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Abstract— Recent research in network coding shows that, joint
consideration of both coding and routing strategies may lead
to higher information transmission rates than routing only. A
fundamental question in the field of network coding is: how
large can the throughput improvement due to network coding
be? In this paper, we prove that in undirected networks, the
ratio of achievable multicast throughput with network coding
to that without network coding is bounded by a constant ratio
of 2, i.e., network coding can at most double the throughput.
This result holds for any undirected network topology, any link
capacity configuration, any multicast group size, and any source
information rate. This constant bound 2 represents the tightest
bound that has been proved so far in general undirected settings,
and is to be contrasted with the unbounded potential of network
coding in improving multicast throughput in directed networks.

Index Terms— Network Coding, Multicast, Undirected Net-
works, Routing, Complexity

I. INTRODUCTION

HE throughput of information transmission within a data
network is constrained by the network topology and link
capacities. Traditional techniques in improving transmission
throughput focus on strategically routing information flows
along high bandwidth or multiple paths from the source to the
destinations. Recently, it is shown that such routing strategies
alone may not be sufficient. Rather, it is necessary to consider
encoding/decoding data on nodes in the network, in order to
achieve the optimal throughput [1], [2]. Since these coding
operations are not restricted to source or destination nodes,
they are referred to as network coding. A classic example that
illustrates the power of network coding is shown in Fig. 1,
where each link has unit capacity. With network coding, the
achievable throughput is two. Without coding, the achievable
throughput is only one, if integral routing is required, i.e., if
all link flow rates are integers (0 or 1 in this example).
Similar to source erasure codes, encoding and decoding
operations in network coding are also defined over finite
fields, which have fixed length representation of symbols.
Therefore, information flows do not increase in size after
being encoded. The introduction of network coding has es-
sentially expanded the available strategies to achieve optimal
transmission throughput: rather than only relying on routing
strategies, an optimal transmission strategy to achieve the
maximum throughput includes both a routing scheme and a
corresponding coding scheme. Optimal throughput achieved
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Fig. 1. A classic example from [1]: network coding helps achieve a multicast
throughput of 2, in a topology where each link has unit capacity.

with coding is always lower bounded by that achieved without
coding.

An important direction in network coding research is to
understand and quantify the potential of network coding in
improving end-to-end throughput of information transmission,
in general multi-hop communication networks [3], [4], [5],
[6], [71, [8], [9], [10], [11]. In this paper, we consider
undirected networks with bidirectional links. We compare the
achievable throughput with coding both a routing scheme and
a corresponding coding scheme. Optimal throughput achieved
with coding is always lower bounded by that achieved without
coding.

An important direction in network coding research is to
understand and quantify the potential of network coding in
improving end-to-end throughput of information transmission,
in general multi-hop communication networks [3], [4], [5], [6],
[71, [8], [9], [10], [11]. In this paper, we consider undirected
networks with bidirectional links. We compare the achievable
throughput with coding to other parameters that have been
previously defined to reflect a communication network’s con-
nectivity or capacity. Such parameters include the packing
number (which is also the achievable throughput without
coding), strength, and connectivity. We consider three types of
communication sessions: unicast (one-to-one), broadcast (one-
to-all) and multicast (one-to-many). We examine the relative
order among the above four quantities, from which we derive
upper bounds for the coding advantage, i.e., the ratio of
throughput improvement due to network coding. In contrast
to previous work, which shows the coding advantage is not
finitely bounded in directed networks [5], [9], [12], we show
that the coding advantage is always bounded by a constant
factor of two in undirected networks. Our proof holds for
either fractional routing, where information flows can be split
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and merged at arbitrarily fine scales, or half-integer routing,
where each information flow being transmitted has either an
integer or half-integer rate.

We extend the result to an Internet-like bidirected network
model, where the bound for the coding advantage depends on
how imbalanced link capacities can be on two opposite links
between the same pair of nodes. We also provide brief discus-
sions on the integral flow model and the hypergraph model.
In addition, we prove that the achievable throughput, and
therefore the coding advantage, are independent of the location
of the information source within the communication group,
which is a unique property that is only valid in undirected
settings. Finally, we show that in many cases, including in
both directed and undirected networks, with both integral and
fractional routing, optimal throughput with network coding
is much easier to compute than optimal throughput without
coding. In particular, the small bounds on the coding advantage
may lead to nice approximation algorithms.

The remainder of the paper is organized as follows. We
introduce related work on network coding in Sec. II, prove
bounds on the coding advantage for unicast, broadcast, and
multicast in Sec. III, extend the result to group communica-
tions in Sec. IV, and to other network models in Sec. V. We
then discuss the coding advantage and complexity issues in
Sec. VI and finally conclude the paper in Sec. VII.

II. PREVIOUS RESEARCH

Ahlswede ef al. [1] initiated the study of network coding.
They show examples that demonstrate the benefit of network
coding, in terms of throughput improvement. They also prove
the fundamental result that, for a multicast transmission in a
directed network, if a rate  can be achieved for each receiver
independently, it can also be achieved for the entire session.
Koetter et al. [2] also derived this result for directed acyclic
networks within an algebraic framework. They further extend
the discussion to multiple transmissions, and examined the
benefit of network coding in terms of robust networking.

