A Unified Algorithm for Degree Bounded
Survivable Network Design

Lap Chi Lau and Hong Zhou

Department of Computer Science and Engineering
The Chinese University of Hong Kong
{chi,hzhou}@cse.cuhk.edu.hk

Abstract. We present an approximation algorithm for the minimum
bounded degree Steiner network problem that returns a Steiner network
of cost at most two times the optimal and the degree on each vertex v is
at most min{b, + 3rmax, 2by + 2}, where rmax is the maximum connec-
tivity requirement and b, is the given degree bound on v. This unifies,
simplifies, and improves the previous results for this problem.

1 Introduction

In the minimum bounded degree Steiner network problem, we are given an undi-
rected graph G = (V, E), a cost ¢, on each edge e € F, a degree bound b, on
each vertex v € V, and a connectivity requirement 7., for each pair of vertices
u,v € V. A subgraph H of G is called a Steiner network if there are at least
ruy edge-disjoint paths in H for all u,v € V. The task of the minimum bounded
degree Steiner network problem is to find a Steiner network H with minimum
total cost such that dg(v) < b, for each v € V. This is a general problem of
interest to algorithm design, computer networks, graph theory, and operations
research.

It is NP-hard to determine whether there is a Steiner network satisfying all the
degree bounds, even if we do not consider the cost of the Steiner network, as the
Hamiltonian cycle problem is a special case. Thus, researchers focus on designing
bicriteria approximation algorithms for the problem that minimize both the total
cost and the degree violation. We say an algoithm is an (a, f(b,))-approximation
algorithm for the minimum bounded degree Steiner network problem if it returns
a Steiner network H of cost at most « - opt and dg(v) < f(b,) for each v € V|
where opt is the cost of an optimal Steiner network that satisfies all the degree
bounds.

The first bicriteria approximation algorithm for this problem is a (2, 2b, + 3)-
approximation algorithm by Lau, Naor, Salavatipour, and Singh [12], and it
was improved to (2,2b, + 2) by Louis and Vishnoi [15]. There are also bicri-
teria approximation algorithms with additive violation on the degrees in terms
of the maximum connectivity requirement. Let 7max = maxy, {7y} Lau and
Singh [14] gave a (2, b, +67max+3)-approximation algorithm for the problem, and
a (2, b, +3)-approximation algorithm in the special case when 7.« = 1. The spe-
cial case when ry.x = 1 is known as the minimum bounded degree Steiner forest

J. Lee and J. Vygen (Eds.): IPCO 2014, LNCS 8494, pp. 369-380, 2014.
© Springer International Publishing Switzerland 2014

370 L.C. Lau and H. Zhou

problem. In this paper, we present a (2, min{b, + 37max, 2b, + 2})-approximation
algorithm for the problem.

Theorem 1. There is a polynomial time algorithm for the minimum bounded
degree Steiner network problem that returns a Steiner network H of cost at most
2opt and degy (v) < min{b, + 3rmaz, 20, + 2} for all v.

Theorem 1 improves the (2,b, + 6rpmax + 3) result in [14] when 7. > 2 and
recovers the (2,b, + 3) result in [14] for the minimum bounded degree Steiner
forest problem. Besides, it achieves the (2, 2b, + 2) result in [15] simultaneously,
while previously there was no such guarantee'. Furthermore, both our algorithm
and its analysis are simpler? as we will discuss in Section 2. We believe that
our result unifies what can be achieved using existing techniques. We show an
example where our algorithm fails to give a (2, b, + 2)-approximation algorithm
for the minimum bounded degree Steiner forest problem in Section 3.2.

1.1 Related Work

Jain [9] introduced the iterative rounding method to give a 2-approximation
algorithm for the minimum Steiner network problem, improving on a line of
research that applied primal-dual methods to these problems. Later, the iterative
rounding method has been applied to obtain the best known approximation
algorithms for network design problems for element-connectivity [4,3], vertex-
connectivity [3,2], and directed edge-connectivity [7].

The iterative relaxation method was introduced in [12] to adapt Jain’s method
to degree bounded network design problems, which are well-studied especially
in the special case of spanning trees [6,8]. Later, this method has also been
applied to achieve the best known approximation algorithms for the degree
bounded network design problems, including spanning trees [17,1,11], Steiner
networks [12,14,15], directed edge-connectivity [12,1], element-connectivity and
vertex-connectivity [10,16,5]. See [13] for a survey on this approach.

