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Given an undirected graph G and a subset of vertices S ⊆ V (G), we call the vertices

in S the terminal vertices and the vertices in V (G) − S the Steiner vertices. In this

thesis, we study two problems whose goals are to achieve high “connectivity” among the

terminal vertices.

The first problem is the Steiner Tree Packing problem, where a Steiner tree is a

tree that connects the terminal vertices (Steiner vertices are optional). The goal of this

problem is to find a largest collection of edge-disjoint Steiner trees.

The second problem is the Steiner Rooted-Orientation problem. In this prob-

lem, there is a root vertex r among the terminal vertices. The goal is to find an orientation

of all the edges in G so that the Steiner rooted-connectivity is maximized in the resulting

directed graph D. Here, the Steiner rooted-connectivity is defined to be the maximum k

so that the root vertex has k arc-disjoint paths to each terminal vertex in D.

Both problems are generalizations of two classical graph theoretical problems: the

edge-disjoint s, t-paths problem and the edge-disjoint spanning trees problem. Polyno-

mial time algorithms and exact min-max relations are known for the classical problems.

However, both problems that we study are NP-complete, and thus exact min-max rela-

tions are not expected. In the following, we say S is l-edge-connected in G if we need to

remove at least l edges in order to disconnect two vertices in S. Clearly, the maximum
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l for which S is l-edge-connected in G is an upper bound on the optimal value for both

problems that we study (i.e. the number of edge-disjoint Steiner trees, and the Steiner

rooted-connectivity in an orientation).

The main result of the Steiner Tree Packing problem is the following approximate

min-max relation:

• If S is 24k-edge-connected in G, then there are k edge-disjoint Steiner trees.

This answers Kriesell’s conjecture affirmatively up to a constant multiple. We also gen-

eralize the above result to the Steiner Forest Packing problem. These results will

appear in Chapter 3.

The main result of the Steiner Rooted-Orientation problem is the following

approximate min-max relation:

• If S is 2k-hyperedge-connected in a hypergraph H, then there is a Steiner rooted

k-hyperarc-connected orientation of H.

Here, an orientation of a hyperedge e is to designate one vertex in e as the tail vertex

and other vertices as the head vertices. The above result is best possible in terms of the

connectivity bound. We have also considered the element-connectivity version of this

problem, and proved a similar result. These results will appear in Chapter 4.

The proofs of the approximate min-max relations are constructive, and they imply

the first polynomial time constant factor approximation algorithms for both problems.

The proofs are based on a new technique of graph decomposition to reduce the problems

into simpler instances (e.g. bipartite graphs). Then, powerful tools from combinatorial

optimization (e.g. submodular flows, matroid union, edge splitting-off) can be applied

to solve these NP-complete problems approximately in these simpler instances.

We shall start this thesis by describing the relations of the problems that we study

to the network multicasting problem, which is the starting point of this work.
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Chapter 1

Overview

Sending data through a network is a task that is indispensable in our modern lives. The

question of how to send data efficiently, despite the considerable amount of work, remains

a central and challenging question in different areas of research from information theory

to computer networking. The work of this thesis is motivated by a scenario known as

the network multicasting problem, where a sender must transmit all its data to a set

of receivers. This happens, for example, when a source tries to send a movie to a set

of receivers over the Internet. Our objective is to maximize the transmission rate of

the slowest receiver (or in other words, to minimize the completion time of the slowest

receiver), subject to the capacity constraints in the network. We call the maximum

achievable rate the multicasting capacity.

In this thesis we shall take a graph theoretical approach to the network multicasting

problem, for which a network is modeled as a graph where a network node is represented

by a vertex and a network link is represented by an edge. This chapter is intended

to be a high-level overview of the thesis, and aims at presenting the motivation and the

contribution of this work. Formal definitions and technical work will appear in subsequent

chapters.

In the coming paragraphs we describe how previous research on the network multicas-
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Chapter 1. Overview 2

Figure 1.1: In this figure the top black vertex is the sender, and the bottom black

vertices are the receivers. The bold lines form a directed Steiner tree, which can be used

to transmit one unit of data from the sender to each receiver simultaneously.�

ting problem motivates the work of this thesis. First we describe the traditional setting

of the network multicasting problem, where the direction of data movement along each

edge is fixed. In a standard model where data can only be received, duplicated, and for-

warded, a directed Steiner tree (also known as a directed multicast tree in the networking

literature) is used to transmit one unit of data. See Figure 1.1 for an illustration. For

the ease of visualizing the idea, we make the simplifying assumption that each edge has

capacity one. That is, each edge can be used by at most one tree. Therefore, to maximize

the transmission rate, one needs to find the maximum number of edge-disjoint directed

Steiner trees. This is known as the Directed Steiner Tree Packing problem in the

literature. For example, in Figure 1.2 (a), there are two edge-disjoint directed Steiner

trees, which can be used to transmit two units of data from the sender to both receivers

simultaneously.

A question comes up naturally: In this standard model, can we characterize which

graphs have multicasting capacity at least k? This is equivalent to the question: Can we

characterize which graphs have k edge-disjoint directed Steiner trees? In Figure 1.2 (b),

by removing the two outgoing edges from the sender in Figure 1.2 (a), there are no more

directed paths from the sender to the receivers. Since each edge can be used by at most
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(b)(a)

Figure 1.2: (a) The two edge-disjoint directed Steiner trees are of different colours. (b)

The dotted lines indicate the edges in two of the bottlenecks (there are other bottlenecks).

The two outgoing edges from the sender is a bottleneck. The two incoming edges to the

left receiver is also a bottleneck.�

one tree, this implies that the multicasting capacity is at most 2, which certifies that

the solution in Figure 1.2 (a) is optimal. The two outgoing edges from the sender can

be thought of as a bottleneck of the graph. To generalize this observation, we define the

bottleneck as a set of edges whose removal disconnects the sender from some receiver (i.e.

after removing the bottleneck from the graph, there is no directed path from the sender

to some receivers). Clearly, the capacity of a smallest bottleneck is an upper bound on

the multicasting capacity. Is the multicasting capacity always equal to the capacity of

a smallest bottleneck? In general, however, this is not true. For example the graph in

Figure 1.1 has at most one edge-disjoint directed Steiner tree, but the size of a smallest

bottleneck is 2. Furthermore, there are graphs for which this ratio is unbounded [1].

The simple but powerful idea of network coding overcomes the inefficiency of the

standard model. In the traditional setting, data can only be duplicated and forwarded;

that is, the data of an outgoing edge of a vertex must be a copy of the data of some

incoming edge of the same vertex. In the network coding setting, data can also be

encoded and decoded; that is, the data of an outgoing edge of a vertex can be an arbitrary
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a+ba+b

a+b

b

b
b

a

a
a

Figure 1.3: The transmission scheme is shown. In the middle vertex, the data on its

outgoing edge is the addition (modulo 2) of the data on its incoming edges. This is the

only vertex that does encoding in this example. In the left receiver, by adding (modulo 2)

the two incoming data, the original data can be obtained; similarly for the right receiver.

They are the only vertices that do decoding in this example.�

function of the data of the incoming edges of the same vertex. With network coding,

the multicasting capacity of the example in Figure 1.1 is two (see Figure 1.3), which

is optimal as it is equal to the capacity of a smallest bottleneck. A seminal result by

Ahlswede, Cai, Li and Yeung [2] in 2000 proves that in every directed graph:

With network coding, the multicast capacity is equal to the capacity of a small-

est bottleneck.

This along with the aforementioned graphs from [1] shows, in particular, that the cod-

ing advantage can be unbounded. Here, coding advantage is defined to be the ratio of

the multicasting capacity with network coding over the multicasting capacity without

network coding (i.e. directed Steiner tree packing). Furthermore, the optimal transmis-

sion scheme with network coding can be computed in polynomial time. In fact, some

relatively simple transmission scheme, namely linear network coding [65], suffices for the

network multicasting problem. These results have generated much interest, and network

coding has become a very active research area (see e.g. [2, 65, 83, 16, 63, 64, 68, 69, 70]).
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(a) (b)

Figure 1.4: (a) The two edge-disjoint undirected Steiner trees are of different colours. (b)

Having two edge-disjoint undirected Steiner trees, it is clear how to send the data from

the sender to the receivers; simply move the data away from the sender in each tree.�

Our research focuses on the undirected version of the network multicasting problem,

where data can be moved in either direction along an edge. There are practical networks

which are undirected, for example the wireless networks. Motivated by the results on

directed graphs, we are interested in the role of network coding on undirected graphs.

Of particular interest is the coding advantage of the network multicasting problem in

undirected graphs. Prior to our work, there were experimental results suggesting that

the coding advantage in this scenario is marginal [63]. We study this problem from a

theoretical point of view, and ask the following questions:

1. How can we compute the multicasting capacity if network coding is not used?

2. How can we compute the multicasting capacity if network coding is used?

3. How large can the coding advantage be?

The first problem is formulated as the Undirected Steiner Tree Packing prob-

lem (Steiner Tree Packing for short), where our objective is to find the maximum

number of edge-disjoint undirected Steiner trees of a given graph. See Figure 1.4 for

an illustration. To apply network coding, one first needs to know the directions of data
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a+ba+b

a+b

b

b
b

a

a
a

(b) (c)(a)

Figure 1.5: Given an undirected graph as in (a). The objective of the Steiner Rooted

Orientation problem is to find an orientation of the edges as in (b), which maximizes

the capacity of a smallest bottleneck in the resulting directed graph. Then, by the

theorem of Ahlswede, Cai, Li, Yeung, the multicast capacity with network coding is

equal to the capacity of a smallest bottleneck as shown in (c).�

movement. We formulate the second problem as the Steiner Rooted-Orientation

problem, where our objective is to assign a direction to each edge of the undirected graph

so as to maximize the multicasting capacity with network coding. By the above theorem

of Ahlswede, Cai, Li, and Yeung, this is equivalent to the problem of assigning a direction

to each edge of the undirected graphs so as to maximize the size of a smallest bottleneck

in the resulting directed graph. See Figure 1.5 for an example.

Both problems are generalizations of well-studied problems in graph theory. In fact,

there is an outstanding conjecture by Kriesell [57, 58] on the Steiner Tree Packing

problem that, if true, would imply that the coding advantage in the undirected network

multicasting problem is at most two.

It turns out that both problems are NP-complete (the first problem was previously

known to be NP-complete and we show the NP-completeness of the second problem

in this thesis), which means that there might be no efficient exact algorithms for the

problems. On the other hand, we are able to find efficient approximation algorithms

for both problems, which give solutions close to the optimal solutions. In particular, we
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prove that, in both cases, the multicasting capacity is at least a constant fraction of the

capacity of a smallest bottleneck. This helps us to answer the third question:

The coding advantage of the network multicasting problem in undirected graphs

is at most a constant.

This contrasts with the results in directed graphs, and provides a theoretical answer

to the experimental observations. The main result on the Steiner Tree Packing

problem also answers Kriesell’s conjecture affirmatively up to a constant factor. This

result and its generalization will be presented in Chapter 3.

Interestingly, the new technique developed to tackle the Steiner Tree Packing

problem can also be applied to the Steiner Rooted Orientation problem, where we

give generalizations of some fundamental results in graph orientations and also provide

simpler proofs of some well-known theorems. The generalization has some implication

to the network multicasting problem as well. The results on the Steiner Rooted

Orientation problem and its generalization will be presented in Chapter 4. Formal

definitions and background materials are presented in Chapter 2.





Chapter 2

The Basics

2.1 Definitions and Notation

The aim of this section is to introduce the necessary definitions and notation for this

thesis. An index of the terminology and a list of notation are attached at the end of

this thesis. Readers who are familiar with the topic could skip this section and only look

back (via the index) if needed.

2.1.1 Undirected and Directed Graphs

All graphs are finite in this thesis.

An undirected graph (or a graph) G = (V, E) consists of a set V = V (G) of elements

called vertices (or nodes or points) and a family E = E(G) of unordered pairs of vertices

called edges. We call V (G) the vertex set of G and E(G) the edge set of G. A vertex

v ∈ V (G) is incident with an edge e ∈ E(G) if v ∈ e; then e is an edge at v. The two

vertices incident with an edge are its endvertices (or endpoints). If xy ∈ E(G), we say

that the vertices x and y are adjacent (or neighbours). Parallel edges (multiple pairs with

the same end-vertices) are allowed but not loops; sometimes we say G is a multigraph to

illustrate this point. The neighbourhood NG(v) of a vertex v in G is the set of vertices

9



Chapter 2. The Basics 10

adjacent to v. The following is an important notation:

δG(X) := {uv ∈ E(G) | |X ∩ {u, v}| = 1}.

In words, δG(X) consists of the edges with one endpoint in X and the other endpoint in

V (G)−X. More generally, δG(X, Y ) denotes the set of edges with one endpoint in X and

the other endpoint in Y , i.e., δG(X) = δG(X, V (G)−X). The degree dG(X) of a set X in

G is defined to be |δG(X)|; the degree dG(v) of a vertex v is just a shorthand of dG({v}).

The degree dG(X, Y ) between two sets is |δG(X, Y )|. Finally, a graph is Eulerian if every

vertex is of even degree.

A directed graph (or a digraph) D = (V, A) consists of a set V = V (D) of elements

called vertices (or nodes or points) and a family A = A(D) of ordered pairs of vertices

called arcs. We call V (D) the vertex set of D and A(D) the arc set of D. For an arc

(u, v) (or uv for short) the first vertex u is its tail and the second vertex v is its head;

sometimes we may write −→uv for uv to emphasize the direction. We also say the arc uv

leaves u and enters v. The head and the tail of an arc are its endvertices (or endpoints);

we say the end-vertices are adjacent (or neighbours). Sometimes, we say D is a directed

multigraph to emphasize that there are multiple arcs with the same end-vertices. The

following notation will be used frequently:

δin
D (X) := {uv ∈ A(D) | u ∈ V (D)−X, v ∈ X}; δout

D (X) := δin
D (V (D)−X).

In words, δin
D (X) consists of the arcs that enter X and δout

D (X) consists of the arcs that

leave X. δD(X, Y ) consists of the arcs with one endpoint in X and the other endpoint in

Y . The indegree din
D (X) of a set X in D is defined to be |δin

D (X)|; similarly the outdegree

dout
D (X) is defined to be |δout

D (X)|. The indegree din
D (v) and the outdegree dout

D (v) of a

vertex are defined to be |δin
D ({v})| and |δout

D ({v})| respectively. The degree dD(X, Y )

between two sets is defined to be |δD(X, Y )|. Finally, a digraph D is an Eulerian digraph

if din
D (v) = dout

D (v) for every v ∈ V (D).
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2.1.2 Hypergraphs and Directed Hypergraphs

A hypergraph H = (V, E) consists of a set V = V (H) of elements called vertices (or nodes

or points) and a family E = E(H) of subsets of V (H) called hyperedges. We call V (H)

the vertex set of H and E the hyperedge set of H. Usually we denote a hyperedge with

a lowercase letter (e.g. e, f) just like in the graph case, but sometimes we denote it with

an uppercase letter (e.g. Z) to clarify that it is a subset of vertices. The rank of H is

the cardinality of the largest hyperedge of H. Generalizing the notation of graphs, we

define:

δH(X) := {Z ∈ E(H) | 0 < |Z ∩X| < |Z|}.

In other words, a hyperedge e ∈ δH(X) if e contains some vertex in X and contains some

vertex in V (H)−X. The degree dH(X) of a set X in H is |δH(X)|; the degree dH(v) of

a vertex is |δH({v})|.

There are at least two natural ways to define directed hypergraphs. We first define the

model used in [33] which we refer as directed in-hypergraph (in-hypergraphs for short).

An in-hypergraph
−→
H = (V,

−→
E ) consists of a set V = V (

−→
H ) of elements called vertices (or

nodes or points) and a family
−→
E =

−→
E (
−→
H ) of subsets of V (

−→
H ) called in-hyperarcs. An

in-hyperarc is a subset Z ⊆ V with a designated head vertex v ∈ Z, and it is denoted by

Zv. The vertices of Z − v are called the tail vertices of Zv. We call
−→
E the in-hyperarc

set of
−→
H . An in-hyperarc Zv enters a set X if v ∈ X and Z − X 6= ∅; an in-hyperarc

Zv leaves a set X if it enters V (
−→
H ) − X. We denote δin

−→
H

(X) and δout
−→
H

(X) the set of

in-hyperarcs that enter X and leave X respectively. The indegree din
−→
H

(X) of a set X is

|δin
−→
H

(X)| and the outdegree dout
−→
H

(X) is |δout
−→
H

(X)|.

We refer to the second model, which is called star hypergraphs in [6], as directed

out-hypergraphs (out-hypergraphs for short). All the definitions are defined similarly as

for in-hypergraphs, except that we have out-hyperarcs instead of in-hyperarcs. An out-

hyperarc is a subset Z ⊆ V with a designated tail vertex v ∈ Z, and it is denoted by Zv.

The vertices of Z − v are called the head of Zv. An out-hyperarc Zv enters a set X if
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v /∈ X and Z ∩ X 6= ∅; an out-hyperarc Zv leaves a set X if it enters V (
−→
H ) − Z. The

definitions of δin
−→
H

(X), δout
−→
H

(X), din
−→
H

(X) and dout
−→
H

(X) are the same as for in-hypergraphs.

A bipartite graph B = (X, Y ; E) is a graph with vertex set X ∪ Y and edge set E,

for which every edge in E has one endpoint in X and the other endpoint in Y . For

B = (X, Y ; E), X and Y are called the partite sets of B. For a hypergraph H = (V, E),

the bipartite representation B = (V, E ; E) of H is a bipartite graph with partite sets V

and E , and a vertex v ∈ V (H) is adjacent to a vertex Z ∈ E(H) in B if v ∈ Z in H.

For B = (V, E ; E), we call V the vertex partite set and E the hyperedge partite set. For

a directed hypergraph
−→
H = (V,

−→
E ), the bipartite representation B = (V,

−→
E ; A) of H is

a directed bipartite graph with the following arc set: for u ∈ V (H) and Z ∈
−→
E (H),

uZ ∈ A(B) if and only if u is a tail of Z, and Zu ∈ A(B) if and only if u is a head of Z.

For B = (V,
−→
E ; A), we call V the vertex partite set and

−→
E the hyperarc partite set. So,

for example, in the bipartite representation of an in-hypergraph (out-hypergraph), every

vertex in the hyperarc partite set has outdegree (indegree) exactly 1.

2.1.3 Deletions and Contractions

The following terminology is defined for hypergraphs, when it specializes to graphs we

omit the word “hyper”. Let H = (V, E) and H ′ = (V ′, E ′) be two hypergraphs. If V ′ ⊆ V

and E ′ ⊆ E, then we say H ′ is a subhypergraph of H (or H is a superhypergraph of H ′),

written H ′ ⊆ H. Less formally, we say H contains H ′. Given a subset X ⊆ V (H), a

hyperedge Z ∈ E(H) is induced in X if Z ⊆ X. The number of hyperedges induced by

X is denoted by iH(X). If H ′ ⊆ H and H ′ contains all the hyperedges induced by V ′,

then H ′ is an induced subhypergraph of H; we say that V ′ induces or spans H ′ in H, and

write H ′ := H[V ′]. H ′ ⊆ H is a spanning subhypergraph of H if V ′ spans all of H, i.e.,

V ′ = V .

If U is any set of vertices, we write H−U for H[V −U ]. In words, H−U is obtained

from H by deleting all the vertices in U and all the hyperedges that intersect U . If
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U = {v}, we simply write H − v instead of H − {v}. For a subset F ⊆ E , we write

H −F := (V, E − F); as above H − {e} is abbreviated to H − e.

Let X ⊆ V be a subset of vertices. By H/X we denote the hypergraph obtained from

H by contracting X into a single vertex x, and “keeping” all the hyperedges in δH(X)

and removing all the hyperedges induced in X. Formally, H/X is a hypergraph (V ′, E ′)

with vertex set V ′ := {(V −X) ∪ {x}} and hyperedge set

E ′ := {Z | Z ∈ E and Z ⊆ V −X} ∪ {(Z −X) ∪ {x} | Z ∈ E and X separates Z},

where X separates Z means Z ∩X 6= ∅ and Z ∩ (V (H)−X) 6= ∅.

We need to clarify the definition of contraction in directed hypergraphs; all other

definitions in this subsection apply equally well to directed hypergraphs, (i.e., one just

needs to substitute “edge” by “arc”). Let
−→
H = (V,

−→
E ) be a out-hypergraph (for in-

hypergraphs this is completely analogous) and X ⊆ V be a subset of vertices. Formally,

−→
H/X is a hypergraph (V ′,

−→
E

′
) with vertex set V ′ := {(V −X) ∪ {x}} and hyperarc set

−→
E

′
:= {Z | Z ∈

−→
E and Z ⊆ V −X} ∪ {(Z −X) ∪ {x} | Z ∈

−→
E and X separates Z}.

If a hyperarc Z with its tail in
−→
H is in X, then its tail in

−→
H

′
is x; all other hyperarcs

have their tails in
−→
H

′
the same as their tails in

−→
H . Intuitively,

−→
H/X denotes the out-

hypergraph obtained from
−→
H by contracting X into a single vertex x, and “keeping” all

the hyperarcs in δin
−→
H

(X) and δout
−→
H

(X) with the directions unchanged and removing all the

hyperarcs induced in X.

2.1.4 Orientations of Graphs and Hypergraphs

The notion of graph orientations (or hypergraph orientations) provides a link between

graphs and digraphs (or between hypergraphs and directed hypergraphs). The underlying

graph of a digraph D = (V, A) is obtained by replacing each arc uv ∈ A by an edge uv, i.e.

ignoring the directions. An orientation of a graph is a directed graph D = (V, A) whose
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underlying graph is G; intuitively, an orientation of a graph is obtained by assigning

a direction to each edge. We switch to hypergraphs in the following. The underlying

hypergraph of a directed hypergraph
−→
H = (V,

−→
E ) is obtained by ignoring the distinction

of head(s) and tail(s) in a hyperarc. An orientation of a hypergraph is a directed in-

hypergraph (out-hypergraph)
−→
H = (V,

−→
E ) by designating the head vertex (the tail vertex)

for each hyperedge.

2.1.5 Paths and Cycles

A path of a graph G is a sequence of distinct vertices {v0, v1, . . . , vk} so that vivi+1 ∈ E(G)

for all 0 ≤ i < k. If P = v0, . . . , vk is a path, then C := P + vkv0 is a cycle if vkv0 is

an edge of G. A path of a digraph D is a sequence of distinct vertices {v0, v1, . . . , vk} so

that vivi+1 ∈ A(D) for all 0 ≤ i < k. If P = v0, . . . , vk is a path, then C := P + vkv0 is a

directed cycle if vkv0 is an arc of D. A path of a hypergraph H is an alternating sequence

of distinct vertices and hyperedges {v0, e0, v1, e1, . . . , ek−1, vk} so that vi, vi+1 ∈ ei for all

0 ≤ i < k. A path of a directed hypergraph
−→
H is an alternating sequence of distinct

vertices and hyperarcs {v0, a0, v1, a1, . . . , ak−1, vk} so that vi is a tail of ai and vi+1 is a

head of ai for all 0 ≤ i < k. Alternatively, a path in a (directed) hypergraph H is just

a path in the bipartite representation B of H between two vertices in the vertex partite

set of B. See Figure 2.1 for an illustration. In all the above sequences, v0 and vk are

linked and are called the ends of the paths. In hypergraphs, we say it is a v0, vk-path to

specify the ends; in directed hypergraphs, in addition, we often say it is a path from v0

to vk to emphasize the direction. Finally, the number of edges on a path is its length, in

the above cases the paths are of length k.

2.1.6 Edge-Connectivity of Graphs and Hypergraphs

The following terminology is defined for hypergraphs; when we specialize to graphs we

omit the word “hyper”. A hypergraph H is connected if every pair of its vertices are linked
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Z3
V0

V1

Y

V3V2

X
Z1

Z2 Z3

(a) (b)

V0 V1 X V2 Y V3

Z1 Z2

Figure 2.1: (a) A path in an in-hypergraph from v0 to v3. The dotted lines represent the

movement of the path. (b) A path in the bipartite representation of the in-hypergraph

of (a) from v0 to v3.

by a path. A maximal connected subgraph of H is called a component. We say v is a cut

vertex if H is connected but H−v is not connected. There are two natural ways to define

the “hyperedge-connectivity” of a hypergraph. Intuitively, the first definition captures

how “robust” a hypergraph is. A hypergraph H is k-hyperedge-connected if H − F is

connected for every set of hyperedges F with |F | < k. The second definition captures

how many “connections” a hypergraph has. A hypergraph H is k-hyperedge-connected if

any two of its vertices can be linked by k hyperedge-disjoint paths, i.e., k-paths that do

not share a hyperedge. The largest integer for which H is k-hyperedge-connected is the

hyperedge-connectivity of H. An extension of Menger’s theorem to hypergraphs states

that these two definitions are actually equivalent. We shall discuss Menger’s theorem

(and its many variants) in some depth later in Section 2.2.1 and Section 2.2.2.

As discussed in the overview, there are situations where we are only interested in a

subset of vertices S ⊆ V (H). We call the vertices in S the terminal vertices and the

vertices in V (H)− S the Steiner vertices. Given S ⊆ V (H), a subset of vertices X is a

S-separating set (or X separates S) if 0 < |X ∩ S| < |S|. A set of hyperedges F ⊆ E(H)

is a S-hyperedge-cut (or a S-cut) if F = δH(X) for some S-separating set X. Notice

that an S-cut of a graph is a formal definition of what we meant by a bottleneck in the
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overview. A subset S ⊆ V (H) is k-hyperedge-connected in H if every S-cut has at least

k hyperedges. For example, a hypergraph H is k-hyperedge-connected if every V (H)-cut

has at least k hyperedges. Equivalently, as we shall see, S is k-hyperedge-connected in

H if every pair of its vertices can be linked by k hyperedge-disjoint paths. The largest

integer for which S is k-hyperedge-connected in H is the hyperedge-connectivity of S in

H (or S-hyperedge-connectivity of H).

2.1.7 Arc-Connectivity of Digraphs and Directed Hypergraphs

In this subsection we do not distinguish between in-hypergraphs and out-hypergraphs,

since the definitions apply to both cases. The following terminology is defined for directed

hypergraphs; when we specialize to digraphs we omit the word “hyper”.

A directed hypergraph
−→
H is strongly connected if there is a directed path from s to t

and a directed path from t to s for any s, t ∈ V (
−→
H ). Similarly, there are two natural ways

to define “hyperarc-connectivity” in a directed hypergraph.
−→
H is strongly k-hyperarc-

connected if
−→
H − F is strongly connected for every set of hyperarcs F with |F | < k.

Equivalently, as we shall see, a directed hypergraph
−→
H is strongly k-hyperarc-connected

if any two of its vertices can be linked by k hyperarc-disjoint paths - k paths that do not

share a hyperarc. The largest integer for which
−→
H is strongly k-hyperarc-connected is

the hyperarc-connectivity of
−→
H .

A set of hyperarcs F ⊆ E(
−→
H ) is a S-hyperarc-cut (or a S-cut) if F = δin

−→
H

(X) (or

F = δout
−→
H

(X)) for some S-separating set X. A subset S ⊆ V (
−→
H ) is strongly k-hyperarc-

connected in
−→
H if every S-cut has at least k hyperarcs. Equivalently, as we shall see, S is

strongly k-hyperarc-connected in
−→
H if any two of its vertices can be linked by k hyperarc-

disjoint paths. The largest integer for which S is strongly k-hyperarc-connected in
−→
H is

the hyperarc-connectivity of S in
−→
H (or S-hyperarc-connectivity of

−→
H ).
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2.1.8 Local-Connectivity, Rooted-Connectivity and Partition-

Connectivity

The following terminology is defined for hypergraphs; when we specialize to graphs

we omit the word “hyper”. We use the notation λH(s, t) for the maximum number

of hyperedge-disjoint paths between s and t in H. These values are called the local

hyperedge-connectivity between s and t. Given a subset S ⊆ V and a specified root vertex

r, the rooted-hyperedge-connectivity of S in H is defined to be minv∈S λH(r, v). When

S = V , we will simply say rooted-hyperedge-connectivity of H.