Li et al. [13] show that linear codes suffice in achieving
optimal throughput for a multicast transmission. The bound on
the necessary base field size is first given by Koetter er al. [2].
They show that for a multicast session with throughput r and
number of receivers k, there exists a solution based on a finite
field GF(2™), for some m < [logy(kr + 1)]. This bound is
then improved by Ho er al. to m < [logy(r + 1)] [14].

Li et al. [13] also proposed the first code assignment
algorithm, which performs an exponential number of vector
independence tests. Jaggi et al. [9] observed that, exploiting
flow information in the routing strategy dramatically simplifies
the task, and designed a polynomial time code assignment al-
gorithm accordingly. They also show that, in directed networks
with integral routing, the coding advantage may increase
proportionally as Q(log|V]), and therefore may be arbitrarily
high.

Agarwal and Charikar [4] show that the potential of network
coding to improve throughput is equivalent to the integrality
gap of the bidirected cut relaxation of the minimum Steiner
tree problem. This result is related to the bound 2 on coding

advantage proved in this paper in the following two aspects.
First, it provides an alternative proof method for the bound
2 in the fractional flow case, since the integrality gap of
the bidirected cut relaxation is bounded by the gap of the
undirected relaxation of the minimum Steiner tree problem,
which is known to be bounded by 2 [15], [16]. Second, it
shows that the advantage of network coding in decreasing
multicast cost is also bounded by 2 (assuming the linear link
cost model in the classic min-cost flow literature [17]), since
the minimum Steiner tree IP and its bidirected cut relaxation
yield the optimal cost without and with network coding, re-
spectively. The proof of bound 2 in this paper is combinatorial
in nature and does not rely on linear programming techniques;
it works for not only fractional routing but also half-integer
routing.

Chekuri et al. studied the coding advantage in directed
networks, without the symmetrical throughput requirement on
multicast receivers [5]. They demonstrate classes of networks
where the coding advantage is bounded by 2, including net-
works with two unit sources, or networks with two receivers.
They also construct a network pattern where the coding
advantage grows at rate @(\/m ). In this paper, we focus on
undirected networks with symmetrical multicast throughput.
The bound we prove holds for any multicast throughput and
any multicast group size.

Cannons et al. [18] and Dougherty et al. [19] also performed
comparison studies between network capacity with network
coding (coding capacity) and network capacity with routing
only (routing capacity). In particular, they show that the
network capacity is independent of the coding alphabet, and
that while routing capacity of a network is always achievable,
coding capacity is not.

Empirical comparisons of multicast throughput with and
without network coding can be found in [3] and [20]. Both
comparisons suggest that for random network topologies, the
coding advantage is marginal at best. Other advantages are
suggested instead, such as ease of management, robustness
and ease for algorithm design.

The coding advantage in the case of multiple unicast ses-
sions has also been examined in recent literature. While it is
known that the coding advantage is larger than 1 for either
directed networks or integral flows, it was conjectured by
Harvey et al. [21] and by us [22] that network coding does not
make a difference in undirected networks with fractional flows.
This conjecture remains unsettled except for some special
network cases [6], [7], [8].

Early network coding research often focus on directed
acyclic networks, where the lack of cycles facilitates the
definition and computation of the global coding vectors at
each network node. For converting an undirected network into
a directed one, our approach in this paper is the same as that
used in classic network flow research and that adopted by
Harvey et al. [6] and Kramer et al. [23]: each undirected link
uwv with capacity C(uv) is viewed as a pair of directed links
uv and vu, whose capacities C(uv) and C/(vu) can be flexibly
chosen as long as C'(uv)+C(vt) < C(uv). For extending the
definition of network coding from directed acyclic networks to
general directed networks, we refer the readers to the technique
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of time-parameterized layered graphs by Ahlswede et al. [1]
and by Yeung [24].

III. FINITE BOUNDS ON CODING ADVANTAGE IN
UNDIRECTED NETWORKS

Network coding introduces a new dimension to the infor-
mation transmission problem. Traditionally, only the routing
dimension is considered in a transmission strategy; with net-
work coding, a transmission strategy includes both the routing
scheme and the coding scheme. Considering both dimensions
together is necessary to achieve the maximum information
transmission rate.

We use a simple graph G = (V, E) to represent the topology
of a network, and use a function C : £ — Z71 to denote
link capacities. However, when we study fractional routing
models, having integer values in C' is neither important nor
necessary, and we assume C' can take rational values too. The
communication group is M = {S,T1,...,Tx} C V, with
S being the sender of the unicast, broadcast, or multicast
session, by default. In our graphical illustrations, terminal
nodes (nodes in the communication group) are black, and relay
nodes (nodes not in the communication group) are white. We
focus on fractional routing in this section, and will extend our
discussion to integral routing later in the paper. For integral
routing, all link capacities and flow rates have integer values.
For fractional routing, we assume link capacities may be
shared fractionally in both directions, and flows can be split
and merged at arbitrarily fine scales.

We use x(N) to denote the maximum throughput of a net-
work N containing a single transmission session. We compare
X(N) with other parameters that are defined to characterize
the connectivity or capacity of a communication network,
including the packing number, strength and connectivity. We
study and compare the four parameters for unicast, broadcast,
and multicast transmissions, respectively. Based on results
obtained from such comparison studies, we derive a bound
on the coding advantage in each case. We refer the readers to
our previous work [20], [25] for precise linear programming
formulations of x (V).