2 Technical Overview

Since this work is tightly connected to previous work, we give a high level
overview to describe the previous work and highlight where the improvement
comes from.

2.1 TIterative Rounding and Relaxation

All the previous results on this problem are based on the iterative rounding
method introduced by Jain [9] for the minimum Steiner network problem. This

! For instance, it was not known how to combine the results in [15,14] to obtain a
(2, min{by + 6rmax + 3, 2b, + 2})-approximation algorithm for the problem.

2 In particular, the analysis of the (2, by + 3) result is significantly simpler than that
in [14].

A Unified Algorithm for Degree Bounded Survivable Network Design 371

method is based on analyzing the extreme point solutions to a linear program-
ming relaxation for the problem. Let us first formulate the linear programming
relaxation for the minimum bounded degree Steiner network problem. For a
subset S C V', we let 6(S) be the set of edges with one endpoint in S and one
endpoint in V' — S in the graph and let d(S) := |6(S)|. In the linear program,
there is one variable x. for each edge, where the intended value is one if this
edge is used in the solution and zero if this edge is not used. For a subset of
edges E' C E, we write 2(E') =) . p Te. For a subset of vertices S C V,
we define f(S9) := max,ecg,¢s5{ruv} to be the maximum requirement crossing
S. To satisfy the connectivity requirement, we should have x(5(S)) > f(S) for
each S C V. The following is a linear programming relaxation for the minimum
bounded degree Steiner network problem. It has exponentially many constraints,
but there is a polynomial time separation oracle to determine whether a solution
is feasible or not, and thus it can be solved in polynomial time by the ellipsoid
method.
(LP) minimize Z Cee
eckE

subject to x(8(5)) > f(S) VSCV

z(6(v)) < by YveV

zo >0 Vee E

When there are no degree constraints, Jain [9] proved that there exists an
edge e with z, > ; in any extreme point solution to the above linear program.
We call such an edge a heavy edge. He used this to obtain an iterative rounding
algorithm for the minimum Steiner network problem, by repeatedly picking a
heavy edge and recomputing an optimal extreme point solution to the residual
problem. When there are degree constraints, Lau et.al. [12] showed that either
there is a heavy edge or there is a degree constrained vertex with at most four
nonzero edges incident to it. They then introduced an extra relaxation step to
remove the degree constrained vertex in the latter case, leading to a (2,2b, +
3)-approximation algorithm for the minimum bounded degree Steiner network
problem.

Roughly speaking, all the later improvements are based on proving the exis-
tence of a heavy edge with additional properties. To improve the degree violation,
Louis and Vishnoi [15] proved that in any extreme point solution either there is
an edge of integral value (zero or one), or a vertex v with at most 2b,+2 edges in-
cident to it, or a heavy edge with no endpoint having a degree bound at most one.
They showed that using this iteratively would imply a (2, 2b, +2)-approximation
algorithm for the problem. Note that in the above algorithms, after we pick a
heavy edge, we need to decrease the degree bound by half in order to achieve
the guarantee on the degree violation, and thus they have to consider a slightly
more general problem where the degree bounds are half-integral and some subtle
issue arose as we will discuss later.

To obtain additive violation on the degree bounds, Lau and Singh [14] proved
that in any extreme point solution either there is an edge of integral value, or a ver-
tex v with at most four edges incident to it, or a heavy edge between two vertices with

372 L.C. Lau and H. Zhou

degree bounds at most 67,5, Wwhere the last condition guarantees that the degree vi-
olation is bounded when we picked edges with value at least half. For the minimum
bounded degree Steiner forest problem, they proved that in any extreme point solu-
tion either there is an integral edge, or a vertex v with at most b, + 3 edges incident
to it, or a heavy edge with no degree constraint on its endpoints. They showed that
these would lead to a (2, b, + 67rpmax + 3)-approximation algorithm for the Steiner
network problem and a (2, b, + 3)-approximation algorithm for the Steiner forest
problem. The algorithm for Steiner forest is simpler, as it just removes the degree
constraint on a vertex when it has at most b, + 3 edges, and does not need to update
the degree constraint to a half-integral value, as it only picks edges with value at
least half when both endpoints have no degree constraints.