Given a hypergraph H = (V, E) and a partition P = {P1, . . . , Pt} of V , eH(P) denotes

the number of hyperedges which are not contained in a Pi. We also say those hyperedges

are the crossing hyperedges of P. A hypergraph H is called k-partition-connected if

eH(P) ≥ k(|P| − 1) for every partition P of V . Equivalently, one has to delete at least

kt hyperedges to dismantle H into t + 1 components for every t. Partition-connectivity

clearly implies edge-connectivity; contrary to the graph case, however, a 1-connected

hypergraph needs not be 1-partition-connected. For example, a hypergraph with a sin-

gle hyperedge e = V is 1-connected but not 1-partition-connected. In particular, a

k-partition-connected hypergraph requires at least k(|V (H)| − 1) hyperedges.

2.1.9 Trees and Arborescences

An acyclic graph, one not containing any cycle, is called a forest. A connected forest is

called a tree. Given a graph G and a subset of vertices S ⊆ V (G), a subgraph T ⊆ G

is called a S-Steiner tree (or a S-tree) if T is a tree and S ⊆ V (T ). A graph G has an

S-tree if and only if S is connected in G.

Given a vertex r called the root vertex, a r-arborescence is a digraph T with a tree as

its underlying graph and a path from the root to every other vertex. Given a digraph D,

the root vertex r, and a subset of vertices S ⊆ V (G), a sub-digraph T ⊆ D is called a
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(r, S)-arborescence if T is an r-arborescence and S ⊆ V (T ). If the root vertex r is clear

from the context, we will not mention r in the above definitions.

2.1.10 Submodular and Supermodular Set Functions

Let V be a finite ground set. Two sets X and Y are called co-disjoint if X ∪Y = V ; that

is V −X and V − Y are disjoint. X and Y are intersecting if X − Y , Y −X, X ∩ Y are

all non-empty; X and Y are crossing if they are intersecting and not co-disjoint.

A family of sets F is a collection of (not necessarily distinct) subsets of V . F is

a laminar family if it contains no intersecting members; F is a cross-free family if it

contains no crossing members. For a function m : V → R we use the notation m(X) :=

∑

(m(x) : x ∈ X).

Let V be a finite ground set and f : 2V → R be a real valued function defined on

the subsets of V . The set-function f is called fully submodular (or submodular) if the

following inequality holds for any two subsets X and Y of V :

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ). (2.1)

The set function f is called fully supermodular (or supermodular) if for any two subsets

X and Y of V :

f(X) + f(Y ) ≤ f(X ∪ Y ) + f(X ∩ Y ). (2.2)

f is called modular if it is both submodular and supermodular; that is, f(X) =
∑

x∈X f(x).

There is an alternative way to characterize submodularity:

Proposition 2.1.1 A set function f : 2V → Z ∪ {∞} is submodular if and only if

f(X + v)− f(X) ≥ f(Y + v)− f(Y )

for all X ⊆ Y ⊆ V and v ∈ V − Y .
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Let G be a graph and D be a digraph. The following proposition implies that the

functions dG(.) and din
D (.) (and hence dout

D (.)) are submodular; it can be verified easily by

checking that every edge has the same contribution to both sides.

Proposition 2.1.2 For X, Y ⊆ V ,

dG(X) + dG(Y ) = dG(X ∩ Y ) + dG(X ∪ Y ) + 2dG(X, Y ),

dG(X) + dG(Y ) = dG(X − Y ) + dG(Y −X) + 2dG(X ∩ Y, V −X ∪ Y ),

din
D (X) + din

D (Y ) = din
D (X ∩ Y ) + din

D (X ∪ Y ) + dD(X, Y ).

The following is an example of a supermodular function. Recall that iG(X) denotes

the number of edges of G induced in X ⊆ V (G).

Proposition 2.1.3 For X, Y ⊆ V ,

iG(X) + iG(Y ) = iG(X ∪ Y ) + iG(X ∩ Y )− dG(X, Y ).

Finally, we say a function f is intersecting submodular if (2.1) holds for any two inter-

secting sets; f is crossing submodular if (2.1) holds for any two crossing sets. Intersecting

and crossing supermodular functions are defined in the same way. These functions will

be very useful in graph connectivity problems.

2.2 Background

The aim of this section is to provide a comprehensive background on the subjects related

to our results, and the goal is to make the results in this thesis self-contained. Part of

the materials follow the presentation of [6, 15, 27, 31, 53].

2.2.1 A Proof of Menger’s Theorem

Menger [73] proved that the two notions of edge-connectivity (stated in Section 2.1.6)

are in fact equivalent. This result is one of the cornerstones of graph theory.
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Here we give a short proof of the directed version, which can then be used to derive

the other versions by standard reductions. This proof underlies the idea behind the main

results of this thesis, which we shall discuss at the end of this subsection. In the following,

a set X is a st set if s /∈ X and t ∈ X.

Theorem 2.2.1 (Menger [73]) Let D = (V, A) be a digraph, and s, t ∈ V be distinct

vertices. There are k arc-disjoint paths from s to t if and only if

din(X) ≥ k for every st set X ⊆ V. (2.3)

Proof. To set up this problem as a special case of the Steiner Tree Packing prob-

lem, we say {s, t} are the terminal vertices and all the other vertices are Steiner vertices.

Suppose, by way of contradiction, that the statement is false. Let D be a minimal coun-

terexample so that it has the minimum number of arcs among all the counterexamples.

We shall prove that D does not exist, and hence the theorem follows.

First we show that there is no arc between two Steiner vertices in D. Suppose a = uv

is such an arc. If D − a satisfies (2.3), then D − a has k arc-disjoint paths from s to t

by the choice of D. This clearly contradicts the assumption that D is a counterexample.

So we assume that D− a does not satisfy (2.3). Then there exists an st set X for which

uv enters X and din(X) = k. So, {s, u} ⊆ V (G)−X and {t, v} ⊆ X. In particular, this

implies that |V (G) − X| ≥ 2 and |X| ≥ 2 (see Figure 2.2 (a)). Now, we contract X of

D into a single vertex v1 to form D1 and contract V (G) − X of D into a single vertex

v2 to form D2 (see Figure 2.2 (b)). Since s, t satisfies (2.3) in D, it follows that s, v1 and

v2, t satisfy (2.3) in D1 and D2 respectively. Notice that both D1 and D2 have fewer arcs

than D. So, by the choice of D, there are k arc-disjoint paths {P 1
1 , . . . , P 1

k } from s to

v1 in D1 and k arc-disjoint paths {P 2
1 , . . . , P 2

k } from v2 to t in D2 (see Figure 2.2 (c)).

Since v1 has indegree k, each path P 1
i uses exactly one arc of δin

D1
(v1). Similarly, since v2

has outdegree k, each path P 2
j uses exactly one arc of δout

D2
(v2). By renaming if necessary,

we can assume that P 1
i and P 2

i use the same arc of δin

D(X). Therefore, by identifying
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Figure 2.2: An illustration of the proof of Theorem 2.2.1.�

the corresponding arcs in D, {P 1
1 ∪ P 2

1 , . . . , P 1
k ∪ P 2

k } are k arc-disjoint paths in D (see

Figure 2.2 (d)). This contradicts the assumption that D is a counterexample. So, there

is no arc between two Steiner vertices in D.

Now the structure of D has become very restrictive. Notice that we can assume s

has no incoming arcs and t has no outgoing arcs; otherwise we can just remove them

and (2.3) would not be violated. So, each Steiner vertex v has only incoming arcs from

s and outgoing arcs to t. By replacing the two arcs sv and vt of D by st and calling the

resulting digraph D′, it is easy to verify that (2.3) is satisfied on D′. By the choice of D,

there are k arc-disjoint paths between s and t in D′. Clearly, by taking the same k paths

and replacing st by sv and vt if necessary, there are k arc-disjoint paths between s and

t in D. This contradicts the assumption that D is a counterexample. Therefore, we can

further assume that there are no Steiner vertices in D. So, D is only a digraph with two

vertices. Clearly, to satisfy (2.3), there must be k parallel arcs from s to t. These are

the k arc-disjoint paths from s to t in D, which shows that D is not a counterexample.

Hence D does not exist and this completes the proof.



Chapter 2. The Basics 22

As remarked earlier, the above proof actually consists of almost all the main ingre-

dients (in a simple form) of the proofs of the main results in this thesis. We identify

them now to put the future proofs into context. In the first step we decompose a graph

into two smaller graphs by contracting vertices; this will be called the cut decomposition

operation. Then we combine the solutions (i.e. arc-disjoint paths in the above proof)

of the smaller graphs to give a solution of the original graph. Notice that the solutions

of the smaller graphs have intersections (i.e. the arcs in δin
D (X)) and the solution in D1

defines a partial solution on D2 (i.e. which arc of δout
D (v2) belongs to which path). To

give a solution of the original graph, one needs to argue that any such partial solution on

D2 can be extended to a solution of D2; we will say this is the extension property. The

cut decomposition operation along with the extension property allow us to assume very

restricted structures on the graph (e.g. there is no edge between two Steiner vertices)

which greatly simplify the analysis. In the above proof, the extension property comes

naturally (i.e. one just needs to rename the paths of D2). However, in future problems,

one needs to define and prove some appropriate extension property to make the above

step works and this is usually the most difficult step in the proof. Finally, we remark

that the operation of replacing two edges (or arcs) sv and vt by st is called the edge

splitting-off operation. This turns out to be a very important operation.

2.2.2 Different Versions of Menger’s theorem

From the directed version of Menger’s theorem, one can derive all the following results.

They are very similar, but we include all of them for the ease of further references. The

following proposition follows immediately from Theorem 2.2.1.

Proposition 2.2.2 For a digraph D = (V, A), a subset S ⊆ V , and a positive integer k,

the following are equivalent:

1. There are k arc-disjoint paths from any vertex of S to any other vertex of S.
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2. din
D (X) ≥ k for every S-separating set X.

3. S remains strongly connected in D upon removal of k − 1 arcs.

Menger’s theorem for undirected graphs

Theorem 2.2.3 (Menger [73]) Let G = (V, E) be a graph, and s, t ∈ V be distinct

vertices. There are k edge-disjoint paths between s and t if and only if

d(X) ≥ k for every st set X ⊆ V. (2.4)

Proposition 2.2.4 For a graph G = (V, E), a subset S ⊆ V , and a positive integer k,

the following are equivalent:

1. There are k edge-disjoint paths between any two vertices of S.

2. dG(X) ≥ k for every S-separating set X.

3. S remains connected in G upon removal of k − 1 edges.

Menger’s theorem for hypergraphs

Theorem 2.2.5 Let H = (V, E) be a hypergraph, and s, t ∈ V be distinct vertices. There

are k hyperedge-disjoint paths between s and t if and only if

dH(X) ≥ k for every st set X ⊆ V. (2.5)

Proposition 2.2.6 For a hypergraph H = (V, E), a subset S ⊆ V , and a positive integer

k, the following are equivalent:

1. There are k hyperedge-disjoint paths between any two vertices of S.

2. dH(X) ≥ k for every S-separating set X.

3. S remains connected in H upon removal of k − 1 hyperedges.
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Menger’s theorem for directed hypergraphs

The following results hold for both in-hypergraphs and out-hypergraphs.

Theorem 2.2.7 Let
−→
H = (V,

−→
E ) be a directed hypergraph, and s, t ∈ V be distinct

vertices. There are k hyperarc-disjoint paths between s and t if and only if

d−→
H

(X) ≥ k for every st set X ⊆ V. (2.6)

Proposition 2.2.8 For a directed hypergraph
−→
H = (V,

−→
E ), a subset S ⊆ V , and a

positive integer k, the following are equivalent:

1. There are k hyperarc-disjoint paths from any vertex of S to any other vertex of S.

2. din
−→
H

(X) ≥ k for every S-separating set X.

3. S remains strongly connected in
−→
H upon removal of k − 1 hyperarcs.

2.2.3 Edge Splitting-Off Preserving Edge-Connectivity

Let G be an undirected graph. Splitting-off a pair of edges e = uv, f = vw means that

we replace e and f by a new edge uw. Notice that parallel edges and loops may arise.

However, any loop created will be removed. The resulting graph will be denoted by Gef .

In the proof of Theorem 2.2.1, we have already used the splitting-off technique (although

in a very simple manner).

When a splitting-off operation is performed, the local edge-connectivity never in-

creases. The content of the splitting-off theorems is that under certain conditions there

is an appropriate pair of edges {e = uv, f = vw} whose splitting-off preserves all local or

global edge-connectivities between vertices distinct from v.

These theorems prove to be extremely powerful in attacking edge-connectivity prob-

lems; we shall see a couple of examples later. The first splitting-off theorem was proved
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by Lovász in 1974 (see [67]). The proof below is due to Frank [27]; we sketch it here for

completeness.

Theorem 2.2.9 Suppose that in an undirected graph G = (V, E)

d(X) ≥ K = 2k for every ∅ 6= X ⊂ V − s (2.7)

where s ∈ V is a given vertex of even degree. Then for every edge f = st there is an edge

e = su so that {e, f} can be split off without violating (2.7).

Proof. (see [67, 27]) Call a set ∅ 6= X ⊂ V −s dangerous if d(X) ≤ K+1. Splitting-off a

pair of edges {e, f} is said to be suitable if it does not destroy (2.7). Clearly, splitting-off

{e, f} is suitable if and only if there is no dangerous set X with u, t ∈ X and s /∈ X.

Lemma 2.2.10 The union of two dangerous st sets is dangerous.

Proof. Let X and Y be two dangerous st sets. If X ⊆ Y or Y ⊆ X, then we have

nothing to prove. So we assume X − Y 6= ∅ and Y − X 6= ∅. Since t ∈ X ∩ Y and

s /∈ X ∪ Y , it follows that d(X ∩ Y, V − (X ∪ Y )) ≥ 1. By Proposition 2.1.2, we have

(K + 1) + (K + 1) ≥ d(X) + d(Y ) = d(X − Y ) + d(Y −X) + 2d(X ∩ Y, V − (X ∪ Y )) ≥

K + K + 2. So, d(X) = K + 1, d(Y ) = K + 1, d(X − Y ) = K, d(Y − X) = K, and

d(X ∩ Y, V − (X ∪ Y )) = 1. From this d(X, V − (X ∪ Y )) = d(Y, V − (X ∪ Y ))

follows; otherwise, say the left hand side is smaller, then a simple but tedious counting

argument shows that d(X − Y ) < d(Y − X) = K, contradicting (2.7). Therefore,

d(X ∪Y ) = 2d(X, V − (X ∪Y ))+ 1, which is an odd number. Since s is a vertex of even

degree, this implies that X ∪ Y ⊂ V − s.

Suppose, by way of contradiction, that X ∪ Y is not dangerous. Then d(X ∪ Y ) ≥

K+2. In fact, we must have d(X∪Y ) ≥ K+3 since d(X∪Y ) is an odd number. Now, by

Proposition 2.1.2, (K +1)+(K+1) = d(X)+d(Y ) ≥ d(X∩Y )+d(X∪Y ) ≥ K +(K+3)

and this contradiction proves the claim.
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From Lemma 2.2.10 it follows that the union M of all dangerous st-sets is dangerous;

in particular, M ⊂ V −s. Now there must be an edge e = su with u /∈M since otherwise

d(V − (M + s)) = d(M + s) = d(M)− d(s) ≤ d(M)− 2 ≤ K − 1 contradicting (2.7). By

the choice of M , the splitting-off of {e, f} is splittable.

Mader [71], answering an earlier conjecture of Lovász, proved the following powerful

generalization of Lovasz’s result.

Theorem 2.2.11 (Mader’s Splitting-Off Lemma [71]) Let G = (V, E) be a con-

nected undirected graph in which 0 < dG(s) 6= 3 and there is no cut-edge incident with s.

Then there exists a pair of edges e = su, f = st so that λG(x, y) = λGef (x, y) holds for

every x, y ∈ V − s.

Mader’s proof, which does not use submodularity explicitly, is quite complicated.

Frank [26] extended the idea of Lovász’s proof to give a considerably simpler proof of

Mader’s theorem. In fact, the proof of Theorem 2.2.9 is a prototype for proofs of many

splitting-off theorems.

Notice that in the above theorems, if s is a vertex of even degree, then we can apply

a suitable splitting-off operation at s repeatedly until s is of degree 0. This is called a

complete splitting-off at s.

2.2.4 Graph Orientations Achieving High Arc-Connectivity

Graph orientations provide a link between graphs and digraphs. There is a huge literature

on results concerning graph orientations satisfying certain properties. In this subsection

we only focus on graph orientations achieving high (local-)arc-connectivity.

The underlying graph of any strongly k-arc-connected digraph is 2k-edge-connected.

Is every 2k-edge-connected graph the underlying graph of some strongly k-arc-connected

digraph? The special case when k = 1 was proved by Robbins [81] in 1939. The general
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case is proved by Nash-Williams [74] in 1960. We present a simple proof using the Lovász

splitting-off lemma (Theorem 2.2.9).

Theorem 2.2.12 (Nash-Williams Weak Orientation Theorem) [74] The edges

of an undirected graph G can be oriented so that the resulting directed graph is strongly

k-arc-connected if and only if G is 2k-edge-connected.

Proof. We reproduce the proof from [27]. The necessary condition is trivial. We

prove the sufficient condition by induction on the number of edges of G, which is 2k-

edge-connected by assumption. If G− e is 2k-edge-connected, then G− e has a strongly

k-arc-connected orientation and so does G. So assume that for every e ∈ E(G), G − e

is not 2k-edge-connected. By Menger’s theorem (Proposition 2.2.4), there exists a set X

for which dG−e(X) = 2k − 1, and thus dG(X) = 2k.

First we claim that G has a vertex of degree 2k. Suppose not. We consider a minimal

set X for which dG(X) = 2k. Since every vertex is of degree greater than 2k, X contains

at least two vertices and at least one edge. Pick an arbitrary edge e = uv induced in X.

Since G− e is not 2k-edge-connected, there exists a nontrivial uv set Y with d(Y ) = 2k.

Notice that X ∪ Y 6= V (G), for otherwise V (G) − Y contradicts the minimality of X.

Now, by Proposition 2.1.2, 2k + 2k = d(X) + d(Y ) ≥ d(X ∪ Y ) + d(X ∩ Y ) ≥ 2k + 2k.

So d(X ∩ Y ) = 2k and hence X ∩ Y contradicts the minimality of X. Therefore, G has

a vertex of degree 2k.

Let s be a vertex of degree 2k. By Theorem 2.2.9, there is a complete splitting-

off at s so that the resulting graph G′ is 2k-edge-connected. By induction there is a

strongly k-arc-connected orientation D′ of G′. Now, suppose uv ∈ E(D′) is an edge

obtained from splitting-off su, sv ∈ E(D) and uv is oriented as −→uv in D′, then we orient

su, sv ∈ E(D) as −→us,−→sv (see Figure 2.3 for an illustration). All other edges of D which

are not adjacent to s are oriented as in D′. We claim that D is a strongly k-arc-connected

orientation. By Menger’s theorem (Proposition 2.2.2), it suffices to check δin
D (X) ≥ k for
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Figure 2.3: An illustration of the proof of Theorem 2.2.12.�

every ∅ 6= X ⊂ V . If s /∈ X, then δin
D (X) = δin

D′(X) ≥ k as required. If X = {s}, then

δin
D (X) = δin

D (s) = k. Finally, if {s} ⊂ X, then δin
D (X) = δin

D′(X − s) ≥ k as required. So

D is a strongly k-arc-connected orientation; this completes the proof.

In fact, Nash-Williams has proved a much stronger theorem which achieves optimal

local-arc-connectivity for all pair of vertices.

Theorem 2.2.13 (Nash-Williams Strong Orientation Theorem) [74] Every

undirected graph G = (V, E) has an orientation D so that

λD(x, y) = bλG(x, y)/2c for all x, y ∈ V. (2.8)

In addition, the orientation can be chosen such that the difference between the indegree

and the outdegree of each vertex is at most 1.

Nash-Williams calls an orientation satisfying (2.8) well-balanced. Nash-Williams’

proof uses a sophisticated inductive argument. The starting idea of Nash-Williams’
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approach is an observation that the theorem is trivial for Eulerian graphs. Indeed, an

Eulerian graph always has an orientation so that the resulting digraph is Eulerian, and

this orientation satisfies (2.8). For a graph that is not Eulerian, Nash-Williams’ idea

is to augment it to an Eulerian graph by adding a perfect matching M on the vertices

with odd degree, find an Eulerian orientation of the resulting graph G + M , and finally

leave out the edges of M . Naturally, the resulting orientation of the original graph can

be expected to satisfy (2.8) only if the auxiliary matching fulfills certain requirements.

Nash-Williams’ proves that such a matching, which is called a feasible odd-vertex pairing,

always exists.

Lovász’ splitting-off lemma immediately implies Nash-Williams’ weak orientation the-

orem. One may wonder if Mader’s splitting-off lemma would also imply immediately

Nash-Williams’ strong orientation theorem. Mader [71] was indeed able to prove the

strong orientation theorem relying on his splitting-off lemma. The proof, however, can

hardly be considered simpler than the original one.

Frank [27] gave a more illuminating proof by combining the ideas from Nash-Williams’

and Mader’s proofs as well as from his short proof of Mader’s splitting-off lemma. He

leaves it as a challenge to find a really simple proof and an ultimate answer to Nash-

Williams hopes cited below.

The comparatively complicated nature of the foregoing proof, ... as contrasted

with the comparatively simple and natural character of Theorems 1 and 2

might suggest that conceivably the most simple, natural, and insightful proof of

those theorems has not yet been found... I have sometimes wondered whether

there might be a way of using matroids, or something like matroids, to give a

better and more illuminating proof of our two theorems.

They do not seem particularly closely related to much other existing work in

graph theory, ... these theorems seem to have a somewhat natural character
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which would suggest that there must ultimately be a place for them in the

overall structure of graph theory.

As we shall see in the next subsection, as far as the weak orientation theorem is

concerned, Nash-Williams’ anticipation was correct. There are simple proofs for this

result using submodular functions - structures with “somewhat matroid-like” features.

2.2.5 Submodular Flows and Graph Orientations

In this subsection we shall introduce a powerful generalization of flows due to Edmonds

and Giles [18] - submodular flows. Many important theorems in graph theory and com-

binatorial optimization are special cases of this theory. We shall only focus on its appli-

cations to (hyper)graph orientations.

Let D = (V, A) be a digraph, F be a crossing family of subsets of V , and b : F → Z

be a crossing submodular function. Given such D,F , b, a submodular flow is a function

x : A→ R satisfying:

xin(U)− xout(U) ≤ b(U) for each U ∈ F , (2.9)

where xin(U) is a shorthand for x(δin(U)) and xout(U) is a shorthand for x(δout(U)).

Equivalently, given a crossing supermodular function p : F → Z, a function x : A → R

satisfying

xin(U)− xout(U) ≥ p(U) for each U ∈ F (2.10)

is a submodular flow.

Given two functions f : A → Z ∪ {−∞} and g : A → Z ∪ {∞}, a submodular flow

is feasible with respect to f, g if f(a) ≤ x(a) ≤ g(a) holds for all a ∈ A. The set of

feasible submodular flows (with respect to given D,F , b, f, g) has very nice properties

which makes submodular flows a very powerful tool in combinatorial optimization.
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Theorem 2.2.14 (The Edmonds-Giles Theorem) [18] Let D = (V, A) be a directed

multigraph. Let F be a crossing family of subsets of V such that ∅, V ∈ F , let b : F →

Z∪{∞} be crossing submodular on F with b(∅) = b(V ) = 0, and let f ≤ g be functions on

A such that f : A→ Z ∪ {−∞} and g : A→ Z ∪ {∞}. The system of linear inequalities

{f ≤ x ≤ g and xin(U)− xout(U) ≤ b(U) for all U ∈ F} (2.11)

has an integer optimal solution (provided it has a solution) for any objective function

min{
∑

a∈A(D)

c(a) · x(a) : x satisfies (2.11)},

where c : A→ R is a (cost) function on A.

Since linear programs can be solved in polynomial time, the above theorem implies

that any discrete optimization problem that can be modeled as a submodular flow prob-

lem can be solved in polynomial time. For some applications, we also need to characterize

when a feasible flow exists. The following theorem, characterizing when a feasible sub-

modular flow exists with respect to functions f, g and b is due to Frank [24]:

Theorem 2.2.15 (Feasibility Theorem for Fully Submodular Flows) [24]

Let D = (V, A) be a directed multigraph, let f ≤ g be modular functions on A such that

f : A → Z ∪ {−∞} and g : A → Z ∪ {∞} and let b be a fully submodular function on

2V . There exists an integer valued feasible submodular flow if and only if

f in(U)− gout(U) ≤ b(U) for all U ⊆ V.

In particular there exists a feasible integer valued submodular flow if and only if there

exists any feasible submodular flow.

Frank [24] also proved the following feasibility theorem for intersecting submodular

flows, which we will use later.
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Theorem 2.2.16 (Feasibility Theorem for Intersecting Submodular Flows)

[24] Let D = (V, A) be a directed multigraph and let f ≤ g be modular functions on A

such that f : A→ Z ∪ {−∞} and g : A→ Z ∪ {∞}. Let F be an intersecting family of

subsets of V such that ∅, V ∈ F and let b be an intersecting submodular function on F .

Then there exists a feasible submodular flow with respect to f, g and b if and only if

f in(

t
⋃

i=1

Xi)− gout(

t
⋃

i=1

Xi) ≤
t

∑

i=1

b(Xi) (2.12)

holds whenever X1, . . . , Xt are disjoint members of F . Furthermore, if f, g, b are all

integer valued functions, then there exists a feasible integer valued submodular flow with

respect to f, g and b.

For completeness, we also present the feasibility theorem for crossing supermodular

function; note that this will not be used later.

Theorem 2.2.17 (Feasibility Theorem for Crossing Submodular Flows) [24]

Let D = (V, A) be a directed multigraph and let f ≤ g be modular functions on A such

that f : A → Z ∪ {−∞} and g : A → Z ∪ {∞}. Let F be a crossing family of subsets

of V such that ∅, V ∈ F and let b be a crossing submodular function on F . Then there

exists a feasible submodular flow with respect to f, g and b if and only if

f in(

t
⋃

i=1

Xi)− gout(

t
⋃

i=1

Xi) ≤
t

∑

i=1

b(Xij)

holds for every subpartition X1, . . . , Xt of V such that every Xi is the intersection of

co-disjoint sets Xi1, . . . , Xil. Furthermore, if f, g, b are all integer valued functions, then

there exists a feasible integer valued submodular flow with respect to f, g and b.

Now we show how to use submodular flows as a tool to tackle graph orientation

problems.

First we relate graph orientations achieving high arc-connectivity to graph orienta-

tions that “cover” a given supermodular function. A graph G is said to cover a set
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function p if dG(X) ≥ p(X) for every X ⊆ V . Similarly, a digraph D covers p if

δin
D (X) ≥ p(X) for every X ⊆ V . By setting p(X) := k for ∅ 6= X ⊂ V , p(∅) := 0

and p(V ) := 0, by Menger’s theorem (Proposition 2.2.2), an orientation D of G covers

p if and only if D is a strongly k-arc-connected orientation of G. Notice the above p

is crossing supermodular but not intersecting supermodular. Choose any vertex r to be

the root. By setting p(X) := k for X ⊆ V with r /∈ X and p(X) := 0 otherwise, by

Menger’s theorem (Theorem 2.2.1), an orientation D of G covers p if and only if D is a

rooted k-arc-connected orientation of G. Notice that this p is intersecting supermodular

but not fully supermodular; for example, inequality (2.2) does not hold for two disjoint

sets X1, X2 ⊂ V .

Here we reduce the problem of finding an orientation covering an intersecting su-

permodular function h to a submodular flow problem, which will have applications in

Chapter 4. The approach taken is due to Frank [27]. First, we start with an arbitrary

orientation D of G as a reference orientation. Clearly, G has an orientation covering h if

and only if it is possible to reorient some arcs of D so as to get an orientation covering

h. Suppose we interpret the function x : A → {0, 1} as follows: x(a) = 1 if we reorient

a in D and x(a) = 0 means that we leave the orientation of a as it is in D. Then G has

an orientation covering h if and only if we can choose x so that the following holds:

δin
D (U)− xin(U) + xout(U) ≥ h(U) for all U ⊂ V.