Packing refers to the procedure of finding pairwise edge-
disjoint sub-trees of G, in each of which the communication
group remains connected. The packing number of a commu-
nication network N is denoted as 7(IV), and is equal to the
maximum throughput without coding. The reason is that, each
tree can be used to transmit one unit information flow from
the sender to all receivers, therefore the packing number gives
the maximum number of unit information flows that can be
transmitted. Formally, let 7 denote the set of all possible trees
connecting the communication group, then the packing number
can be defined using the following liner program:

Maximize ZteT @)
Subject to:
Zuvet f(t) < C(’LLU) Yuv € F
f¢)>0 vteT

In the LP above, f(¢) is a variable representing the amount
of information flow one ships along tree t. One can either

require f(t) to take integer values only (assuming all inputs
in C(uv) are integers), leading to integral packing, or allow
f(t) to take rational values, leading to fractional packing.
Strength is a kind of partition connectivity of the network
[26], and is denoted as n(NN). Let P denote all possible ways
of partitioning N into a number of disconnected components,
such that each component contains at least one terminal node.

Then:
o B

 peP |p| -1

n(N)

Here E. is the set of inter-component links, and |E.| =
> wep, C(uv); |p| is the number of components that the
network is separated into, in p.

Connectivity refers to the minimum edge connectivity be-
tween a pair of nodes in the communication group, and
is denoted as A(N). It is also the minimum size of a cut
that separates the communication group. Fig. 2 illustrates the
concept of these four parameters using an example multicast
network.

a+b

Packing Throughput
T
T, T2 T, ’
Ts Ts
Strength Connectivity

Fig. 2. The four parameters of a communication network N: packing number
w(N), throughput x(N), strength n(N) and connectivity A(N). In this
particular network with unit capacity at each undirected link: w(N) = 1.8,
nine trees (each labeled with a letter between ‘a’ and ‘i’) each of rate 0.2 can
be packed; x(IN) = 2, two unit information flows a and b can be delivered to
all receivers simultaneously; n(N) = 2, in the illustrated optimal partition,
LE%; = % = 2; A(N) = 2, each pair of terminal nodes is 2-edge-
connected.

A. Unicast

In an undirected network with a unicast session N =
{(G(V,E),C:E—=Z* M = {S,T} C V}, the packing
number 7(N) becomes the number of edge-disjoint S-T paths.
The throughput x(N) is the maximum information rate that
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can be achieved in the S—T transmission. The strength n(N)
is now minimized over all cuts separating .S and 7" — no valid
partition with more than two components exists, since each
valid component contains at least one terminal node and there
are two terminal nodes only in the network. The connectivity
becomes the edge-connectivity between S and T, i.e., the
minimum amount of edge capacity one needs to remove from
the network, in order to separate S and 7T into disconnected
components.

Based on previous results, we can show that the four
quantities turn out to be all equal for a unicast transmission:

Theorem 1. For a unicast transmission in an undirected
network, IV,

Proof: Due to the fact that n(N) can be minimized over
simple cuts (cuts which separates the network into exactly two
components) only, it becomes identical to A(N') by definition;
both are equal to the size of the min-cut between S and
T. Furthermore, observe that uncoded throughput is always
bounded by coded throughput — network coding allows
instead of requires coding, and any valid transmission scheme
with routing only is still valid in the paradigm of network
coding. Therefore m(N) < x (V). Next, the S—T information
rate is bounded by the S-T min-cut, i.e., x(N) < n(N). In
order to finish the proof, it is sufficient to show w(N) = A(INV),
which is implied by Menger’s Theorem [27]: Let u, v be two
vertices of a graph G. The maximum number of pairwise edge-
disjoint u-v paths equals to the minimum number of edges
whose removal separates u from v in G. a

It follows from Theorem 1 that network coding is not
necessary in order to achieve the maximum throughput for
a unicast session:

Corollary 1. The coding advantage for a unicast session is
always 1.

B. Broadcast

Let N = {G(V,E),C E—ZT M = V =
{S,T1,...,T;}} be an undirected network containing a broad-
cast session, with S being the broadcast sender, and all other
nodes in the network being receivers. The packing number
m(N) becomes the spanning tree packing number, i.e., the
maximum number of pair-wise edge-disjoint spanning trees
that can be identified in the network. A spanning tree is a tree
that connects every node in the network. The throughput x ()
is the maximum information rate from S to every other node
in the network, simultaneously. The strength n(N) is still as
defined; just note that for a broadcast network, every partition
is valid, since each component of a partition always contains
some node from the communication group. Connectivity A(V)
becomes the size of the minimum simple cut of the network.

The fact that all nodes in the network request the same
information leads to the following nice property for broadcast
transmissions:

Theorem 2. For a broadcast transmission in an undirected

network, IV,

SAN) < (V) = X(V) = n(N) < A(N)

Proof: We first show that w(N) = x(N) = n(N). Tutte-Nash-
Williams Theorem characterizes the relationship between in-
tegral spanning tree packing and network strength [27], [28],
[29]: A graph G has x pairwise edge-disjoint spanning trees if
and only if, for every vertex partition, there are at least (p—1)z
edges with endpoints in different components, where p is the
number of components in the partition. Tutte-Nash-Williams
Theorem shows that, for the integral spanning tree packing
problem, 7(N) = |n(N)]. In the fractional flow model, one
can apply the technique of scaling edge capacities up, and
then scaling the solution down accordingly, to derive m(N) =
7(N) from the integral packing result. Furthermore, since the
spanning tree packing number 7 (V) is equal to the uncoded
throughput, it can not exceed the coded throughput x(N),
i.e. m(N) < x(IV). Next, we observe that, if the network is
partitioned into p components, each component not containing
the source needs a total incoming edge capacity x in order
to achieve throughput z; therefore (p — 1)z inter-component
edge capacity is required in total. This leads to x(N) < n(N).
Combining the above results, we have 7(N) = x(N) = n(N).

