ∅.

The goal is for Alice to send a single message to Bob which is only a function of her input
GA := (C, S,EA), and Bob, given this message and his input GB := (C, S,EB) should output a solution
to the load-balancing problem on the entire graph G. In a randomized protocol, we assume Alice and
Bob also have access to a shared source of randomness, commonly referred to as public randomness.
In that case, the message of Alice and the output of Bob can also additionally depend on this public
randomness.

For any n ⩾ 1 and approximation ratio α ⩾ 1, we use LoadBal(n, α) to denote this problem on
n-vertex graphs wherein the goal is to obtain (at least) an α-approximate solution.

We refer to the algorithm that decide the messages of Alice and the output of Bob in Problem 1 as a
protocol π. The main measure of interest for us is the communication cost of a protocol π, denoted
by ∥π∥, and defined as the worst-case length of the message Alice sends to Bob (without loss of generality,
via a padding argument, we assume length of all the messages communicated in the protocol is the same).
Finally, we define the (randomized) communication complexity of LoadBal(n, α) as the minimum
communication cost of any randomized protocol that solves this problem with probability of success at least
2
3 , denoted by R⃗(LoadBal(n, α)).

3 Load-Balancing Sparsifiers

One of the key contributions of our paper is showing that the one-way communication problem of Section 2.1
is nearly equivalent to a notion of load-balancing sparsifiers, first introduced by Konrad and Rosén [KR13a].
Given a graph G = (L,R,E), a load-balancing sparsifier is a subgraph H = (L,R,EH) that approximately
preserves all the load-balancing properties of G.

Definition 3.1 ([KR13a]). Given G = (L,R,E) and α ⩾ 1, we say that subgraph H = (L,R,EH) is an
α-approximate load-balancing sparsifier of G iff for every set C ⊆ L,

OPTload(H[C ∪R]) ⩽ α ·OPTload(G[C ∪R]).

When the context is clear, we sometimes refer to H as simply a α-sparsifier of G.

Just like with other sparsification problems, the natural question is whether every graph G contain an
α-approximate load-balancing sparsifier with few edges.

Definition 3.2. Define:

• sparsifier(G,α) to be the minimum possible number of edges in an α-approximate load-balancing
sparsifier of G;

• sparsifier(n, α) to be the maximum sparsifier(G,α) over all bipartite graphs G = (L,R,E) with
|L| = n.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Note that sparsifier(n, α) and sparsifier(G,α) are monotonically decreasing as α increases.

Konrad and Rosén [KR13a], who referred to these sparsifiers as semi-matching skeletons, presented the
following nontrivial upper bound.

Proposition 3.3 ([KR13a]). Every graph G with n clients contains a n
1
3 -sparsifier with at most 2n edges,

i.e.
sparsifier(n, n

1
3) ⩽ 2n.

They also showed lower bounds of (roughly) the form sparsifier(n, n
1

c+1) ⩾ cn for c ⩾ 1. These lower
bounds however have no implications for sparsifiers with O(n log n) edges. In particular, the possibility that
every graph G contains an O(1)-sparsifier with O(n log n) edges was not ruled out. Note that when G is
a complete bipartite graph, one can indeed construct a O(1)-sparsifier with O(n log n) edges by random
sampling (see e.g. the section about magical graphs in [HLW06]).

3.1 Equivalence Between Sparsifier and One-Way Communication Complexity Konrad and
Rosén [KR13a] already showed this equivalence in one direction. We include a proof in Appendix A.1 for
completeness.

Proposition 3.4 ([KR13a]). Fix n, α ⩾ 1, and suppose sparsifier(n, α) = T . Then, there exists a
deterministic protocol π for LoadBal(n, α+ 1) with communication cost ∥π∥ = O(T log(n)) bits.

Combining Proposition 3.4 with their sparsifiers in Proposition 3.3 gives the following result.

Corollary 3.5 ([KR13a]). There exists a deterministic protocol π for LoadBal(n, n
1
3 +1) with communication

cost ∥π∥ = O(n
1
3 log(n)) bits.

We show that this equivalence also goes in the other direction, even for randomized protocols.

Theorem 1. Suppose there exists a (randomized) communication protocol π for LoadBal(n, α) with
communication cost ∥π∥ = C and probability of success at least 2

3 . Then,

sparsifier(n, 8α) ≲ C · log2 (n).

Intuition for Theorem 1: The full proof will be presented in Section 6.4 as it requires the new notion
of Matching-Contractors in Section 3.3, as well as the chain of equivalences worked out in Section 4.

For the sake of intuition, let us make the (small) assumptions that |L| = |R| = n and that the protocol π
is deterministic, as well as the (large) assumption that π takes the following form: Alice’s message is limited
to some subgraph HA of GA. Clearly HA has O(C) edges. We argue that HA must be an α-sparsifier of GA.
Suppose for contradiction that HA is not a α-sparsifier. Then there must exist some set X ⊆ L such that

(3.1) OPTload(HA[X ∪R]) > α ·OPTload(GA[X ∪R])

Now, say that Bob’s graph GB contains a complete graph from L − X to R, but no edges incident to
X. The key observation is that

(3.2) OPTload(HA ∪GB) = OPTload(HA[X ∪R]).

We now justify both directions of Equation 3.2. It is easy to see that OPTload(HA ∪ GB) ⩾
OPTload(HA[X ∪ R]), since GB contains no edges incident to X To see that OPTload(HA ∪ GB) ⩽
OPTload(HA[X ∪R]), consider the optimal assignment A in HA[X ∪R]). Let SA be all servers that have
load at least 1 in A; note that |SA| ⩽ |X|, which implies |L \X| ⩽ |R \ SA| (because we assumed |L| = |R|),
so by construction of GB , the set L \X is matchable in GB [(L \X)∪ (R \ SA)]. Now consider the following
assignment A′ in HA ∪GB : A′ is the same as A on the set X and assigns every vertex in L \X according
to the matching M . It is easy to check that loadA′(s) = loadA(s) for s ∈ SA and loadA′(s) = 1 for
s ∈ R \ SA, so MaxLoad(A′) = MaxLoad(A), which completes the proof of Equation 3.2

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Combining Equations 3.1 and 3.2 we have:

OPTload(HA ∪GB) = OPTload(HA[X ∪R])
> α ·OPTload(GA[X ∪R]) = α ·OPTload(GA ∪GB),

which contradicts the assumption that π is an α-approximate one-way communication protocol.

3.2 Equivalent Notions of Sparsification Although our primary motivation for studying load-
balancing sparsifiers is to understand the streaming/one-way-communication complexity of load balancing,
we believe that they are a very natural combinatorial object with connections to other problems.

Recall that the vertex expansion of a subset X is defined as ψ(X) := |N(X)|/|X| (see e.g. [HLW06]).
From the characterization of OPTload in Proposition 2.1, one can see that load-balancing sparsifiers are
closely related to vertex-expansion sparsifiers.

Observation 3.6 (Connection with Vertex Expansion). Let G = (L,R,E) be a bipartite graph and let
H = (L,R,EH) be a subgraph of G. If, for every subset X ⊆ L,

ψH(X) =
|NH(X)|

|X|
⩾

2

α
·min

{ |NG(X)|
|X|

, 1
}
=

2

α
·min{ψG(X), 1},

then, H is an α-load-balancing sparsifier of G. On the other hand, if H is an α-load-balancing sparsifier of
G, then ψH(X) ⩾ 1

2α ·min{ψG(X), 1} for every subset X ⊆ L.

Note that we cannot replace the right hand side by the simpler expression Ω(1
α) · ψG(X), as otherwise

any α-sparsifier of the complete bipartite graph Kn,n must have at least Ω(n
2

α) edges (because the constraints
on the singletons require every vertex on the left to have degree at least Ω(nα)), while one can prove that
there is an α-load-balancing sparsifier of Kn,n with O(n log n) edges by random sampling.

Remark 3.7 (Connection with Matching Conductance). The min{ψ(X), 1} term in Observation 3.6 is a
natural quantity that is closely related to the notion of matching conductance defined in [OZ22], which
was used in analyzing the fastest mixing time of a graph. Let ν(G) be the size of a maximum matching
in G. The matching conductance of a set X is defined as γ(X) = ν(E(X,X))/|X|. For a bipartite graph
G = (L,R,E), by Hall’s theorem, it can be checked that

min
X⊆L

γ(X) := min
X⊆L

min{ψ(X), 1}.

Operational Definition of Sparsifiers: We will not use vertex expansion and matching conductance
in this paper, and so we do not provide details of the connections discussed above. Instead, we will use the
following characterization in our proofs, as it provides the easiest way of verifying that a graph H ⊂ G is
indeed a load-balancing sparsifier.

Lemma 3.8. Let G = (L,R,E) be a bipartite graph, and H = (L,R,EH) be a subgraph of G. Then, for
any α ⩾ 1, the following statements are equivalent.