This is equivalent to:

xin(U)− xout(U) ≤ δin
D (U)− h(U) = b(U) for all U ⊂ V.

Since δin
D (U) is fully submodular and h(U) is intersecting supermodular, the function b

is intersecting submodular. Note this is exactly the formulation of a submodular flow

problem. Now Theorem 2.2.16 implies that the existence of an orientation if and only if

f in(

t
⋃

i=1

Xi)− gout(

t
⋃

i=1

Xi) ≤
t

∑

i=1

b(Xi)
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holds whenever X1, . . . , Xt are disjoint members of F (i.e. Xi ∩ Xj = ∅ for i 6= j). In

this orientation problem, f ≡ 0 and g ≡ 1. By the definition of b := δin
D − h, the above

equation is equivalent to

−δout
D (

t
⋃

i=1

Xi) ≤
t

∑

i=1

(δin
D (Xi)− h(Xi)).

Rearranging the terms, we have

t
∑

i=1

h(Xi) ≤
t

∑

i=1

δin
D (Xi) + δout

D (

t
⋃

i=1

Xi).

Notice that since X1, . . . , Xt are disjoint, the right hand side just counts the number of

undirected edges in G which enter some Xi (that is, edges with precisely one endpoint in

some Xi). Therefore, we have the following theorem which is important to the Steiner

Rooted Orientation problem.

Theorem 2.2.18 Let G = (V, E) be an undirected graph. Let h : 2V → Z ∪ {−∞}

be an intersecting supermodular function with h(∅) = h(V ) = 0. Then there exists an

orientation D of G satisfying

δin
D (X) ≥ h(X) for all X ⊂ V

if and only if

eP ≥
t

∑

i=1

h(Xi)

holds for every subpartition P = {X1, X2, . . . , Xt} of V . Here eP counts the number of

edges which enter some member of P .

From this model many results on graph orientations can be derived. For example,

the Nash-Williams’ weak orientation theorem can be obtained immediately as follows:

Given a 2k-edge-connected undirected graph G. First find an arbitrary orientation D of

G. Then G has a strongly k-arc-connected orientation if and only if we can choose x so

that

din
D (U) + xout(U)− xin(U) ≥ k for all ∅ 6= U ⊂ V.
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Now one just needs to verify that x ≡ 1
2

is a feasible submodular flow if G is 2k-edge-

connected. Then by Theorem 2.2.14 there is an integral solution as well, and this gives us

a strongly k-arc-connected orientation. Furthermore, we can also solve the weighted ver-

sion where the two possible orientations of an edge may have different costs and the goal

is to find the cheapest strongly k-arc-connected orientation of the graph; this again fol-

lows from the Edmonds-Giles theorem. Finally, we remark that using submodular flows

is the only known method to solve the above weighted problem, as well as other more

advanced orientation problems (e.g. orientations of mixed graphs, degree-constrainted

orientations, etc). Also, we remark that there seems to be no easy way of formulat-

ing orientation problems concerning local-arc-connectivities (e.g. Nash-Williams strong

orientation theorem) as submodular flow problems.

2.2.6 Disjoint Trees and Disjoint Arborescences

One approach to capture high edge-connection is to require the graph to be not disman-

tleable into smaller parts by leaving out only a few edges. Another possible approach

is to require the graph or digraph to contain several edge-disjoint simple connected con-

stituents. Menger showed that these two approaches are equivalent when the simple

connected constituents are paths (see Section 2.2.2). Paths, however, only capture the

local-edge-connectivity between two vertices.

To capture the global edge-connectivity of a graph, one naturally comes up with the

notion of edge-disjoint spanning trees. When does a graph have k edge-disjoint spanning

trees? If it does, then the graph is clearly k-edge-connected. On the other hand, it

is not clear whether any edge-connectivity will imply the existence of k edge-disjoint

spanning trees. Tutte [85] and Nash-Williams [75] show that this is closely related to

partition-connectivity (see Section 2.1.8 for definitions).

Theorem 2.2.19 (Tutte [85]; Nash-Williams [75]) A multigraph contains k edge-disjoint

spanning trees if and only if it is k-partition-connected.
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This implies the following surprising corollary.

Corollary 2.2.20 Every 2k-edge-connected multigraph G has k edge-disjoint spanning

trees.

Proof. Consider a partition P = {P1, . . . , Pt} of V (G). Since G is 2k-edge-connected,

eG(P) = 1
2

∑t
i=1 dG(Pi) ≥

1
2

∑t
i=1 2k = kt. This implies that G is k-partition-connected,

and the corollary follows from Theorem 2.2.19.

To generalize the Tutte-Nash-Williams theorem to hypergraphs, it is natural to re-

place spanning trees by connected spanning sub-hypergraphs. In hypergraphs, how-

ever, being k-partition-connected is a sufficient but not a necessary condition to have k

hyperedge-disjoint connected spanning sub-hypergraphs. In fact, while being k-partition-

connected is in P , having k hyperedge-disjoint connected spanning sub-hypergraphs is

NP-complete.

Theorem 2.2.21 [34] The problem of deciding whether a hypergraph H = (V, E) can be

decomposed into k connected spanning sub-hypergraphs is NP-complete for every integer

k ≥ 2.

A less intuitive generalization, which allows the necessary condition to hold, is to

replace spanning trees by partition-connected spanning sub-hypergraphs. Note that a

spanning tree is a partition-connected spanning subgraph. Frank, Király and Kriesell

[34] proved the following theorem on decomposing a hypergraph into partition-connected

sub-hypergraphs.

Theorem 2.2.22 [34] A hypergraph H can be decomposed into k hyperedge-disjoint

partition-connected sub-hypergraphs if and only if H is k-partition-connected.

They also derive the following corollary which is a generalization of Corollary 2.2.20.

Recall that a hypergraph is of rank r if every hyperedge is of size at most r.
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Corollary 2.2.23 [34] A rk-edge-connected hypergraph H of rank r can be decomposed

into k partition-connected sub-hypergraphs, and hence into k connected spanning subhy-

pergraphs.

As we shall see in Chapter 3, these results on hypergraphs are the basis for the

Steiner Tree Packing problem. The proof of Theorem 2.2.22 is based on matroid

theory, which we have not discussed. Instead, we shall outline a proof using results on

graph orientations. First we present the following powerful theorem by Edmonds [17].

The short and elegant proof is due to Lovász [66] using submodularity.

Theorem 2.2.24 [17] A directed graph has k edge-disjoint spanning r-arborescences if

and only if the following cut condition:

din(X) ≥ k (2.13)

holds for every set X ⊆ V − r.

Proof. We reproduce the proof from [66]. The necessity is easy. We prove the sufficiency

by induction on k. The base case k = 0 is trivial. Let F be a set of arcs such that (i)

F is an r-arborescence, and (ii) din
D−F (X) ≥ k − 1 for every set X ⊆ V − r. Given an F

that satisfies (i) and (ii) and V (F ) ⊂ V (D) (F = ∅ at the beginning), we shall show that

we can always add an arc a so that F + a still satisfies (i) and (ii). Therefore, eventually

F will cover all the vertices and the theorem follows by induction.

Call a set X ⊆ V −r tight if din
D−F (X) = k−1, notice that any tight set must intersect

V (F ) by (2.13). Consider a minimal tight set S not contained in V (F ); if no such set

exists, then F + a satisfies (i) and (ii) for any arc a = uv with u ∈ V (F ) and v /∈ V (F ).

There must be an arc a = uv with u ∈ V (F ) ∩ S and v ∈ S − V (F ); for otherwise,

din
D (S − V (F )) = din

D−F (S − V (F )) ≤ din
D−F (S) = k − 1 which contradicts (2.13). The

first equality holds since no arc in F enters S − V (F ), the second inequality holds since

there is no arc a = uv with u ∈ V (F ) ∩ S and v ∈ S − V (F ), and the third equality

holds because S is tight.
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The next step is the crucial use of submodularity:

Proposition 2.2.25 The intersection of two intersecting tight sets is a tight set.

Proof. Let X and Y be two intersecting tight sets. By Proposition 2.1.2, we have

(k−1)+(k−1) = din
D−F (X)+din

D−F (Y ) ≥ din
D−F (X∩Y )+din

D−F (X∪Y ) ≥ (k−1)+(k−1).

So we must have equality throughout, and this implies that X ∩ Y is tight.

Now we claim that F + a satisfies (i) and (ii). The validity of (i) is trivial. Suppose

(ii) does not hold; then there is a tight set Y such that u /∈ Y and v ∈ Y . By Proposi-

tion 2.2.25, S ∩ Y is again a tight set, which contradicts the minimality of S since u ∈ S

but u /∈ Y . Therefore, (ii) must also hold and this proves the theorem.

To prove the Tutte-Nash-Williams theorem (Theorem 2.2.19), we use the following

orientation theorem by Frank [28]. Notice that Frank’s theorem is implied by the Tutte-

Nash-Williams theorem, but Frank gave a short and direct proof of it.

Theorem 2.2.26 [28] Given a graph G = (V, E) and a vertex r ∈ V , G has an orienta-

tion for which din(X) ≥ k for every X ⊆ V − r if and only if G is k-partition-connected.

In other words, G has a rooted k-arc-connected orientation if and only if G is k-partition-

connected.

Proof. We reproduce the proof from [28]. Necessity is clear. To see the sufficiency,

extend G by a minimum number of edges rv (v ∈ V (G)) to form G′ so that G′ has

a rooted k-arc-connected orientation D′. If this minimum is zero, then we are done;

so assume that it is positive. We can assume that δin
D′(r) = 0. Call a set critical if

δin
D′(X) = k. The following is straightforward.

Proposition 2.2.27 The intersection and the union of two critical sets with non-empty

intersection are critical.



Chapter 2. The Basics 39

Let e = rt be a new arc in the given orientation and let T be the set of vertices

reachable from t along a path.

Proposition 2.2.28 If Z is critical and Z ∩ T 6= ∅, then Z ⊆ T .

Proof. Assume Z 6⊆ T . For Y := V − T we have k = δin(Y ) + δin(Z) = δin(Y ∩ Z) +

δin(Y ∪ Z) + d(Y, Z) ≥ k + 0 + d(Y, Z) ≥ k, where d(Y, Z) denotes the number of arcs

connecting Y −Z and Z − Y (in either direction). From this we get δin(Y ∪Z) = 0 and

d(Y, Z) = 0. The first inequality implies that t ∈ Z (by the definition of T and by the

assumption that T ∩ Z 6= ∅), while the second one implies that t /∈ Z (because of edge

st); this contradiction proves the claim.

Suppose there is a vertex v ∈ T which is not contained in any critical set. Let P be

a directed path from t to v. Reorient the edges of P and discard the edge e. The new

orientation is still a rooted k-arc-connected orientation, a contradiction to the minimality

of the number of new rv edges.

So we can assume every vertex in T belongs to a critical set. Let V1, . . . , Vt−1 denote

the maximal critical sets in T . By Proposition 2.2.27 and Proposition 2.2.28, these are

disjoint sets and form a partition of T . Let Vt := V − T and P := {V1, . . . , Vt}. Since

δin
D′(Vt) = 0, we have k(t − 1) =

∑t−1
i=1 δin

D′(Vi) =
∑t

i=1 δin
D′(Vi) = eG′(P) > eG(P), where

eG(P) denotes the number of cross edges of P in G. However, this contradicts the fact

that G is k-partition-connected.

Now we are ready to prove the Tutte-Nash-Williams theorem. The necessity is clear.

We prove the sufficiency here. Choose an arbitrary vertex r as the root. Since G is

k-partition-connected, by Theorem 2.2.26, G has a rooted k-arc-connected orientation

D. By Theorem 2.2.24, D can be decomposed into k arc-disjoint r-arborescences. The

underlying graph of each of these r-arborescences is a spanning tree in G, this proves the

theorem.
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To prove the result by Frank, Király and Kriesell (Theorem 2.2.22), one can take a

similar approach. Choose an arbitrary vertex r as the root. If H is k-partition-connected,

then H can be oriented as a rooted k-hyperarc-connected in-hypergraph
−→
H , where each

hyperarc has a designated head and all other vertices are tails. This step is shown in

[33]; one can also derive this from Theorem 2.2.18. Given
−→
H , by submodularity, one can

“shrink” each hyperarc into an ordinary arc without destroying rooted k-arc-connectivity.

Here, by shrinking we mean deleting all but one tail of each hyperarc. (The proof of this

fact is very similar to the proof of Lemma 4.3.2.) After shrinking every hyperarc into

an ordinary arc, we can apply Edmonds’ theorem (Theorem 2.2.24) to construct k arc-

disjoint r-arborescences. By un-shrinking the hyperarc and ignoring the orientations, we

have k hyperedge-disjoint partition-connected spanning sub-hypergraphs, as required.



Chapter 3

Steiner Forest Packing

The results in this chapter are based on [60, 61].

3.1 Introduction

A fundamental result of Menger, proved in 1927, states that for any two vertices a, b ∈

V (G) the maximum number of edge-disjoint a, b-paths is equal to the minimum size of

an a, b-edge-cut [73]. Since then, many min-max relations of this type have been being

discovered (see [84]), and they are some of the most powerful and beautiful results in com-

binatorics (e.g. max-flow min-cut, max-matching min-odd-set-cover, etc.). Furthermore,

some of the most fundamental polynomial time (exact) algorithms have been designed

around such relations.

Like min-max relations in the development of exact algorithms, approximate min-

max relations are vital in the development of approximation algorithms. For example, a

seminal work of Leighton and Rao [62] (which shows that for any n-node multicommodity

flow problem with uniform demands, the max-flow for the problem is within an O(log n)

factor of the upper bound implied by the min-cut) leads to approximation algorithms for

many different problems.

In this chapter, we present an approximate min-max relation for a generalization of

41
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the edge-disjoint a, b-paths problem, namely the Steiner Forest Packing problem.

Given an undirected multigraph G and a set S := {S1, . . . , St} of disjoint subsets of

vertices of G, a Steiner S-subgraph F (or simply an S-subgraph) is a subgraph of G such

that each Si is connected in F for 1 ≤ i ≤ t. An acyclic Steiner S-subgraph is called

a Steiner S-forest (or simply an S-forest). We call each Si a terminal group. Observe

that we can assume that each terminal group has at least two vertices. The Steiner

Forest Packing problem is to find a largest collection of edge-disjoint S-forests. Note

that an S-subgraph contains an S-forest as a subgraph. Therefore, to show a graph has k

edge-disjoint S-forests, it suffices to show that a graph has k edge-disjoint S-subgraphs.

An important special case of the Steiner Forest Packing problem is when there is

only one terminal group in S, i.e. S = {S}, then the problem is known as the Steiner

Tree Packing problem. We call an S-subgraph in such a case an S-subgraph. A

Steiner S-tree (or simply an S-tree) is just a minimal S-subgraph.

This Steiner Tree Packing problem and its generalization (where different spec-

ified subsets of vertices have to be connected by edge-disjoint trees) have attracted con-

siderable attention from researchers in different areas. It has applications in routing

problems arising in VLSI circuit design [56, 72, 80, 37, 38, 39, 40, 41, 86, 51], where an

effective way of sharing different signals amongst cells in a circuit can be achieved by

the use of edge-disjoint Steiner trees. It also has a variety of computer network appli-

cations such as multicasting [76, 9, 10, 4, 87, 36], video-conferencing [45] and network

information flow [83, 63], where simultaneous communications can be facilitated by using

edge-disjoint Steiner trees.

When S = V (G), the Steiner Tree Packing problem is known as the Spanning

Tree Packing problem. Recall from Chapter 2 (Theorem 2.2.19) that Tutte [85] and

Nash-Williams [75] independently proved that a graph has k edge-disjoint spanning trees

if and only if EG(P) ≥ k(|P| − 1) for every partition P of V (G) into nonempty classes,

where EG(P) denotes the number of edges connecting distinct classes of P. As a corollary
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(Corollary 2.2.20) of the Tutte-Nash-Williams result, every 2k-edge-connected graph has

k edge-disjoint spanning trees. Karger [52] exploited this approximate min-max relation

to give the best known algorithm (near linear time) to compute a minimum cut of a

graph.

The Steiner Tree Packing problem, however, is NP-complete (a proof will be

given in Section 3.8). Therefore, under the assumption that NP 6= co-NP, a min-max re-

lation like the Tutte-Nash-Williams theorem does not exist. Nonetheless, Kriesell [57, 58]

conjectures that the approximate min-max corollary of the Tutte-Nash-Williams theorem

does generalize to the Steiner Tree Packing problem. In the following, we say a set

of vertices S is k-edge-connected in G if for every pair of vertices a, b ∈ S there are k

edge-disjoint paths between a and b in G.

Kriesell’s conjecture: [57, 58]

If S is 2k-edge-connected in G, then G has k edge-disjoint S-trees.

The conjecture is best possible for every k as shown by any 2k-regular 2k-edge-connected

graph G which is not a complete graph by setting S = V (G) (e.g. a 2k-dimensional

hypercube). To see this, any 2k-regular graph has kn edges but a spanning tree requires

n − 1 edges. So there are just not enough edges to have more than k edge-disjoint

spanning trees when n ≥ k + 2, i.e. when G is not a complete graph.

3.1.1 Previous Work

Prior to this work, Kriesell’s conjecture was open despite several attempts. It was not

known to be true even when 2k is replaced by any o(n) · k (not even when k = 2 [49]).

Similarly, not even a polynomial time o(n) approximation algorithm was known for the

Steiner Tree Packing problem. That is, in simple graphs, no known polynomial time

approximation algorithm has an asymptotic performance better than the naive algorithm

of simply finding one spanning tree.
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In the special case where every Steiner vertex has an even degree, Kriesell [58] proves

that his conjecture is true. By replacing each edge by two parallel edges, we have the

following interesting corollary of this result: if S is 2k-edge-connected in G, there is a

collection of 2k S-trees such that every edge is used by at most 2 such S-trees. So, we

have a 2-approximation algorithm if we allow half integral solutions. Also, the special

case where there are no edges between Steiner vertices (i.e. the Steiner vertices induce

an independent set) is considered by Kriesell [57] and Frank, Király and Kriesell [34].

In particular, it is proven in [57] that if G has no edges between Steiner vertices and

S is (k + 1)k-edge-connected in G, then G has k edge-disjoint S-trees. This result is

improved in [34] by replacing (k + 1)k with 3k; it is based on a generalization of the

Tutte-Nash-Williams theorem to hypergraphs using matroid theory. Recently, Kriesell

[59] proves that if S is (l + 2)k-edge-connected in G where l is the maximum size of

a bridge (see [59] for its definition), then G has k edge-disjoint S-trees; this result is a

common generalization of the Tutte-Nash-Williams theorem (when l = 0) and the case

where there is no edge between Steiner vertices (when l = 1).

For the general case, Petingi and Rodriguez [78] prove that if S is (2( 3
2
)|V (G)−S| · k)-

edge-connected in G, then G has k edge-disjoint S-trees. Kriesell [58], by using the result

for the case that every Steiner vertex has an even degree, improves this by weakening the

connectivity requirement to 2|V (G)− S|+ 2k. Jain, Mahdian and Salavatipour [49], by

using a shortcutting procedure, prove that if S is (|S|/4 + o(|S|))k-edge-connected in G,

then G has k edge-disjoint S-trees; this improves an exponential connectivity bound in

terms of |S| obtained earlier by Kriesell [58]. In both papers [58, 49], an optimal bound

of d4
3
ke on the connectivity requirement is obtained for the case |S| = 3.

Jain, Mahdian, Salavatipour also study a natural linear programming relaxation of

the Steiner Tree Packing problem. The Fractional Steiner Tree Packing

problem is formulated [49] by the following linear program. In the following T denotes

the collection of all S-trees in a graph G, and ce is the given capacity of the edge e.
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maximize
∑

T∈T xT

subject to ∀e ∈ E :
∑

T∈T xT ≤ ce

∀T ∈ T : xT ≥ 0

(3.1)

By using the Ellipsoid algorithm on the dual of the above linear program, Jain,

Mahdian and Salavatipour [49] show that there is a polynomial time α-approximation

algorithm for the Fractional Steiner Tree Packing problem if and only if there is a

polynomial time α-approximation algorithm for the Minimum Steiner Tree problem.

The Minimum Steiner Tree problem is to find a minimum weight S-tree for a given

weighted graph. Robins and Zelikovsky [82] give a 1.55 approximation algorithm, and

Bern and Plassmann [3] show that it is APX-hard (no polynomial time approximation

scheme unless P=NP). Therefore, by using the results of the Minimum Steiner Tree

problem, the Fractional Steiner Tree Packing problem is APX-hard but can be

approximated within a factor of 1.55 to the optimal solution [49]. As a corollary, the

(integral) Steiner Tree Packing problem is shown to be APX-hard [49].

Besides designing approximation algorithms, effort has been put in to designing faster

exact algorithms by integer programming approaches [72, 80, 37, 38, 39, 40, 41, 86, 51]

as well as designing practical heuristic methods [76, 9, 10, 4, 87, 36, 45, 83].

All the previous work mentioned above is related to the Steiner Tree Packing

problem. For the Steiner Forest Packing problem, Chekuri and Shepherd [12] gave a

2-approximation algorithm when the input graph is Eulerian. Specifically, they show that

given an Eulerian graph, if each Si is 2k-edge-connected in G, then G has k edge-disjoint

S-forests. A related problem is the Minimum Steiner Forest problem, where the goal

is to find a minimum cost S-forest F in G. Goemans and Williamson [42] gave a primal-

dual 2-approximation algorithm for the Minimum Steiner Forest problem. Chekuri

and Shepherd show that their result, when used with linear programming, implies an

alternative 2-approximation algorithm for the Minimum Steiner Forest problem.
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3.1.2 Our Results

The main result of this chapter is the following sufficient condition for the existence of k

edge-disjoint S-forests.

Theorem 3.1.1 If each Si is 30k-edge-connected in G, then G has k edge-disjoint S-

forests.

In the rest of this chapter, we let Q := 30 for notational convenience. In the special

case of Steiner Tree Packing problem, a slightly better bound can be obtained. This

answers Kriesell’s conjecture affirmatively up to a constant factor.

Theorem 3.1.2 If S is 24k-edge-connected in G, then G has k edge-disjoint S-trees.

The proof of Theorem 3.1.1 has three main ingredients: (i) a new technique to help

decompose a general graph into graphs with special structures, which we introduce in

Section 3.3.3 (and we foreshadowed in Section 2.2.1), (ii) the edge splitting-off lemma by

Mader [71], and (iii) a result by Frank, Király and Kriesell [34] on packing hypertrees.

The proof is constructive so that if each Si is 30k-edge-connected in G, then a collection

of k edge-disjoint S-forests can be constructed in polynomial time. For a graph to have

k edge-disjoint S-forests, each terminal group must be at least k edge-connected in G.

Therefore, Theorem 3.1.1 implies the first polynomial time constant factor approximation

algorithm for the Steiner Forest Packing and the Steiner Tree Packing problem

(see Section 3.9 for algorithmic aspects of Theorem 3.1.1).

The Capacitated Steiner Forest Packing problem is a generalization of the

Steiner Forest Packing problem where each edge e has an integer capacity ce which

bounds the number of forests that can use e (the Steiner Forest Packing problem is

the special case where ce = 1 for all e ∈ E(G)). We extend the algorithm for the Steiner

Forest Packing problem to give a polynomial time constant factor approximation

algorithm for the Capacitated Steiner Forest Packing problem (see Section 3.10).
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3.2 Overview of the Main Proof

In this section, we present the ideas leading to the proof of Theorem 3.1.1.

Steiner Tree Packing in Quasi-Bipartite Graphs

To understand our approach, it is illuminating to start with the ground work. In [34],

Frank, Király and Kriesell consider a hypergraph generalization of the Spanning Tree

Packing problem. Recall that a hypergraph H is k-partition-connected if EH(P) ≥

k(|P| − 1) holds for every partition P of V (H) into non-empty classes, where EH(P)

denotes the number of hyperedges intersecting at least two classes. The main theorem

in [34] is the following.

Theorem 3.2.1 A hypergraph H is k-partition-connected if and only if H can be decom-

posed into k sub-hypergraphs each of which is 1-partition-connected.

The proof is based on the observation that the hyperforests (see [34] for the definition

of a hyperforest) of a hypergraph form the family of independent sets of a matroid

and thus Edmonds’ matroid partition theorem can be applied. We have also outlined

an alternative proof in Section 2.2.6 based on an orientation result of Frank and an

arborescence packing result of Edmonds.

Consider an instance of the Steiner Tree Packing problem where G has no edge

between Steiner vertices; such a G is referred as a quasi-bipartite graph in the literature.

We construct a hypergraph H with vertex set S, where S is the set of terminal vertices of

G. For every Steiner vertex v in G, we add a hyperedge in H consisting of the neighbours

NG(v) of v in G (notice that NG(v) ⊆ S because G is quasi-bipartite). Also, for every

edge uv ∈ E(G), u, v ∈ S, we add an edge uv in H. As we shall see in Section 3.5, we

can assume every Steiner vertex is of degree 3 in G by using Mader’s splitting-off lemma.

So the hyperedges in H are of size at most 3. If we have k edge-disjoint connected

sub-hypergraphs of H, then we can easily construct k edge-disjoint S-trees in G; we just
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need to replace a hyperedge in H by the corresponding Steiner vertex and the edges

incident to it. In fact, the converse is also true since every Steiner vertex is of degree 3,

so edge-disjoint S-trees use disjoint Steiner vertices, and hence they correspond to edge-

disjoint connected sub-hypergraphs of H. Also, using the fact that each Steiner vertex is

of degree 3, it can be proved that if S is 3k-edge-connected in G, then the hypergraph H

constructed is k-partition-connected. Therefore, by applying Theorem 3.2.1, the following

result on the Steiner Tree Packing problem is obtained as a corollary.

Theorem 3.2.2 [34] If G has no edge between Steiner vertices and S is 3k-edge-connected

in G, then G has k edge-disjoint S-trees.

In [60], Theorem 3.2.2 is used to prove Theorem 3.1.2 with a slightly bigger constant

26. It was pointed out by Oleg Pikhurko [79] that using Theorem 3.2.1 instead would

yield an improvement.

Steiner Tree Packing in General Graphs

Given an instance of the Steiner Tree Packing problem, our method is to reduce the

general case to the seemingly restrictive case of Theorem 3.2.2. The key observation is

that Theorem 3.1.2 holds with a rich combinatorial property, which we call the extension

property. The extension property roughly (formally defined in Section 3.3.3) says that

for any edge-partition of the edges incident to a “small” degree vertex, the edge-partition

can be extended to edge-disjoint S-trees such that each class in the edge-partition is

contained in one S-tree.

The proof is basically divided into two steps. Given a graph G with l edges between

Steiner vertices, we search for a minimum S-cut in G with a Steiner edge, and decompose

G through the cut, resulting in two graphs G1 and G2 with a total of at most l − 1

edges between Steiner vertices. A cut decomposition lemma (Lemma 3.4.4) shows that

if Theorem 3.1.2 holds in both G1 and G2 with the extension property, then we can
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always “piece together” the solutions in G1 and G2 so that Theorem 3.1.2 also holds

in G with the extension property. Therefore, by applying the cut decomposition step

recursively, we reduce an instance with l edges between Steiner vertices to at most l + 1

instances with no edges between Steiner vertices. By the cut decomposition lemma, if all

those l +1 graphs (without an edge between Steiner vertices) satisfy Theorem 3.1.2 with

the extension property, then G satisfies Theorem 3.1.2 (with the extension property) by

“piecing” their solutions together. This key step removes the difficulty of having edges

between Steiner vertices, and gives new insight into the core of the problem. It should be

mentioned that the Steiner Tree Packing problem remains APX-hard when there

are no edges between Steiner vertices.

The second step, of course, is to prove that Theorem 3.1.2 does indeed hold with the

extension property when there are no edges between Steiner vertices. By using Mader’s

splitting lemma (see Section 3.5), we can assume that every Steiner vertex is of degree

3. With a sufficiently high connectivity assumption (24k in Theorem 3.1.2), we can use

Theorem 3.2.2 to show that the extension property holds for any graph with no edges

between Steiner vertices and with every Steiner vertex of degree 3. This step is more

involved, and will appear in Section 3.7. Intuitively, it says that if S is highly edge-

connected in G, then any edge-partition of the edges incident to a “small” degree vertex

can be extended to edge disjoint S-trees.