We next show that 1A(N) < m(N) and n(N) < A(N).
By definition, n(N) < A(N) holds since A(N) can be
viewed as a special case of n(NN), where only partitions
containing two components are considered. We now prove that
TA(N) < x(NV), using Nash-Williams* Weak Graph Orien-
tation Theorem [30]: a graph G has an z-edge-connected
orientation if and only if it is 2x-edge-connected. The weak
orientation theorem implies that, in the fractional model, a
broadcast network N always has a 3\(IV)-edge-connected
orientation, i.e., an orientation where the max-flow between
each pair of nodes is at least $A\(V). Combined with the
result in directed networks, a transmission rate that can be
independently achieved for each receiver can be achieved for
the entire session, this implies 1A(N) < x(N). O

From Theorem 2, we can see that network coding has no
potential in improving broadcast throughput either:

Corollary 2. The coding advantage for a broadcast session is
always 1.

C. Multicast

Multicast is a more general form of communication than
both unicast and broadcast. A unicast session can be viewed
as a special case of multicast, where exactly two nodes in V'
are in the multicast group M. A broadcast session can also be
viewed as a special case of multicast, where all nodes in V'
are in the multicast group M. In general, the multicast group
M can be any subset of V' that has size two or larger, and the
packing problem becomes Steiner tree packing. A Steiner tree
is a subtree in the network connecting all the terminal nodes,
each relay node may or may not appear in the tree.

Theorem 3. For a multicast transmission in an undirected
network, N={G(V, E),C : E—Z* M = {S,Ty,..., Ty} C
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1%
%)\(N) < 7(N) < x(N) < n(N) < A(N).

Proof: The fact that uncoded throughput is bounded by coded
throughput again leads to m(N) < x(V). Furthermore, the
partition connectivity condition is necessary for a certain
throughput to be feasible in multicast networks as well,
therefore x(N) < n(N). Next, n(N) < A(N) still holds
due to the same argument as in the broadcast case — A(N)
can be considered as a special case of 7(N) where only
partitions containing two components are allowed. We now
have 7(N) < x(N) < n(N) < A(N), and need only to focus
on the validity of A(N) < m(N) in the rest of the proof,
which is more complex in the case of multicast.

We build the proof of $A(N) < 7(N) in the multicast
case upon the same result proven in the broadcast case.
More specifically, we transform the multicast network into
a broadcast network, by eliminating the existence of relay
nodes, while guaranteeing that 2A\(N) < m(N) holds after
the transformation only if it holds before it.

Before describing the transformation in more detail, we
first introduce Mader’s Undirected Splitting Theorem [30]:
Let G(V + z,E) be an undirected graph so that (V,E) is
connected and the degree d(z) is even. Then there exists
a complete splitting at z preserving the edge-connectivity
between all pairs of nodes in V.

A split-off operation at node z refers to the replacement
of a 2-hop path u-z-v by a direct edge between u and v, as
illustrated in Fig. 3. A complete splitting at z is the procedure
of repeatedly applying split-off operations at z until z is
isolated.

u \ u v

y

z

NO

Fig. 3. A split-off at node z.

The Undirected Splitting Theorem says that, if a graph
has an even-degree non-cut node, then there exists a split-off
operation at that node, after which the pairwise connectivities
among the other nodes remain unchanged; and by repeatedly
applying such split-off operations at this node, one can even-
tually isolate it from the rest of the graph, without affecting
the edge-connectivity of any pair of nodes in it.

Now, consider repeatedly applying one of the following
two operations on a multicast network: (1) apply a complete
splitting at a non-cut relay node, preserving pairwise edge
connectivities among terminal nodes in M; or (2) add a relay
node that is a M-cut node into the multicast group M, i.e.,
change its role from a relay node to a receiver node. Here
a M-cut node is one whose removal separates the multicast
group into more than one disconnected components. Fig. 4
illustrates these two operations with a concrete example.

In order to meet the even node degree requirement in
the Undirected Splitting Theorem, we first double each link

, S Q Tq
T3\
T T2
(©

A\ T
.T2 B

s T, S o
.\ .\./
3\

B @) (

Fig. 4. Transforming a multicast network into a broadcast network, where the
validity of %)\(N ) < w(N) can be traced back. (a) The original multicast
network, with unit capacity on each link. (b) The network after applying
operation (2), moving the M-cut node A into the multicast group. A becomes
receiver T3. (c) The network after applying operation (1). A split-off was
done at relay node B. A broadcast network is obtained.

capacity in the input network, then we scale the solution down
by a factor of % at the end. Note that, assuming the input
network has integer link capacities, then each node has an even
degree after doubling link capacities. Furthermore, a split-off
operation does not affect the parity of the degree of any node
in the network. Therefore the Undirected Splitting Theorem
guarantees that as long as there are relay nodes that are not
cut nodes, operation (1) is possible. Furthermore, operation
(1) does not increase 7(IN). Therefore, if SA(N) < m(N)
holds after applying operation (1), it holds before applying
operation (1) as well. Operation (2), applied to M-cut nodes,
does not affect either 7(NN) or A(N). So, again we can claim
that for operation (2), if $A(N) < w(NN) holds after applying
the operation, it holds before applying the operation as well.