Our algorithm is very similar to that for the Steiner forest problem in [14]
(see Algorithm 1). We prove that either there is an edge of integral value, or
there is a vertex with at most min{b, + 3rmax, 2b, + 2} edges incident to it, or
there is a heavy edge with no degree constraints on its endpoints. The resulting
algorithm is quite simple, in the first case we delete an edge when z, = 0 or
pick an edge when z. = 1, in the second case we remove the degree constraint
on that vertex, and in the final case we pick such a heavy edge. Note that we
only update the degree constraints when we pick an edge with x, = 1, and thus
we can maintain the invariant that the degree bounds are integral, and this will
simplify the analysis for the 2b, + 2 bound.

2.2 Analysis

To analyze the extreme point solutions, an uncrossing technique is used to show
that the extreme point solutions are defined by a set of constraints with a special
structure. A function f : 2V — R is skew supermodular if for any X,Y C V either
J(X)+ f(¥) € FXUY)+ F(XAY) or f(X)+f(¥) < (X = V) + (¥ - X).
It is known that the function f defined by the connectivity requirements is a
skew supermodular function. For a set S C V, the corresponding constraint
2(6(S)) > f(S) defines a vector in RIZI: the vector has a one corresponding to
each edge e € §(S) and a zero otherwise. We call this vector the characteristic
vector of §(.S) and denote it by xs5(5). A family of sets £ is laminar if X,Y € L
implies that either X NY =@, or X C Y, or Y C X. Using the assumption
that f is skew supermodular, it follows from standard uncrossing technique that
any extreme point solution of (LP) is characterized by a laminar family of tight
constraints.

Lemma 1 ([12]). Suppose that the requirement function f of (LP) is skew su-
permodular. Let x be an extreme point solution of (LP) such that 0 < z. < 1 for
all edges e € E. Then there exist a laminar family L of sets and set T C V' such
that x is the unique solution to

{2(6(5)) = f(S) | S € L} U{x(d(v)) =by | v e T}

that satisfies the following properties:

A Unified Algorithm for Degree Bounded Survivable Network Design 373

1. The characteristic vectors xs(s)y for S € L and x50, for v € T are linearly
independent.
2. |E| =|L|+|T).

The structure of a laminar set family £ can be seen as a forest in which nodes
correspond to sets in £ and there is an edge from set R to set S if R is the
smallest set containing S. We call R the parent of S and S is a child of R. A set
without any parent is a root and a set without any child is a leaf. The subtree
rooted at a set S consists of S and all its descendants.

Lau et.al. [12], following Jain [9], used this forest structure in a counting
argument to prove that either there exists an edge with integral value, or a
vertex with degree at most four, or an edge with value at least é First, each
edge is assigned two tokens, one to each endpoint, for a total of 2|E| tokens.
Assuming none of the conditions hold, i.e. 0 < x, < ; for each edge and every
vertex is of degree at least five. Then, it can be shown that the tokens can be
redistributed such that each member of £ and each vertex in T get at least
two tokens, and there are still some extra tokens left. This implies that there
are more than 2|L| + 2|T'| tokens, contradicting property 2 of Lemma 1. The
redistribution is done inductively using the following lemma.

Lemma 2 ([12]). For any subtree of L rooted at node S, we can reassign tokens
collected from child nodes of S and endpoints owned by S such that each vertex
in TNS gets at least two tokens, each node in the subtree gets at least two tokens,

and the root S gets at least three tokens. Moreover, S gets exactly three tokens
1

only if coreq(S) = 5, where coreq(S) := Zeeé(s)(; — Ze).
The proof in [12] is almost the same as Jain’s proof, but with the presence of
degree constraints. Note that each vertex with degree constraint gets at least
five tokens in the initial token assignment. Intuitively, we can think of each
degree constraint as a singleton set (a leaf set in the laminar family), and thus
having five tokens is more than enough for Jain’s proof to go through. And one
may think that it is already enough if every degree constraint gets at least four
tokens to satisfy the induction hypothesis in Lemma 2, and this would imply a
(2, 2b, +2)-approximation algorithm. Unfortunately, the subtle point here is that
the degree bounds are half-integral, but for Jain’s proof to work they need to
be integral. To overcome this problem, Louis and Vishnoi [15] needed to modify
the algorithm and the analysis to obtain a (2, 2b, + 2)-approximation algorithm.
The new idea in the Steiner network algorithm in [14] is to only pick heavy
edges when both endpoints are of low degree. In the analysis, with the presence
of heavy edges that are not allowed to be picked (when some endpoint is of high
degree), there could be some sets S with d(S) = 2 and z(6(5)) = 1, and thus
the counting argument as above would not work in the base case for those sets.
For the same induction hypothesis in Lemma 2 to work, a new rule is added to
the initial token assignment: if (w,v) is a heavy edge with by, > 6rmax and v is
not degree constrained, then v gets two tokens from the edge (w, v) while w gets
none. The counting argument would work in the base case with this new rule,
but w may not receive any token for the induction step to work. The assumption