Steiner Forest Packing in Eulerian Graphs

In [12], Chekuri and Shepherd consider the Steiner Forest Packing problem when

G is Eulerian. By assuming G is Eulerian, as we shall see in Section 3.5, we can assume

that G has no Steiner vertices, i.e. V (G) = S1 ∪ . . . ∪ St. Then they find a “core” C

which contains at least one group and show that G[C] has k edge-disjoint spanning trees

T1, . . . , Tk, by using Tutte [85] and Nash-Williams’ [75] result on spanning tree packing.

Now they contract C in G and obtain a new graph G∗. Note that C contains a group
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and thus has at least two vertices, so G∗ has fewer vertices than G. By induction, G∗

has k edge-disjoint Steiner forests F1, F2, . . . , Fk. Now, as each tree is spanning in C,

F1 ∪T1, . . . , Fk ∪ Tk are the desired k edge-disjoint Steiner forests in G. The base case in

their proof is the Tutte and Nash-Williams result on spanning tree packing.

Steiner Forest Packing in General Graphs

If G is non-Eulerian, we are unable to assume that V (G) = S1∪ . . .∪St, and the situation

is much more complicated. Here is the main difficulty: Even if we assume the existence

of a “core” C of G so that G[C] has k edge-disjoint Steiner trees T1, . . . , Tk connecting

the terminal groups inside C, and also the existence of k edge-disjoint Steiner forests

F1, . . . , Fk of G∗ as constructed above, we cannot guarantee that a terminal group which

is connected in Fi in G∗ is still connected in Fi ∪ Ti in G since Ti does not necessarily

span C.

Here the extension property introduced earlier comes into the picture. Roughly, we

show that there are k edge-disjoint Steiner trees in G[C] that “extend” F1, . . . , Fk so

that F1 ∪T1, . . . , Fk ∪Tk are actually k edge-disjoint Steiner forests. Unlike the situation

in the Steiner Tree Packing problem, however, we also need to prove structural

properties on F1, . . . , Fk in order for them to be extended (not every F1, . . . , Fk can be

extended). This requires us to revise and generalize the extension property for Steiner

Tree Packing. In particular we need to add an additional requirement to the extension

theorem, which causes the constant in Theorem 3.1.1 (i.e. approximation ratio) to be

slightly bigger than that in Theorem 3.1.2.
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3.3 The Setup

3.3.1 Notation and Definitions

We repeat some definitions for the sake of having them all available in one subsection.

We have an undirected multigraph G and a set S := {S1, . . . , St} of disjoint subsets of

vertices of G. Let S∗ := S1 ∪ S2 ∪ · · · ∪ St. Each vertex in S∗ is called a terminal vertex,

and each vertex in V (G) − S∗ is called a Steiner vertex. We call each Si a terminal

group, note that we can assume that each group is of size at least 2. A subgraph H of

G is a S-subgraph if each Si is connected in H for 1 ≤ i ≤ t; a subgraph H is a double

S-subgraph of G if H is a S-subgraph of G and every vertex in S∗ is of degree at least

2 in H. Likewise, given S ⊆ V (G), we say a subgraph H of G is a S-subgraph if H is

connected and S ⊆ V (H). And a subgraph H is a double S-subgraph of G if H is a

S-subgraph of G and every vertex in S is of degree at least 2 in H. Furthermore, we say

a set of vertices S is k-edge-connected in G if for every pair of vertices a, b ∈ S there

are k edge-disjoint paths between a and b in G. We say a subgraph H spans a subset of

vertices U if U ⊆ V (H).

For a subset of vertices X, δG(X) denotes the set of edges in G with one endpoint in

X and the other endpoint in V (G) − X. Notice that if we remove the edges in δG(X)

from G, then X is disconnected from V (G)−X. We also call a set of edges Y an edge-cut

if G− Y is disconnected. A subset of vertices X is a group separating set if

1. S∗ ∩X 6= ∅ and S∗ ∩ (V (G)−X) 6= ∅;

2. for each Si, either Si ⊆ X or Si ⊆ V (G)−X.

The following is an important notion mentioned in the previous section: A core C is

a group separating set with dG(C) ≤ Qk and |C| minimal. Let R ⊆ V (G) − S∗ be a

specified subset of Steiner vertices. A subset of vertices X is an R-isolating set if

1. R ∩X 6= ∅;
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2. S∗ ∩X = ∅.

Given a vertex v, we denote by δ(v) the set of edges with an endpoint in v. Pk(v) :=

{δ1(v), . . . , δk(v)} is an edge-subpartition if

1. δ1(v) ∪ δ2(v) ∪ . . . ∪ δk(v) ⊆ δ(v);

2. δi(v) ∩ δj(v) = ∅ for i 6= j.

Also, Pk(v) is a balanced edge-partition of δ(v) if

1. δ1(v) ∪ δ2(v) ∪ . . . ∪ δk(v) = δ(v);

2. δi(v) ∩ δj(v) = ∅ for i 6= j;

3. |δi(v)| ≥ 2 for 1 ≤ i ≤ k.

Furthermore, Pk(v) is a balanced edge-subpartition if it can be extended to a balanced

edge-partition. More formally, Pk(v) is a balanced edge-subpartition of δ(v) if there

exists a balanced edge-partition P ′
k(v) := {δ′1(v), . . . , δ′k(v)} of δ(v) so that δi(v) ⊆ δ′i(v)

for 1 ≤ i ≤ k. Note that δi(v) of a balanced edge-subpartition could be an empty set.

Equivalently, Pk(v) is a balanced edge-subpartition of δ(v) if the number of edges of δ(v)

not appearing in Pk(v) is at least the number of δi(v) with |δi(v)| = 1 plus two times the

number of δi(v) with |δi(v)| = 0.

The open neighbourhood of a vertex v in G is denoted by NG(v). We use Nδi
(u)

to denote the set of neighbours joined to u by δi(u). Given k edge-disjoint subgraphs

{H1, . . . , Hk} of G, a vertex v is balanced with respect to {H1, . . . , Hk} (or just balanced if

{H1, . . . , Hk} is clear from the context) if Pk(v) := {H1∩δ(v), . . . , Hk∩δ(v)} is a balanced

edge-subpartition. The following are two situations where a vertex v is balanced with

respect to k edge-disjoint subgraphs {H1, . . . , Hk}; notice that the proofs are trivial, we

list them here for future reference.
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Proposition 3.3.1 Let v be a vertex and {H1, . . . , Hk} be k edge-disjoint subgraphs.

Then v is balanced with respect to {H1, . . . , Hk} if:

1. there are 2k edges in δ(v) not used in any of {H1, . . . , Hk};

2. v is of degree at least 2 in each Hi.

Finally, given G, S := {S1, . . . , St} and R ⊆ V (G) − S∗, {H1, . . . , Hk} are k edge-

disjoint S-subgraphs that balance S∗∪R if every vertex in S∗∪R is balanced with respect

to {H1, . . . , Hk}.

3.3.2 Main Theorem

Now we are ready to state the main theorem in this chapter. This theorem is stronger

than Theorem 3.1.1; the stronger statement will help us to reduce the Steiner Forest

Packing problem to a strengthened version of the Steiner Tree Packing problem

in Section 3.6.2. Recall that in this chapter Q = 30.

Theorem 3.3.2 (The Main Theorem)

Given G, S := {S1, . . . , St}, and R ⊆ V (G)− S∗. If each Si is Qk-edge-connected in G

and each vertex in R is of degree at least Qk, then there are k edge-disjoint S-subgraphs

that balance S∗ ∪ R.

Note that Theorem 3.3.2 trivially implies Theorem 3.1.1, because every S-subgraph

contains an S-forest. The vertices in R are not needed for the Steiner Tree Packing

problem, but are very important in the proof of the Steiner Forest Packing problem.

When we apply the decomposition procedure as mentioned in the outline, vertices in R

serve as intermediate vertices to combine the solutions (i.e. edge-disjoint subgraphs) in

the smaller graphs. Requiring R to be balanced allows the solutions to be extended, and

thus makes the approach mentioned in the outline work. In the remainder of this section,

we develop the techniques to reduce this main theorem to a strengthened version of the

Steiner Tree Packing problem.
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3.3.3 The Extension Theorem

The extension property defined below is crucial in applying a divide-and-conquer strat-

egy to decompose the original problem instance to smaller instances with nice structures.

Note that the extension property is defined only for the Steiner Tree Packing prob-

lem, so we shall use S instead of S∗ to denote the set of all terminal vertices.

Definition 3.3.3 (The Extension Property)

Given G, and S, R ⊆ V (G) with S∩R = ∅, and an edge-subpartition Pk(v) := {δ1(v), . . . ,

δk(v)} of a vertex v, k edge-disjoint S-subgraphs {H1, . . . , Hk} extend Pk(v) if:

1. δi(v) ⊆ E(Hi) for each 1 ≤ i ≤ k;

2. Hi − v is a (S ∪Nδi
(v)− v)-subgraph for each 1 ≤ i ≤ k;

In this case, we also say Pk(v) is extendible. If every vertex in S ∪ R − v is balanced

with respect to {H1, . . . , Hk} as well, then we say Pk(v) is balanced-extendible.

Observe that the above definition makes sense even if S = R = ∅. Intuitively, the first

property of the extension property is to make sure that when we use the cut decomposition

operation (to be defined in Section 3.4) on G to obtain G1 and G2 and apply the induction

hypothesis (Theorem 3.3.4), we can choose the k edge-disjoint subgraphs of G1 and G2

to be “compatible”, so that they combine to define k edge-disjoint subgraphs in G. The

second property of the extension property is to make sure that the set of terminals S is

connected in each of the k edge-disjoint subgraphs in G; this will be proved formally in

Lemma 3.4.2 using the concept of “natural extension” to be defined in Section 3.4.1.

The following extension theorem, which is at the heart of Theorem 3.1.2, gives suffi-

cient conditions for an edge-subpartition to be balanced-extendible.

Theorem 3.3.4 (The Extension Theorem)

Given G, and S, R ⊆ V (G) with S ∩ R = ∅. If S is Qk-edge-connected in G and every
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vertex in R is of degree at least Qk, then there are k edge-disjoint S-subgraphs that balance

S ∪R.

Furthermore, given a vertex v, an edge-subpartition Pk(v) is balanced-extendible if

either of the following happens:

1. v ∈ S, v is of degree Qk and Pk(v) is a balanced edge-subpartition.

2. NG(v) ⊆ S ∪ R, v is of degree at most Qk, v /∈ S ∪ R, and there is no R-isolating

set Y with v ∈ Y and dG(Y ) ≤ Qk.

Roughly speaking, part (2) of the extension theorem is to deal with situations where

we could not guarantee that Pk(v) is a balanced edge-subpartition. We remark that

when Pk(v) is not a balanced edge-subpartition, it may not even be extendible, and so

we need the extra conditions guaranteed by part (2).

3.4 Technique - Cut Decomposition

Given a multigraph G and a subset of vertices Y ⊂ V (G), the cut decomposition

operation constructs two multigraphs G1 and G2 from G as follows. G1 is obtained

from G by contracting V (G) − Y to a single vertex v1, and keeping all edges from Y

to v1 (this may produce multiple edges). Similarly, G2 is obtained from G by con-

tracting Y to a single vertex v2, and keeping all edges from V (G) − Y to v2. So,

V (G1) = Y ∪{v1}, δG(Y ) ⊆ E(G1) and V (G2) = (V (G)−Y )∪{v2}, δG(Y ) ⊆ E(G2) (see

Figure 3.1 for an illustration). Notice that for each edge e ∈ δG(Y ), e appears in both

G1 and G2 (i.e. e in G1 is incident with v1 where e in G2 is incident with v2). So, given

an edge e incident with v1 in G1, we refer to the same edge in G2 incident with v2 as the

corresponding edge of e in G2, and vice versa. The cut decomposition operation will be

used several times later. The following are two basic properties of G1 and G2:

Proposition 3.4.1 (Properties of G1 and G2)
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Figure 3.1: The construction of G1 and G2 from G.

1. For each pair of vertices u, v in Gi, the maximum number of edge-disjoint paths

between u, v in Gi is at least the maximum number of edge-disjoint paths between

u, v in G. In particular, if a set S is Qk-edge-connected in G, then S ∩ V (G1) and

S ∩ V (G2) are Qk-edge-connected in G1 and G2 respectively.

2. The degree of each vertex v in V (Gi)− {vi} is equal to the degree of v in G.

3.4.1 Natural Extensions

In the following, we show how to use the extension property to combine edge-disjoint sub-

graphs in two graphs obtained from the cut decomposition operation. Let G1 and G2 be

two graphs obtained from the cut decomposition operation of G. Suppose {H2
1 , . . . , H

2
k}

are k edge-disjoint subgraphs in G2. Let Pk(v2) := {H2
1 ∩ δ(v2), . . . , H

2
k ∩ δ(v2)} be an

edge-subpartition of δ(v2); so Pk(v2) is an edge-subpartition induced by {H2
1 , . . . , H

2
k}.

By the construction of the cut decomposition operation, there is a one-to-one correspon-

dence between the edges in δG2
(v2) and δG1

(v1). Hence, Pk(v2) naturally defines an

edge-subpartition Pk(v1) := {δ1(v1), . . . , δk(v1)} of δG1
(v1), where δi(v1) is defined to be

the corresponding edges of H2
i ∩ δ(v2).

Now, suppose {H1
1 , . . . , H

1
k} are k edge-disjoint subgraphs in G1 that extend Pk(v1);

note that H1
i −v might have no edges if |Nδi

(v1)| ≤ 1. Intuitively, each H1
i in G1 simulates

the role of v2 in G2 to connect H2
i . Let H1

i be a subgraph of G1 and H2
i be a subgraph of
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G2, we define H1
i ]H2

i to be a subgraph in G whose edge set is the union of the edge set

of H1
i and the edge set of H2

i . In the following lemma, we prove that if a, b are connected

in H2
i , then a, b are connected in H1

i ]H2
i . Because of this lemma and the intuition, we

call any such {H1
1 , . . . , H

1
k} that extends Pk(v1) defined above in G1 a natural extension

of {H2
1 , . . . , H

2
k}. Or we just say {H1

1 , . . . , H
1
k} in G1 naturally extends {H2

1 , . . . , H
2
k} in

G2. This construction will be used several times later.

Lemma 3.4.2 Let G1 and G2 be two graphs obtained from the cut decomposition opera-

tion of G. Suppose {H2
1 , . . . , H

2
k} are k edge-disjoint subgraphs in G2, and {H1

1 , . . . , H
1
k}

in G1 is a natural extension of {H2
1 , . . . , H

2
k}. Then {H1

1 ]H2
1 , . . . , H

1
k ]H2

k} are k edge-

disjoint subgraphs in G. Furthermore, if a, b ∈ V (G1) − v1 are connected in H1
i , or if

a, b ∈ V (G2)− v2 are connected in H2
i , then a, b are connected in H1

i ]H2
i of G.

Proof. For each i, let Hi := H1
i ] H2

i . By assumption, H1
i and H1

j are edge-disjoint

for i 6= j in G1, and H2
i and H2

j are edge-disjoint for i 6= j in G2. Since H1
i and H2

i use

exactly the same edges in the edge-cut, Hi and Hj are edge-disjoint for i 6= j in G.

Suppose a, b ∈ V (G1) − v1 are connected in H1
i . Since {H1

1 , . . . , H
1
k} extend Pk(v1),

H1
i − v1 is connected (by property (ii) of Definition 3.3.3) and so a, b are connected in

H1
i − v1. So, there is a path from a to b in H1

i − v1 and thus in Hi. Therefore, a, b are

connected in Hi.

Suppose a, b ∈ V (G2) − v2 are connected in H2
i . If a and b are connected in H2

i

without using v2, then there is a path from a to b in H2
i − v2 and thus in Hi. Hence

they are connected in Hi. So we consider the case that they are connected in H2
i using

v2 (see Figure 3.2 for an illustration). Let e1 and e2 be the edges incident to v2 in a path

that connects a and b in G2. Let e′1 and e′2 be the corresponding edges in G1. By our

construction, e′1, e
′
2 ∈ H1

i . Let u1 and u2 be the endpoints of e′1 and e′2 in G1, note that u1

and u2 need not be distinct as in Figure 3.2. Since {H1
1 , . . . , H

1
k} extend Pk(v1), H1

i − v1

is connected and so there is a path in H1
i − v1 between u1 and u2 in G1. By combining
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Figure 3.2: If a, b ∈ C2 is connected in H2
i by a path through v2 in G2, they are still

connected in Hi through G1.

the edges in the a, v2-path in H2
i , the edges in the u1, u2-path in H1

i −v1 and the edges in

the v2, b-path in H2
i , we get a path from a to b in Hi. As a result, a and b are connected

in Hi.

3.4.2 An Application for Steiner Forest Packing

In this subsection we state the first application which will be crucial in Section 3.6. Given

G, S := {S1, . . . , St}, and R ⊆ V (G) − S∗. Suppose Y is a group separating set. Let

G1 and G2 be two graphs obtained from the cut decomposition operation of G so that

V (G1) = Y ∪ {v1} and V (G2) = (V (G) − Y ) ∪ {v2}. Let S1,S2 be the set of terminal

groups that are contained in G1, G2 respectively. Also, let S∗
i be the union of the vertices

in the terminal groups in S i. Furthermore, let R1 := R ∩ V (G1) and R2 := R ∩ V (G2).

Lemma 3.4.3 Let G1 and G2 be defined above. Suppose {H2
1 , . . . , H

2
k} are k edge-

disjoint S2-subgraphs in G2 that balance S∗
2∪R2. Suppose further that {H1

1 , . . . , H
1
k} are k

edge-disjoint S∗
1-subgraphs in G1 that balance S∗

1 ∪R1 and naturally extend {H2
1 , . . . , H

2
k}.

Then {H1
1 ]H2

1 , . . . , H
1
k ]H2

k} are k edge-disjoint S-subgraphs of G that balance S∗ ∪R.

Proof. For each i, let Hi := H1
i ] H2

i . By Lemma 3.4.2, {H1, . . . , Hk} are k edge-

disjoint subgraphs of G. Consider a terminal group S. First assume S is in G1. Since
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S∗
1 is connected in H1

i for each 1 ≤ i ≤ k and S∗
1 ⊆ V (G1) − v1, Lemma 3.4.2 implies

that S∗
1 and thus S is connected in Hi. Now assume S is in G2. Since S is connected

in H2
i for each i and S ⊆ V (G2) − v2, by Lemma 3.4.2, S is connected in Hi for each i.

Therefore, each Hi = H1
i ] H2

i is a S-subgraph. Finally, since every vertex in S∗
1 ∪ R1

is balanced with respect to {H1
1 , . . . , H

1
k} and every vertex in S∗

2 ∪ R2 is balanced with

respect to {H2
1 , . . . , H

2
k}, it follows that every vertex in S∗ ∪ R is balanced with respect

to {H1
1 ]H2

1 , . . . , H
1
k ]H2

k}. This completes the proof.

3.4.3 An Application for Steiner Tree Packing

The second application, which will be useful in Section 3.6, deals with the extension

property. Consider G, S, R ⊆ V (G) with S ∩ R = ∅. Suppose Y is a S-separating

set. Let G1 and G2 be two graphs obtained from the cut decomposition operation on

Y . Let v ∈ G2 − v2 and Pk(v) be an edge-subpartition of v. Let S1 := S ∩ Y, S2 :=

S ∩ (V (G)− Y ), R1 := R ∩ Y , and R2 := R ∩ (V (G)− Y ).

As we mentioned after the main theorem (Theorem 3.3.2), R is not needed for the

Steiner Tree Packing problem. However, in the proof of the main theorem (Sec-

tion 3.6), we shall reduce the Steiner Forest Packing problem to a stronger version

of the Steiner Tree Packing problem, and there R is essential.

In the following lemma, we need (Si∪vi)-subgraphs instead of just Si-subgraphs; this

is to make sure that S is connected in the resulting subgraphs {H1
1 ]H2

1 , . . . , H
1
k ]H2

k}.

It is instructive to compare this lemma with the previous lemma (Lemma 3.4.3), where

v1 and v2 are not involved. This is because in the previous lemma each terminal group

is contained in either G1 or G2, while the terminal group S in the current lemma is split

over G1 and G2.

Lemma 3.4.4 Let G1 and G2 be defined as above. Suppose {H2
1 , . . . , H

2
k} are k edge-

disjoint (S2 ∪ v2)-subgraphs in G2 that balance S2 ∪ R2 and extend Pk(v). Suppose

{H1
1 , . . . , H

1
k} are k edge-disjoint (S1 ∪ v1)-subgraphs in G1 that balance S1 ∪ R1 and
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naturally extend {H2
1 , . . . , H

2
k}. Then {H1

1 ] H2
1 , . . . , H

1
k ] H2

k} are k edge-disjoint S-

subgraphs in G that balance S ∪ R and extend Pk(v).

Proof. For each i, let Hi := H1
i ] H2

i . By Lemma 3.4.2, {H1, . . . , Hk} are k edge-

disjoint subgraphs. Let Pk(v) := {δ1(v), . . . , δk(v)}. We first verify that Hi spans S ∪

Nδi
(v). Consider w ∈ S ∪ Nδi

(v). Suppose w ∈ G2. Since {H2
1 , . . . , H

2
k} are (S2 ∪ v2)-

subgraphs that extend Pk(v), we have w ∈ H2
i and thus w ∈ Hi. Suppose w ∈ S1.

Since {H1
1 , . . . , H

1
k} are (S1 ∪ v1)-subgraphs, we have w ∈ H1

i and thus w ∈ Hi. The

only case left is when w ∈ Nδi
(v) ∩ V (G1). Then vv2 ∈ H2

i and v1w ∈ H1
i . Let

Pk(v1) = {δ1(v1), . . . , δk(v1)}. Notice that v1w ∈ δi(v1). Since {H1
1 , . . . , H

1
k} are S1-

subgraphs that extend Pk(v1), we have w ∈ H1
i and thus w ∈ Hi. Hence Hi spans

S ∪Nδi
(v).

Now, we show that Hi−v is a (S∪Nδi
(v)−v)-subgraph of G. Note that {H1

1 , . . . , H
1
k}

are k edge-disjoint connected subgraphs that naturally extend {H2
1 , . . . , H

2
k}, and hence

naturally extend {H2
1 − v, . . . , H2

k − v}. Observe also that since {H2
1 , . . . , H

2
k} extend

Pk(v), {H2
1 − v, . . . , H2

k − v} are connected. For any a, b ∈ V (Hi) − v, we consider

the following three cases. If a, b ∈ V (H2
i ) − v2 − v, since a, b are connected in H2

i − v,

Lemma 3.4.2 implies that a, b are connected in Hi − v. If a, b ∈ V (H1
i ) − v1, since a, b

are connected in H1
i , Lemma 3.4.2 implies that a, b are connected in Hi − v. Now we

consider the case that a ∈ V (H1
i )−v1 and b ∈ V (H2

i )−v2−v. Since H2
i −v is connected

and spans v2, there is a path from b to v2 in H2
i − v. Since H1

i is connected and spans

v1, there is a path from v1 to a in G1. Therefore, there is an a, b-path in Hi − v by

combining the edges in the b, v2-path and the edges in the v1, a-path. So, each Hi−v is a

(S∪Nδi
(v)−v)-subgraph in G. Therefore, {H1, . . . , Hk} are k edge-disjoint S-subgraphs

in G that extend Pk(v).

Finally, since {H1
1 , . . . , H

1
k} balance S1 ∪ R1 and {H2

1 , . . . , H
2
k} balance S2 ∪ R2, this

implies that {H1, . . . , Hk} balance S ∪ R as well. This completes the proof.
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3.5 Tool - Mader’s Splitting-off Lemma

A basic tool in many edge-connectivity problems is Mader’s splitting-off lemma (see

Section 2.2.3 for more details). Let G be a graph, e1 = xy, e2 = xz be two edges, y 6= z.

The operation of obtaining G′ from G by deleting e1 and e2 and then adding exactly one

new edge between y and z (multiple edges between y and z may be produced) is said to

be splitting-off at x. This splitting-off operation at x is said to be suitable, if the number

of edge-disjoint a, b-paths in G′ is at least the number of edge-disjoint a, b-paths in G for

every pair a, b ∈ V (G) − x. Mader’s splitting-off lemma provides a sufficient condition

for the existence of a suitable splitting at a certain vertex x:

Lemma 3.5.1 (Mader’s Splitting-off Lemma) [71] Let x be a vertex of a graph

G. Suppose that x is not a cut vertex and that x is incident with at least 4 edges and

adjacent to at least 2 vertices. Then there exists a suitable splitting-off operation at x in

G.

We remark that Lemma 3.5.1 is equivalent to Theorem 2.2.11, but the form in the

above lemma is more convenient for our purpose.

Let G be a counterexample of Theorem 3.3.2 or Theorem 3.3.4 with the minimum

number of edges and then the minimum number of vertices. The following lemmas restrict

the structures of G by applying Mader’s splitting-off lemma.

Lemma 3.5.2 There is no cut vertex in G.

Proof. The first case is when G is a minimal counterexample to Theorem 3.3.2. Suppose

w is a cut vertex in G. Let {C1, . . . , Cm} be the connected components of G − w where

m ≥ 2. We construct Gj = G[Cj∪{w}] for 1 ≤ j ≤ m. We say Si is isolated if Si ⊆ V (Gj)

for some j; otherwise we say Si is separated. For each group Si, let Sj
i be Si ∩ V (Gj).

For each separated group Si, we add w to Sj
i for 1 ≤ j ≤ m.
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We claim that each Sj
i is Qk-edge-connected in Gj for 1 ≤ j ≤ m. Notice that it is

possible that Sj
i = ∅ for an isolated Si, or Sj

i = {w} for a separated Si, we will consider

these degenerate sets to be Qk-edge-connected. So, when Si is isolated, each Sj
i is Qk-

edge-connected since Si is Qk-edge-connected in G. Now we consider the case when Si

is separated. For each a ∈ Sj
i such that a 6= w, since Si is separated, there is a vertex

b 6= w that is in S l
i for some l 6= j. By the assumption that Si is Qk-edge-connected in

G, there are Qk edge-disjoint paths between a and b in G. Since w is a cut vertex, all

the paths from a to b must pass through w and thus there are Qk edge-disjoint paths

between a and w in Gj. As a is an arbitrary vertex of Sj
i −w, this proves our claim that

Sj
i is Qk-edge-connected in Gj for each j.

Note that each Gj has fewer edges than G. So, by the minimality of G, Theorem 3.3.2

holds in Gj for 1 ≤ j ≤ m. That is, there are k edge-disjoint Steiner forests {F j
1 , . . . , F j

k}

in Gj so that Sj
i is connected in each such forest for each terminal group i. In particular,

a forest F j
l spans Sj

i for all i. Now, by setting Fl = F 1
l ∪ F 2

l ∪ · · · ∪ F m
l , Fl is a subgraph

that spans Si = ∪Sj
i for all i in G. For an isolated Si, Si is obviously connected in Fl.

For a separated Si, Si is connected in Fi because each Sj
i = (Si∩V (Gj))∪w is connected

in F j
i . So, each Fl is a S-subgraph in G. And thus G has k edge-disjoint S-forests, a

contradiction. Therefore, by the minimality of G, G has no cut vertex.

In the case when G is a minimal counterexample to Theorem 3.3.4, the arguments are

very similar. We need to consider two cases which correspond to whether the cut vertex

is the vertex to be extended. Both cases can be handled in exactly the same manner,

only that we have to check the extension property also. But it is totally straightforward

and we omit the details.

Lemma 3.5.3 Every vertex in V (G) − S∗ − R is incident with exactly three edges and

adjacent to exactly three vertices.

Proof. Let G be a minimal counterexample of Theorem 3.3.2, and w be a vertex in

V (G)− S∗ − R. Suppose w is adjacent to only one vertex u. Since each Si is Qk-edge-
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connected in G, each Si is still Qk-edge-connected in G − w. By the minimality of G,

Theorem 3.3.2 holds in G −w and hence in G, a contradiction. So we can assume that w

is adjacent to at least two vertices.