As long as there are relay nodes in the multicast network,
at least one of the two operations can be applied. If both
operations are possible, operation (1) takes priority. Since each
operation reduces the number of relay nodes by one, eventually
we obtain a broadcast network with terminal nodes only. By
Theorem 2, $A\(N) < m(N) holds.

Finally, note that we obtained an integral transmission
strategy after doubling each link capacity. Therefore, after
we scale the solution back by a factor of %, the transmission
strategy is half-integral. O

Corollary 3. For a multicast transmission in an undirected
network, the coding advantage is upper-bounded by a constant
factor of two, as long as half-integer routing is allowed.

Proof: By Theorem 3, $\(N) < 7(N) and x(N) < A(N) as
long as half integer routing is allowed. Therefore we conclude
2X(N) < w(N), i.e., the coding advantage x(N)/7(N) < 2.
O
Fig. 5 shows the optimal throughput without coding of
the multicast session given in Fig. 1, assuming half-integral
routing and arbitrarily fractional routing respectively, with the
network being undirected. Links labeled with the same letter
or number form a Steiner tree. For example, the tree labeled
with ‘a’ is highlighted in bold edges. In (a), each tree has
capacity 0.5; in (b), trees labeled with a letter each has capacity
0.25, and trees labeled with a number have capacity 0.125.
As a result, uncoded throughput achieved is 1.5 in (a) and
1.875 in (b) respectively, by transmitting a flow along each
Steiner tree, with the flow rate equal to the tree capacity. Since
optimal throughput with coding is 2, the corresponding coding
advantages are 1.333 and 1.067, respectively.
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Fig. 5. Throughput without network coding, for the example shown in Fig.1.
(a) With half-integer routing, optimal throughput is 1.5. Each flow is of rate
0.5. (b) With arbitrary fractional routing, optimal throughput is 1.875. Each
flow labeled with a letter and a number has rate 0.25 and 0.125, respectively.

We point out that none of the inequalities in Theorem 3
can be replaced with equality in general multicast networks.
In particular, the network in Fig. 1 is an example where
m(N) < x(N), showing that packing number is not always
equal to multicast throughput; the network in Fig. 6 is an
example where x (V) < n(N), showing that strength is not
always equal to multicast throughput either. The value of
X (V) was computed using the linear optimization approach in
[25]; the value of n(/N) was computed by optimizing over all
valid network partitions. In the same network, 7(N) = 13.5
can be obtained by enumerating all different multicast trees
and then solving the tree-packing LP, and A\(N) = 16 can
be obtained by solving two max-flow LPs. Therefore, we
also have 1A(N) < m(N) and n(N) < A(N) here. The
construction of the network topology was inspired by the
“gadget” used in the proof by Dahlhous et al. [31] that shows
the multiterminal cut problem is NP-Complete.

Ty

Fig. 6. A multicast network where packing number 7(N) = 13.5, maximum
throughput x(N) = 13.5, strength n(N) = 14 and connectivity A(N) =
16. Unlabeled links each has capacity 1. This example shows that multicast
throughput is in general not equivalent to strength in undirected networks.

IV. SOURCE INDEPENDENCE AND CODING ADVANTAGE
FOR GROUP COMMUNICATIONS

In this section, we show that the achievable throughput for
a multicast transmission does not depend on which node in
the multicast group acts as the sender. In other words, if we
move the information source from one node in the multicast
group onto another, the optimal coding throughput remains
unchanged. First, note that such a property does not hold in
directed networks, where the connectivity between two nodes

can be arbitrarily different in the two directions. Second,
it is rather obvious that this property holds for multicast
without coding. The uncoded multicast problem is equivalent
to the Steiner tree packing problem, and the packing number
is defined upon the network topology and the terminal set,
regardless of which node in the terminal set is the “sender”.

However, with network coding considered, it is less obvi-
ous whether the source independence property still holds. In
Theorem 4, we provide an affirmative answer, based on which
we then extend the bound 2 on coding advantage for multicast
to the case of group communication.

Theorem 4. The optimal throughput of a multicast transmis-
sion in an undirected network is completely determined by the
network topology, the link capacities, and the multicast group;
it is not dependent on the selection of the sender within the
multicast group.

Fig. 7.
reversed.

Two scenarios of reversing the A— B flow. Thicker links are being

Proof: The proof we present below is based on the following
fact: a directed multicast transmission is feasible if and only
if it satisfies all the simple cut conditions [2], i.e., if every
simple cut between the source and any receiver has size no
less than the multicast rate.