374 L.C. Lau and H. Zhou

by > 6Tmax is used to ensure that w can get back the tokens in the induction step.
To illustrate this, consider a worst case scenario in Figure 1(a). In the figure,
there is a degree constrained vertex w where all its incident edges are heavy, and
we need to collect two tokens for w and four tokens for S. Each child contributes
only one token but “consumes” the degree bound of w by 7max. This is where
the assumption that b, > 6rpa.x is used to guarantee that S has at least five
children, so that each can contribute at least one token for w and S (and use
some additional argument to collect one more token).

~
~ T?ﬂ(lx

(a) For the algorithm in [14] (b) For our algorithm

Fig. 1. Worst cases for counting arguments

In this paper, we slightly change the algorithm to remove any vertex with
degree at most min{b, + 3rmax, 2b, + 2}. We used the same initial token as-
signment rule as in [14] and the same induction hypothesis in Lemma 2 for the
counting argument. First, using a simple argument (see Lemma 6), we show that
any vertex with degree at least 2b, + 3 can receive at least four tokens, and this
allows the induction to work and recovers the (2,2b, + 2) result by Louis and
Vishnoi. As mentioned before, this is possible because our algorithm maintains
the invariant that all the degree bounds are integral.

Our improvement to b, + 3ryax comes from the concept of the integrality gap
of the degree of a set S, defined as d(S) — x(d(5)). To illustrate this, consider
the same scenario in Figure 1. In the new algorithm, the vertex w with degree
bound b,, but having more than b,, + 3ryax edges incident to it has an integrality
gap of 3rpax on its degree. The main observation is that the heavy edges from
a child having only three tokens (one extra token) can only contribute % to the
integrality gap of w (see Lemma 7), while a child having at least four tokens
could contribute ryax to the integrality gap of w. This observation basically
allows us to rule out children with only three tokens in the worst case scenarios
of the counting argument, as it contributes one token but only consumes ; of
the integrality gap. This allows us to assume that each child can contribute
two tokens instead of one token, and this reduces the degree violation from
67 max t0 3rmax (see Figure 1(b)), with some additional arguments. An additional
advantage of our algorithm is that we also avoid the additive term +3 in the

A Unified Algorithm for Degree Bounded Survivable Network Design 375

The proof for rya.x = 1 still has some case analysis (see the full version), but
is considerably shorter than that in [14], as a complicated induction hypothesis
was used in [14] that caused many more case analyses.

previous algorithm [14]. The proof for rpyayx > 2 is quite short (see Section 3.1).

3 Algorithm and Analysis
In the following, let W be the set of vertices with degree constraints.

Algorithm 1. Minimum Bounded Degree Steiner Network

1 Initialization: H = (V,0), W <V, f'(S) « f(S) for all S C V.

2 while H is not a Steiner Network do
(a) Compute an optimal extreme point solution = to (LP) and remove
all edges e with z. = 0.
(b) For each vertex v € W with degree at most
min{b, + 3"maz, 2by, + 2}, remove v from W.
(c) For each edge e = (u,v) with ., =1, add e to H and remove e
from G, and decrease b, b, by one.
(d) For each edge e = (u,v) with z, > } and u,v ¢ W, add e to H
and remove e from G.
(e) For each S C V, set f/(S) « f(S) — du(S).

3 Return H.

Given that f is initially a skew supermodular function, it is known that f’ in
any later iteration is still a skew supermodular function [9]. So, the residual LP in
any iteration is still in the original form and it has a polynomial time separation
oracle [9]. Assuming the algorithm always makes progress in each iteration, then
we can prove Theorem 1 by a standard inductive argument as in [12]. It remains
to prove the following lemma to complete the proof of Theorem 1.

Lemma 3. Let x be an extreme point solution to (LP) and W be the set of
vertices with degree constraints. Then at least one of the following is true.

1. There exists a vertex v € W with d(v) < min{b, + 37maqz, 2b, + 2}.
2. There exists an edge e with x. =0 or x. = 1.
3. There exists an edge e = (u,v) with z. > 5 and u,v ¢ W.