Suppose w is incident with only two edges, by the previous argument, w is adjacent

to two vertices {y, z}. Since each Si is Qk-edge-connected in G and w /∈ S∗∪R, each Si is

Qk-edge-connected in G−w +yz which has one fewer edge than G. By the minimality of

G, Theorem 3.3.2 holds in G−w+yz. For any k edge-disjoint S-subgraphs {H1, . . . , Hk}

of G − w + yz that balance S∗ ∪ R, if yz is in Hi, we can construct H ′
i from Hi by

replacing yz with {wy, wz}. So G also has k edge-disjoint S-subgraphs that balance

S∗ ∪R, a contradiction. Hence we can further assume that w is incident with more than

two edges.

Suppose w is incident with at least four edges. By the previous argument, w is

adjacent to at least two vertices. And by Lemma 3.5.2, w is not a cut vertex. Therefore,

by Lemma 3.5.1, there exists a suitable splitting-off of G at w, say the resulting graph is

G∗. Since each Si is Qk-edge-connected in G and the splitting-off operation is suitable,

each Si is Qk-edge-connected in G∗ which has one fewer edge than G. By the minimality

of G, Theorem 3.3.2 holds in G∗. By a similar argument as in the previous paragraph, it

follows that Theorem 3.3.2 also holds in G; a contradiction. Therefore, the only possibility

left is when w is incident with exactly three edges.

Suppose w is incident with three edges but adjacent to only two vertices {y, z} so

that there are two edges e1, e2 between w and y. Since w /∈ S∗∪R and w is incident with

exactly three edges and adjacent only to {y, z}, e1 and e2 cannot be in two edge-disjoint

paths connecting two terminal vertices. Note also that any path that uses e1 can use e2

instead. Since each Si is Qk-edge-connected in G, it follows that S is Qk-edge-connected

in G − e1 which has one fewer edge than G. By the minimality of G, Theorem 3.1.1 holds

in G−e1. Hence Theorem 3.1.1 also holds in G, a contradiction. As a result, every vertex

w ∈ V (G)− S∗ − R of G must be incident with exactly 3 edges and adjacent to exactly
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3 vertices; this completes the proof when G is a counterexample of Theorem 3.3.2.

Now consider the case when G is a counterexample of Theorem 3.3.4. All the cases are

handled in exactly the same manner as above, only that we have to check the extension

property also. The only case that needs to be mentioned is when w is adjacent to the

vertex v to be extended, and a suitable splitting-off operation is applied by replacing wv

and wu with uv for some u 6= v. In this case the edges incident to v have been changed,

but there is a one-to-one correspondence between the new edges and the old edges. And

the extension property holds in the new graph if and only if the extension property holds

in the original graph. The remaining details are omitted.

3.6 Proof of the Main Theorem

The strategy we will use is similar to the strategy used in packing Steiner forests in

Eulerian graphs as outlined in Section 3.2 - the goal is to reduce the Steiner Forest

Packing problem to the Steiner Tree Packing problem. First, we shall find a core

C and prove some structural results about it. Recall that a core C is a group separating

set with dG(C) ≤ Qk and |C| minimal. We apply the cut decomposition operation on

G and C to obtain two graphs G1 and G2, where V (G1) = C ∪ {v1}. As usual, we set

R1 := R ∩ V (G1) and S∗
1 := S∗ ∩ V (G1) (recall that S∗ := S1 ∪ . . . ∪ St). Then we shall

show that the main theorem (Theorem 3.3.2) follows from induction and the extension

theorem (Theorem 3.3.4).

3.6.1 Group Separating Cut and Core

Let C be a core of G, where G is a minimal counterexample of Theorem 3.3.2. The

following lemma provides structural properties of a core of G. This will be used to reduce

the main theorem to the extension theorem.
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Lemma 3.6.1 Let G1 be defined as above. Then S∗
1 is Qk-edge-connected in G1, and v1

is of degree at most Qk. Furthermore, at least one of the following must be true:

1. S∗
1 ∪ {v1} is Qk-edge-connected in G1.

2. NG1
(v1) ⊆ S∗

1∪R1, and there is no R1-isolating set Y with v1 ∈ Y and dG1
(Y ) ≤ Qk.

Proof. First we prove that S∗
1 is Qk-edge-connected in G1; note that S∗

1 maybe the

union of several terminal groups. Suppose not, then there exists a set Y ⊆ V (G1) such

that Y ∩ S∗
1 6= ∅, (V (G1) − Y ) ∩ S∗

1 6= ∅, and dG1
(Y ) < Qk. Without loss of generality,

we can assume that v1 /∈ Y . Since dG1
(Y ) < Qk, each terminal group in G1 is either

contained in Y or disjoint from Y ; otherwise this contradicts the assumption that each

group is Qk-edge-connected in G and thus in G1. So, Y is a group separating set in G

with dG(Y ) < Qk and Y ⊂ V (G1)− v1 = C (as (V (G1)−Y )∩S∗
1 6= ∅). This contradicts

the fact that C is a core, and so S∗
1 is Qk-edge-connected in G1. The fact that v1 is of

degree at most Qk follows from our construction and the fact that dG1
(Y ) ≤ Qk.

Next, we prove that if NG1
(v1) 6⊆ S∗

1 ∪R1, then S∗
1 ∪{v1} is Qk-edge-connected in G1.

First, we show that v1 must be of degree Qk. Suppose, by way of contradiction, that v1

is a vertex of degree less than Qk. Let w ∈ NG1
(v1) be a vertex in V (G1) − S∗

1 − R1;

recall that this vertex exists by our assumption. Recall also that by our construction of

G1, V (G1) = C ∪ {v1}. By Lemma 3.5.3, w is of degree 3. Also v1w ∈ E(G1) and v1

is of degree less than Qk. So we have dG1
(C − w) = dG(C − w) ≤ Qk. Since C − w is

also a group separating set, this contradicts the fact that C is a core. So, v1 is of degree

exactly Qk.

Suppose, by way of contradiction, that S∗
1∪{v1} is not Qk-edge-connected in G1. Then

there exists Y ⊆ V (G1) such that v1 /∈ Y , Y ∩ S∗
1 6= ∅ and dG1

(Y ) < Qk. Since we have

proved that S∗
1 is Qk-edge-connected in G1, we must have S∗

1 ⊆ Y , so Y is also a group

separating set. Also, since v1 is of degree Qk but dG1
(Y ) < Qk, we have |V (G1)−Y | ≥ 2

and hence Y ⊂ C (recall that V (G1) = C + {v1}). Thus Y contradicts the fact that C
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is a core. Therefore, if NG1
(v1) 6⊆ S∗

1 ∪ R1, then S∗
1 ∪ {v1} is Qk-edge-connected in G1.

Finally we prove that there is no R1-isolating set Y with v1 ∈ Y and dG1
(Y ) ≤ Qk.

Suppose, by way of contradiction, that such a Y exists. Since v1 ∈ Y , V (G1) − Y is a

group separating set in G. Also, |Y | ≥ 2 as v1 ∈ Y and Y contains at least one vertex

in R1. So V (G1) − Y is a group separating set with V (G1) − Y ⊂ C. This contradicts

the fact that C is a core. Therefore, there is no R1-isolating set Y with v1 ∈ Y and

dG1
(Y ) ≤ Qk. We remark that this statement always holds, not just for graphs in Case

2.

3.6.2 The Reduction

Now, assuming Theorem 3.3.4, we are ready to prove Theorem 3.3.2 which we restate be-

low. This is where we reduce the Steiner Forest Packing problem to a strengthened

version of the Steiner Tree Packing problem (i.e., the Steiner Tree Packing

problem with the additional requirements as stated in Theorem 3.3.4). As usual, we will

assume G is a minimal counterexample of Theorem 3.3.2 and prove that it cannot exist.

Recall the statement of Theorem 3.3.2:

(The Main Theorem) Given G, S := {S1, . . . , St}, and R ⊆ V (G)−S∗. If

each Si is Qk-edge-connected in G and each vertex in R is of degree at least

Qk, then there are k edge-disjoint S-subgraphs that balance S∗ ∪ R.

Proof. First suppose that S∗ is Qk-edge-connected in G. Then applying Theo-

rem 3.3.4 with S := S∗ implies the theorem in this case, a contradiction. Note that in

this case we do not even need the extension property.

So assume S∗ is not Qk-edge-connected in G. Then there exists a pair of vertices

a, b ∈ S∗ with λ(a, b) < Qk. By Menger’s theorem (Theorem 2.2.3), there exists a set

X with a ∈ X, b /∈ X and d(X) < Qk. Since a terminal group is Qk-edge-connected,

a terminal group must be either contained in X or disjoint from X. Therefore X is a
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group separating set with d(X) < Qk, and hence a core C exists. We apply the cut

decomposition operation on G and C to obtain two graphs G1 and G2, where V (G1) =

C ∪ {v1}. Let S∗
1 := S∗ ∩ V (G1), S

∗
2 := S∗ ∩ V (G2), R1 := R ∩ V (G1), R2 := R ∩ V (G2),

and S1 and S2 be the groups contained in S∗
1 and S∗

2 respectively. By the first property

of the cut decomposition operation (Proposition 3.4.1), each terminal group in S1 and

S2 is Qk-edge-connected in G1 and G2 respectively. Also, by the second property of the

cut decomposition operation (Proposition 3.4.1), vertices in R1 and R2 are of degree at

least Qk in G1 and G2 respectively.

Based on Lemma 3.6.1, there are only two possibilities for the structure of G1. The

first case is that S∗
1 ∪ {v1} is Qk-edge-connected in G1, let S ′

1 := S∗
1 ∪ {v1} and R′

2 :=

R2∪{v2}. Notice that v1, v2 are of degree Qk since S∗
1 ∪{v1} is Qk-edge-connected in G1,

and so every vertex in R′
2 has degree at least Qk in G2. Note that both G1 and G2 are

smaller than G because they both contain at least one terminal group which has at least

two terminal vertices. By the minimality of G, there are k edge-disjoint S2-subgraphs

{H2
1 , . . . , H

2
k} in G2 that balance S∗

2 ∪ R′
2. Since v2 ∈ R′

2, v2 is balanced with respect

to {H2
1 , . . . , H

2
k}. Recall that v1 is of degree Qk. So, by applying Theorem 3.3.4 (1)

on G1 (with S := S ′
1, R := R1 and v := v1), there are k edge-disjoint S ′

1-subgraphs

{H1
1 , . . . , H

1
k} that balance S ′

1 ∪ R1 and naturally extend {H2
1 , . . . , H

2
k}. Therefore, by

Lemma 3.4.3, we obtain k edge-disjoint S-subgraphs in G that balance S∗ ∪ R. This

contradicts the fact that G is a counterexample of Theorem 3.3.2 and so the first case of

Lemma 3.6.1 cannot happen.

The second case is that NG1
(v1) ⊆ S∗

1 ∪ R1, and there is no R1-isolating set Y with

v ∈ Y , and dG1
(Y ) ≤ Qk. The following arguments are similar to the previous case.

By the minimality of G, there are k edge-disjoint S2-subgraphs {H2
1 , . . . , H

2
k} in G2

that balance S∗
2 ∪ R2. (Notice that R2 is used here instead of R′

2 because v2 may have

degree strictly less than Qk, and so {H2
1 , . . . , H

2
k} need not balance v2.) Now, by applying

Theorem 3.3.4 (2) on G1 (with S := S∗
1 , R := R1 and v := v1), we have k edge-disjoint S∗

1 -
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subgraphs {H1
1 , . . . , H

1
k} in G1 that balance S∗

1 ∪R1 and naturally extend {H2
1 , . . . , H

2
k}.

Therefore, by Lemma 3.4.3, we obtain k edge-disjoint S-subgraphs {H1, . . . , Hk} in G

that balance S∗ ∪ R. So, G is not a counterexample and this completes the proof.

3.7 The Extension Theorem

In this section, we will prove Theorem 3.3.4 by showing that a minimal counterexample

G of Theorem 3.3.4 does not exist. Recall the statement of Theorem 3.3.4:

(The Extension Theorem)

Given G, and S, R ⊆ V (G) with S ∩ R = ∅. If S is Qk-edge-connected in G

and every vertex in R is of degree at least Qk, then there are k edge-disjoint

S-subgraphs that balance S ∪ R. Furthermore, given a vertex v, an edge-

subpartition Pk(v) is balanced-extendible if either of the following happens:

1. v ∈ S, v is of degree Qk and Pk(v) is a balanced edge-subpartition.

2. NG(v) ⊆ S ∪ R, v is of degree at most Qk, and there is no R-isolating

set Y with v ∈ Y and dG(Y ) ≤ Qk.

Proof Outline

The proof consists of a series of technical lemmas, which might not be easy to follow.

This outline intends to give a higher level structure of the proof. We remark that some

parts of the outline might not be precise, but they should be informative enough to give

a brief understanding of the approach.

As mentioned earlier, Frank, Király and Kriesell proved a hypertree packing theorem

(Theorem 3.2.1), which can be applied to construct edge-disjoint Steiner trees in graphs

with no edges between two Steiner vertices. This will be the key tool in our proof. In

fact, the reason for introducing the extension property is to allow us to prove that a
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minimal counterexample G has no edges between two Steiner vertices, which allows us to

apply Theorem 3.2.1.

The first step of the proof (Lemma 3.7.1) is to combine the cut decomposition tech-

nique and the extension property to prove that G has no edges between two Steiner

vertices. The next important step (Lemma 3.7.2) is to prove that S ∪ R is highly edge-

connected in G. This allows us, in some cases, to find edge-disjoint (S ∪ R)-subgraphs

(instead of just S-subgraphs) so as to show that the resulting subgraphs balance R. With

Lemma 3.7.1 and Lemma 3.7.2, we can then handle the second case of the extension the-

orem.

The first case of the extension theorem, however, doesn’t come as quickly. Let v be

the vertex to be extended. It is not so easy to deal with the edge-subpartition Pk(v) of

δ(v) directly, particularly when N(v) contains Steiner vertices. So instead we consider

G′ := G − v −W where W is the set of Steiner vertices adjacent to v. First we show in

Lemma 3.7.3 that if S∪R−v is 6k-edge-connected in G′, then we can apply Theorem 3.2.2

to construct the desired S-subgraphs in the extension theorem. Let Z be the edge cutset

of G′ whose removal separates S ∪R− v, so we have |Z| < 6k. We show in Lemma 3.7.4

that G′ − Z has exactly two connected components C1 and C2.

Then we introduce the concepts of diverging paths and common paths, which will

be used to establish the edge-connectivity of the terminal vertices in C1 and C2. We

remark that the proof at this point is divided into two cases; the first case is when

both components contain some vertices in S and the second case is when one component

contains no vertices in S. The details therein are quite different, but the general strategy

is similar. Let S1 := S∩V (C1), R1 := R∩V (C1), S2 := S∩V (C2) and R2 := R∩V (C2). In

Lemma 3.7.7 (respectively Lemma 3.7.14), we use the diverging paths to show that Si∪Ri

are highly edge-connected in Ci for i ∈ {1, 2}. This allows us to use Theorem 3.2.1 to

construct edge-disjoint (Si ∪Ri)-subgraphs in Ci. Finally, in Lemma 3.7.10 (respectively

Lemma 3.7.15), we use the edge-disjoint (Si ∪Ri)-subgraphs in each component and the
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fact that Pk(v) is a balanced edge-subpartition to construct edge-disjoint S-subgraphs

in G that satisfy the requirements of the extension theorem. This shows that G is not a

counterexample, and we are done.

This finishes the proof outline, and we now start with the first step of the proof.

There Is No Edge Between Two Vertices in V (G)− S − R

Lemma 3.7.1 There is no edge in G with both endpoints in V (G)− S −R.

Proof. Suppose, by way of contradiction, that e is such an edge. If S is Qk-edge-

connected in G − e, then by the minimality of G, G − e satisfies Theorem 3.3.4 and hence

so does G. So we assume that S is not Qk-edge-connected in G − e. That is, there exists

Y ⊆ V (G) and e ∈ δG(Y ) so that Y ∩ S 6= ∅, (V (G) − Y ) ∩ S 6= ∅ and dG(Y ) = Qk.

Without loss of generality we assume v /∈ Y , where v is the vertex to be extended.

We apply the cut decomposition operation on G and Y to obtain two graphs G1 and

G2, so that V (G1) = Y ∪ {v1} and v ∈ G2. Set S1 := S ∩ V (G1), R1 := R ∩ V (G1),

S2 := S ∩ V (G2) and R2 := R ∩ V (G2).

By the first property of the cut decomposition operation (Proposition 3.4.1), S1 and

S2 are Qk-edge-connected in G1 and G2 respectively. Let a ∈ S1 and b ∈ S2. Since S

is Qk-edge-connected in G, there are Qk edge-disjoint paths from a to b in G. All such

paths must pass through δG(Y ), and hence in G1 and G2 there are Qk edge-disjoint

paths from a to v1 and from b to v2 respectively. Therefore, S1 ∪ v1 and S2 ∪ v2 are

Qk-edge-connected in G1 and G2 respectively. Also, by the second property of the cut

decomposition operation (Proposition 3.4.1), vertices in R1 and R2 are of degree at least

Qk in G1 and G2 respectively. Notice that since both G1 and G2 contain a vertex in

V (G)− S −R (an endpoint of e) and a vertex in S, both G1 and G2 have fewer vertices

than G. Hence, by the minimality of G, G1 and G2 both satisfy Theorem 3.3.4.

Let Pk(v) be the edge-subpartition of δ(v) to be extended. By the minimality of G,

there are k edge-disjoint (S2∪v2)-subgraphs {H2
1 , . . . , H

2
k} in G2 that balance S2∪R2∪v2
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and extend Pk(v). Notice that since the edge-cut δG(Y ) is of size exactly Qk, v1 is of

degree exactly Qk. Also, since v2 is balanced with respect to {H2
1 , . . . , H

2
k}, the edge-

subpartition induced on v2 by {H2
1 , . . . , H

2
k} is a balanced edge-subpartition. Therefore,

by substituting S := S1∪v1, v1 satisfies all the requirements of the first case of the exten-

sion theorem. So, by the minimality of G, there are k edge-disjoint (S1 ∪ v1)-subgraphs

{H1
1 , . . . , H

1
k} in G1 that balance S1 ∪ R1 and naturally extend {H2

1 , . . . , H
2
k}. Now, by

applying Lemma 3.4.4, there are k edge-disjoint S-subgraphs in G that balance S∪R and

extend Pk(v). This, however, contradicts the assumption that G is a counterexample to

Theorem 3.3.4. Therefore, there is no edge between two vertices in V (G)− S −R.

R-isolating set

Now we shall prove that S ∪R is highly edge-connected in G. This is an important step

towards the proof.

Lemma 3.7.2 S ∪ R is (Q− 2)k-edge-connected in G.

Proof. Suppose, by way of contradiction, that S ∪R is not (Q− 2)k-edge-connected in

G. Consider an R-isolating set Y with dG(Y ) minimum. Since S is Qk-edge-connected

but S ∪ R is not (Q − 2)k-edge-connected, we have dG(Y ) < (Q − 2)k. Apply the cut

decomposition operation on G and Y to obtain two graphs G1 and G2 where V (G1) =

Y + v1. Let R1 := R ∩ V (G1) and R2 := R ∩ V (G2). Also, since Y is a R-isolating set,

S ⊆ V (G2). Let v be the vertex to be extended in G. So, we assume that v satisfies one

of the requirements of the extension theorem. If v satisfies the first requirement of the

extension theorem, then v ∈ S, and so it must be in G2 because S ⊆ V (G2). If v satisfies

the second condition of the extension theorem, then v also must be in G2 because there

is no R-isolating set with v ∈ Y and dG(Y ) ≤ Qk. So, it follows that v must be in G2.

By the properties of the cut decomposition operation, S is Qk-edge-connected in G2 and

every vertex of R2 is of degree at least Qk in G2. Note that R1 6= ∅, hence |Y | ≥ 2 as
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each vertex in R is of degree at least Qk while dG(Y ) ≤ (Q−2)k < Qk. As |Y | ≥ 2, G2 is

smaller than G. By the minimality of G, G2 has k edge-disjoint S-subgraphs {H2
1 , . . . , H

2
k}

that balance S ∪R2 and extend Pk(v).

Let l := dG(Y ), then l < (Q− 2)k by assumption. We claim that each vertex r ∈ R1

has l edge-disjoint paths to v1 in G1. Suppose not, then there exists Y ′ ⊆ V (G1) so that

r ∈ Y ′, v1 /∈ Y ′ and dG1
(Y ′) < l. Hence, Y ′ is a R-isolating set in G with dG(Y ′) < l, but

this contradicts the minimality of dG(Y ). Therefore, each vertex in R1 has l edge-disjoint

paths to v1. Choose a vertex r∗ ∈ R1 so that the total length of the l edge-disjoint paths

{P1, . . . , Pl} from v1 to r∗ is minimized. This, for example, can be computed by using

minimum cost flow. Let P := {P1, . . . , Pl} and H := P1 ∪ P2 ∪ . . . ∪ Pl. We claim that

r is of degree at most l in H for each r ∈ R1. Suppose not, let r ∈ R1 be of degree

greater than l in H. Then r 6= r∗, and hence each (v1, r
∗)-path in P either has two edges

incident to r or has no edge incident to r. So r is of even degree in H. We assume r

is of degree l + 1 in H, and thus we assume that l + 1 is an even number. (We remark

that the case when r is of degree greater than l + 1 is easier.) So there are (l + 1)/2

paths from v1 to r∗ that pass through r, say {P1, . . . , P(l+1)/2}. For 1 ≤ i ≤ (l + 1)/2,

let the subpath of Pi from v1 to r be P ′
i , and the subpath of Pi from r∗ to r be P ′′

i .

Then we claim that H − P ′′
(l+1)/2 contains l edge-disjoint paths from v1 to r; indeed,

{P ′
1, . . . , P

′
(l+1)/2, P(l+1)/2+1∪P ′′

1 , . . . , Pl∪P ′′
(l−1)/2} are l edge-disjoint paths from v1 to r in

H−P ′′
(l+1)/2. This contradicts the choice of r∗ and thus r is of degree at most l < (Q−2)k

for each r ∈ R1 in H. Since every vertex r ∈ R1 is of degree at least Qk in G1, there

are at least 2k edges in δ(r) not used in H = P1 ∪ P2 ∪ . . . ∪ Pl, and so each r ∈ R1 is

balanced with respect to {P1, . . . , Pl} by Proposition 3.3.1 (1).

Now, we show that the k edge-disjoint S-subgraphs {H2
1 , . . . , H

2
k} in G2 can be ex-

tended to k edge-disjoint S-subgraphs in G, by using the edge-disjoint paths from v1

to r∗ in G1 constructed in the preceding paragraph. For each H2
i in G2, let Ei(v2) :=

E(H2
i )∩δ(v2) and Ei(v1) be the corresponding edge set in G1. Let H1

i be the (r∗, v1)-paths
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in P of G1 containing the corresponding edges in Ei(v1). Then {H1
1 , . . . , H

1
k} balance

R1 as argued in the previous paragraph, and naturally extend {H2
1 , . . . , H

2
k} since paths

in each H1
i share a common vertex r∗. By Lemma 3.4.4, {H1

1 ]H2
1 , . . . , H

1
k ]H2

k} are k

edge-disjoint subgraphs of G that balance S ∪R and extend Pk(v). This contradicts the

assumption that G is a counterexample. Hence, S ∪R is (Q− 2)-edge-connected in G.

Elimination of the Second Case

Suppose v in G satisfies the requirements of the second case in the extension theorem. By

Lemma 3.7.2, S∪R is (Q−2)k-edge-connected in G. Consider G−v. Since v is of degree

at most Qk, we claim that S ∪R is at least (Q/2− 2)k-edge-connected in G − v. To see

this, consider any two vertices a, b ∈ S ∪ R. There are at least (Q − 2)k edge-disjoint

paths between a and b in G. Among those paths, at most Qk/2 paths pass through v

since v is of degree at most Qk. So, there are at least (Q − 2)k − Qk/2 = (Q/2 − 2)k

paths between a and b in G − v and the claim follows. Since Q = 30, S ∪ R is at least

6k-edge-connected in G − v.

By Lemma 3.7.1, G has no edge between two vertices in V (G) − S − R and hence

neither does G − v. So, by Theorem 3.2.2, there are 2k edge-disjoint (S ∪ R)-subgraphs

{H ′
1, . . . , H

′
2k} in G − v. By setting Hi := H ′

2i−1 ∪H ′
2i, we obtain k edge-disjoint double

(S ∪ R)-subgraphs in G − v. Let Pk(v) = {δ1(v), . . . , δk(v)}. Since NG(v) ⊆ S ∪ R, it

follows that {H1 ∪ δ1(v), . . . , Hk ∪ δk(v)} are k edge-disjoint double (S ∪ R)-subgraphs

in G that extend Pk(v). Clearly, {H1 ∪ δ1(v), . . . , Hk ∪ δk(v)} balance S ∪ R as well.

Therefore, G is not a counterexample and so v does not satisfy the requirements of the

second case in the extension theorem.

Henceforth, we assume v satisfies the requirements of the first case in the extension

theorem.
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When |S| ≤ 2

If |S| = 1, then the extension theorem holds trivially. Here we shall show the extension

theorem for the case when |S| = 2. Let S = {v, u} where v is the vertex to be extended.

Since S is Qk-edge-connected in G, Menger’s theorem (Theorem 2.2.3) implies that there

are Qk edge-disjoint paths {P1, . . . , PQk} between v and u in G. Without loss of generality,

we assume that Pk(v) = {δ1(v), . . . , δk(v)} is a balanced edge-partition (instead of a

balanced edge-subpartition). Since v is of degree Qk, each edge in δ(v) is used exactly

once. Let Pi1 , . . . , Pit be the paths that intersect with δi(v); so t ≥ 2. We construct H j
i

as follows. Set H1
i := Pi1 and H2

i := H1
i ∪ Pi2. For j ≥ 3, let P ′

ij
be the subpath of Pij

which connects v to H j−1
i . That is, P ′

ij
is an “ear” of Hj−1

i which has its two endvertices

in Hj−1
i but not the other vertices. Then we set H j

i := Hj−1
i ∪ P ′

ij
for 3 ≤ j ≤ t, and

Hi := H t
i .

Now we verify that {H1, . . . , Ht} are k edge-disjoint S-subgraphs which extend Pk(v)

and balance S ∪ R. It is clear that Hi is an S-subgraph, since Pi1 ⊆ Hi. Also, by our

construction, Hi − v spans Nδi
(v); this is because each edge in δi(v) is used in exactly

one path from {Pi1 , . . . , Pit}. This implies that Hi− v is an (S− v)-subgraph that spans

Nδi
(v). Hence {H1, . . . , Hk} extend Pk(v).

It remains to check that {H1, . . . , Hk} balance S ∪ R. Since Pi1 ∪ Pi2 ⊆ Hi, u and v

are of degree at least 2 in each Hi, and thus are balanced by Proposition 3.3.1 (2). For

each vertex w ∈ R, we shall argue that there are at least 2k edges which are not used in

any of {H1, . . . , Hk}, and thus w is balanced by Proposition 3.3.1 (1). To see this, since

w 6= u and w 6= v, w is either of degree 0 or degree 2 in each path Pj. Assume that w

appears in l paths from P1, . . . , PQk, say P1, . . . , Pl. Recall that w ∈ R and thus w is of

degree at least Qk. If 2l ≤ (Q− 2)k, then we are done. So suppose 2l > (Q− 2)k, which

implies l − 2k ≥ 2k so long as Q ≥ 10. By our construction of Hi where we iteratively

add “ears”, for each i, at most 2 paths in Pi1, . . . , Pit use two edges incident to w. So

there are at most 2k paths among P1, . . . , Pl from which both edges incident to w are
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used in {H1, . . . , Hk}. For the remaining paths (l − 2k of them), we can save one edge

incident to w by the adding “ears” process. So at least l − 2k ≥ 2k edges incident to w

from P1, . . . , Pl are not used in {H1, . . . , Hk}; and so we can apply Proposition 3.3.1 (1).

Therefore, {H1, . . . , Hk} are k edge-disjoint S-subgraphs that extend Pk(v) and balance

S ∪R.

Henceforth, we assume that |S| ≥ 3.