Suppose we exchange the sender and receiver roles between
two terminal nodes A and B, and the optimal throughput
before the exchange is f. Then there must exist a network
flow of rate f from the sender to every receiver (including,
in particular, from A to B). Consider reversing the A—B
network flow, which has rate f. We show that after the reversal,
simple cut conditions are still satisfied. Let C' be another
multicast node. Consider a cut that separates B and C. There
are two cases, either A is in the same partition as B, or A
is in the same partition as C, as shown in Fig. 7. In the first
case, we have net flow of rate f traversing the cut from the
AB component to the C' component before the reversal, and
an equal amount of flow in both directions will be reversed;
therefore after the reversal, we still have the same amount of
flow going from the AB component towards the C' component.
In the second case, similarly, the total flow going from the AC'
component towards the B component is f before the reversal,
and all flows crossing the cut will be reversed. Therefore, after
the flow reversal, we have flows of total rate f going from the
B component towards the AC' component. O

Our proof also shows that, after the information source
is moved, the same multicast throughput can be achieved
with exactly the same bandwidth consumption on each link.
Therefore, we can derive the following corollary:

Corollary 4.a A multicast rate is feasible if and only if it is
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feasible with the information source separated into indepen-
dent sub-sources and redistributed among the multicast group.

Fig. 8 shows an example containing the same network as
in Fig. 1, with the two unit information sources at the top
multicast node moved onto the two bottom multicast nodes
respectively. Each information source can still be transmitted
to all three multicast nodes, after the movement.

Fig. 8. Optimal transmission strategy after splitting and moving the
information source, for the network shown in Fig. 1. Here P; is the source
for a and P> is the source for b.

Corollary 4.a is relevant to video conferencing, where each
participant multicasts his/her local audio/video data to every
other participant, and receives audio/video data from them
as well. By Corollary 4.a, a video conferencing session is
feasible with a certain sending throughput requirement at each
participant, if and only if the multicast transmission obtained
by congregating all throughput requirement at one of the
participants is feasible.

Since both throughput with and without network coding are
source independent in undirected networks, we can extend
the bound of 2 proved in Theorem 3 to the case of group
communication:

Corollary 4.b The coding advantage for a group communica-
tion session in an undirected network is upper-bounded by a
constant factor of 2.

As a final note of this section, we point out that the
‘flow reversing’ technique used in the proof of Theorem 4
is not always applicable in general networks. For example,
Dougherty and Zeger [32] demonstrated a specific (directed)
network N7 consisting of multiple unicast sessions, such
that N; has a network coding solution while its reverse
network does not. A reverse network is defined as the network
obtained from reversing every link direction and exchanging
the sender/receiver role of every unicast session.

V. CODING ADVANTAGE IN RELATED NETWORK MODELS
A. Internet-like Bidirectional Networks

Given the fact that the coding advantage is finitely bounded
in undirected networks but not in directed ones, it is natural
to ask which model is closer to real-world networks, and
whether the coding advantage is bounded in such networks. A
real-world computer network, such as the current generation
Internet, is usually bidirectional but not undirected. If v and
v are two neighboring routers in the Internet, the amount
of bandwidth available from u to v and that from v to
are both fixed and independent of each other. At a certain

moment, if the u—wv link is congested and the v—u link
is idling, it is not feasible to “borrow” bandwidth from the
v—u direction to the u—wv direction, due to the lack of a
dynamic bandwidth allocation module. Therefore, the Internet
resembles an undirected network in that communication is
bidirectional, and resembles a directed network in that each
link is directed with a fixed amount of bandwidth.

The Internet can be better modeled with a balanced directed
network. In a balanced directed network, each link has a fixed
direction. However, a pair of neighboring nodes v and v are
always mutually reachable through a direct link, and the ratio
between c(uv) and ¢(vu) is upper-bounded by a constant ratio
«. In cases where o = 1, we have an absolutely balanced
directed network. This is rather close to the reality in the In-
ternet backbone, although last-hop connections to the Internet
exhibit a higher level of asymmetry in upstream/downstream
capacities. Based on the constant bound developed in the
previous section, we now show that the coding advantage in
such an a-balanced network is also finitely bounded.

Theorem 5. For a multicast session in an «-balanced bidi-
rectional network, the coding advantage is upper-bounded by
2(a+1).

Proof: We first define a few notations. Let N;., be the a-
balanced network; let N; be an undirected network with
the same topology as Ni.,, where c(uv) in Nj is equal to
the smaller one of c(lﬁ)) and c(ﬁ) in Ni.qo; let Ny be
the undirected network obtained by multiplying every link
capacity in /Ny with a + 1. Then we have:

1 1 1
T(Ni:a) > m(N1) > s 17T(Na+1) Z o 1§X(Na+1)
1
> ——v(Nj.
el 2(()é+ 1)X( 1.a)

In the derivations above, the third inequality is an ap-
plication of Theorem 3; the other inequalities are based on
definitions. O

From Theorem 5, we can see that the more “balanced” a
directed network is, a smaller bound on the coding advantage
can be claimed. In the case of an absolutely balanced net-
work, the bound is 4. In arbitrary directed networks, o may
approach oo, and correspondingly a finite bound on the coding
advantage does not exist.

B. Integral Flows and Hypergraph Models

We now briefly discuss the cases of integral flow rates and
hypergraph network models. The motivation of having integral
flows lies behind the fact that in packet-switched networks,
each packet constitutes an atomic data unit and data flow rates
should be discrete. We showed in [33] that in the model of
undirected networks with integral flows, x(N) < 26w(N),
i.e., the coding advantage is bounded by a constant factor
of 26. A hypergraph is similar to a graph except that each
edge may connect more than two vertices. It naturally models
data transmission in wireless networks equipped with omni-
directional antennae, where each transmission is heard by all
users within a certain effective reception range. Kirdly and
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Lau [34] recently showed that in the hypergraph model, if a
communication group is 2z-hyperedge-connected, then there
is an orientation within which it is x-hyperedge-connected.
This demonstrates that the multicast throughput can achieve
at least half hyperedge connectivity. Furthermore, the hyper-
tree packing number is upper-bounded by the hyperedge
connectivity. In conclusion, the coding advantage is bounded
by a factor of 2 in hypergraph models.