We prove Lemma 3 by contradiction. Assuming none of the three conditions
holds, then we have

1. d(v) > min{by, + 3rmas + 1,2b, + 3} for v e W,
2.0<z.<1lforeeFE,
3. i @y > é then either u or v is in W.

We will use a token counting argument to derive a contradiction with Lemma 1.
Let £ be the laminar family and T be the set of vertices with tight degree con-
straints as defined in Lemma 1. In the token counting argument, we first assign

376 L.C. Lau and H. Zhou

two tokens to each edge, for a total of 2| E/| tokens. Then, using the assumptions
above, we show that these tokens can be redistributed such that each member
in £ and each vertex in T gets at least two tokens and there are some tokens
left, but this contradicts with |E| = |£| + |T| from Lemma 1.

Initial Token Assignment Rule. Each edge receives two tokens. If e = (u, v)
is a heavy edge with u € W and v ¢ W, then v gets two tokens from e and u
gets no token. For every other edge e, each endpoint of e gets one token.

We will redistribute the tokens inductively using the forest structure of the
laminar family £. We need some definitions to state the induction hypothesis.
We say a vertex v is owned by a set S € L if S is the smallest set in £ that
contains v. Given an extreme point solution x, we say an edge e is a heavy edge
if x. > 1/2, otherwise we say e is a light edge. Let "(S) = {e € §(9),z. > 1/2}
(64(8S) = {e € 6(9), e < 1/2}) be the set of heavy edges (light edges) in §(5).
The corequirement of a set S is defined as

l
coreq(S) = > (I—we)+ > (1/2—x) = ["(5) + o (25” — z(5(9)).

e€sh(S) e€sl(S)

We will prove the following lemma which shows that the tokens can be redis-
tributed to obtain a contradiction, proving Lemma 3.

Lemma 4. For any subtree of L rooted at node S, we can reassign tokens col-
lected from child nodes of S and endpoints owned by S such that each vertex in
T NS gets at least two tokens, each node in the subtree gets at least two tokens,
and the root S gets at least three tokens. Moreover, S gets exactly three tokens
only if coreq(S) = }.

We focus on the case when S owns some vertices in T, and show that in such
case S can get at least four tokens. In the induction step, we assume that the
induction hypothesis holds for each child of S. We say a child of S is a rich child
if it gets at least four tokens, and say a child of S is a poor child if it gets exactly
three tokens. Note that a child only needs two tokens and thus has some excess
tokens, i.e., each rich child of S has at least two excess tokens and each poor
child of S has one excess token. The following lemma is the technical core of this

paper.

Lemma 5. Let S € L. Suppose that the induction hypothesis in Lemma 4 holds
for each child of S and S owns k > 1 wvertices in T. Then the number of ex-
cess tokens from the child nodes of S, plus the number of tokens collected from
endpoints owned by S is at least 2k + 4.

Lemma 5 handles the cases when S owns some vertex in T', to guarantee that .S
gets at least four tokens and each vertex in T owned by S gets two tokens for
the induction hypothesis. The remaining cases can be handled exactly as in the
proof in [14]. Please refer to the full version for the proof of Lemma 4 assuming
Lemma 5, which follows the proof in [14].

A Unified Algorithm for Degree Bounded Survivable Network Design 377

We will prove Lemma 5 in the remainder of this paper. We present the proof
of Lemma 5 when ry, > 2 in Section 3.1, which improves the result in [14]
about Steiner networks. Due to space limit, please refer to the full version for
the proof of Lemma 5 when 7y, = 1, which recovers the result in [14] about

Steiner forest with a considerably simpler proof.

3.1 Proof of Lemma 5

Before we assume 7, > 2, we prove two useful lemmas. The first lemma takes
care of those vertices w € W with d(w) > 2b,, + 3.

Lemma 6. If d(w) > 2b,, + 3 for w € W, then w receives at least four tokens
i the initial token assignment.