1. Load-Balancing: For every X ⊆ L, OPTload(H[X ∪R]) ⩽ α ·OPTload(G[X ∪R]).

2. Operational Definition: For every X ⊆ L that is matchable in G, NH(X) ⩾ 1
α · |X|.

Proof. It is easy to see that (1)→ (2). LetH be an α-load-balancing sparsifier of G. Consider any matchable
set X ⊆ L. As X is matchable, we have OPTload(G[X ∪R]) = 1, and so OPTload(H[X ∪R]) ⩽ α as H
is an α-sparsifier. It follows from Proposition 2.1 that |NH(X)| ⩾ 1

α |X|.
The other direction is more useful. For any X ⊆ L with OPTload(G[X ∪ R]) = d, we need to prove

that OPTload(H[X ∪ R]) ⩽ αd. By Proposition 2.1, this is equivalent to proving that |NH(U)| ⩾ 1
αd |U |

for any U ⊆ X. Let A be the optimal assignment in G[U ∪R]. Clearly,

MaxLoad(A) = OPTload(G[U ∪R]) ⩽ OPTload(G[X ∪R]) ⩽ d.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Let RA := {s ∈ R | loadA(s) ⩾ 1} and note that |RA| ⩾ |U | /MaxLoad(A) ⩾ |U | /d. Construct a
set of clients C ⊆ U as follows: for each server s ∈ RA, add exactly one client from A−1(s) to C. Then
|C| = |RA| ⩾ |U | /d and C is matchable in G. By the assumed property (2) of the lemma, it follows that

|NH(U)| ⩾ |NH(C)| ⩾ 1

α
|C| ⩾ 1

αd
|U | ,

concluding the proof.

3.3 Matching-Contractors The key conceptual contribution of this paper is showing that the non-
existence of a load-balancing sparsifier is nearly equivalent to the existence of an extremal combinatorial
object that we call a Matching-Contractor, defined formally as follows.

Definition 3.9 (Matching-Contractor). For any α ⩾ 1, we say a bipartite graph G = (L,R,E) is an α-
Matching-Contractor iff the edge-set E can be partitioned into matchings M1 . . .Mk such that for each
Mi, L(Mi) has at most |L(Mi)| /α neighbors in G \Mi; i.e.,

∣∣NG\Mi
(L(Mi))

∣∣ ⩽ |Mi| /α. Note that Mi can
be of different sizes and a Matching-Contractor contains

∑
i |Mi| edges.

It is not difficult to see that a Matching-Contractor cannot be sparsified to preserve the load-balancing
properties: if we remove many edges of a matching Mi then |NH(L(Mi))| ≪ |NG(L(Mi))|; see Lemma 4.1
for a proof. So, if there exists a dense Matching-Contractor graph, then this provides a lower bound on the
size of a load-balancing sparsifier.

Definition 3.10. Define:

• MC(n, α) as the largest possible number of edges in any α-Matching-Contractor G = (L,R,E) with
|L| = n (notice that there is no requirement on the size of R);

• MC(G,α) for any given graph G = (L,R,E), as the largest number of edges in any α-Matching-
Contractor H = (L,R,EH) such that H is a subgraph of G.

Note that both MC(n, α) and MC(G,α) are monotonically decreasing as α increases.

We will prove in Section 4 that MC(n, α) ≈ sparsifier(n,Θ(α)) up to an O(log n) factor. The proof
uses randomized rounding and linear programming duality in the same spirit of [GKK12] (for “matching
sparsifiers” and Ruzsa-Szemerédi graphs), although the details use some problem-specific insights. This
shows in a precise sense that a Matching-Contractor is the dual object of a load-balancing sparsifier.

Remark 3.11 (Matching-Contractors and Ruzsa-Szemerédi Graphs). Matching-Contractors are closely
related to Ruzsa-Szemerédi graphs in the following sense. An (r, t)-RS graph is any graph whose edges can
be partitioned into t induced matchings of size r [RS78]. We can turn a Matching-Contractor G = (L,R,E)
with k specified matchings M1, . . . ,Mk into an RS graphs as follows: for each matching Mi of G, remove at
most |Mi| /α edges to turn it into an induced matching M ′

i (remove the edges of Mi incident on vertices of
R that are neighbors to L(Mi) in G \Mi). Then, round down size of each matching to a power of two by
removing at most half of its remaining edges. Finally, among these Θ(log n) different classes of matchings
(according to their size), pick the one that contains the largest number of edges overall. This way, we obtain
an (r, t)-RS graph G′ with

density =
|E|

Θ(log n)
, t ⩽ k, and r ⩾

|E|
k log n

.

However, note that the guarantee of Matching-Contractor is a lot stricter which leads to a “stronger” type
of RS graph G′: each matching M ′

i is not only induced, which means L(M ′
i) avoids R(M

′
i) in G

′ \M ′
i , but

in fact L(M ′
i) avoids almost the entirety of R, except for ⩽ |M ′

i | /Θ(α) vertices. On the other hand, we
should note that unlike RS graphs wherein one explicitly fixes size of the matchings to be some parameter
r (sometime as large as Θ(n) even), in Matching-Contractors, there is no explicit bound on the size of the
matchings and they can even be of different size.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

4 Relating Matching-Contractors to Load-Balancing Sparsifiers

The key result of this section is a near-equivalence between sparsifier(n, α) and MC(n, α).

Theorem 2. For any integer n ⩾ 1 and α ⩾ 2,

MC(n, 2α) ≲ sparsifier(n, α) ≲ MC
(
n,
α

2

)
· ln (n).

Moreover, for any bipartite graph G, sparsifier(G,α) ≲ MC(G, α2) · ln (n).

The direction MC(n, 2α) ≲ sparsifier(n, α) is easy and gives a good intuition of the definition of a
Matching-Contractor. It shows that the vertex expansion of a Matching-Contractor is very brittle under
edge removal.

Lemma 4.1 (Easy Direction). MC(n, 2α) ≲ sparsifier(n, α) for any positive integer n and α ⩾ 2.

Proof. Let G = (L,R,E) be an extremal 2α-Matching-Contractor that contains MC(n, 2α) edges. We will
show that any α-approximate load-balancing sparsifier of G must contain at least half of the edges of G; the
lemma then follows as

1

2
·MC(n, 2α) =

1

2
· |E(G)| ⩽ sparsifier(G,α) ⩽ sparsifier(n, α).

Let {Mi}ti=1 be matchings into which E(G) is partitioned according to Definition 3.9. We argue that
any α-sparsifier H of G must contain at least half of the edges of every Mi, and this will complete the proof
of the lemma.

Consider any matching Mi and let Li be the left endpoints and Ri be the right endpoints. Assume,
for contradiction, that |Mi ∩ E(H)| < 1

2 |Mi|, and let L′
i ⊆ Li contain the vertices in Li whose matching

edge from Mi is not present in H. By our assumption, we have |L′
i| > |Li| /2. Since G is an 2α-Matching-

Contractor, it follows that

|NH(L′
i)| ⩽

∣∣NG\Mi
(Li)

∣∣ ⩽ |Li|
2α

<
|L′

i|
α
.

This contradicts with H being an α-approximate load-balancing sparsifier of G, as L′
i is matchable in G (see

Property (2) of Lemma 3.8).

The rest of this section is to prove the other direction of Theorem 2. To do so, we will introduce an
LP-relaxation of sparsifier(G,α), and use its primal to relate to sparsifier(G,α) and use its dual to relate
to MC(G, α2).

4.1 Linear Programming Relaxation for Load-Balancing Sparsification The following is the
primal LP that captures the problem of finding an α-approximate load-balancing sparsifier of G with the
minimum number of edges.

Definition 4.2 (Primal LP). The Primal LP is defined for a bipartite graph G = (L,R,E) with |L| = n
and a parameter α ⩾ 1. There is a variable xe for every edge e ∈ E. Define a pair of sets X ⊆ L, Y ⊆ R
to be contracting if X is matchable and |Y | ⩽ 1

2α · |X|. The LP will have a constraint for every contracting
pair (X,Y). For input G and α, the primal LP is defined as

LP(G,α) := minimize
∑
e∈E

xe

subject to
∑

e∈E(X,R\Y)

xe ⩾
|X|
2

for all contracting pair X,Y

xe ⩾ 0 for all edge e ∈ E.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

For intuition about the primal LP, think of xe as representing whether edge e is included in the sparsifier
H. We want H to satisfy Property (2) of Lemma 3.8, since this is equivalent to H being a load-balancing
sparsifier. For any matchable set X ⊆ L, this property requires that X should not contract to some small
set Y . In other words, for every small set Y , there should be many edges from X to R\Y , which is precisely
the main constraint of the LP.

The following lemma shows that LP(G,α) is a O(log n)-approximation of sparsifier(G,α). The proof
is by a standard randomized rounding argument.

Lemma 4.3 (LP and sparsifier). For a bipartite graph G = (L,R,E) with |L| = n and |R| ⩽ n2,

LP(G,α) ⩽ sparsifier(G,α) ⩽ 20 · ln(n) · LP
(
G,

α

2

)
.