C. Non-Uniform Demand Networks and Average Throughput

Internet clients often exhibit significant heterogeneity in
their network connections. Dial-up, cable modem, ADSL and
campus networks each may provide a different connection
capacity. Consequently, the max-flows between the multicast
sender and different receivers may be drastically different. For
real-world multicast applications such as media streaming, a
common technique for accommodating heterogeneous clients
in the same session is layered coding [35]. With layered cod-
ing, the source media is encoded into a base layer and several
enhancement layers. Depending on the receiving capacity, a
receiver may choose to receive and decode a subset of all the
layers only, and accept a suboptimal playback quality.

Such real-world heterogeneity is naturally modeled by the
non-uniform demand network model [36], [37]. A non-uniform
demand network is very similar to a multicast network, with
one node acting as the information source and a set of nodes
acting as receivers. However, the requirement that all receivers
receive information at the same rate is relaxed. Different users
may receive information at a rate tailored according to her own
capacity. The goal is to maximize the total throughput of all
the receivers, or equivalent, the average throughput among all
the receivers.

Unfortunately, non-uniform multicast is computationally a
much harder problem than multicast. Cassuto and Bruck [37]
proved that determining whether a rate vector x1,...,xx (Xs
denotes the desired throughput for receiver T;) is feasible is
NP-hard; consequently, maximizing the average throughput
T > Xi is also NP-hard.

A practical heuristic to circumvent the complexity of non-
uniform multicast is to use successive layering [35]. The idea
is to first compute the multicast rate that can be achieved
for all receivers, and the corresponding multicast flow; then
remove the utilized network capacities from N, remove the
bottleneck receivers who can not achieve higher rates, and
compute the maximum multicast rate in the residual network.
These two steps are repeated until there is no more receivers
in the residual network. By Theorem 3, within each layer of
normal multicast, we can still achieve at least half of the
coding throughput. Therefore the upper bound of 2 for the
coding advantage holds if the average throughput with network
coding is computed using this practical solution.

Characterizing the coding advantage using the true maxi-
mum average throughput with network coding is theoretically
a more interesting direction. A similar framework as in the
proofs of Theorem 2 and Theorem 3 can be adopted, i.e.,
utilize the fact that coding throughput is upper-bounded by
the connectivity, and then bound the ratio between throughput

without coding and connectivity. Based on a partial Steiner tree
packing result by Bang-Jensen et al. [38], Chekuri et al. [36]
proved that without network coding, a rate vector x1,..., Xk
can be achieved, such that for each T}, x1 is no less than half
of the max-flow from S to 7;. This implies that the upper-
bound of 2 for the coding advantage remains valid, for average
throughput of non-uniform multicast.

VI. CODING ADVANTAGE AND COMPLEXITY

By establishing constant bounds on the coding advantage, so
far in the paper we have been arguing in the direction that the
benefit of network coding in terms of improving throughput
is limited. Empirical studies on the coding advantage reveal
a similar picture. For multicast in undirected networks, the
largest coding advantage value observed is only slightly larger
than one. In [25], we showed a small network where the value
is %; in [4], the authors there pointed out a network pattern
in which the coding advantage approaches % as the network
size grows towards infinity. It was also observed in [25] that
the coding advantage value is almost always 1 in randomly
constructed network topologies.

On the other hand, however, network coding may dramat-
ically reduce the complexity of many optimization problems
that arise in information dissemination. In some cases, the
underlying network flow structure of coded multicast transmis-
sion leads to efficient linear optimization algorithms; in some
other cases, the small bound on coding advantage leads to nice
polynomial-time approximation algorithms. We provide some
of such examples in the rest of this section.

A. Information Exchange

In an information exchange session, two nodes A and B
need to transmit information to each other, with throughput
requirement f4p and fp 4 respectively. This form of commu-
nication arises in scenarios such as: two sensor nodes exchange
sensed data with each other [39], [40], two receivers in
an asynchronous file downloading session reconcile received
data with each other [41], or two online messaging appli-
cations stream multimedia data to each other concurrently.
An information exchange session can also be viewed as two
simultaneous unicast sessions between a pair of nodes, in
opposite directions.

If network coding is ignored, then even a problem as simple
as determining the feasibility of a single information exchange
session is NP-hard, in directed networks with integral routing.
One may derive this NP-hardness result from the proof given
by Fortune et al. [42] that shows the edge-disjoint path
problem is NP-hard for two opposite commodities. On the
other hand, when network coding is taken into consideration,
the information exchange problem becomes nicely tractable.
As shown in Fig. 9, we can transform the coded information
exchange problem into a coded multicast problem, which
requires just two max-flow computations [1]. In the transfor-
mation, we add an extra source node to be the multicast sender,
then assume the two unicast nodes are multicast receivers.
Connect the sender S with A and B with an edge of capacity
fap and fp 4 respectively. Then we can verify that the original
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information exchange session is feasible if and only if the
resulting multicast session can achieve throughput fap+ fpa
with coding. The latter requirement is equivalent to have both
the S—A max-flow and the S— B max-flow to be at least
fap+ fpa [1].