Proof. Assume there are h heavy edges incident and [light edges incident to
w. If [> 4, then w receives at least four tokens in the initial token assignment.
Suppose to the contrary that [< 3. Then h > 2b,, as d(w) = h+1 > 2b, + 3
If h > 2b,, then z(5(w)) > % > by, contradicting that z is a feasible solution
o (LP). Otherwise, if h = 2b,,, since each light edge has positive value, we have
z(6(w)) > % = by, again contradicting that z is a feasible solution to (LP). O

Lemma 6 says that any vertex w € W with d(w) > 2b,, + 3 gets at least four
tokens in the initial assignment. Together with the fact that b,, is an integer,
then any w € T with d(w) > 2b,,+ 3 is a singleton set {w} with z(6(w)) integral
and has at least four tokens, and thus it behaves the same as a rich child in the
proof of Lemma 5. Henceforth, we can assume that b,, + 3rmax + 1 < 2b,, + 3 for
each w € W, and thus

bw > 3rmax — 2 and d(w) > by, + 3rmax + 1 for w € W. (1)

The second lemma takes care of the poor children using the concept of in-
tegrality gap of the degree of a set. For an edge e with 0 < z. < 1, let
Ye = 1 — . € (0,1) be the integrality gap of e. For a subset of edges E' C E, let

Y(E) = ccm Ye:

Lemma 7. Suppose the induction hypothesis in Lemma 4 holds for each child
of S € L. Let R € L be a poor child of S. Then

1

v () < .

Proof. Note that

;:coreq(R): Z (I—m)+ Z —xe Z Ye + Z —xe

e€é"(R) eeél(R) e€é"(R) eeél(R)

Since 1/2 — x. > 0 for each light edge e, we have Zeeéh(R) Ye < 1/2. O

378 L.C. Lau and H. Zhou

Let w1, ..., w, be the vertices in T owned by S. The main idea in the proof
of Lemma 5 is to consider Y := Zle y(d(w;)). Since w; € T, it follows from (1)
that y(d(w;)) = d(w;) — z(0(w;)) = d(w;) — by, > 3rmax + 1 and thus

Y > (Brmax + 1)k.

By Lemma 7, the heavy edges from a poor child can only contribute very little
to this sum, and this will allow us to rule out the existence of a poor child in S.

Proof of Lemma 5 when 7,5« > 2: First, we count the number of tokens
that S can collect. Consider the edges in F := UF_ §(w;). Let F» C F be the
subset of edges of F' with both endpoints in S, and F; := F — F5 be the subset
of edges of F' with exactly one endpoint in S. Note that each edge in Fy can
contribute two tokens to S, regardless of whether it is heavy or light. Let ¢ be
the number of light edges in F;. Then each such edge can contribute one token
to S. Let v be the number of rich children of S and p be the number of poor
children of S. By the induction hypothesis, the children can contribute at least
27y + p tokens to S. Therefore, S can collect at least 2y + p + £ + 2| F3| tokens
from its children and the endpoints that it owns. If 2y + p + £ + 2| Fy| > 2k + 4,
then we are done. So we assume to the contrary that

29 + p+ £+ 2|Fy| < 2k + 3. (2)

Next, we consider the contribution to Y. Each endpoint of an edge e can
contribute strictly less than one to Y, as y. = 1 — z. < 1 for each edge. So, the
edges in F» and the light edges in F} can contribute strictly less than 2|F3|4 £ to
Y. It remains to count the contribution from the heavy edges in Fj. The heavy
edges from a rich child R can contribute at most ryax to Y, because each heavy
edge can contribute at most } to Y and [§"(R)| < 2rmax as z(6(R)) < Tmax.
The heavy edges from a poor child can contribute at most é to Y by Lemma 7.
Finally, the heavy edges in F; Né"(S) can contribute at most 7. to Y, because
167(S)| < 27max as 2(6(S)) < Tmax- These count all the contributions to Y.
Therefore, we must have

1
(3rmax+1)k:§Y§(v+1)~rmax+2p+e+2\F2|. (3)

To satisfy (2) as an equality, we must have p+ £+ 2|F| > 1 since 7 is an integer.
If £+ 2|F5| > 1, then the second inequality in (3) is a strict inequality. Otherwise,
if p > 1 or (2) is not an equality, by plugging in (2), we also have the following
strict inequality

Brmax+ 1)k < (74+1) rmax+2k+3—2y <= (Bk—1)rmax < k+3+7(rmax—2).
(4)
As v < k41 by (2) and assuming ry.x > 2, we have
Bk — D)rmax < k+34+ (k4 1)(rmax —2) <= ™max(2k —2) <1 —k,

which is impossible for & > 1. This contradiction shows that (2) cannot hold,
and thus S can collect 2k + 4 tokens as claimed. a
The proof for ryax = 1 will be shown in the full version.