Proof. We first show that LP(G,α) ⩽ sparsifier(G,α), which says that LP(G,α) is a relaxation of
sparsifier(G,α). Let H be an α-sparsifier of G with |E(H)| = sparsifier(G,α). We will show that the
following is a feasible solution to the LP: xe = 1 if e ∈ H and xe = 0 otherwise. Consider any contracting
pair of sets (X,Y), i.e. X is matchable and |Y | ⩽ 1

2α |X|. Define

X ′ := {v ∈ X | NH(v) ⊆ Y } .

We must have |X ′| ⩽ 1
2 |X|, otherwise |Y | < 1

α |X
′| and X ′ would violate Property (2) of Lemma 3.8 for

an α-approximate load-balancing sparsifier. Thus, in H, at least |X| − |X ′| ⩾ |X| /2 vertices of X have a
neighbor in R \ Y ; so, the LP constraint for the contracting pair (X,Y) is satisfied.

We next prove that sparsifier(G,α) ⩽ 20 · ln(n) · LP(G, α2), by showing that a fractional solution to
LP(G, α2) can be rounded to an integral solution to sparsifier(G,α) with at most 20 · ln(n) ·LP(G, α2) edges.
Given a feasible solution xe to the LP(G, α2), we construct an α-approximate load-balancing sparsifier H by
a simple randomized rounding procedure as follows. Define p = 10 ln(n). For every e ∈ G, add e to H with
probability min{p · xe, 1}. Note that H has at most p

∑
e xe = p · LP(G, α2) edges in expectation. So, by

Markov’s inequality,

Pr
[
|E(H)| ⩽ 20 · ln(n) · LP

(
G,

α

2

)]
⩾

1

2
.

We complete the proof by arguing that, with high probability, H satisfies Property (2) of Lemma 3.8, which
would imply that an α-sparsifier with the desired number of edges exists by the probabilistic method. We
need to show that, with high probability, for any matchable X ⊆ L and Y ⊆ R with |Y | < 1

α · |X|, we have
EH(X,R \ Y) ̸= ∅. Consider any such sets X,Y and denote k := |X|. As we are considering LP(G, α2), the
pair (X,Y) is a contracting pair. So, by the LP constraint, we have

∑
e∈E(X,R\Y) xe ⩾ k/2. If any edge

e in E(X,R \ Y) has p · xe ⩾ 1, then this edge e will be added to H with probability 1 and we are done.
Henceforth we assume that pxe < 1 for all e ∈ E(X,R \ Y). Since edge e is sampled independently with
probability pxe, it follows that

Pr
[
EH(X,R \ Y) = ∅

]
=

∏
e∈E(X,R\Y)

(1− pxe) ⩽ exp

(
−

∑
e∈E(X,R\Y)

pxe

)
⩽ exp

(
− pk

2

)
= n−5k.

Fixing any particular k = |X|, the number of such set-pairs (X,Y) is clearly at most nk · |R|k ⩽ n3k, using
the assumption of the lemma that |R| ⩽ n2. Therefore, by a union bound, we have EH(X,R \ Y) ̸= ∅ for
|X| = k with probability at least 1 − n−2k ⩾ 1 − n−2. Applying another union bound over all possible k
yields probability at least 1− 1

n for all such set-pairs (X,Y).

Our next goal is to relate LP(G,α) to MC(G,α) (recall Definition 3.10), for which we consider the dual
of the above linear program.

Definition 4.4 (Dual LP). The dual LP is again defined for a bipartite graph G = (L,R,E) with |L| = n
and a parameter α ⩾ 1. There is a variable yX,Y for every contracting set-pair (X,Y), and a constraint for
every edge e ∈ E.

LP(G,α) := minimize
1

2

∑
contracting (X,Y)

|X| · yX,Y

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

subject to
∑

contracting (X,Y),
e∈EG(X,R\Y)

yX,Y ⩽ 1 for all e ∈ E

yX,Y ⩾ 0 for all contracting pair (X,Y)

It is straightforward to check that the LP in Definition 4.4 is indeed the dual program of the LP in
Definition 4.2, and so by the strong LP duality theorem they have the same objective value. The following
lemma shows that one can construct a Matching-Contractor from the dual LP solution.

Lemma 4.5 (LP and Matching-Contractor). For any G = (L,R,E) with |L| = n and α ⩾ 2,

LP(G,α) ⩽ 20 ·MC(G,α).

The proof is again by a randomized rounding procedure, but the details are more involved, and we
dedicate the next subsection to it.

We end this subsection by showing that the hard direction of Theorem 2 follows immediately from
Lemma 4.3 and Lemma 4.5.

Proof of Theorem 2 assuming Lemma 4.5. One direction is already proved in Lemma 4.1. For the other
direction, we first apply Claim A.1 to reduce the problem to a bipartite graph G = (L,R,E) with |L| = n
and |R| ⩽ n2; this claim is quite trivial, so we defer the formal statement and proof to Appendix A.2 in the
appendix. Then, Lemma 4.3 and Lemma 4.5 imply that

sparsifier(G,α) ⩽ 20 · ln(n) · LP
(
G,

α

2

)
⩽ 400 · ln(n) ·MC(G,

α

2
),

which also implies that sparsifier(n, α) ⩽ 400 · ln(n) ·MC(n, α/2).

4.2 Constructing Matching-Contractor from Dual Solution The goal of this subsection is to prove
Lemma 4.5. We first provide some intuitions of the proof in Section 4.2.1 by considering the ideal case
when all dual variables yX,Y are integral. We then present the general construction in Section 4.2.2 and the
analysis in Section 4.2.3.

4.2.1 Proof Ideas We start with a simple definition and a simple observation.

Definition 4.6. Given a pair of sets (X,Y) with X ⊆ L and Y ⊆ R, we say that an edge (u, v) deviates
from (X,Y) if u ∈ X and v ∈ R \ Y .

To illustrate some proof ideas, we consider the ideal case when all dual variables yX,Y are integral. By
the following observation, each yX,Y is either 0 or 1.

Observation 4.7. Every dual variable yX,Y is at most 1.

Proof. Suppose for contradiction that yX,Y > 1. By the definition of contracting pair (X,Y), X is matchable
by some matching M and X is larger than Y . Thus, there must be some edge (u, v) ∈M that deviates from
(X,Y), but then the dual constraint of (u, v) is violated.

Intuition: Construction from Integral Dual Solution. We create a Matching-Contractor from a
feasible dual {0, 1}-solution as follows. Let P contain all contracting pairs (X,Y) for which yX,Y = 1. For
every (X,Y) ∈ P, let MX,Y be some matching from X to R, which exists by the definition of contracting
pairs (see Definition 4.2)2. Then, we remove from MX,Y all edges that are incident to Y , and let M ′

X,Y

denote the remaining matching. Let H be the union of all the M ′
X,Y . Clearly, H is a subgraph of G, and

that is the complete construction in this simpler setting.

We claim that H is an α-Matching-Contractor with ≳ LP(G,α) edges. First, we lower bound the number
of edges in H. Since α ⩾ 2 by the assumption of Lemma 4.5 and Y ⩽ 1

2α |X| by the definition of a contracting

2To avoid confusion, note that Y does not correspond to the right endpoints of MX,Y ; instead, Y relates the matching to

the dual variable yX,Y .

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

pair, it follows that
∣∣M ′

X,Y

∣∣ = |X| − |Y | ⩾ 3
4 |X|. In the full proof in Section 4.2.3, we will show that the

matchings M ′
X,Y are all edge-disjoint. Therefore,

LP(G,α) =
1

2

∑
(X,Y)∈P

|X| ⩽ 2

3

∑
(X,Y)∈P

∣∣M ′
X,Y

∣∣ = 2

3
· |E(H)|,

where the first equality is by the observation that yX,Y ∈ {0, 1}, and the last equality is by the fact that the
matchings M ′

X,Y are edge-disjoint.

It remains to argue that H satisfies the properties of an α-Matching-Contractor in Definition 3.9.
Consider some matchingM :=M ′

X,Y inH. LetX ′ ⊆ X be the left endpoints L(M). Recall that |X ′| ⩾ 3
4 |X|.

Suppose for contradiction that X ′ has more than 1
α |X ′| neighbors in H \M . Then

∣∣NH\M (X ′)
∣∣ > 1

α
|X ′| ⩾ 3

4α
|X| .

Since |Y | ⩽ 1
2α |X|, there must be some edge (v, z) in H \M such that v ∈ X ′ ⊆ X and z /∈ Y , and so (v, z)

deviates from (X,Y). The edge (v, z) must come from some other matchingM ′
P,Q of H. By our construction

of matchings, we must have yP,Q = 1, and also none of the edges of M ′
P,Q are incident to Q. This implies

that the edge (v, z) also deviates from (P,Q) with v ∈ P and z /∈ Q. So, the edge (v, z) deviates from
both (X,Y) and (P,Q) with yX,Y = yP,Q = 1, but this means that the dual constraint for (v, z) is violated,
arriving at our contradiction. We conclude that H is an α-Matching-Contractor.

4.2.2 Construction from Fractional Dual Solution In general, we have a fractional solution to the
Dual LP of value LP(G,α). We will use randomized rounding to construct a subgraph H of G and argue
that H is the desired Matching-Contractor with positive probability. We shall note that unlike the argument
for the Primal LP in Lemma 4.3, here, the Dual LP has a very large integrality gap and thus the rounding
should be bicriteria (this will become more clear shortly).