Fig. 9. Transforming the coded information exchange problem to the coded
multicast problem.

B. Multicast with Fractional Routing

We now switch back to the undirected network model,
and consider again multicast with fractional routing. Without
network coding, the optimal multicast throughput problem
is equivalent to the fractional Steiner tree packing problem,
which is NP-Complete and APX-hard [43]. However, once
network coding is supported, the optimal throughput can then
be computed efficiently, due to the nice network flow struc-
ture underlying the coded information dissemination problem.
We pointed out in [44] that optimal multicast with network
coding in the fractional flow model can be solved using the
linear programming approach. Various efficient and distributed
algorithms have been designed thereafter within the linear
optimization framework, for achieving maximum multicast
throughput or minimum multicast cost [45], [46], [25], [47],
[48], [49].

To conclude, in all the above three examples we have shown,
the optimal transmission throughput problem is much more
tractable with network coding considered. In the first and the
third example, the problem is NP-Complete without network
coding, and is P with network coding. In the second example,
the problem is NP-hard either with or without network coding,
but with network coding the optimal solution is much easier
to approximate using polynomial-time algorithms.

C. Multicast with Integral Routing

Continuing from the previous subsection, we now further
restrict our solutions to integral flows only. Without network
coding, the achievable multicast throughput equals to the
(integral) Steiner tree packing number. It has been shown that
the Steiner tree packing problem is NP-Complete [43], [50];
it is even worse in the integral case: there did not exist any
known polynomial time algorithm that can approximate the
problem to any constant ratio, until the result 267 () > A(NV)
[33] was recently proven in the integral flow model.

On the other hand, by taking network coding into con-
sideration, we are led to a 2-approximation for the optimal
multicast throughput. We show this claim by examining the
relation between connectivity and throughput in the integral

model. We have shown that $A(N) < m(N) < x(N) holds
in the fractional model; more accurately, it holds as long as
half-integer flows are allowed. In the integral model, it is not
known whether 2A(NV) < m(N) still holds or not. In fact, it
is a well known open problem in graph theory. The best result
known so far is the aforementioned ratio %. On the other
hand, we show that throughput with network coding can still
achieve half connectivity in the integral routing model.

Theorem 5. For a multicast transmission in an undirected
network, N, [$A(N)] < x(N) holds under the integral
routing requirement.

Proof: Our proof is based on Nash-Williams’ Strong Graph
Orientation Theorem [30]: every undirected graph G(V, E)
has an orientation G' = (V, D) for which \g (u,v) >
|2 Ac(u,v)], for all u,v € V. This theorem guarantees the
existence of a “well-balanced” orientation of an undirected
network, within which the connectivity from any node u to
any other node v is at least half of the connectivity between
u and v in the original undirected network.

From the theorem above, we know that if A(IV) = z, then
there is an integral orientation of the network, such that the
directed connectivity among the multicast group M is at least
| 22]. This implies that the integral max-flow from S to each
receiver T} is at least [ $2|. Then by the feasibility condition of
directed multicast [1], [2], there is an integral routing scheme
to achieve y(N) > |1z]. O

Corollary 5. The optimal multicast throughput problem in
undirected networks with integral routing can be approximated
within a factor of two in polynomial time.

Proof: The claim x(N)<A(N) in Theorem 3 still holds
in the integral case. Combined with Theorem 5, we have
[AA(V)] < x(N) < A(N). Therefore computing A(N) gives
a 2-approximation for x(N). Note that \(N) is obviously
computable in polynomial time — in the worst case, one can
compute the max-flow between each pair of multicast nodes,
and take the minimum value among them. It is also possible
to find the detailed transmission strategy that achieves the
approximated throughput value, since polynomial time algo-
rithms exist for both the orientation [30] and code assignment
[9], [12]. O

To conclude, in all the above three examples we have shown,
the optimal transmission throughput problem is much more
tractable with network coding considered. In the first and the
third example, the problem is NP-Complete without network
coding, and is P with network coding. In the second example,
the problem is NP-hard either with or without network coding,
but with network coding the optimal solution is much easier
to approximate using polynomial-time algorithms.

VII. CONCLUDING REMARKS

In this paper, we have compared the coded transmission
throughput with the packing number, strength, and connectiv-
ity, in an undirected network with a unicast, broadcast, and
multicast transmission, respectively. Our results lead to small
constant bounds on the coding advantage in these cases: the
coding advantage is always 1 for unicast or broadcast, and
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is at most 2 for multicast. The bound 2 for multicast is then
extended to the case of group communication, by showing
that achievable throughput is source independent in undirected
networks, either with or without network coding. We also
make the observation that applying network coding makes
it possible to design efficient algorithms that compute and
achieve the optimal transmission throughput. Finite bounds
on the coding advantage discussed throughout this paper are
summarized in Table I.

The following questions on the coding advantage are still
open. First, for multiple unicast sessions that concurrently co-
exist in the same network, is the coding advantage always
1, assuming undirected networks with fractional routing [21],
[22]7 Second, with arbitrary fractional routing, can the bound
of two for coding advantage be further tightened? Third, is the
bound of two still valid if we replace the half-integer routing
requirement with integral routing? Finally, is the bound of
two still valid if we have multiple concurrent communication
sessions?
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