Construction and Properties of G′

Let W be the set of neighbours of v in V (G)−S−R and B be the set of neighbours of v

in S∪R. By Lemma 3.5.3, each wi ∈ W is incident with exactly three edges and adjacent

to exactly three vertices, so we let NG(wi) := {v, xi, yi} and call {xi, yi} a couple. By

Lemma 3.7.1, xi and yi are in S ∪R. For each bi ∈ B, we denote by c(bi) the number of

multiple edges between v and bi.

Set G′ := G−v−W . Let Z be a minimum (S∪R−v)-edge-cutset of G′ and {C1, . . . , Cl}

be the connected components of G′ − Z. We let Si := S ∩ V (Ci), Ri := R ∩ V (Ci) and

Bi := B ∩ V (Ci). Also, c(Bi) denotes the sum of the c(b) for b ∈ Bi and Xi denotes the

collection of couples with both vertices in Ci. By the minimality of Z, each edge e in Z

connects two vertices in different components, and we call it a crossing edge. Similarly, a

couple {xi, yi} is a crossing couple if xi and yi are in different components, and we denote

the collection of crossing couples by XC .

Lemma 3.7.3 (S ∪ R− v) is at most (6k − 1)-edge-connected in G′.

Proof. Since |S| ≥ 3, we have |S∪R−v| ≥ 2. If (S∪R−v) is 6k-edge-connected in G′,

then by Theorem 3.2.2, there are 2k edge-disjoint (S ∪ R− v)-subgraphs {H ′′
1 , . . . , H ′′

2k}

in G′. Notice that since the union of two edge-disjoint (S ∪R− v)-subgraphs is a double

(S∪R−v)-subgraph, by setting H ′
i := H ′′

2i−1∪H ′′
2i, {H

′
1, . . . , H

′
k} are k edge-disjoint double

(S ∪ R − v)-subgraphs of G′. Now, let Hi := H ′
i ∪ {vbj|vbj ∈ δi(v)} ∪ {vwj, wjxj|vwj ∈
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δi(v)}. Notice that Hi− v is connected since H ′
i is a (S ∪R− v)-subgraph and bj, xj are

terminal vertices. So, by our construction, δi(v) ⊆ Hi, and Hi−v is a (S∪R∪Nδi
(v)−v)-

subgraph. Also, since Pk(v) is a balanced edge-subpartition, {H1, . . . , Hk} balance S∪R

as well. Therefore, {H1, . . . , Hk} are k edge-disjoint S-subgraphs of G that balance

S ∪ R and extend Pk(v). This contradicts with the fact that G is a counterexample. So

(S ∪R − v) must be at most (6k − 1)-edge-connected in G′.

Lemma 3.7.4 G′ − Z has 2 connected components.

Proof. To show that G′ − Z has 2 connected components, we just need to show that

G′ has at most 2 connected components, then the rest follows from the minimality of

Z. Notice that from our construction of G′ from G, for each vertex u ∈ V (G′)− S − R,

we have NG′(u) = NG(u) by Lemma 3.7.1. Since G is connected, no component in G′

contains only vertices in V (G)−S−R; otherwise by Lemma 3.7.1 it is an isolated vertex

and is also isolated in G, which implies that G is disconnected too. Therefore, it remains

to show that there are at most two components in G′ that contain vertices in S ∪ R.

Suppose there are three connected components containing vertices in S ∪ R. Let

u1, u2, u3 ∈ S ∪ R be vertices in C1, C2, C3 respectively. Since u1, u2, u3 each have at

least (Q − 2)k edge-disjoint paths to v in G and v is of degree Qk, there exists a vertex

w ∈ NG(v) such that u1, u2, u3 all have a path to w in G. If w ∈ S ∪ R, then clearly

u1, u2, u3 are still connected in G′, a contradiction. If w ∈ V (G) − S − R, then w is of

degree 3 by Lemma 3.5.3. Let the two neighbours of w in G′ be x and y. Then there

must exist a pair of vertices, say u1 and u2, that both have a path to the same neighbour

of w, say x, in G′. So there is a path from C1 to C2, a contradiction.

Diverging paths and common paths

Consider a vertex u 6= v where u ∈ S. Since v ∈ S and S is Qk-edge-connected

in G, by Menger’s theorem, there are Qk edge-disjoint paths, denoted by P (u) :=
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G

v

u

w1

w2 w3 b1 b2

Figure 3.3: The paths in dotted lines are paths in P ′(u).

{P1(u), . . . , PQk(u)}, from u to v. Note that since v is of degree exactly Qk, each path in

P (u) uses exactly one edge in δ(v). Furthermore, since wi is of degree 3 by Lemma 3.5.3,

each wi is used by exactly one path in P (u). Similarly, for u 6= v where u ∈ R, there are

(Q−2)k edge-disjoint paths from u to v denoted by P (u) := {P1(u), . . . , P(Q−2)k(u)}. By

choosing a set of (Q−2)k paths which minimize the total length (i.e.
∑(Q−2)k

i=1 |Pi(u)|), we

can assume that each path in P (u) uses exactly one edge in δ(v) and at most one vertex

in W . Consider Pi(u) induced in G′, denoted by P ′
i (u). Let P ′(u) := {P ′

1(u), . . . , P ′
Qk(u)}

for u ∈ S, and similarly P ′(u) := {P ′
1(u), . . . , P ′

(Q−2)k(u)} for u ∈ R. Notice that paths in

P ′(u) are edge-disjoint in G′, and we call them the diverging paths from u. See Figure 3.3

for an illustration.

We plan to use the diverging paths from a and b for any two vertices a, b ∈ S ∪ R

in the same component of G′ − Z to establish the edge-connectivity of S ∪ R in each

component of G′−Z. We say v1 and v2 have λ common paths if there are λ edge-disjoint



Chapter 3. Steiner Forest Packing 78

paths starting from v1, λ edge-disjoint paths starting from v2, and an one-to-one mapping

of the paths from v1 to the paths from v2 so that each pair of paths in the mapping ends

in the same vertex.

The following lemma gives a lower bound on the number of edge-disjoint paths be-

tween two vertices based on the number of their common paths; note that this lemma

holds for any graph G.

Lemma 3.7.5 If v1 and v2 have 2λ + 1 common paths in G, then there exist λ + 1

edge-disjoint paths from v1 to v2 in G.

Proof. Suppose not. By Menger’s theorem (Theorem 2.2.3), there is an edge-cutset T

of size at most λ that disconnects v1 and v2 in G. Since |T | ≤ λ, at least λ + 1 paths

starting from v1 remain in G− T ; and the same holds for v2. So, v1 and v2 still have at

least (λ + 1) + (λ + 1)− (2λ + 1) = 1 common path in G− T . This implies that v1 and

v2 are connected in G− T , a contradiction.

When Both Components of G′ − Z Contain Some Vertices in S

In this subsection, we consider the case that both components contain some vertices in

S. The lemmas in this section all share this assumption.

Lemma 3.7.6 If both components of G′ − Z contain some vertices in S, then there are

at least Qk − 2|Z| crossing couples, that is, |XC | ≥ Qk − 2|Z|.

Proof. Let u1 ∈ S be in C1. In G′, from the diverging paths in P ′(u1), u1 has at

least c(B2) + |X2| edge-disjoint paths to C2. Since Z is an edge-cut in G′, it follows

that c(B2) + |X2| ≤ |Z|. Similarly, by considering a vertex u2 ∈ S in C2, we have

c(B1) + |X1| ≤ |Z|. By Lemma 3.7.4, there are only two components in G′ − Z. So

Qk = |XC|+ |X1|+ |X2|+ c(B1) + c(B2) ≤ |XC |+ 2|Z|, and we have |XC | ≥ Qk− 2|Z|.
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With Lemma 3.7.6, we can show that Si ∪ Ri is highly edge-connected in Ci for

i = {1, 2}.

Lemma 3.7.7 If both components of G′ − Z contain some vertices in S, then for i ∈

{1, 2}, Si ∪Ri is (Q/2− 8)k-edge-connected in Ci of G′ − Z and Si is (Q/2− 6)k-edge-

connected in Ci of G′ − Z.

Proof. Consider any two vertices a, b ∈ S1 ∪ R1 in C1. If a ∈ S1, then P ′(a) has |XC|

edge-disjoint paths to the crossing couples, one path for each crossing couple. If a ∈ R1,

then P ′(a) has at least |XC| − ka edge-disjoint paths to the crossing couples, where ka

denotes the number of crossing couples with no path to a. In the following argument, we

say P ′(a) has at least |XC |−ka paths to different crossing couples, with the understanding

that ka = 0 for a ∈ S. Assume that, among those |XC | − ka paths, za paths use edges

in Z. Then, in G′ − Z, a has at least |XC| − ka − za edge-disjoint paths such that each

starts from a and ends in a different crossing couple. We define kb and zb similarly. By

the same argument, in G′−Z, b has at least |XC | − kb− zb edge-disjoint paths such that

each starts from b and ends in a different crossing couple. Therefore, in G′ − Z, a and b

have at least (|XC | − ka− za)+ (|XC| − kb− zb)− |XC | = |XC | − ka− kb− za− zb pairs of

edge-disjoint paths such that each pair of paths ends in the same crossing couple. Since

a, b are in the same component, each such pair ends in the same member of a crossing

couple. So, a and b have at least |XC| − ka − kb − za − zb common paths in Ci.

Also, in G′, for a ∈ S1, P ′(a) has c(B2) edge-disjoint paths to B2 and |X2| edge-disjoint

paths to the couples in X2. So, for a ∈ S1, P ′(a) has c(B2) + |X2| edge-disjoint paths to

C2 in G′. Similarly, for a ∈ R1, P ′(a) has c(B2) + |X2| −ma edge-disjoint paths to C2 in

this way, where m2 denotes the number of members of B2 with no path to a. Notice that

since P ′(a) has at least (Q− 2)k paths for a ∈ Ri, ka + ma ≤ 2k; if a ∈ S1, ka + ma = 0.

As mentioned in the previous paragraph, P ′(a) also has za edge-disjoint paths to crossing

couples that use edges in Z. These c(B2)+ |X2|−ma +za paths are edge-disjoint, because
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each of these paths has a different destination. Since Z is an edge-cut, Z has at least one

edge in each such path. So, in G′[C1], a has at least c(B2) + |X2| −ma + za edge-disjoint

paths such that each starts from a and ends in an endpoint of a different crossing edge

in Z. Similarly, P ′(b) has c(B2) + |X2| − mb + zb edge-disjoint paths such that each

starts from b and ends in an endpoint of a different crossing edge in Z. Therefore, in

G′[C1], a and b have at least (c(B2) + |X2| −ma + za) + (c(B2) + |X2| −mb + zb)− |Z| =

2c(B2)+2|X2|−ma−mb +za +zb−|Z| pairs of paths such that each pair of paths ends in

the same endpoint of a crossing edge. These pairs of paths are edge-disjoint from those

paths mentioned in the previous paragraph, because they all have different destinations.

So, a and b have at least 2c(B2) + 2|X2| −ma −mb + za + zb − |Z| more common paths

in C1.

As a result, by the previous two paragraphs, a and b have at least (|XC| − ka − kb −

za−zb)+(2c(B2)+2|X2|−ma−mb +za +zb−|Z|) = 2c(B2)+2|X2|+ |XC|− (ka +ma)−

(kb +mb)−|Z| common paths in C1. Since ka +ma ≤ 2k and kb +mb ≤ 2k, a and b have

at least 2c(B2) + 2|X2|+ |XC | − 4k − |Z| common paths in C1. Recall from the proof of

Lemma 3.7.6 that Qk = |XC | + |X1| + |X2| + c(B1) + c(B2) and c(B1) + |X1| ≤ |Z|, so

|XC |+ |X2|+ c(B2) + |Z| ≥ Qk and hence |XC |+ |X2|+ c(B2) ≥ Qk − |Z|. So a and b

have at least Qk + c(B2)+ |X2|−4k−2|Z| ≥ Qk−4k−2|Z| > (Q−16)k common paths

in C1; the last inequality is because Lemma 3.7.3 implies that |Z| < 6k. Furthermore,

we observe that if a and b are both in S1, then by the same calculation a and b have at

least (Q− 12)k common paths in C1; this is because ka + ma = kb + mb = 0.

Remark 3.7.8 If we use the inequality |XC |+ |X2|+ c(B2) ≥ (Q− 2)k− |Z| instead of

the inequality |XC |+ |X2|+ c(B2) ≥ Qk− |Z| used above, then we conclude that a and b

have at least (Q − 18)k common paths in C1. This will be used in Lemma 3.7.14 which

is a counterpart of the current lemma.

Now, by Lemma 3.7.5, there are at least (Q/2− 8)k edge-disjoint a, b-paths in C1 for

a, b ∈ S1 ∪ R1. Furthermore, for a, b ∈ S1, there are at least (Q/2 − 6)k edge-disjoint
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a, b-paths in C1. So, S1 ∪ R1 is (Q/2 − 8)-edge-connected in C1 and S1 is (Q/2 − 6)k-

edge-connected in C1. By the same argument, we can show that S2 ∪ R2 is (Q/2− 8)k-

edge-connected in C2 and S2 is (Q/2− 6)k-edge-connected in C2.

The following is a technical lemma which shows that we can construct edge-disjoint

S-subgraphs even if we delete a limited number of edges.

Lemma 3.7.9 Let G be a graph and S be a subset of V (G). Suppose S is 3k-edge-

connected in G, every vertex in V (G) − S is of degree 3, and there is no edge between

vertices in V (G)−S. Let T be a set of edges with |T | ≤ k. Then G−T has k edge-disjoint

S-subgraphs.

Proof. This is slightly stronger than Theorem 3.2.2, and we shall use the same approach

used in [34] to prove it. Recall that a hypergraph H is k-partition-connected if EH(P) ≥

k(|P| − 1) holds for every partition P of V (H) into non-empty classes, where EH(P)

denotes the number of hyperedges intersecting at least two classes. From G, we construct

a hypergraph H with vertex set S. For every vertex v ∈ V (G) − S in G, we add a

hyperedge of size 3 in H consisting of the neighbours NG(v) of v in G, notice that

NG(v) ⊆ S by assumption and hence is well-defined in H. Also, for every edge uv ∈ E(G)

with u, v ∈ S, we add a hyperedge uv in H. For each edge e ∈ T of E(G), we remove

the hyperedge in H that contains e. Let the resulting hypergraph be H ′. We first claim

that a connected sub-hypergraph of H ′ corresponds to an S-subgraph of G − T . To

see this, we just need to replace a hyperedge in H ′ by the corresponding Steiner vertex

and the edges incident to it; then it is an S-subgraph of G. The fact that it is also

an S-subgraph of G − T follows from our construction that the hyperedges containing

edges in T are removed. Therefore, if we can prove that H ′ has k edge-disjoint connected

sub-hypergraphs, then we can easily construct k edge-disjoint S-subgraphs in G−T . We

now prove this claim using Theorem 3.2.1.
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Consider a partition P := {P1, . . . , Pl} of the vertex set S where l ≥ 2. We argue that

dH(Pi) ≥ 3k for each i; in other words, there are at least 3k hyperedges in H “crossing”

Pi. Suppose, by way of contradiction, that dH(Pi) < 3k. Consider a hyperedge e of size 3

in δH(Pi), e either contains one vertex in Pi or one vertex in S−Pi. By our construction,

e corresponds to a vertex w of degree 3 in V (G)− S. So we can remove just one (graph)

edge incident to w in G to decrease dH(Pi) by 1 in the corresponding hypergraph. Clearly,

if e ∈ δH(Pi) is of size 2, then we can remove just one edge in G to decrease dH(Pi) by

1. Since dH(Pi) < 3k, we can remove less than 3k (graph) edges in G to disconnect the

corresponding hypergraph. This implies that, by removing less than 3k edges in G, S is

disconnected in G. But this contradicts the fact that S is 3k-edge-connected in G, hence

dH(Pi) ≥ 3k.

Since each vertex in V (G) − S is of degree 3, each hyperedge in H can intersect at

most 3 classes of P . Therefore, in H, there are at least 3kl/3 = kl crossing hyperedges

for P . Constructing H ′ from H removes at most k hyperedges. So, in H ′, there are still

at least (l− 1)k crossing hyperedges. Since P is an arbitrary partition, H ′ is k-partition-

connected. By Theorem 3.2.1, we have k edge-disjoint connected sub-hypergraphs in H ′.

Hence we have k edge-disjoint S-trees in G− T . This proves the lemma.

Now we can finally prove the extension theorem for the case when both components

contain some vertices in S. Note that the assumption that Pk(v) is a balanced edge-

subpartition is crucial in this lemma.

Lemma 3.7.10 If both components of G′ − Z contain some vertices in S, then G has k

edge-disjoint S-subgraphs {H1, . . . , Hk} that balance S ∪R and extend Pk(v).

Proof. The strategy is to combine k edge-disjoint subgraphs in each component to

construct k edge-disjoint subgraphs in G with the desired property. By the previous

lemma, each Si ∪ Ri is (Q/2 − 8)k-edge-connected in Ci. Since Q = 30, Si ∪ Ri is at

least 6k-edge-connected in Ci. We remark that in the special case of Steiner Tree
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Packing, since Ri = ∅ and Si is (Q/2− 6)k-edge-connected in Ci, we just need Q = 24

to guarantee that S is 6k-edge-connected in Ci.

Now, we pick arbitrarily min{k, |Z|} edges in Z and call them the connecting edges;

they will be used to connect the subgraphs in each component. For each connecting edge

e with an endpoint w ∈ V (G)−S−R in Ci, we remove one edge e′ in Ci which is incident

with w and we call e′ a reserve edge of e. By Lemma 3.7.1, the other endpoint of e′ must

be a vertex in S ∪R, so for each connecting edge e the path e, e′ is from terminal vertex

to terminal vertex. Since w is a Steiner vertex, w is of degree 3 by Lemma 3.5.3. We

must have δ(w) ∩ Z = {e}; otherwise this contradicts the minimality of Z. This has

two implications. The first implication is that each connecting edge will be assigned a

different reserve edge. The second implication is that, as we will show, after the removal

of the reserve edges, V (Ci) is still connected and we denote it by C ′
i. Clearly, Si ∪ Ri is

still connected in C ′
i because Si∪Ri is 6k-edge-connected in Ci and we remove at most k

reserve edges. For any Steiner vertex w for which δ(w) ∩ Z 6= ∅, we remove exactly two

edges incident to w, and since |δ(w) ∩ Z| = 1 as argued above, w is still connected to a

vertex in Si ∪ Ri through the remaining edge. Hence V (Ci) = V (C ′
i) is still connected.

Since we remove at most k reserved edges from Ci and Si ∪ Ri is 6k-edge-connected

in Ci, by using Lemma 3.7.9 (with S := Si ∪ Ri), there are 2k edge-disjoint (Si ∪ Ri)-

subgraphs in C ′
i. By grouping two (Si ∪Ri)-subgraphs into one, we have k edge-disjoint

double (Si∪Ri)-subgraphs {H i
1, . . . , H

i
k} in C ′

i for i ∈ {1, 2}. We remark that if |Si∪Ri| =

1, then the subgraphs might have no edges. We shall handle this case later.

Now we set Hj := H1
j ∪ H2

j ∪ {vbi|vbi ∈ δj(v)} ∪ {vwi, wixi, wiyi|vwi ∈ δj(v)} for

1 ≤ j ≤ k. Notice that by construction δj(v) ⊆ E(Hj) and Hj − v spans Nδj
(v) for

1 ≤ j ≤ k. Each Hj−v is almost an (S∪R−v)-subgraph except that the two subgraphs

in the two components might not be connected to each other. Suppose there is a crossing

couple {xi, yi} such that vwi ∈ δj(v), then Hj−v is connected and thus is an (S∪R−v)-

subgraph of G so that δj(v) ⊆ E(Hj) and Hj − v extends δj(v). So, if they are all
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connected by crossing couples, then {H1, . . . , Hk} are k edge-disjoint S-subgraphs that

extend Pk(v). Let {vw1, . . . , vw|XC |} be the set of edges such that the corresponding

couples are crossing. By Lemma 3.7.6, |XC | ≥ Qk − 2|Z|. Since Pk(v) is a balanced

edge-subpartition, we can assume that |Ei(v)| ≥ 2 for 1 ≤ i ≤ k. So, there are at most

min{k, |Z|} classes of Pk(v) with no edges in {vw1, . . . , vwQk−2|Z|}. Hence there are at

most min{k, |Z|} Hj’s, say {H1, . . . , Hmin{k,|Z|}}, that are not connected by the crossing

couples. Now, by adding each connecting edge and its reserve edge (if necessary) to a

different Hj that has not yet been connected by a crossing couple, all Hj are connected

since we have |Z| connecting edges. Therefore, {H1, . . . , Hk} are k edge-disjoint (S ∪R)-

subgraphs of G that extend Pk(v). (Note that the assumption that Pk(v) is a balanced

edge-subpartition is crucial here.)

Remark 3.7.11 If |Z| ≥ k, then the above proof would succeed without using the as-

sumption that Pk(v) is a balanced edge-subpartition. This is because there are enough

connecting edges to make all Hj connected, and so we don’t need to use the crossing

couples for that purpose.

To finish off the proof, we need to make sure that {H1, . . . , Hk} balance S∪R. We do

so by making sure that {H1, . . . , Hk} are double (S ∪R)-subgraphs; thus each v ∈ S ∪R

has degree at least 2 in each Hi, and so v is balanced by Proposition 3.3.1 (2). Suppose

|S1∪R1| ≥ 2, then {H1
1 , . . . , H

1
k} are double (S1∪R1)-subgraphs and hence {H1, . . . , Hk}

balance S1 ∪R1. The same argument can be applied to S2 ∪R2. The subtle case is when

|S1 ∪R1| = 1, say S1 = {x} and R1 = ∅, where each H1
i might have no edges. Note that

x is in every crossing couple in this case. Let {H1, . . . , Hl} be the S-subgraphs in which x

is a degree 1 vertex. Suppose {{x, y1}, {x, y2}, . . . , {x, yc}} are crossing couples such that

{{vw1, xw1, y1w1}, . . . , {vwc, xwc, ycwc}} ⊆ E(Hj) and {vw1, vw2, . . . , vwc} ⊆ δj(v). If

c > 2, then we can delete {xw3, . . . , xwc} from Hj without affecting the properties of Hj

that are required by the extension theorem (as it is already connected and balances v, x).
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We repeat this procedure until there are at least l edges, say {xw1, . . . , xwl}, that are not

used in any Hj. Then we can add each such edge to a different S-subgraph in {H1, . . . , Hl}

to make x to be of degree at least 2 in each of {H1, . . . , Hk}. We do the same “switching”

procedure if |S2| = 1. Since there are at least Qk − 2|Z| > (Q − 12)k = 18k crossing

couples and there are only 2 components in G′ − Z, there are more than enough edges

for this “switching” procedure. Finally, {H1, . . . , Hk} are k edge-disjoint S-subgraphs of

G that balance S ∪ R and extend Pk(v).

In the special case of Steiner Tree Packing, since R = ∅, each component must

contain some vertices in S and hence the results in this subsection suffice. Therefore,

the minimal counterexample G does not exist and hence the extension theorem (Theo-

rem 3.3.4) follows. As we remarked in the proof of Lemma 3.7.10, we just need Q := 24

for Steiner Tree Packing. So, we have Theorem 3.1.2 as claimed.

When One Component Contains No Vertices in S

Without loss of generality, we assume that C1 contains vertices in S and C2 contains

only vertices in R. Lemma 3.7.12 and Lemma 3.7.14 in the following are counterparts

of Lemma 3.7.6 and Lemma 3.7.7. However, it should be pointed out that we only have

a weaker bound on the number of crossing couples in Lemma 3.7.12, and hence the

strategy in Lemma 3.7.10 will not always work. In Lemma 3.7.15, which is a counterpart

of Lemma 3.7.10, we use a different strategy to handle the remaining case.

Lemma 3.7.12 If C2 contains only vertices in R, then there are at least (Q−2)k−2|Z|

crossing couples, that is, |XC | ≥ (Q− 2)k − 2|Z|.

Proof. Let u1 ∈ S be in C1. In G′, u1 has at least c(B2) + |X2| edge-disjoint paths

in P ′(u1) to C2. Since Z is an edge-cut in G′, it follows that c(B2) + |X2| ≤ |Z|. Let

u2 ∈ R be in C2. In G′, we have at least c(B1) + |X1| − 2k ≤ |Z| edge-disjoint paths

in P ′(u2) to C1. By Lemma 3.7.4, there are only two components in G′ − Z. So Qk =
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|XC |+ |X1|+ |X2|+c(B1)+c(B2) ≤ |XC |+2|Z|+2k, and we have |XC | ≥ (Q−2)k−2|Z|.

Remark 3.7.13 In the proof of Lemma 3.7.12, we have Qk = |XC|+|X2|+c(B2)+|X1|+

c(B1) and c(B1)+ |X1|−2k ≤ |Z|. This implies that |XC |+ |X2|+c(B2) ≥ (Q−2)k−|Z|,

which will be useful in Lemma 3.7.14.

The following lemma is a counterpart of Lemma 3.7.7 which shows that S1 ∪ R1 is

highly edge-connected in C1, but with a slightly weaker lower bound.

Lemma 3.7.14 If C2 contains only vertices in R, then S1 ∪ R1 is at least (Q/2− 9)k-

edge-connected in C1 of G′ − Z.

Proof. Consider any two vertices a, b ∈ S1 ∪R1 in C1. The proof is almost identical to

the proof of Lemma 3.7.7, except that we only have a weaker lower bound on |XC |. By

Remark 3.7.13, we have |XC| + |X2|+ c(B2) ≥ (Q− 2)k − |Z|. Then, by Remark 3.7.8,

we conclude that a and b have at least (Q − 18)k common paths in C1. This implies

that there are at least (Q/2 − 9)k edge-disjoint a, b-paths in C1, and hence S1 ∪ R1 is

(Q/2− 9)k-edge-connected in C1.

Now we are ready to prove the extension theorem for the case when one component

contains no vertices in S.

Lemma 3.7.15 If C2 contains only vertices in R, then G has k edge-disjoint S-subgraphs

that balance S ∪R and extend Pk(v).

Proof. If |Z| ≥ k, we have the desired result by Remark 3.7.11. Henceforth we assume

that |Z| < k, in which case we may not have enough connecting edges since the bound

on crossing couples is weaker. Here we use another strategy to handle this situation. Let

E ′ := {e1, . . . , e|X2|+c(B2)} be the set of edges incident to v in G so that either (i) the
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other endpoint of ei is in B2 or (ii) the other endpoint of ei has both of its neighbours in

C2. Intuitively, E ′ is the set of edges which we would like to be extended properly.

Let u1 ∈ S. From P (u1) (the diverging paths) in G, there are |X2| + c(B2) edge-

disjoint paths from u1 to v such that each uses exactly one edge in E ′. From these paths,

in G − E(C1), there are |X2| + c(B2) edge-disjoint paths P := {P1, . . . , P|X2|+c(B2)} with

the following property: each Pi starts from v and ends in some vertex of C1, and ei ∈ Pi.

Since each vertex w ∈ V (C1) − S − R1 is of degree 3, by the minimality of |Z|, it has

at most one neighbour in C2. Therefore, each w ∈ V (C1) − S − R1 can be in at most

one path Pi ∈ P . Now, for each such w, we remove one edge e′ in C1 which is incident

with w and set P ′
i := Pi ∪ {e

′}; for every Pi not containing such a w, we set P ′
i := Pi.

We call those edges removed the reserve edges. Notice that by Lemma 3.7.1, the other

endpoint of e′ must be in S ∪ R1. So P ′ := {P ′
1, . . . , P

′
|X2|+c(B2)

} are edge-disjoint paths

with the following property: each P ′
i starts from v and ends in some vertex ui ∈ S ∪R1,

and ei ∈ P ′
i . These paths will be used to extend the edge-subpartition induced on E ′.