We sample every contracting pair (X,Y) with probability 1
10 · yX,Y and let P be the set of all sampled

contracting pairs. For every (X,Y) ∈ P, letMX,Y be a perfect matching from X to R in G; such a matching
must exist by the definition of contracting pairs in Definition 4.2. We will fix in advance a matching for
every matchable set X, so that the choice of edges in matching MX,Y does not depend on the dual variables
or any of our random choices. As before, for every MX,Y , remove all edges in MX,Y that are incident
to Y , and let M ′

X,Y be the remaining matching. In the ideal case above, the union of these M ′
X,Y is a

Matching-Contractor. In the general case, however, this is not necessarily true and we will do the following
post-processing step to obtain a Matching-Contractor.

Definition 4.8. We say that an edge (u, v) ∈ G is overloaded if there exist two different set-pairs
(X,Y) ∈ P and (P,Q) ∈ P such that (u, v) deviates from both (P,Q) and (X,Y).

In the postprocessing step, for every M ′
X,Y , we remove all edges in M ′

X,Y that are overloaded, and let

M ′′
X,Y ⊆M ′

X,Y be the resulting matching. We say M ′′
X,Y is good if

∣∣M ′′
X,Y

∣∣ ⩾ 1
2 |X|. Our final graph H will

consist of the union of all good M ′′
X,Y . The construction is summarized in Algorithm 1.

4.2.3 Analysis As in Section 4.2.1, we will lower bound the number of edges in H, and prove that H
is an α-Matching-Contractor. The following claim will help us upper bound the number of edges that we
remove in the post-processing step.

Claim 4.9. For an edge (u, v) in a matching M ′
X,Y ,

Pr
[
(u, v) is overloaded

]
⩽

1

10
.

Proof. Consider all contracting pairs (P,Q) ̸= (X,Y) such that (u, v) deviates from (P,Q). The edge
(u, v) can be overloaded only if one of these (P,Q) is also sampled into P. Since each (P,Q) is sampled
independently with probability 1

10yP,Q (and in particular independent from (X,Y)), it follows from the union

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1: Construction of Matching-Contractor from Dual LP Solution

Input: a solution {yX,Y }contracting (X,Y) to the dual LP with objective value LP(G,α).

1. Sample every contracting pair (X,Y) into P with probability 1
10 · yX,Y .

2. For every (X,Y) ∈ P do:

(a) Let MX,Y be an arbitrary matching from X to R.

(b) Construct M ′
X,Y ⊆MX,Y by removing from MX,Y all edges that are incident to Y .

(c) Construct M ′′
X,Y ⊆M ′

X,Y by removing all overloaded edges from M ′
X,Y as defined in

Definition 4.8. Label M ′′
X,Y as good if

∣∣M ′′
X,Y

∣∣ ⩾ 1
2 |X|.

Output: the graph H that is the union of all the good matchings M ′′
X,Y .

bound and the dual constraint that

Pr
[
(u, v) is overloaded

]
⩽

∑
(P,Q)̸=(X,Y) | (u,v) deviates from (P,Q)

1

10
· yP,Q ⩽

1

10
.

By the same argument as in Section 4.2.1, each
∣∣M ′

X,Y

∣∣ ⩾ 3
4 |X|. So, it follows from Claim 4.9 and

Markov’s inequality that many M ′′
X,Y are good.

Observation 4.10. Every M ′′
X,Y is good with probability at least 1

2 .

This allows us to lower bound the number of edges in H.

Claim 4.11. With positive probability,

|E(H)| ⩾ 1

20
· LP (G,α).

Proof. First we show that the matchings M ′′
X,Y in H are edge-disjoint. Suppose for contradiction that some

(u, v) is in both M ′′
X,Y and M ′′

P,Q, where (X,Y), (P,Q) ∈ P. By Step (2b) of Algorithm 1, it follows that
(u, v) deviates from both (X,Y) and (P,Q). But this means that (u, v) is overloaded, which contradicts the
removal of overloaded edges in Step (2c).

Consider any contracting pair (X,Y). If the pair is sampled into P, then the matching M ′′
X,Y is good

with probability at least 1
2 by Observation 4.10, in which case

∣∣M ′′
X,Y

∣∣ ⩾ 1
2 |X| edges are added to H. Each

contracting pair (X,Y) is sampled into P with probability 1
10 · yX,Y . Thus, in expectation, each contracting

pair (X,Y) contributes 1
40 · yX,Y · |X| to E(H). As the matchings M ′′

X,Y are edge-disjoint,

E |E(H)| ⩾
∑

contracting (X,Y)

1

40
· yX,Y · |X| = 1

20
· LP(G,α).

We conclude that there exists such an H that satisfies the statement in the claim.

We finish the proof of Lemma 4.5 by showing that H is an α-Matching-Contractor. The argument is
similar to that in Section 4.2.1.

Claim 4.12. H satisfies the properties of an α-Matching-Contractor in Definition 3.9.

Proof. Consider some matching M :=M ′′
X,Y and let X ′′ ⊆ X be the left endpoints L(M). Since M is good

by construction, we have |X ′′| ⩾ 1
2 |X|. Suppose for contradiction that X ′′ has more than 1

α |X ′′| neighbors
in H \M . Then

∣∣NH\M (X ′′)
∣∣ > 1

α |X ′′| ⩾ 1
2α |X|. Since |Y | ⩽ 1

2α |X| by the definition of a contracting
pair, there must be some edge (v, z) in H \M such that v ∈ X ′ ⊆ X and z /∈ Y , and so (v, z) deviates

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

from (X,Y). Since (v, z) ∈ H \M , it must come from some other matching M ′′
P,Q of H. This implies that

(P,Q) ∈ P. Moreover, (v, z) deviates from (P,Q), by Step (2b) of the construction algorithm. Thus, the
edge (v, z) deviates from two different pairs in P – namely (X,Y) and (P,Q) – which means that (v, z) ∈ H
is overloaded, but this contradicts with the removal of overloaded edges in Step (2c) of the construction
algorithm.

Lemma 4.5 follows immediately from Claim 4.12 and Claim 4.11.

5 A Construction of Matching-Contractors

In this section, we present a simple construction of somewhat dense Matching-Contractors.

Theorem 3 (Density of Matching-Contractors). For ε ∈ (0, 1) a sufficiently small constant and n ⩾ 1 a

sufficiently large integer, there are (n
1
4−O(ε))-Matching-Contractors G = (L,R,E) with n1+Ω(ε2) edges where

|L| =: n and |R| =
√
n.

The bipartite graph G = (L,R,E) that we construct has |L| = w2k vertices on the left and |R| = wk

vertices on the right, for some integers w, k ⩾ 2. We think of each vertex in L as a string of length 2k where
each character is in {1, . . . , w}, and similarly each vertex in R as a string of length k where each character is
in {1, . . . , w}. The general idea is to use the “block structure” of the vertices to argue about the contraction
property of the matchings added as we will see.

The edge set in G is simple to describe. We add edges to G in t rounds. In each round, we choose a
subset of indices S ⊆ [2k] with |S| = k. For each vertex v ∈ [w]2k in L, we define vS to be the subsequence
of v of length k by restricting v to the indices in S (e.g. if v = {2, 5, 3, 8} and S = {1, 4} then vS = {2, 8}).
Note that vS ∈ [w]k corresponds to the unique vertex in R with the same string in [w]k. In each round,
for each vertex v ∈ L, we add the edge (v, vS) in the graph G where vS ∈ R. To establish the contraction
property, we will choose subsets S1, S2, . . . , St where the pairwise intersection size |Si∩Sj | is small for i ̸= j,
and run the above process for t rounds.

Algorithm 2: Construction of Matching-Contractors

Input: an integer w ⩾ 2, an integer k ⩾ 2, and t subsets S1, . . . , St ⊆ [2k] where |Si| = k for
1 ⩽ i ⩽ t and |Si ∩ Sj | ⩽ ℓ for 1 ⩽ i ̸= j ⩽ t.
Initialization: L = [w]2k, R = [w]k, and E = ∅.
For i from 1 to t do:

for each vertex v ∈ [w]2k in L, add the edge (v, vSi
) to E where vSi

∈ [w]k is in R.
Output: the graph G = (L,R,E).

To see that G is a Matching-Contractor, we will partition the edges added in each round into wk

matchings of size wk as follows, where each matching connects a disjoint subset of L to R. In each round,
when we fix a subset S ⊆ [2k] of size k, we also consider the complement S := [2k] \ S and the subsequence
vS restricting a string v ∈ [w]2k to the subset S. For each string x ∈ [w]k of length k, we define

LS,x :=
{
v ∈ [w]2k | vS = x

}
.