A Unified Algorithm for Degree Bounded Survivable Network Design 379

3.2 A Hard Example for the Algorithm

A natural question is that, for the minimum bounded degree Steiner forest prob-
lem, whether we can improve our algorithm further by only relaxing vertices with
degree at most b, + 2. This would imply a (2, b, + 2)-approximation algorithm
for the problem, matching the known integrality gap for this linear program [12].

In the example shown in Figure 2, some vertices have a degree bound equal
to two, but there are five edges incident to these vertices. This is an extreme
point solution to (LP) as the characteristic vectors are linearly independent. Our
algorithm will get stuck in this example, and it is not clear to us how to modify
the algorithm to deal with it. We believe that some new ideas are needed to
obtain a (2, b, + 2)-approximation algorithm for this problem.

Light Edges with Value 1/12 Heavy Edges with Value 2/3

Light Edges with Value 1/6 Heavy Edges with Value 5/6
................. o Vertices with Degree Bound b, = 2
Light Edges with Value 1/3 o Vertices without Degree Bound

>

Tight Connectivity Requirement

Fig. 2. A hard example

380 L.C. Lau and H. Zhou

Acknowledgement. We thank the anonymous reviewers for comments that
improve the presentation of the paper. This research is partially supported by
HK RGC grant 2150701.

References

1. Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree bounded
directed network design. STAM Journal on Computing 29, 1413-1431 (2009)

2. Cheriyan, J., Vegh, L.: Approximating minimum-cost k-node connected subgraphs
via independence-free graphs. In: Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS) (2013)

3. Cheriyan, J., Vempala, S., Vetta, A.: Network design via iterative rounding of
setpair relaxations. Combinatorica 26(3), 255-275 (2006)

4. Fleischer, L., Jain, K., Williamson, D.P.: Iterative rounding 2-approximation algo-
rithms for minimum-cost vertex connectivity problems. J. Comput. Syst. Sci. 72(5),
838-867 (2006)

5. Fukunaga, T., Ravi, R.: Iterative rounding approximation algorithms for degree-
bounded node-connectivity network design. In: Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 263-272
(2012)

6. Fiirer, M., Raghavachari, B.: Approximating the minimum-degree Steiner tree to
within one of optimal. J. of Algorithms 17(3), 409-423 (1994)

7. Gabow, H.N.: On the Loo-norm of extreme points for crossing supermodular di-
rected network LPs. In: Jinger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509,
pp. 392-406. Springer, Heidelberg (2005)

8. Goemans, M.X.: Minimum Bounded-Degree Spanning Trees. In: Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Science, pp. 273-282
(2006)

9. Jain, K.: A factor 2-approximation algorithm for the generalized steiner network
problem. Combinatorica 21(1), 39-60 (2001)

10. Khandekar, R., Kortsarz, G., Nutov, Z.: On some network design problems with
degree constraints. Journal of Computer and System Sciences 79(5), 725-736 (2013)

11. Kiraly, T., Lau, L.C., Singh, M.: Degree Bounded Matroids and Submodular Flows.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035,
pp. 259-272. Springer, Heidelberg (2008)

12. Lau, L.C., Naor, S., Salavatipour, M., Singh, M.: Survivable network design with
degree or order constraints. SIAM Journal on Computing 39(3), 1062-1087 (2009)

13. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization.
Cambridge University Press (2011)

14. Lau, L.C., Singh, M.: Additive approximation for bounded degree survivable net-
work design. STAM Journal on Computing 42(6), 2217-2242 (2014)

15. Louis, A., Vishnoi, N.K.: Improved algorithm for degree bounded survivable net-
work design problem. In: Proceedings of the 12th Scandinavian Symposium and
Workshops on Algorithm Theory, pp. 408-419 (2010)

16. Nutov, Z.: Degree-constrained node-connectivity. In: Proceedings of the 10th Latin
American Symposium on Theoretical Informatics (LATIN), pp. 582-593 (2012)

17. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: Proceedings of the 39th ACM Symposium on Theory of
Computing (STOC), pp. 661-670 (2007)

	A Unified Algorithm for Degree Bounded Survivable Network Design

	1 Introduction
	1.1 Related Work

	2 Technical Overview
	2.1 Iterative Rounding and Relaxation
	2.2 Analysis

	3 Algorithm and Analysis
	3.1 Proof of Lemma 5
	3.2 A Hard Example for the Algorithm

	References