In constructing P ′ from P , we remove at most |X2| + c(B2) ≤ |Z| ≤ k reserve edges

from C1; the first inequality appeared in the proof of Lemma 3.7.6. Following the same

argument as in Lemma 3.7.10, V (C1) remains connected after the removal of the reserve

edges. Let the resulting component be C ′
1. By Lemma 3.7.14, S ∪R1 − v is (Q/2− 9)k-

edge-connected in C1. As Q = 30, S∪R1−v is 6k-edge-connected in C1. Since we remove

at most k edges from C1 and S∪R1−v is 6k-edge-connected in C1, by using Lemma 3.7.9

(with S := S∪R1−v), there are 2k edge-disjoint (S∪R1−v)-subgraphs in C ′
1. By grouping

two (S∪R1−v)-subgraphs into one, we have k edge-disjoint double (S∪R1−v)-subgraphs

{H1
1 , . . . , H

1
k} in C ′

1. Now, we set Hj := H1
j ∪ {vbi|vbi ∈ δj(v)} ∪ {vwi, wixi, wiyi|vwi ∈

δj(v)} ∪ {P ′
i |ei ∈ δj(v)}.

We claim that {H1, . . . , Hk} are k edge-disjoint S-subgraphs that balance S ∪R and

extend Pk(v). By our construction, δj(v) ⊆ Hj and Hj−v is connected and spans Nδj
(v).

So, {H1, . . . , Hk} are k edge-disjoint S-subgraphs that extend Pk(v). Every vertex in R1



Chapter 3. Steiner Forest Packing 88

is of degree at least 2 in each H1
i and thus Hi, and so it is balanced by Proposition 3.3.1

(2). Also, by our construction of {H1, . . . , Hk}, every vertex in R2 is used by at most

|X2| + c(B2) ≤ |Z| < 6k paths from P ′ (the first inequality is stated in the proof of

Lemma 3.7.12 and the second inequality follows from Lemma 3.7.3), and thus has degree

at most 12k in Hj. Since Q = 30, every vertex in R2 has at least Qk−12k > 2k edges not

used in {H1, . . . , Hk}, and hence {H1, . . . , Hk} balance R2 by Proposition 3.3.1 (1); we

remark that {H1, . . . , Hk} need not span R2 as they are only required to be S-subgraphs.

This completes the proof of the lemma.

Putting Lemma 3.7.10 and Lemma 3.7.15 together shows that a minimal counterex-

ample G of Theorem 3.3.4 does not exist, and this completes the proof of Theorem 3.3.4.

We remark that using the current method, it seems that we need Q ≥ 4 because of

the double subgraphs condition. Also, it does not seem straightforward to improve the

bound on Q significantly by a refinement of the current techniques.
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3.8 NP-completeness

As we have seen, the special case of Steiner Tree Packing when there is no edge

between two Steiner vertices and every Steiner vertex is of degree 3 is a major building

block of our main result. It is natural to ask whether we can prove a stronger result in

this special case (for example beat the bound of Theorem 3.2.2). Notice that the bound

of Theorem 3.2.2 is obtained from an exact min-max relation by Theorem 3.2.1. So, one
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may ask whether an exact min-max relation can be proved for this rather special case.

In this subsection, however, we shall show that this special case remains NP-complete.

Hence obtaining such a nice characterization is unlikely.

Theorem 3.8.1 The Steiner Tree Packing problem, when restricted to a graph with

no edge between two Steiner vertices and with every Steiner vertex of degree 3, is NP-

complete.

Proof. In fact, we shall prove that even packing 3 edge-disjoint Steiner trees in this

special case is NP-complete. We show that 3-edge-colourability of cubic graphs can be

reduced to this problem. 3-edge-colourability of cubic graphs is shown to be NP-complete

by Holyer [44] (see also Schrijver [84], chapter 28, page 468-469).

Here is the construction. Given a cubic graph G, we subdivide each edge of E(G) to

form H. That is, for each edge e = uv, we add a new vertex xe and replace the edge e

by two edges uxe and xev. Also, we add a root vertex r to H and connect it to all the

vertices in H corresponding to edges in G. The vertices in the union of V (G) and r are

terminal vertices, and all the vertices corresponding to edges in G are Steiner vertices. By

our construction, in H, there is no edge between two Steiner vertices and every Steiner

vertex is of degree 3. Now, we argue that G is 3-edge-colourable if and only if H has 3

edge-disjoint Steiner trees. Hence the latter problem is NP-complete.

Suppose G is 3-edge-colourable. Let E1 be the edge set which has colour red. By

setting T1 := {uxe, vxe, rxe| for uv = xe ∈ E1}, we claim that T1 is a Steiner tree in H.

Since G is a cubic graph, each vertex is adjacent to three edges and they must be of

different colours in a valid 3-edge-colouring. So E1 is a perfect matching in G, and hence

T1 spans every terminal vertex. Also, T1 is connected because every terminal vertex has a

path to r. By constructing T2 and T3 similarly using E2 and E3, we obtain three Steiner

trees in H. Since each edge in G is assigned at most one colour, the three trees we

constructed used disjoint Steiner vertices and hence are edge-disjoint. This proves one

direction.
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Suppose H has three disjoint Steiner trees T1, T2, T3. Let us colour the edge set of

each tree with a different colour. For a terminal vertex v 6= r, v is of degree 3 and hence

the edges incident to it must be of different colours; so in particular every edge incident

to v must be coloured and v must be a leaf in each of the three trees. For each Steiner

vertex xe, we claim that all of its three incident edges must be in the same tree. Let

say xe be adjacent to u, v, r in H. By the previous argument, uxe must be coloured,

say red. Since the red colour subgraph is connected and u, v are leaves, rxe must also

be coloured red. Also, vxe must be coloured. If vxe is of another colour, say blue, then

the blue colour subgraph is not connected since v is a leaf. Therefore, vxe must be of

colour red also. So, for each Steiner vertex, all of its incident edges must be in the same

tree. Now, for each Steiner tree Ti, let Ei be the set of edges in G corresponding to the

Steiner vertices used by Ti in H. By our previous argument, E1, E2 and E3 must be

edge-disjoint in G and their union is equal to E(G). Also, each terminal vertex (except

the root which is not in G) in H is of degree 1 in each Steiner tree, so each vertex in G is

of degree 1 in each Ei. Hence {E1, E2, E3} is a valid 3-edge-colouring of G. This proves

the other direction, and we are done.

3.9 Algorithmic Aspects

In this section, we present a polynomial time algorithm to find the edge-disjoint S-forests

guaranteed by Theorem 3.1.1. Here is an overview:

The proof of Theorem 3.3.2 (which implies Theorem 3.1.1) considers a minimum

counterexample and shows that it does not exist. This proof structure can be rephrased as

a recursive algorithm. In the proof we showed that a minimum counterexample must have

various special structures (e.g. no edges between Steiner vertices); otherwise we argued

that it is not minimal. As detailed below, these steps correspond to a reduction procedure

which takes an instance and reduces it into instances with the special structures, which
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we call the base instances. Then we shall point out how to solve a base instance by

referencing to the proofs, and highlight the major steps. The algorithm will be a pure

recursive algorithm, i.e. no dynamic programming technique is required. To show that

it is a polynomial time algorithm, we will argue that the number of recursive calls is

polynomially bounded, and each call can be carried out in polynomial time.

The starting point of the proof is to reduce the main theorem (Theorem 3.3.2) of the

Steiner Forest Packing problem to the extension theorem (Theorem 3.3.4) for the

Steiner Tree Packing problem. The relevant part of the proof is in Section 3.6. In

terms of algorithmic procedure, we reduce an instance of the Steiner Forest Packing

problem to instances where we need to find edge-disjoint Steiner trees which extend a

specified edge-subpartition of a specified vertex. Now we describe how the reduction can

be done. Let S1, . . . , St be the terminal groups and S∗ := S1 ∪ . . . ∪ St. Notice that

edge-connectivities can be tested by algorithms for computing minimum cuts, which is

well-known to be solvable in polynomial time. If S∗ is Qk-edge-connected, then we can

treat S∗ as one terminal group and the problem reduces easily to the Steiner Tree

Packing problem, and we are done. Otherwise, we need to identify a core C, and apply

the cut decomposition operation to obtain two graphs where V (G1) = C ∪ {v1} and

V (G2) = (V (G)− C) ∪ {v2}. Note that a group separating set X ⊆ V (G) can be found

in polynomial time by a minimum cut computation. If there is no group separating set

in G[X], then X is a core. So a core can be obtained by repeatedly finding a group

separating set until all terminal groups in the resulting graph are Qk-edge-connected.

We then recursively solve the Steiner Forest Packing problem on G2, and the

edge-disjoint Steiner forests obtained in G2 induce an edge-subpartition Pk(v2) on v2.

This naturally defines an edge-subpartition Pk(v1) on v1. Then we use the extension

theorem (which we shall explain below) to find edge-disjoint Steiner trees of G1 that

extend Pk(v1). The proof of Theorem 3.3.2 asserts that the combination of the forests

in G2 and the trees in G1 gives edge-disjoint Steiner forests in G. Notice that whenever
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we invoke a recursive call, the number of terminal groups in G2 is less than the number

of terminal groups in G. So the number of Steiner tree instances we reduce to (i.e.

the number of recursive calls) is at most the number of terminal groups. Hence the

procedure of reducing the Steiner Forest Packing problem to the extension theorem

of the Steiner Tree Packing problem is polynomial time solvable, assuming that the

extension theorem can be solved in polynomial time.

Before we go into the details of the extension theorem, we mention briefly the use of

the edge splitting-off technique. By Mader’s result (Lemma 3.5.1), for a given Steiner

vertex, there exists at least a pair of edges incident to it whose splitting-off preserves the

edge-connectivity of the terminal vertices. This was used in the proof to assume that

every Steiner vertex is of degree 3 in a minimal counterexample. In terms of algorithmic

procedure, this allows us to reduce an input instance to an instance where every Steiner

vertex is of degree 3. To implement the edge splitting-off technique, a straightforward

procedure is to find a Steiner vertex of degree greater than 3, try every pair of edges

incident to it until a suitable splitting-off is found, which can be verified by minimum cut

computations. Clearly, this can be done in polynomial time. Notice that every time we

split-off a pair of edges, the resulting graph has one fewer edge than the original graph.

So we can reduce to an instance with every Steiner vertex of degree 3 in a polynomial

number of steps.

Now we discuss the algorithm for the extension theorem of the Steiner Tree Pack-

ing problem. The first key step is to transform the input graph G into instances with

no edge between Steiner vertices (Lemma 3.7.1). Suppose there is an edge e between

two Steiner vertices. If S is Qk-edge-connected in G − e, then we can simply remove e

from G. Otherwise, the edge e must be in an edge-cutset T of size Qk whose removal

disconnects two terminal vertices. We can identify this edge-cutset by a minimum cut

computation as follows: If S is not Qk-edge-connected in G − e, then C ∪ {e} is the

desired edge-cutset where C is a minimum S-edge-cutset of G− e. Let v be the vertex
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to be extended. Let C1 and C2 be the two components of G − T where v ∈ C2. Then

we apply the cut decomposition operation to obtain two graphs, where V (G1) = C1 + v1

and V (G2) = C2 + v2. We recursively find edge-disjoint Steiner trees in G2 which extend

v; those trees define an edge-subpartition of v1. Then we recursively find edge-disjoint

Steiner trees in G1 which extend v1. The proof of Lemma 3.7.1 guarantees that the

combination of the trees in these two graphs give the desired edge-disjoint Steiner trees

for the original graph G. Suppose G has l edges between Steiner vertices. Then the total

number of edges between Steiner vertices in G1 and G2 is at most l− 1. This is because

the edge e has become an edge incident to v1 in G1 and an edge incident to v2 in G2,

where v1 and v2 are terminal vertices in G1 and G2 respectively. The recursion of this

procedure stops when there are no edges between Steiner vertices. Therefore, starting

with a graph with l edges between Steiner vertices, the above recursion will yield at most

l + 1 graphs with no edges between Steiner vertices. In particular, this implies that the

number of recursive calls is polynomially bounded.

The next step is to transform the input graph G so that S ∪ R is (Q − 2)k-edge-

connected in G (Lemma 3.7.2). The strategy used is similar to the previous steps, and

here we sketch the procedure and highlight the difference. If S ∪R is not (Q− 2)k-edge-

connected in G, then we find an R-isolating set X in G using a minimum cut computation.

We apply the cut decomposition operation on X to obtain two graphs, where G1 := X+v1

and G2 := (V (G)−X)+ v2. We recursively find edge-disjoint Steiner trees on G2, which

has fewer edges than G. Here, instead of finding edge-disjoint Steiner trees on G1, we

simply find edge-disjoint paths between v1 and a carefully chosen vertex r∗ ∈ R∩X. The

vertex r∗, as shown in Lemma 3.7.2, can be chosen to be a vertex so that the total length

of the edge-disjoint paths to v1 is minimized, which can be computed in polynomial time

by a minimum cost flow computation. Then, Lemma 3.7.2 asserts that the combination

of the Steiner trees of G2 and the paths of G1 gives edge-disjoint Steiner trees of G with

the desired properties.
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A key tool is a theorem by Frank, Király and Kriesell (Theorem 3.2.1) to find edge-

disjoint Steiner trees in graphs with no edges between Steiner vertices. This theorem can

be implemented as a polynomial time algorithm. Some details can be found in the end

of Section 2.2.6 and we will not repeat them here. Using this algorithm, one can easily

see that the procedure, which corresponds to “Elimination of the Second Case” in the

proof, can be implemented in polynomial time.

Finally, we have described all the reduction steps (i.e. recursions), and we arrive at the

base instances for which no more recursion will be invoked. The relevant part of the proof

starts with the title “Construction and Properties of G′” in Section 3.7. The first step is

to construct G′ := G−v−W where W is the Steiner vertex adjacent to v. If S∪R−v is 6k-

edge-connected in G′, then using the algorithm for Theorem 3.2.1, we can construct edge-

disjoint Steiner trees with the desired properties (see Lemma 3.7.3). Otherwise, we find

an edge-cutset Z with |Z| < 6k by a minimum cut computation. Here the proof is divided

into two cases; we only describe the first case since the second case is analogous. Let the

components of G′−Z be C1 and C2, and let S1 := C1∩S, R1 := C1∩R, S2 := C2∩S, and

R2 := C2 ∩R. Lemma 3.7.7 asserts that Si ∪Ri is 6k-edge-connected in Ci for i ∈ {1, 2}.

This allows us to apply the algorithm for Theorem 3.2.1 to construct edge-disjoint Steiner

trees in C1 and C2 respectively. Then, following the proof of Lemma 3.7.10 which involves

only elementary operations, we can combine the Steiner trees in C1, the Steiner trees in

C2, the edges incident to v, and the edge cutset Z to construct edge-disjoint Steiner

trees in G with the desired properties. This shows that a base instance can be solved

in polynomial time, and concludes the description of the algorithm for the Steiner

Forest Packing problem.
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3.10 Capacitated Version

In this section, we consider the Capacitated Steiner Forest Packing problem.

This is a generalization of the Steiner Forest Packing problem, where every edge

e has an integer capacity ce which bounds the number of forests that can use e. The

Steiner Forest Packing problem is the special case when ce = 1 for every edge e.

A naive strategy to solve the capacitated version is to replace each edge e of G by

ce multiple edges and apply the algorithm for Theorem 3.1.1 on the resulting graph

G′. However, this only gives a pseudo-polynomial time approximation algorithm for the

Capacitated Steiner Forest Packing problem to G, as the running time depends

upon the edge capacities which may not be polynomially related to the number of vertices

of G.

The strategy we shall use is to first solve the Fractional Steiner Forest Pack-

ing problem, which is a relaxation of the Capacitated Steiner Forest Packing

problem where each forest is allowed to have fractional value. We remark that even

this fractional relaxation is NP-complete, as was proved in [49]. A 2-approximation al-

gorithm for the Fractional Steiner Forest Packing problem, however, can be

obtained by using exactly the same approach in [49] for the Fractional Steiner

Tree Packing problem. In [49], an approximate optimal fractional solution for the

Fractional Steiner Tree Packing problem is computed by using the ellipsoid al-

gorithm for solving linear programs, with the approximation algorithm for the Minimum

Steiner Tree problem as a subroutine (more precisely as a separation oracle). Simi-

larly, an approximate optimal fractional solution for the Fractional Steiner Forest

Packing problem can be computed by the ellipsoid method; we just need to replace the

separation oracle by an approximation algorithm for the Minimum Steiner Forest

problem (e.g. [42]). We remark that the factor 2 comes from the approximation ratio

of the Minimum Steiner Forest problem; but as we shall see, this number is not

important as long as it is not bigger than Q = 30. For more details, we refer the reader
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to [49].

Once we have obtained a 2-approximate fractional solution of the problem, we can

obtain an integral solution by rounding down the fractional solution. Not surprisingly,

this would not always be a Q-approximate integral solution for the problem. However,

we will prove that for those instances on which this procedure fails, we can use the naive

procedure mentioned earlier to solve the problem. That is, the size of the graph obtained

by the naive procedure in those instances is at most a polynomial times the size of the

original graph. This combines to give an approximation algorithm for the Capacitated

Steiner Forest Packing problem, which will be proved formally in the following

theorem.

Theorem 3.10.1 There is a polynomial time algorithm for the Capacitated Steiner

Forest Packing that constructs an integral solution of value at least b τ
Q
c, where τ is

the value of an optimal integral solution.

Proof. Given an instance of the Capacitated Steiner Tree Packing problem, let

τ ∗, τ be the value of an optimal fractional, integral solution, respectively. We first use

the approximation algorithm for the Fractional Steiner Forest Packing prob-

lem [49] to obtain a fractional solution of value β such that 2β ≥ τ ∗. One feature of

that algorithm is that there are at most a polynomial number of forests in the frac-

tional solution with xT > 0, say {x1, . . . , xp(n)}. Suppose
∑p(n)

i=1 bxic ≥
2
Q

∑p(n)
i=1 xi, then

∑p(n)
i=1 bxic ≥

2
Q

∑p(n)
i=1 xi = 2

Q
β ≥ 1

Q
τ ∗ ≥ 1

Q
τ . So, {bx1c, . . . , bxp(n)c} is an integral solution

which is at least τ
Q

, and we are done.

Otherwise,
∑p(n)

i=1 xi > Q
2

∑p(n)
i=1 bxic. Then, (Q

2
− 1)

∑p(n)
i=1 bxic <

∑p(n)
i=1 (xi − bxic) ≤

p(n), which implies
∑p(n)

i=1 bxic < 2
Q−2

p(n). So, β =
∑p(n)

i=1 xi =
∑p(n)

i=1 bxic +
∑p(n)

i=1 (xi −

bxic) < 2
Q−2

p(n) + p(n) = Q
Q−2

p(n). Therefore, τ ∗ < 2Q
Q−2

p(n). Note that in any solution,

at most a value of τ ∗ capacity is used in an edge. So, if ce > τ ∗, the excess capacity

ce − τ ∗ will never be used. Now, to find an integral solution, we replace every edge e
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of G by min{ce, bτ
∗c} multiple edges and call the resulting graph G′. Notice that the

total number of edges in G′ is bounded by a polynomial of n and the value of an optimal

solution in G′ is the same as in G. So, we can apply the algorithm for Theorem 3.1.1

to obtain b τ
Q
c edge-disjoint S-forests of G′ in polynomial time, which correspond to an

integral solution of G with value at least b τ
Q
c. Therefore, in either case, the integral

solution constructed is at least b τ
Q
c.

3.11 Steiner Network Packing

The following is a general problem that captures the Steiner Forest Packing prob-

lem. Given an undirected multigraph G and a connectivity requirement ruv for each pair

of vertices u, v ∈ V (G), find a largest collection of edge-disjoint subgraphs of G such

that in each subgraph there are ruv edge-disjoint paths from u to v for all u, v ∈ V (G).

Since edge-connectivity is transitive, Theorem 3.3.2 is equivalent to the following (see

also [12]).

Theorem 3.11.1 Given an undirected multigraph G and a connectivity requirement

ruv ∈ {0, 1} for u, v ∈ V (G). If there are Qk · ruv edge-disjoint paths for all u, v ∈ V (G),

then there are k edge-disjoint forests such that in each forest there are ruv paths between

u, v for all u, v ∈ V (G).

Proof. Given an instance of the Steiner Forest Packing problem, by setting

ruv = 1 for all u, v ∈ Si for all i, the result of Theorem 3.1.1 follows. Now we prove

the other direction. Consider an instance of the Steiner Network Packing problem

with ruv ∈ {0, 1} for all u, v ∈ V (G). We observe that if ruv = 1 and rvw = 1, then in the

resulting Steiner network, we must also have a path between u and w. Hence we can set

ruw = 1 as well. By setting each equivalence class of size at least 2 to a terminal group,

it is an instance of the Steiner Forest Packing problem. So the statement follows

from Theorem 3.1.1.
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I conjecture that Theorem 3.11.1 can be generalized to arbitrary non-negative integer

connectivity requirements:

Conjecture 3.11.2 Given an undirected multigraph G and a connectivity requirement

ruv for each pair of vertices u, v ∈ V (G). There exists a universal constant c so that the

following holds. If there are ck · ru,v edge-disjoint paths for all u, v ∈ V (G), then there

are k edge-disjoint subgraphs H1, . . . , Hk in G such that in each subgraph there are ruv

edge-disjoint paths between u and v for all u, v ∈ V (G).

It would be interesting to first verify Conjecture 1 for Eulerian graphs; notice that

c = 2 has not been ruled out. This may also yield insights into the generalized Steiner

network problem, where the goal is to find a minimum cost subgraph which satisfies all

the connectivity requirements, i.e. to find a minimum cost subgraph which has ru,v paths

for all u, v ∈ V . For example, the problem of finding a minimum Steiner tree in a graph

is a special case of the generalized Steiner network problem. The only known constant

factor (factor 2) approximation algorithm for the generalized Steiner network problem is

due to Jain’s iterative rounding technique [47], and an algorithm of a more combinatorial

nature is left as an open problem. The Steiner network packing problem is closely related

to the generalized Steiner network problem. Intuitively, if one has an algorithm to find

many edge-disjoint Steiner networks, then there should be some Steiner network in the

collection which uses few edges (and hence low costs). This intuition can actually be

realized using linear programming techniques. Very roughly, we could use the packing

algorithm to decompose the linear program solution into (fractionally) disjoint Steiner

networks, and then find the cheapest Steiner network among them. In fact, if Conjec-

ture 3.11.2 is true for any constant c in Eulerian graphs, then this would imply a more

combinatorial c-approximation algorithm for the generalized Steiner network problem.



Chapter 4

Steiner Orientations

The results in this chapter are based on joint work with Tamás Király [54].

4.1 Introduction

Let H = (V, E) be an undirected hypergraph. Recall that an orientation of H is ob-

tained by assigning a direction to each hyperedge in H. In this chapter, we use the

out-hypergraph model defined in Section 2.1.2, where a hyperarc (a directed hyperedge)

is a hyperedge with a designated tail vertex and other vertices as head vertices. Given a

set S ⊆ V of terminal vertices (the vertices in V −S are called the Steiner vertices ) and

a root vertex r ∈ S, we say a directed hypergraph is Steiner rooted k-hyperarc-connected

if there are k hyperarc-disjoint paths from the root vertex r to each terminal vertex in

S. Recall that a path in a directed hypergraph is an alternating sequence of distinct

vertices and hyperarcs {v0, a0, v1, a1, . . . , ak−1, vk} so that vi is the tail of ai and vi+1

is a head of ai for all 0 ≤ i < k. The Steiner Rooted-Orientation problem is

to find an orientation of H so that the resulting directed hypergraph is Steiner rooted

k-hyperarc-connected, and our objective is to maximize k.

When the Steiner Rooted-Orientation problem specializes to graphs, it is a

common generalization of some classical problems in graph theory. When there are only

99
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two terminal vertices (i.e. S = {r, v}), it is the edge-disjoint paths problem solved by

Menger [73]. To see this, given k edge-disjoint paths between r, v in G, one can easily

construct a Steiner rooted k-arc-connected orientation D of G by orienting each r, v-path

away from r (the remaining edges can be oriented arbitrarily). For the other direction,

suppose we have a Steiner rooted k-arc-connected orientation D of G, then there are k

arc-disjoint paths from r to v in D. These paths are k edge-disjoint r, v-paths in G by

ignoring the directions. When all vertices in the graph are terminals (i.e. S = V (G)),

the Steiner Rooted-Orientation problem can be shown to be equivalent to the

edge-disjoint spanning trees problem solved by Tutte [85] and independently later by

Nash-Williams [75]. To see this, given k edge-disjoint spanning trees in G, one can easily

construct a Steiner rooted k-arc-connected orientation D of G by orienting each spanning

tree as an r-arborescence (the remaining edges can be oriented arbitrarily). For the other

direction, suppose we have a Steiner rooted k-arc-connected orientation D of G, then by

Edmonds’ theorem (Theorem 2.2.24) there are k arc-disjoint r-arborescences in D. These

r-arborescences are k edge-disjoint spanning trees in G by ignoring the directions.

The Steiner Rooted-Orientation problem is a common generalization of the

above problems. An alternative common generalization of the above problems is the

Steiner Tree Packing problem studied in Chapter 3. It is instructive to compare

these two problems on the setting of graphs. Notice that if a graph G has k edge-disjoint

Steiner trees (i.e. trees that connect the terminal vertices S), then G has a Steiner

rooted k arc-connected orientation. The converse, however, is not true. For example,

the underlying graph of Figure 1.1 has a Steiner rooted 2 arc-connected orientation, but

not 2 edge-disjoint Steiner trees. As we shall see, significantly sharper approximate min-

max relations and also approximation ratio can be achieved for the Steiner Rooted-

Orientation problem, especially when we consider hyperarc-connectivity and element-

connectivity. This has implications in the network multicasting problem, which will be

discussed later.
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Given a hypergraph H, recall that S is k-hyperedge-connected in H if there are k

hyperedge-disjoint paths between every pair of vertices in S. It is not difficult to see that

for a hypergraph H to have a Steiner rooted k-hyperarc-connected orientation, S must

be at least k-hyperedge-connected in H. The main focus of this paper is to determine

the smallest constant c so that the following holds: If S is ck-hyperedge-connected in H,

then H has a Steiner rooted k-hyperarc-connected orientation.

4.1.1 Previous Work

Graph orientations is a very well-studied subject in the literature, and there are many

ways to look at such questions (see [5]). Here we focus on graph orientations achieving

high connectivity (see Section 2.2.4 and Section 2.2.5 for more details). The starting

point of this line of research is a theorem by Robbins [81] in 1939 which says that a

graph G has a strongly-connected orientation if and only if G is 2-edge-connected. In

1960, Nash-Williams [74] generalized this theorem by proving that a graph G has a

strongly k-arc-connected orientation if and only if G is 2k-edge-connected; this theorem

is often called the weak orientation theorem in the literature (Theorem 2.2.12). Recall

that λ(x, y) denotes the maximum number of edge-disjoint (or arc-disjoint) paths from

x to y, which is called the local-edge-connectivity (or local-arc-connectivity) from x to

y. Nash-Williams [74] also proved the following deep theorem (Theorem 2.2.13) which

achieves optimal local-arc-connectivity for all pair of vertices:

(Nash-Williams’ Strong Orientation Theorem)

Every undirected graph G has an orientation D so that

λD(x, y) ≥ bλG(x, y)/2c for all x, y ∈ V.

Nash-Williams’ original proof uses a complicated inductive argument (see Section 2.2.4);

until now this is the only known orientation result achieving high local-arc-connectivity.
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Subsequently, Frank, in a series of works [22, 23, 25, 27, 30], developed a general frame-

work to solve graph orientation problems achieving high global-arc-connectivity (see Sec-

tion 2.2.5) by using the submodular flow problem introduced by Edmonds and Giles

[18] (see Section 2.2.5). With this powerful tool, Frank greatly extended the range of

orientation problems that can be solved concerning global-arc-connectivity. Some repre-

sentative examples include finding a strongly k-arc-connected orientation with minimum

weight [23], with in-degree constraints [22] and in mixed graphs [27]. Recently, this

framework has been generalized to solve hypergraph orientation problems achieving high

global-hyperarc-connectivity [33].

Extending graph orientation results to hyperarc-connectivity or to vertex-connectivity

is more challenging. For the Steiner Rooted-Orientation problem, the only known

result follows from Nash-Williams’ strong orientation theorem: if S is 2k-edge-connected

in an undirected graph G, then G has a Steiner rooted k-arc-connected orientation. For

hypergraphs, there is no known orientation result concerning Steiner rooted-hyperarc-

connectivity. A closely related problem of characterizing hypergraphs that have an

orientation which is Steiner strongly k-hyperarc-connected is posted as an open prob-

lem in [19] (and more generally an analog of Nash-Williams’ strong orientation theorem

in hypergraphs). For orientation results concerning vertex-connectivity, very little is

known even for global rooted-vertex-connectivity (i.e. when there is no Steiner vertices).