In words, each group LS,x is the subset of vertices in L where we fix the subsequence in S to be x. Then
{LS,x}x∈[w]k is a partition of L into wk groups, with one group for each possible x, and each group has wk

vertices. Note that in Algorithm 2, for each group LS,x, we added a perfect matching MS,x from LS,x to R
where MS,x := {(v, vS) | v ∈ LS,x} is of size wk. The edge set added in each round is the union of MS,x over
all x ∈ [w]k, and the edge set in the output is the union of t · wk matchings such that

(5.3) E =
⋃

i:1⩽i⩽t

⋃
x:x∈[w]k

MSi,x.

The reason that we choose S1, . . . , St to have pairwise intersection size |Si∩Sj | ⩽ ℓ for i ̸= j is explained
in the following lemma.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Lemma 5.1 (Contraction Property). In the output graph G = (L,R,E) of Algorithm 2, for each Si and
each x ∈ [w]k, the neighbor set of LSi,x in G \MSi,x has size∣∣NG\MSi,x

(LSi,x)
∣∣ ⩽ ∑

j:1⩽j ̸=i⩽t

w|Sj∩Si| ⩽ t · wℓ.

Proof. Fix Si and x ∈ [w]k. In round j ̸= i, for each vertex v ∈ L, we add the edge (v, vSj
) to E, where the

neighbor of v depend only on the values of v in the indices in Sj . By the definition of LSi,x, every vertex v in
LSi,x has the same values in vSi

such that vSi
= x. In particular, every vertex v in LSi,x has the same values

in vSi∩Sj
, and thus the neighbors of LSi,x in round j is contained in the set {vSj

∈ [w]k | vSj∩Si
is fixed}.

This set has size exactly w|Si∩Sj | since there are w possible choices for each index in Sj ∩ Si but only one
choice for each index in Sj ∩ Si. Summing over all j ̸= i gives the first inequality of the lemma, and the
second inequality follows by the assumption that |Si ∩ Sj | ⩽ ℓ for j ̸= i.

To instantiate our construction, we need a large set family with small pairwise intersection. The existence
of such a family is a standard result in extremal set theory dating back to the work of Erdős and Rényi
in [ER56] (e.g., it follows from Gilbert-Varshamov bound in coding theory). For completeness, we present a
short proof in Appendix A.3 using a standard probabilistic argument.

Proposition 5.2 (Set Family with Small Pairwise Intersection). Let 0 < δ < 1
2 be any constant and let

cδ := 2 · δδ · (1− δ)(1−δ). There exists a set family F ⊆
(
[2k]
k

)
of size Θ(k−

1
4 · ckδ) such that for all S ̸= S′ ∈ F ,

it holds that |S ∩ S′| ⩽ (1− δ)k.

For two random k-subsets of [2k], the expected size of intersection is k
2 , and so we cannot hope to have

δ > 1
2 in the above statement. Moreover, cδ = 1 at δ = 1

2 and is monotonically increasing towards 2 as
δ → 0. As long as δ is bounded away from 1/2, size of |F| is exponential in k.

We can now conclude the proof of Theorem 3 by combining Lemma 5.1 and Proposition 5.2.

Proof of Theorem 3. Set δ := 1
2 − 2ε. By Proposition 5.2, there is a set family F with Θ(k−

1
4 · ckδ) subsets

of size k of [2k] with pairwise intersection size at most (1 − δ)k = (12 + 2ε)k. Use this set family F as an

input to algorithm 2 so that t = Θ(k−
1
4 · ckδ) and ℓ = (12 + 2ε)k. We will show below that cδ ≍ e8ε

2

. 3

The edge set ofG is the union ofMSi,x for Si ∈ F and x ∈ [w]k as shown in Eq (5.3), where n := |L| = w2k

in our construction. By definition, LSi,x = L(MSi,x). By setting w = 2 and k = 1
2 log2 n, it follows from

Lemma 5.1 that∣∣NG\MSi,x
(L(MSi,x))

∣∣
|MSi,x|

⩽
t · wl

wk
≲
k−

1
4 · ckδ · w(1

2+2ε)k

wk
⩽

e8ε
2k

w(1
2−2ε)k

=
nΘ(ε2)

n
1
4−ε

=
1

n
1
4−O(ε)

,

and so the bipartite graph G is a (n
1
4−O(ε))-Matching-Contractor.

The number of edges in G is t · n ≍ k−
1
4 · ckδ · n ≍ log−

1
4 n · nΘ(ε2) · n = n1+Θ(ε2), by setting w = 2 and

k = 1
2 log2 n and using that n is sufficiently large.

It remains to show that cδ ≍ e8ε
2

for ε a sufficiently small constant.

cδ = c 1
2−2ε = 2

(1
2
− 2ε

) 1
2−2ε(1

2
+ 2ε

) 1
2+2ε

= 2

√(1
2
− 2ε

)(1
2
+ 2ε

)
·
(1

2 + 2ε
1
2 − 2ε

)2ε

= 2

√
1

4
− 4ε2 ·

(1 + 4ε

1− 4ε

)2ε

=
√

1− 16ε2 ·
(1 + 4ε

1− 4ε

)2ε

≍ e−8ε2 · e8ε·2ε = e8ε
2

,

where we used ex ≍ 1 + x when x is sufficiently small. This completes the proof.

3The notation f(n) ≍ g(n) means that f(n) and g(n) are asymptotically equal.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

6 Communication Complexity of Load-Balancing

We now prove our lower bound on the randomized communication complexity of the load-balancing problem
using the construction of Matching-Contractors developed in Section 5.

Theorem 4. For any n ⩾ 1 and approximation ratio α ⩾ 1, any two-player one-way randomized
communication protocol for finding an α-approximation to load-balancing with probability of success at least
2
3 requires Ω(1

logn ·MC(n, α)) bits of communication. That is,

R⃗(LoadBal(n, α)) ≳
1

log n
·MC(n, 4α).4

Combining this with our construction of Matching-Contractors in Theorem 3 on one hand, and the
standard reduction from communication to streaming lower bounds on the other hand, gives the following
corollaries.

Corollary 6.1. For any sufficiently large n ⩾ 1 and sufficiently small ε > 0,

R⃗(LoadBal(n, n
1
4−O(ε))) = n1+Ω(ε2).

In particular, obtaining any n
1
4−o(1)-approximation to load-balancing requires strictly more than any

O(n · polylog (n)) communication.

Corollary 6.2. There is no semi-streaming algorithm for obtaining a n
1
4−o(1)-approximation to the load-

balancing problem with probability of success at least 2
3 .

The rest of this section is dedicated primarily to the proof of Theorem 4. We start by defining a simple
family of graphs that “encode” different strings inside Matching-Contractors. We then use these graphs to
define our hard input distribution. After that, we recall some basic information theory and use them to
derive the proof of Theorem 4. We provide short and standard proofs of Corollaries 6.1 and 6.2. Finally, we
conclude with the complete proof of Theorem 1 that shows the equivalence between load balancing sparsifiers
and one-way communication complexity of load-balancing in Section 6.4.

6.1 Encoding Graphs and the Hard Input Distribution Let G0 := (L0, R0, E0) be a (4α)-Matching-
Contractorwith

|L0| = n and m0 ≳
1

log n
·MC(n, 4α)

edges and matchings M0
1 , . . . ,M

0
k such that there exists an integer r0 ∈ [n] with

r0 ⩽
∣∣M0

i

∣∣ < 4

3
· r0 for all i ∈ [k].

The existence of such a graph follows by grouping matchings of any α-Matching-Contractor with density
MC(n, 4α) based on sizes of matchings relative to powers of (4/3), and picking the group with the largest
number of edges.

Our encoding graphs are defined as follows.

Definition 6.3 (Encoding Graphs). Fix a graph G0 := (L0, R0, E0) as described above. Let x ∈ {0, 1}E0

be any string whose entries are indexed by edges in E0. Define the encoding graph Gx := (L,R,Ex) of x
inside G0 as follows:

• L := L0 – we use vertices u ∈ L0 and u ∈ L interchangeably.

• R := R0 × {0, 1} – vertices in R are denoted by v0 and v1 for v ∈ R0;

4The constant 4 in the MC(n, 4α) term in this theorem can be replaced with any other constant strictly larger than two.

Since the choice of the constant is immaterial for our purpose, we have not attempted to optimize it.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

• Ex: for every edge e = (u, v) ∈ E0, there is exactly one of the edges (u, v0) or (u, v1) depending on
whether xe = 0 or xe = 1, respectively.

Observation 6.4. For any x ∈ {0, 1}E0 , the graph Gx is a (2α)-Matching-Contractor with matchings
M1, . . . ,Mk, where each Mi is obtained from M0

i by mapping the edge (u, v) ∈ M0
i to either (u, v0) or

(u, v1), depending on whichever one exist in Gx.

Proof. Consider a choice of Gx and one of its designated matchings Mi for i ∈ [k]. By construction,

NGx\Mi
(L(Mi)) ⊆ NG0\M0

i
(L(M0

i))× {0, 1} .

The proof follows since |NG0\M0
i
(L(M0

i))| ⩽ 1
4α

∣∣M0
i

∣∣ as G0 is a (4α)-Matching-Contractor.

Our hard distribution of inputs is defined as follows. We emphasize that the graph G0 is fixed throughout
and both players know this graph.

Input distribution µ.

• Alice: Sample x ∈ {0, 1}E0 uniformly at random and give the encoding graph Gx to Alice.

• Bob: Sample i ∈ [k] uniformly at random and consider the matching Mi of Gx. Give a perfect
matching M from L \ L(Mi) to a new set of (server) vertices as the input to Bob.

Given we have fixed the choice of the graph G0, the following observation is immediate.

Observation 6.5. In the distribution µ, the input to Alice is uniquely identified by x ∈ {0, 1}E0 and the
input to Bob is uniquely identified by i ∈ [k].

6.2 Analysis of the Input Distribution Let π be any deterministic protocol for LoadBal(n, α) that

succeeds with probability at least 2
3 on the inputs sampled from the distribution µ.

We use π(x) to denote the message of Alice to Bob in the protocol (which by Observation 6.5 is only

a function of x ∈ {0, 1}E0 , hence the notation π(x)). Similarly, we use a(π(x), i) to denote the assignment
output by Bob, given the message π(x) and the index i ∈ [k] as input (again, using Observation 6.5).

In the following, we use (X, I,Π) to denote, respectively, the random variable for the input x of Alice,
the input i of Bob, and the message π(x) of Alice. We further use XI to denote the subsequence of X that
corresponds to the edges in MI , namely, the “special” matching corresponding to Bob’s input.

Given that protocol π is deterministic, the randomness of all these variables comes solely from the
distribution µ of the inputs, namely, the choice of (X, I) ∼ µ. We prove that protocol π recovers a large
fraction of the values in XI whenever it outputs a correct answer.

Lemma 6.6. On any input (x, i) ∼ µ that π outputs a correct answer, at least half the values in xi are
deterministically fixed given only π(x) and i, where xi denotes the subsequence of x corresponding to edges
of Mi.

Proof. On any input (x, i) sampled from µ, there is an L-perfect matching: match L \L(Mi) using the new
edges outside Gx given to Bob and use edges ofMi for assigning the vertices in L(Mi) to R(Mi). This means
that in any α-approximate solution, load of any vertex in R can be at most α.

Let A = a(π(x), i) be the assignment output by Bob. Consider vertices S in L(Mi) that do not use edges
of Mi in the assignment A. Since by Observation 6.4, Gx is a (2α)-Matching-Contractor, all these vertices
are incident on at most 1

2α · |Mi| vertices T ⊆ R. Thus, the load of some vertex in T is at least

|S|
|T |

⩾
2α · |S|
|Mi|

.

Combining this with the upper bound of α on the load implies that |S| ⩽ 1
2 |Mi|. This means that whenever

Bob’s output is correct, it contains at least 1
2 |Mi| edges from Mi. But each such edge uniquely identifies the

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

corresponding bit in x by the construction of Gx. Thus, whenever the protocol is correct on input (x, i), at
least half the values of xi should be determined, given the assignment a(π(x), i) output by Bob.

Using this lemma and the independence of the input to Alice and Bob (by Observation 6.5), we can
conclude the proof using a (very) basic information theory argument. We first provide a brief refresher of
basic information theory tools that we use in this proof.

6.2.1 A Quick Refresher on Information Theory For a random variable Y on support Ω with
distribution p(y) for y ∈ Ω, the entropy of Y is:

H(Y) :=
∑
y∈Ω

p(y) · log 1

p(y)
.

The conditional entropy of a random variable Y conditioned on another random variable Z is:

H(Y | Z) := E
z∼Z

[H(Y | Z = z)] ,

where H(Y | Z = z) is the entropy of the random variable distributed as p(y | Z = z) for y ∈ Ω.

We need the following facts about (conditional) entropy (the proofs of the statements in this fact are all
standard applications of Jensen’s inequality and can be found, e.g., in [?]).

Fact 6.7 (cf. [?]). For any random variables Y,Z with support Ω:

1. 0 ⩽ H(Y) ⩽ log |Ω|; moreover, the left (respectively, right) inequality is tight if and only if Y is
deterministic (respectively, uniformly distributed over Ω);

2. H(Y | Z) ⩽ H(Y): conditioning (on a random variable) can only reduce the entropy;

3. H(Y,Z) = H(Y) +H(Z | Y): chain rule of entropy (also true for conditional entropy).

6.2.2 Proof of Theorem 4 By Lemma 6.6, with probability at least 2
3 , Bob, given only Π and I ∈ [k]

can recover at least half the values in XI . This means there is “considerably less” uncertainty about XI

conditioned on Π and I, than without this conditioning. The following claim formalizes this.

Claim 6.8. H(XI | Π, I) ⩽ 8
9 · r0 + 1.

Proof. Let Z ∈ {0, 1} be the indicator random variable for the event of Lemma 6.6, namely, Z = 1 iff the
output by Bob is correct and at least half the indices in XI are fixed by Π and I. Then

H(XI | Π, I) = H(XI , Z | Π, I)−H(Z | XI ,Π, I)

(by chain rule in Fact 6.7-(3))

= H(XI | Π, I, Z) +H(Z | Π, I)−H(Z | XI ,Π, I)(again, by chain rule)

⩽ H(XI | Π, I, Z) + 1
(as conditional entropy of Z is non-negative and is at most 1 by Fact 6.7-(1))

= Pr (Z = 1) ·H(XI | Π, I, Z = 1) + Pr (Z = 0) ·H(XI | Π, I, Z = 0) + 1
(by the definition of conditional entropy)

⩽
2

3
· 1
2
·
(
4

3
· r0

)
+

1

3
·
(
4

3
· r0

)
+ 1

=
8

9
· r0 + 1.

where we used the following in the second to last step: the probability of Z = 1 is at least 2
3 and conditioned

on Z = 1, Π and I reveal at least half of the indices of XI by Lemma 6.6, and so the entropy of XI is at
most 1

2 · 4
3 · r0 by Fact 6.7-(1) since its unfixed part is a binary string of at most this length; the other term

corresponding to Z = 0 is bounded by Fact 6.7-(1) by simply using the fact that XI is a binary string of
length at most 4

3 · r0 to begin with.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

On the other hand, given that Alice is unaware of the choice of I, the only way for her to reduce the
uncertainty about XI substantially, is to reduce the overall uncertainty about her entire input. This in turn
requires Alice to communicate a lot. The following claim formalizes this.

Claim 6.9. H(XI | Π, I) ⩾ r0 − 1
k · ∥π∥.

Proof. By the definition of conditional entropy,

H(XI | Π, I) =
k∑

i=1

Pr (I = i) ·H(Xi | Π, I = i)

=
1

k
·

k∑
i=1

H(Xi | Π, I = i)(as I is distributed uniformly over [k])

=
1

k
·

k∑
i=1

H(Xi | Π)

(as the joint distribution of (Xi,Π = Π(X)) is independent of the event I = i by Observation 6.5)

⩾
1

k
·

k∑
i=1

H(Xi | Π, X1, . . . , Xi−1)(as conditioning can only reduce the entropy by Fact 6.7-(2))

=
1

k
·H(X | Π)(by the chain rule of entropy in Fact 6.7-(3))

⩾
1

k
· (H(X)−H(Π))(by applying chain rule and non-negativity of entropy)

⩾
1

k
· (m0 − ∥π∥) ,

where the last step holds because the distribution of X is uniform over 2m0 binary strings of length m0 and
the support of messages in π are of size 2∥π∥; hence, in both cases we can apply the inequality of Fact 6.7-(1)
(which is tight for H(X), and provides an upper bound for H(Π)). Noting that m0 ⩾ k · r0 concludes the
proof.

We are ready to conclude the proof of Theorem 4.

Proof of Theorem 4. The lower bound holds trivially whenever MC(n, 4α) = O(n log n) because even if the
entire input is a random perfect matching given to Alice, she needs to communicate Ω(n log n) bits to send
one edge per each vertex in L to Bob which is needed for any finite approximation. Thus, in the following,
we focus on the (only interesting) case when MC(n, 4α) = ω(n log n), which implies that r0 = ω(1).

By the easy direction of Yao’s minimax principle, to prove the lower bound, we only need to focus on
deterministic protocols that succeeds with probability at least 2

3 on inputs sampled from the distribution µ
(this is simply an averaging argument over randomness of the protocol against the input distribution). For
any such protocol π, by Claim 6.8 and Claim 6.9,

r0 −
1

k
· ∥π∥ ⩽

8

9
· r0 + 1,

which implies that

∥π∥ ⩾
1

9
· (k · r0)− k ≳

1

log n
·MC(n, 4α),

given that r0 = ω(1). This concludes the proof.

6.3 Proofs of Corollaries 6.1 and 6.2 We now provide short and standard proofs of Corollaries 6.1
and 6.2 using the results we established already.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Proof of Corollary 6.1. By Theorem 4, (randomized) one-way communication complexity of α-
approximation of load-balancing can be lower bounded, up to a ≈ log n term, by the density of Θ(α)-

Matching-Contractors. Setting α = n
1
4−O(ε) and using our construction of (n

1
4−O(ε))-Matching-Contractors

in Theorem 3 with n1+Ω(ε2) edges implies this corollary (note that the extra log n term is subsumed by the
hidden-constant of the Ω-notation in the exponent).

The final part of the corollary holds by taking ε→ 0 in the limit.

Proof of Corollary 6.2. We use the well-established fact that one-way communication complexity lower
bounds imply space lower bounds for single-pass streaming algorithms. Given a streaming algorithm A for
load-balancing, we obtain a one-way communication protocol as follows: Alice runs A by treating her part
of the input as the first part of the stream and then communicates the memory content of the algorithm to
Bob, who continue running A on his part of the input as the second part of the stream. This way, at the
end, Bob obtains the output of A on the entire input, with communication cost from Alice being at most
equal to the worst-case memory size of the algorithm.

The lower bound for streaming algorithms now follows immediately from the above reduction and Corol-
lary 6.1.

6.4 Proof of Theorem 1: Sparsifiers = One-Way Communication Finally, we provide the proof
of our main equivalence result in Theorem 1, restated below.

Theorem (Restatement of Theorem 1). Suppose there is a (randomized) communication protocol π for
LoadBal(n, α) with communication cost ∥π∥ ⩽ C and probability of success at least 2/3. Then,

sparsifier(n, 8α) ≲ C · log2 (n).

Proof. Suppose towards a contradiction that sparsifier(n, 8α) ⩾ η · C · log2 n for some sufficiently large
constant η. Then,

• By Theorem 2, this implies that MC(G, 4α) ≳ η · C · log (n);

• By Theorem 4, this in turn implies that R⃗(LoadBal(n, α)) ≳ η · C.

• By taking η to be a sufficiently large constant, this contradicts the fact that there is a randomized
protocol π for LoadBal(n, α) with ∥π∥ ⩽ C.

Thus, our contradicting assumption is false, and the theorem holds.

Acknowledgments

We would like to thank Thatchaphol Saranurak for many fruitful discussions in the early stages of this
project.

Part of this work was conducted while the first named author was visiting the Simons Institute for the
Theory of Computing as part of the Sublinear Algorithms program.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

References

[A24] S. Assadi. A simple (1 − ε)-approximation semi-streaming algorithm for maximum (weighted) matching. In
Symposium on Simplicity in Algorithms, SOSA 2024, pages 337–354, 2024. 1

[AB19] S. Assadi and A. Bernstein. Towards a unified theory of sparsification for matching problems. In 2nd
Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, volume 69, pages 11:1–11:20, 2019. 3

[ABKL23] S. Assadi, S. Behnezhad, S. Khanna, and H. Li. On regularity lemma and barriers in streaming and
dynamic matching. In STOC ’23: 55th Annual ACM SIGACT Symposium on Theory of Computing, 2023. 3

[ABL20] S. Assadi, A. Bernstein, and Z. Langley. Improved bounds for distributed load balancing. In 34th
International Symposium on Distributed Computing, DISC 2020, volume 179, pages 1:1–1:15, 2020. 1

[ABL23] S. Assadi, A. Bernstein, and Z. Langley. All-norm load balancing in graph streams via the multiplicative
weights update method. In 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, volume
251, pages 7:1–7:24, 2023. 1

[AG11] K. J. Ahn and S. Guha. Linear programming in the semi-streaming model with application to the maximum
matching problem. In Automata, Languages and Programming - 38th International Colloquium, ICALP 2011,
pages 526–538, 2011. 1

[AK24] S. Assadi and S. Khanna. Improved bounds for fully dynamic matching via Ordered Ruzsa-Szemerédi graphs.
arXiv preprint arXiv:2406.13573, 2024. 3

[AKL16] S. Assadi, S. Khanna, and Y. Li. Tight bounds for single-pass streaming complexity of the set cover
problem. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
pages 698–711, 2016. 1

[AKL17] S. Assadi, S. Khanna, and Y. Li. On estimating maximum matching size in graph streams. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1723–1742,
2017. 3

[AKLY16] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavtsev. Maximum matchings in dynamic graph streams and
the simultaneous communication model. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, pages 1345–1364, 2016. 1, 3

[AKNS24] S. Assadi, C. Konrad, K. K. Naidu, and J. Sundaresan. O(log logn) passes is optimal for semi-streaming
maximal independent set. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC
2024, pages 847–858, 2024. 3

[ALPZ21] S. Ahmadian, A. Liu, B. Peng, and M. Zadimoghaddam. Distributed load balancing: A new framework
and improved guarantees. In 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, volume
185, pages 79:1–79:20, 2021. 1

[AMS12] N. Alon, A. Moitra, and B. Sudakov. Nearly complete graphs decomposable into large induced matchings
and their applications. In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
pages 1079–1090, 2012. 3, 4

[AR20] S. Assadi and R. Raz. Near-quadratic lower bounds for two-pass graph streaming algorithms. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 342–353, 2020. 3

[AS23] S. Assadi and J. Sundaresan. Hidden permutations to the rescue: Multi-pass streaming lower bounds for
approximate matchings. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023,
pages 909–932, 2023. 3

[BCS74] J. Bruno, E. G. Coffman, Jr., and R. Sethi. Scheduling independent tasks to reduce mean finishing time.
Comm. ACM, 17:382–387, 1974. 1

[Ber20] A. Bernstein. Improved bounds for matching in random-order streams. In 47th International Colloquium on
Automata, Languages, and Programming, ICALP 2020, pages 12:1–12:13, 2020. 3

[BG24] S. Behnezhad and A. Ghafari. Fully dynamic matching and Ordered Ruzsa-Szemerédi graphs. CoRR,
abs/2404.06069. To appear in FOCS 2024, 2024. 3

[BO20] L. Barenboim and G. Oren. Distributed backup placement in one round and its applications to maximum
matching and self-stabilization. In Proc. 3rd Symposium on Simplicity in Algorithms, pages 99–105, 2020. 1

[CHSW12] A. Czygrinow, M. Hanćkowiak, E. Szymańska, and W. Wawrzyniak. Distributed 2-approximation
algorithm for the semi-matching problem. In Proc. 26th International Symposium on Distributed Computing,
volume 7611, pages 210–222, 2012. 1

[CKP+21] L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, and H. Yu. Almost optimal super-constant-pass
streaming lower bounds for reachability. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing 2021, pages 570–583, 2021. 3

[DIMV14] E. D. Demaine, P. Indyk, S. Mahabadi, and A. Vakilian. On streaming and communication complexity
of the set cover problem. In Distributed Computing - 28th International Symposium, DISC 2014, volume 8784,
pages 484–498, 2014. 1

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

[ER56] P. Erdős and A. Rényi. On some combinatorical problems. Publ. Math. Debrecen, 4:398–405, 1956. 15
[FKM+05] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming

model. Theor. Comput. Sci., 348(2-3):207–216, 2005. 1
[FLN+02] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky. Monotonicity

testing over general poset domains. In Proceedings on 34th Annual ACM Symposium on Theory of Computing,
2002, pages 474–483, 2002. 3, 4

[FLN14] J. Fakcharoenphol, B. Laekhanukit, and D. Nanongkai. Faster algorithms for semi-matching problems.
ACM Trans. Algorithms, 10(3):Art. 14,23, 2014. 1

[FMU22] M. Fischer, S. Mitrovic, and J. Uitto. Deterministic 1+ ε-approximate maximum matching with poly(1/ε)
passes in the semi-streaming model and beyond. In 54th Annual ACM SIGACT Symposium on Theory of
Computing, 2022, pages 248–260, 2022. 1

[FNSZ20] M. Feldman, A. Norouzi-Fard, O. Svensson, and R. Zenklusen. The one-way communication complexity
of submodular maximization with applications to streaming and robustness. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 1363–1374, 2020. 1

[GKK12] A. Goel, M. Kapralov, and S. Khanna. On the communication and streaming complexity of maximum
bipartite matching. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, pages 468–485, 2012. 1, 3, 4, 8

[Hal87] P. Hall. On representatives of subsets. Classic Papers in Combinatorics, pages 58–62, 1987. 5
[HKPSR18] M. M. Halldórsson, S. Köhler, B. Patt-Shamir, and D. Rawitz. Distributed backup placement in

networks. Distrib. Comput., 31(2):83–98, 2018. 1
[HLLT06] N. J. A. Harvey, R. E. Ladner, L. Lovász, and T. Tamir. Semi-matchings for bipartite graphs and load

balancing. J. Algorithms, 59(1):53–78, 2006. 1
[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc.,

43:439–562, 2006. 4, 6, 7
[Hor73] W. A. Horn. Minimizing average flow time with parallel machines. Oper. Res., 21(3), 1973. 1
[JR17] K. Jansen and L. Rohwedder. On the configuration-lp of the restricted assignment problem. In Proceedings

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 2670–2678,
2017. 1

[JR20] K. Jansen and L. Rohwedder. A quasi-polynomial approximation for the restricted assignment problem.
SIAM J. Comput., 49(6):1083–1108, 2020. 1

[Kap13] M. Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pages 1679–1697, 2013. 3

[Kap21] M. Kapralov. Space lower bounds for approximating maximum matching in the edge arrival model. In
D. Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pages 1874–1893. SIAM, 2021. 3

[KKA23] S. Khanna, C. Konrad, and C. Alexandru. Set cover in the one-pass edge-arrival streaming model. In
Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2023, pages 127–139, 2023. 1

[KN97] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press, 1997. 5
[KR13a] C. Konrad and A. Rosén. Approximating semi-matchings in streaming and in two-party communication.

In Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, volume 7965, pages
637–649, 2013. 1, 2, 3, 5, 6

[KR13b] C. Konrad and A. Rosén. Approximating semi-matchings in streaming and in two-party communication.
2013, 1304.6906. 5

[LL04] Y. Lin and W. Li. Parallel machine scheduling of machine-dependent jobs with unit-length. European J.
Oper. Res., 156(1):261–266, 2004. 1

[LST90] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unrelated parallel
machines. Math. Program., 46:259–271, 1990. 1

[MV17] A. McGregor and H. T. Vu. Better streaming algorithms for the maximum coverage problem. In 20th
International Conference on Database Theory, ICDT 2017, volume 68, pages 22:1–22:18, 2017. 1

[OBL18] G. Oren, L. Barenboim, and H. Levin. Distributed fault-tolerant backup-placement in overloaded wireless
sensor networks. In Proc. 9th International Conference on Broadband Communications, Networks, and Systems,
pages 212–224, 2018. 1

[OZ22] S. Olesker-Taylor and L. Zanetti. Geometric bounds on the fastest mixing markov chain. In 13th Innovations
in Theoretical Computer Science Conference, ITCS 2022, volume 215, pages 109:1–109:1, 2022. 7

[RS78] I. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles. Combinatorics
(Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18:939–945, 1978. 2, 3, 8

[RY20] A. Rao and A. Yehudayoff. Communication Complexity: and Applications. Cambridge University Press,
2020. 5

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

http://arxiv.org/abs/1304.6906

[Yao79] A. C. Yao. Some complexity questions related to distributive computing (preliminary report). In Proceedings
of the 11h Annual ACM Symposium on Theory of Computing, 1979, pages 209–213, 1979. 5

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Appendix

A Deferred Proofs

A.1 Proof of Proposition 3.4

Proof. The protocol is simple: Alice computes an α-approximation load-balancing sparsifier HA of GA with
at most T edges and sends HA to Bob. Each edge requires O(log(n)) bits to send, for a total of O(T log(n))
bits.

Define G := GA∪GB and G′ := HA∪GB . To prove correctness, we need to show that OPTload(G′) ⩽
α ·OPTload(G). Let A∗ be the optimal assignment in G. We partition L into sets LA and LB : for every
x ∈ L, add x to LA if (x,A∗(x)) ∈ GA and add x to LB if (x,A∗(x)) ∈ GB ; if the edge is in both GA and
GB , then assign x to LB .

Let A∗
A denote the assignment A∗ restricted to LA and define A∗

B analogously. Note that A∗
A is an

assignment in GA, A∗
B is an assignment in GB , and load(A∗

A), load(A∗
B) are both at most load(A∗).

Since A∗
B is contained in GB ⊆ G′, we can also use in our final assignment for G′. But we must replace

A∗
A with a new assignment that is contained in HA. To this end, note that by the existence of A∗

A we have
OPTload(GA[LA ∪ R]) ⩽ load(A∗

A) ⩽ load(A∗), so by definition of a load-balancing sparsifier, there
exists an assignment A′

A of HA[LA ∪R] with load(A′
A) ⩽ α · load(A∗

A) ⩽ α · load(A∗).

We now define an assignment A′ of G′ as follows: for x ∈ LA we set A′(x) = A′
A(x) and for

x ∈ LB we set A′(x) = A∗
B(x). It is easy to see that all edges of A′ are contained in G′, and that

load(A′) ⩽ load(A′
A) + load(A∗

B) ⩽ (α+ 1)load(A∗), as desired.

A.2 Reducing the Number of Servers In order to apply Lemma 4.3 inside Theorem 2, we rely on the

following claim, which shows that one can assume w.l.o.g that |R| ⩽ |L|2.

Claim A.1. Given a bipartite graph G = (L,R,E) with |L| = n, there exists a subgraph G′ = (L,R′, E′)
of G such that |R′| ⩽ n2 with sparsifier(G,α) ⩽ sparsifier(G′, α) and MC(G′, α) ⩽ MC(G,α) for any
α ⩾ 1.

Proof. Define a vertex v ∈ L to be high-degree if degG(v) > n. We define E′ as follows: start with E′ = E,
and then for every high-degree vertex v ∈ L, remove an aribtrary set of degG(V) − n edges incident to v.
Every v ∈ L now has degE′(v) ⩽ n. Let R′ contain all vertices in R with at least one incident edge in E′; it
is easy to see that |R′| ⩽ n2. We then define G′ := (L,R′, E′)

To show that sparsifier(G,α) ⩽ sparsifier(G′, α), we argue that any α-sparsifier H ′ of G′ is also an
α-sparsifier of G. Using the criterion of load-balancing sparsifiers in Property (2) of Lemma 3.8, it suffices
to show that any set X ⊆ L that is matchable in G is also matchable in G′. Let M be the matching from X
to R in G; we argue that X is also matchable in G′. For every u ∈ X, if u is not of high-degree in G, then
EG(u) = EG′(u), so we can use the same edge from M . If u is of high degree in G, then since degG′(u) = n,
there must be at least one free vertex in R′ that u can be matched to.

The inequality MC(G′, α) ⩽ MC(G,α) follows from the fact that G′ is a subgraph of G.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

A.3 Proof of Proposition 5.2 Proof of Proposition 5.2. We use the probabilistic method. Suppose we pick

t random subsets S ∈
(
[2k]
k

)
independently and uniformly at random. For any two random subsets S and S′,

we would like to bound the probability that their intersection size is equal to ℓ for any k
2 ⩽ ℓ ⩽ k. If S and

S′ are chosen uniformly and independently, then

Pr[|S ∩ S′| = ℓ] =

(
k
ℓ

)(
k

k−ℓ

)(
2k
k

) =

(
k

k−ℓ

)2(
2k
k

) .

To see this, if we fix S, the numerator counts the number of subsets of size k that intersects S exactly ℓ
times. This can be done by picking ℓ elements from S and picking k − ℓ elements from S, for both of which
there are exactly

(
k
ℓ

)
=

(
k

k−ℓ

)
ways. By the union bound, the probability that any two sets have intersection

size greater than k − s is

Pr[|S ∩ S′| ⩾ k − s] ⩽
k∑

ℓ=k−s

(
k

k−ℓ

)2(
2k
k

) =

s∑
ℓ=0

(
k
ℓ

)2(
2k
k

) ⩽ s ·
(
k
s

)2(
2k
k

)
Let s = δk for some positive constant δ < 1

2 . Using Stirling’s approximation n! ≍
√
2πn(n/e)n,

s ·
(
k
s

)2(
2k
k

) ≍ s ·
(√

2πk · kk

2π
√
s(k − s)ss(k − s)k−s

)2/√
4πk(2k)2k

2πk · k2k

≍ sk1.5

s(k − s)
· k4k

(2k)2ks2s(k − s)2(k−s)

=

√
k

(1− δ)
· k4k

(2k)2k(δk)2δk(k(1− δ))2k(1−δ)

=

√
k

(1− δ)
· 1

(4 · δ2δ · (1− δ)2(1−δ))k

⩽ 2
√
k · c−2k

δ

Finally, by using the union bound over all pairs of random subsets, we see that as long as t ⩽ 1
2k

− 1
4 · ckδ ,

then every pair of subsets has intersection size less than (1− δ)k with positive probability. This implies that
there exists a set family F as claimed in the statement.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

	1 Introduction
	1.1 Our Contributions
	1.2 Previous Work
	1.3 Roadmap and Technical Overview

	2 Preliminaries
	2.1 One-Way Communication Complexity

	3 Load-Balancing Sparsifiers
	3.1 Equivalence Between Sparsifier and One-Way Communication Complexity
	3.2 Equivalent Notions of Sparsification
	3.3 Matching-Contractors

	4 Relating Matching-Contractors to Load-Balancing Sparsifiers
	4.1 Linear Programming Relaxation for Load-Balancing Sparsification
	4.2 Constructing Matching-Contractor from Dual Solution
	4.2.1 Proof Ideas
	4.2.2 Construction from Fractional Dual Solution
	4.2.3 Analysis

	5 A Construction of Matching-Contractors
	6 Communication Complexity of Load-Balancing
	6.1 Encoding Graphs and the Hard Input Distribution
	6.2 Analysis of the Input Distribution
	6.2.1 A Quick Refresher on Information Theory
	6.2.2 Proof of thm:cc-lb

	6.3 Proofs of cor:cc-lb,cor:stream-lb
	6.4 Proof of thm:equivalence: Sparsifiers = One-Way Communication

	A Deferred Proofs
	A.1 Proof of thm:spar-implies-protocol
	A.2 Reducing the Number of Servers
	A.3 Proof of prop:set-family