Frank [29] made a conjecture on a necessary and sufficient condition for the existence

of a strongly k-vertex-connected orientation, which in particular would imply that a

2k-vertex-connected graph has a strongly k-vertex-connected orientation (and hence a

rooted k-vertex-connected orientation). The only positive result along this line is a suf-

ficient condition due to Jordán [48] for the case k = 2: Every 18-vertex-connected graph

has a strongly 2-vertex-connected orientation.
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4.1.2 Results

The main result of this chapter is the following theorem on hypergraphs, which is tight

in terms of the connectivity bound. This gives a positive answer to the rooted version of

the open question in [19].

Theorem 4.1.1 Suppose H is a hypergraph, S is a given subset of terminal vertices and

r ∈ S is the root vertex. Then H has a Steiner rooted k-hyperarc-connected orientation

if S is 2k-hyperedge-connected in H.

We remark that no analogous result can be obtained for Steiner strongly k-hyperarc-

connected orientations: for every constant C, there are hypergraphs which are Ck-

hyperedge-connected but do not have a Steiner strongly k-hyperarc-connected orien-

tation. This contrasts with the graph case where the Nash-Williams strong orientation

theorem implies that: if S is 2k-edge-connected in a graph G, then G has a strongly

k-edge-connected orientation. We shall also give an alternative proof of this result in

Section 4.6.

Theorem 4.1.1 is best possible in terms of the connectivity bound. For example,

a cycle is 2-edge-connected but only has a rooted 1-arc-connected orientation. More

generally, this is best possible for every k as shown by any 2k-regular 2k-edge-connected

non-complete graph G by setting S = V (G) (e.g. a 2k-dimensional hypercube). To see

this, any 2k-regular graph has kn edges but a rooted (k + 1)-arc-connected orientation

requires at least (k+1)(n−1) edges. So there are just not enough edges to have a rooted

(k + 1)-arc-connected orientation if G is not a complete graph (i.e. n > k − 1).

The proof of Theorem 4.1.1 is constructive and so also implies the first polynomial

time constant factor approximation algorithm for the problem. When the above theo-

rem specializes to graphs, this gives a new and simpler algorithm (without using Nash-

Williams’s strong orientation theorem) to find a Steiner rooted k-arc-connected orienta-

tion in a graph when S is 2k-edge-connected in G. On the other hand, we prove that
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finding an orientation which maximizes the Steiner rooted-arc-connectivity in a graph is

NP-complete (Theorem 4.7.1). This contrasts with the polynomial time solvable problem

of finding an orientation which maximizes the Steiner strong arc-connectivity of a graph;

this is implied by the Nash-Williams strong orientation theorem for which a polynomial

time algorithm exists. It is a rare phenomenon that the rooted version of a connectivity

problem is more difficult than the non-rooted one.

Following the standard notation on approximation algorithms for graph connectivity

problems, by an element we mean either an edge or a Steiner vertex. For graph connec-

tivity problems, element-connectivity is regarded as of intermediate difficulty between

vertex-connectivity and edge-connectivity (see [46, 21]). A directed graph is Steiner

rooted k-element-connected if there are k element-disjoint directed paths from r to each

terminal vertex in S. We prove the following approximate min-max theorem on element-

connectivity.

Theorem 4.1.2 Suppose G is a graph, S is a given subset of terminal vertices with a

specified root vertex r ∈ S. Then G has a Steiner rooted k-element-connected orientation

if S is 2k-element-connected in G.

This is optimal in terms of the connectivity bound as the tight examples for Theo-

rem 4.1.1 show. The proof is constructive and so also implies the first polynomial time

approximation algorithm for the problem. Finally, we also prove that this problem is

NP-complete (Theorem 4.7.5).

4.1.3 Techniques

Since Nash-Williams strong orientation theorem, little progress has been made on the ori-

entation problems concerning local-arc-connectivity, local-hyperarc-connectivity or vertex-

connectivity. The difficulty is largely due to a lack of techniques to work with these more

sophisticated connectivity notions. The main technical contribution of this chapter is
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a new method to use the submodular flow problem. A key ingredient in the proof of

Theorem 4.1.1 is the use of an “extension property” (see Chapter 3) to help decompose

a general hypergraph into hypergraphs with substantially simpler structures. Then, in

those simpler hypergraphs, we apply the submodular flows technique in a very effective

way to solve the problem (and also prove the extension property). An important building

block of our approach is the following class of polynomial time solvable graph orienta-

tion problems, which we call the Degree-Specified Steiner Rooted-Orientation

problem.

Theorem 4.1.3 Suppose G is a graph, S is a given subset of terminal vertices with a

specified root vertex r ∈ S, and m is an in-degree specification on the Steiner vertices (i.e.

m : (V (G)− S) → Z
+). Then deciding whether G has a Steiner rooted k-arc-connected

orientation with the specified in-degrees (so that the indegree of each Steiner vertex v is

equal to m(v)) can be solved in polynomial time.

Perhaps Theorem 4.1.3 does not seem to be very useful at first sight, but it turns

out to be surprisingly powerful in some situations when we have a rough idea on what

the indegrees of Steiner vertices should be like. To prove Theorem 4.1.3, we shall reduce

this problem to a submodular flow problem from which we can also derive a necessary

and sufficient condition for the existence of a Steiner rooted k-arc-connected orientation.

This provides us with a crucial tool in establishing the connectivity bounds. As we shall

see, Theorem 4.1.3 is a generalization of the results on the hypergraph global rooted-arc-

orientation problems in [33, 53] and [6].

Interestingly, the proof of Theorem 4.1.2 is also based on the Degree-Specified

Steiner Rooted-Orientation problem (Theorem 4.1.3) which was designed for edge-

connectivity problems. For a similar step in the hypergraph orientation problem, we

borrow a technique in [14] to obtain a graph with simpler structures.
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4.1.4 The Network Multicasting Problem

The Steiner Rooted-Orientation problem is motivated by the multicasting problem

in computer networks (see also Chapter 1), where the root vertex (the sender) must

transmit all its data to the terminal vertices (the receivers) and the goal is to maximize the

transmission rate that can be achieved simultaneously for all receivers. The connection

is through a recent beautiful min-max theorem by Ahlswede et. al. [2] in 2000:

(The Network Coding Theorem)

Given a directed multigraph with unit capacity on each arc, if there are k

arc-disjoint paths from the root vertex to each terminal vertex, then the root

vertex can transmit k unit of data to all terminal vertices simultaneously.

They prove the theorem by introducing the innovative idea of network coding [2, 65],

which has generated much interest in different areas from information theory to com-

puter science [2, 65, 16, 63, 64, 68, 69, 70]. These studies focus on directed networks, for

example the Internet, where the direction of data movement on each link is fixed a priori.

On the other hand, there are practical networks which are undirected, i.e. data can be

sent in either direction along a link. By using the above theorem, computing the maxi-

mum multicasting rate in undirected networks (with network coding supported) reduces

to the Steiner Rooted-Orientation problem. This has been studied in the graph

model [63, 64] and efficient approximation algorithms have been proposed. An important

example of undirected networks is wireless networks (equipped with omni-directional an-

tennas), for which many papers have studied the advantages of incorporating network

coding (see [68] and the references therein). However, there are some aspects of wireless

communications that are not captured by a graph model. One distinction is that wire-

less communications in such networks are inherently one-to-many instead of one-to-one.

This motivates researchers to use a directed hypergraph model [16, 68, 69, 70] to study

the multicasting problem (with network coding supported) in wireless networks. The
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directed hypergraph model used in [16, 68, 69, 70] coincides with the out-hypergraph

model defined in Section 2.1.2. A simple reduction shows that the above network coding

theorem by Ahlswede el. al. applies to directed hypergraphs as well. Therefore, comput-

ing the maximum multicasting rate in an undirected hypergraph (with network coding

supported) reduces to the Steiner Rooted-Orientation problem of hypergraphs.

In the multicasting problem, the Steiner Tree Packing is used to transmit data

when network coding is not supported. However, one cannot hope for analogous results

of Theorem 4.1.1 or Theorem 4.1.2 for the corresponding Steiner Tree Packing

problems. In fact, both the hyperedge-disjoint Steiner tree packing problem and the

element-disjoint Steiner tree packing problem are shown to be NP-hard to approximate

within a factor of Θ(log n) [14]. (It was also shown in [7] that no constant connectivity

bound implies the existence of two hyperedge-disjoint spanning sub-hypergraphs.) So,

Theorem 4.1.1 indicates that multicasting with network coding in a hypergraph model

could be much more efficient in terms of the throughput. To be more precise, if S is

2k-hyperedge-connected in a hypergraph H, then Theorem 4.1.1 implies that we can

transmit at least k units of data from the root to each receiver in S (assuming each

edge can transmit one unit of data at a time) if network coding is supported. On the

other hand, if network coding is not supported, then each unit of data needs to be

transmitted through a hyperedge-disjoint subgraph which connects S. However, there

are hypergraphs (e.g. the examples in [7]) for which S is 2k-hyperedge-connected in H

but H does not have more than Θ(k/ log n) hyperedge-disjoint subgraphs which connect

S. Hence, in those hypergraphs, we can transmit at most Θ(k/ log n) unit of data from

the root to each receiver in S (assuming each edge can transmit one unit of data at a

time) if network coding is not supported.
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4.2 Degree-Specified Steiner Orientations

In this section we consider the Degree-Specified Steiner Orientation problem,

suggested by Frank (personal communication). Given a graph G = (V, E), a terminal

set S ⊆ V (G) and a connectivity requirement function h : 2S → Z, the connectivity

requirement function h∗ : 2V → Z is the Steiner extension of h if h∗(X) = h(X ∩ S)

for every X ⊆ V . Suppose G, S, h are given as above, and an in-degree specification

m(v) for each Steiner vertex is given. The goal of the Degree-Specified Steiner

Orientation problem is to find an orientation D of G that covers the Steiner extension

h∗ of h, with an additional requirement that din
D (v) = m(v) for every v ∈ V (G)− S.

Given a hypergraph H = (V, E) and a connectivity requirement function h : 2V → Z,

the Hypergraph Orientation problem is to find an orientation
−→
H of H that covers

h. Bang-Jensen and Thomassé [6] and Frank, Király and Király [33] studied the Hyper-

graph Orientation problem for out-hypergraphs and in-hypergraphs respectively. We

now show that both are special cases of the Degree-Specified Steiner Orientation

problem.

Given a hypergraph H = (V, E), we consider the bipartite representation B =

(V, E ; E) of H. The vertices in the vertex partite set V are terminal vertices; while

the vertices in the hyperedge partite set E are Steiner vertices. To define a connectivity

requirement function on every subset of V (B) = V ∪E , we use the Steiner extension h∗ of

h, i.e. h∗(X) for X ⊆ V (B) is defined to be h(X ∩ V ). For out-hypergraphs, we specify

the indegree of each Steiner vertex (which corresponds to a hyperedge) to be 1. Let D be

an orientation of B with the specified indegrees. Since each Steiner vertex has indegree 1,

D corresponds to an orientation
−→
H of H as follows. For each hyperedge vertex v in B, if

uv is oriented as −→uv in D, then the hyperedge corresponds to v in H is oriented with u as

the tail in
−→
H . Also, since each Steiner vertex has indegree 1 in D, arc-disjoint paths in D

corresponds to hyperarc-disjoint paths in
−→
H . Therefore, there is a hypergraph orientation

−→
H of H that covers h if and only if there is an orientation D of B that covers the h∗ with
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the specified indegrees. For example, there is a rooted k-hyperarc-connected orientation

of H if and only if there is a Steiner rooted k-arc-connected orientation of B with the

specified indegrees. The Hypergraph Orientation problem for in-hypergraphs can

be reduced to the Degree-Specified Steiner Orientation problem analogously.

4.2.1 Degree-Specified Orientations Covering Steiner

Extensions of Intersecting Supermodular Set Functions

Given an undirected graph G and S ⊆ V (G), an intersecting supermodular function

h : 2S → Z and an in-degree specification m : (V (G)− S) → Z
+, we ask whether there

exists an orientation D of G that covers the Steiner extension h∗ of h with din
D (v) = m(v)

for each v ∈ V (G) − S. We reduce this problem to a submodular flow problem (see

Section 2.2.5 for more details). In the following d(X, Y ) denotes the number of edges

with one endpoint in X and the other endpoint in Y , and E(Y ) denotes the number of

edges with both endpoints in Y . Also, we let m(Y ) :=
∑

v∈Y m(v) for Y ⊆ V (G)− S.

Notice that h∗ is not an intersecting supermodular function in general (e.g. inequality

(2.2) does not hold for two sets X, Y with X ∩ Y ⊆ V (G) − S), and therefore Theo-

rem 2.2.18 cannot be directly applied. The difficulty is that we have no information

about the indegrees of sets containing only Steiner vertices. To overcome this obstacle,

we are motivated to add extra information on the Steiner vertices. It turns out that with

the indegree specification m, we can define another connectivity requirement function

h′ : 2V → Z ∪ {−∞} which “encodes” the Degree-Specified Steiner Orientation

problem and such that h′ is intersecting supermodular if h is intersecting supermodular.

h′(X) :=



































m(X) for X = {v}, v ∈ V − S.

h(X) + maxY ⊆V (G)−S{d(X, Y )−m(Y ) + E(Y )} for X ⊆ S, X 6= ∅.

0 if X = ∅ or X = V.

−∞ otherwise.
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The following lemma shows that the newly defined function h′ is an intersecting

supermodular function if h is intersecting supermodular.

Lemma 4.2.1 If h is intersecting supermodular, then h′ is an intersecting supermodular

function.

Proof. Let X1 and X2 be two intersecting sets. We need to show that h′(X1)+h′(X2) ≤

h′(X1 ∩X2) + h′(X1 ∪X2). If either h′(X1) or h′(X2) is −∞, then the inequality holds

trivially. Also, if X1 = ∅ or X1 = V (G), then the inequality holds (as equality). So we

just need to consider the case that both X1 and X2 are in S. Let X1 and X2 be two

intersecting sets in S, and Y1 and Y2 be the sets in V (G)− S which yield the maximum

of h′(X1) and h′(X2) respectively. Then,

h′(X1) + h′(X2)

= h(X1) + h(X2)−m(Y1)−m(Y2) + E(Y1) + E(Y2) + d(X1, Y1) + d(X2, Y2)

≤ h(X1 ∩X2) + h(X1 ∪X2)−m(Y1)−m(Y2) +

E(Y1) + E(Y2) + d(X1, Y1) + d(X2, Y2)

= h(X1 ∩X2) + h(X1 ∪X2)−m(Y1 ∩ Y2)−m(Y1 ∪ Y2) +

E(Y1) + E(Y2) + d(X1, Y1) + d(X2, Y2)

≤ h(X1 ∩X2) + h(X1 ∪X2)−m(Y1 ∩ Y2)−m(Y1 ∪ Y2) +

E(Y1 ∩ Y2) + E(Y1 ∪ Y2) + d(X1, Y1) + d(X2, Y2)

≤ h(X1 ∩X2) + h(X1 ∪X2)−m(Y1 ∩ Y2)−m(Y1 ∪ Y2) +

E(Y1 ∩ Y2) + E(Y1 ∪ Y2) + d(X1 ∩X2, Y1 ∩ Y2) + d(X1 ∪X2, Y1 ∪ Y2)

= h(X1 ∩X2)−m(Y1 ∩ Y2) + E(Y1 ∩ Y2) + d(X1 ∩X2, Y1 ∩ Y2)

h(X1 ∪X2)−m(Y1 ∪ Y2) + E(Y1 ∪ Y2) + d(X1 ∪X2, Y1 ∪ Y2)

≤ h(X1 ∩X2) + max
Y ⊆V (G)−S

{d(X1 ∩X2, Y )−m(Y ) + E(Y )}

h(X1 ∪X2) + max
Y ⊆V (G)−S

{d(X1 ∪X2, Y )−m(Y ) + E(Y )}

= h′(X1 ∩X2) + h′(X1 ∪X2).
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The inequalities are based on the fact that h(.), E(.) and d(., .) are intersecting super-

modular function.

The following lemma shows that h′ “encodes” the Degree-Specified Steiner Ori-

entation problem.

Lemma 4.2.2 Suppose E(Y ) ≤ m(Y ) for every Y ⊆ V (G) − S. G has an orientation

covering h′ if and only if G has an orientation covering the Steiner extension h∗ of h

with the indegree of each v ∈ V (G)− S being exactly m(v).

Proof. Suppose there exists an orientation D of G that covers h′; thus din
D (Z) ≥ h′(Z)

for every Z ⊆ V (G). For each v ∈ V (G)−S, h′(v) = m(v), and so din
D (v) ≥ h′(v) = m(v).

If din
D (v) = m(v) for all v ∈ V (G)−S, then for all Y ⊆ V (G)−S, din

D (Y ) =
∑

v∈Y din
D (v)−

E(Y ) = m(Y )− E(Y ). Hence, for every X ⊆ S and for every Y ⊆ V (G)− S, we have:

din
D (X ∪ Y )

= din
D (X) + din

D (Y )− dG(X, Y )

≥ h′(X) + din
D (Y )− dG(X, Y )

= h′(X) + m(Y )− E(Y )− dG(X, Y )

≥ h(X) + max
Y ′⊆V (G)−S

{dG(X, Y ′)−m(Y ′) + E(Y ′)} − (dG(X, Y )−m(Y ) + E(Y ))

≥ h(X).

This implies that din
D (Z) ≥ h(Z ∩ S) for every Z ⊆ V . Therefore, if din

D (v) = m(v) for

any v ∈ V (G)−S, then the orientation D that covers h′ is an orientation that covers the

Steiner extension h∗ of h with the indegree of each v ∈ V (G)− S being exactly m(v).

Suppose there exists a vertex v with din
D (v) > m(v). Let U be the set of vertices which

can reach v by a directed path (i.e. a vertex u can reach v if there is a directed path from

u to v). Assume, by way of contradiction, that U ∩ S = ∅. Then, by the definition of

U , we have din
D (U) = 0. Therefore, since v ∈ U , we have E(U) =

∑

u∈U din
D (u) > m(U),

which contradicts our hypothesis. So we must have U ∩ S 6= ∅ and we pick a vertex
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w ∈ S which is closest to v. Let Pw be a shortest directed path from w to v. Now

we reverse the direction of all the arcs in Pw and obtain a new orientation D′. By

doing so, din
D′(u) = din

D (u) ≥ m(u) = h′(u) for each u ∈ V (G) − S − v; and for v,

din
D′(v) = din

D (v)−1 ≥ m(v)+1−1 = h′(v). Hence din
D′(u) ≥ h′(u) for every u ∈ V (G)−S.

Also, by reorienting Pw, we still have din
D′(X) ≥ din

D (X) ≥ h′(X) for every X ⊆ S. By

repeating the above procedure, we will eventually obtain an orientation that covers h′

with each v ∈ V (G)− S having indegree exactly m(v). Hence this reduces to the case in

the previous paragraph; this proves one direction.

Now we prove the easier direction. Suppose we have an orientation D that covers

the Steiner extension h∗ of h such that din
D (v) = m(v) for each v ∈ V (G) − S. For

each X ⊂ S, recalling that h′(X) := h(X) + maxY ⊆V (G)−S{d(X, Y ) − m(Y ) + E(Y )},

we let Y ∗ ⊆ V (G) − S be the set which yields the maximum for h′(X). Notice that

Y ∗ could be the emptyset, and so h′(X) ≥ h(X) for each X ⊂ S. Also, recall that

since din
D (v) = m(v) for each v ∈ V (G) − S, the arguments from the first part of this

proof imply that din
D (Y ) = m(Y ) − E(Y ) for each Y ⊆ V (G) − S. Since D covers h∗,

din
D (X ∪ Y ∗) ≥ h∗(X ∪ Y ∗) = h((X ∪ Y ∗) ∩ S) = h(X). So,

din
D (X)

= din
D (X ∪ Y ∗)− din

D (Y ∗) + dG(X, Y ∗)

= din
D (X ∪ Y ∗)−m(Y ∗) + E(Y ∗) + dG(X, Y ∗)

≥ h(X)−m(Y ∗) + E(Y ∗) + dG(X, Y ∗)

= h(X) + max
Y ⊆V (G)−S

{dG(X, Y )−m(Y ) + E(Y )}

= h′(X).

Therefore, D is an orientation that covers h′. This completes the proof.

Now, combining the two lemmas and also Theorem 2.2.18, we have the following

theorem.
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Theorem 4.2.3 The Degree-Specified Steiner Orientation problem can be solved

in polynomial time.

Proof. Lemma 4.2.1 shows that h′ is indeed an intersecting supermodular function.

Suppose E(Y ) > m(Y ) for some Y ⊆ V (G)−S. Then such an indegree-specified orienta-

tion does not exist, and we say “No”. Otherwise, Lemma 4.2.2 shows that the Degree-

Specified Steiner Orientation problem is equivalent to finding an orientation that

covers h′. Therefore, Theorem 2.2.18 implies the theorem.

Now we derive Theorem 4.1.3 as a corollary of Theorem 4.2.3.

Proof of Theorem 4.1.3: Let S be the set of terminal vertices and r ∈ S be the root

vertex. Set h(X) := k for every X ⊆ S with r /∈ X, and h(X) := 0 otherwise. Then h is

an intersecting supermodular function on S (recall that if h(X) = k for every ∅ 6= X ⊂ S

then h is only a crossing supermodular function but not intersecting supermodular). By

Theorem 4.2.3, the problem of finding an orientation D that covers the Steiner extension

h∗ of h with the specified indegrees can be solved in polynomial time.

We shall show that this is equivalent to finding a Steiner rooted k-arc-connected orien-

tation with the specified indegrees. Let s ∈ S be a terminal vertex. An orientation D that

covers h∗ satisfies din
D (X) ≥ k for every rs set. So, by Menger’s theorem (Theorem 2.2.1),

there are k arc-disjoint paths from r to s in D. Notice this holds for an arbitrary terminal

vertex, and thus D is a Steiner rooted k-arc-connected orientation. For the other direc-

tion, a Steiner rooted k-arc-connected orientation D of G has k arc-disjoint paths from

the root to each terminal vertex. So din
D (X) ≥ k for every X ⊆ V (G) which contains a

terminal vertex but not the root. Hence D covers h∗. Therefore the two problems are

equivalent, and thus the Degree-Specified Steiner Rooted-Orientation problem

can be solved in polynomial time.

The following min-max formula, which is derived from Theorem 2.2.18, will be very

useful later in establishing connectivity bounds.
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Theorem 4.2.4 Let G = (V, E) be an undirected graph with a terminal set S ⊆ V (G).

Let h : 2S → Z be an intersecting supermodular function and m : (V (G) − S) → Z
+ be

an indegree specification. Let eP be the number of edges which enter some Xi. Then G

has an orientation covering the Steiner extension h∗ of h with the specified indegrees if

and only if

eP ≥
t

∑

i=1

h′(Xi)

holds for every subpartition P = {X1, X2, . . . , Xt} of V .

4.3 Steiner Rooted Orientations of Graphs

In this section we study the Steiner Rooted Orientation problem on graphs. The

Degree-Specified Steiner Rooted Orientation problem is shown to be poly-

nomial time solvable in the previous section. The Steiner Rooted Orientation

problem, however, is NP-complete as we shall see in Section 4.7. That is, in general,

finding an in-degree specification for the Steiner vertices to maximize the Steiner rooted-

edge-connectivity is hard. However, in some occasions when we have a good idea what the

indegrees of Steiner vertices should be like, the Degree-Specified Steiner Rooted

Orientation problem turns out to be a powerful way to tackle the Steiner Rooted

Orientation problem.

As mentioned in the introduction, Nash-Williams’ strong orientation theorem (Theo-

rem 2.2.13) implies the following result: if S is 2k-edge-connected in an undirected graph

G, then G has a Steiner rooted k-arc-connected orientation. As a warm-up, we give the

following well-known proof of the above result on Eulerian graphs.

Theorem 4.3.1 Let G = (V, E) be an undirected graph with terminal set S ⊆ V (G).

Suppose S is 2k-edge-connected in G and every Steiner vertex is of even degree. Then G

has a Steiner rooted k-arc-connected orientation.
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Proof. Let v be a Steiner vertex. By Lemma 3.5.1, there is a suitable splitting-off

operation at v so that S is still 2k-edge-connected in the resulting graph. After the

splitting-off operation, v is still of even degree and so we can repeat this procedure

until there is no edge incident to v. Applying this procedure for every Steiner vertex

gives a new graph G′ such that V (G′) = S and G′ is 2k-edge-connected. Also, given a

rooted k-arc-connected orientation of G′, it is easy to construct a rooted k-arc-connected

orientation of G. Now, we apply the Tutte-Nash-Williams theorem (Theorem 2.2.19) to

show that G′ has a rooted k-edge-connected orientation. Consider any vertex partition

P = (V1, . . . , Vt) of V (G′). Since G′ is 2k-edge-connected, we have dG′(Vi) ≥ 2k. So,

eP = 1
2

∑t
i=1 dG′(Vi) ≥ kt. And the Tutte-Nash-Williams theorem implies that G′ has

at least k edge-disjoint spanning trees. So, by making each spanning tree into an r-

arborescence, G′ has a rooted k-arc-connected orientation. This proves the theorem.

In the above proof, if a Steiner vertex is of odd degree, then we may not be able to find

a suitable splitting-off operation when it is reduced to degree 3. This difficulty motivates

our next theorem, which gives a min-max formula for the problem when every Steiner

vertex is of degree 3 and there is no edge between Steiner vertices. This is one example

that the Degree-Specified Steiner Rooted-Orientation problem can be applied.

The following lemma shows that we can “hardwire” the indegrees of the Steiner vertices

to be 1 without loss of generality.

Lemma 4.3.2 Let G = (V, E) be an undirected graph with terminal set S ⊆ V (G).

Suppose that every Steiner vertex of G is of degree 3 and there is no edge between two

Steiner vertices in G. If G has a Steiner rooted k-arc-connected orientation D, then there

is a Steiner rooted k-arc-connected orientation D′ with din
D′(v) = 1 for each Steiner vertex

v.

Proof. Consider a vertex v ∈ V (G) − S. If din
D (v) = 0 or din

D (v) = 3, then v plays no
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role in connecting the root to any terminal, so we can simply reorient one or two of its

incident arcs without affecting the rooted-arc-connectivity.

The interesting case is when din
D (v) = 2. Let u, w be the two incoming neighbours

of v, and x be the outgoing neighbour of v, and r be the root. We claim that either

D − uv or D − wv is still a Steiner rooted k-arc-connected orientation. Suppose not.

Since D − uv is not a Steiner rooted k-arc-connected orientation but D is, there is a

terminal vertex s so that there are k arc-disjoint paths from r to s in D but only k − 1

arc-disjoint paths from r to s in D − uv. So, by Menger’s theorem (Theorem 2.2.1),

there is a set X1 with r /∈ X1, X1 ∩ S 6= ∅ (in particular s ∈ X1), din
D (X1) = k and

uv ∈ δin
D (X1). Actually x must be in X1; otherwise X1 − v is a set with r /∈ X1 − v,

(X1 − v) ∩ S 6= ∅, and din
D (X1 − v) < k, which contradicts the assumption that D is a

Steiner rooted k-arc-connected orientation. By a similar reasoning, w must be in X1;

otherwise X1 − v will violate the assumption that D is a Steiner rooted k-arc-connected

orientation. So we obtain a set X1 with r, u /∈ X1, w, x, v ∈ X1, and din
D (X1) = k. By the

same argument with the roles of u and w switched, we obtain a set X2 with r, w /∈ X2,

u, x, v ∈ X2, din
D (X2) = k. Now, by submodularity (Proposition 2.1.2), we have

k + k = din
D (X1) + din

D (X2) ≥ din
D (X1 ∪X2) + din

D (X1 ∩X2) ≥ k + k;

the last inequality holds because both X1∪X2 and X1∩X2 contain x but not r (recall that

since there is no edge between two Steiner vertices, x ∈ S). So equalities hold throughout

and we have din
D (X1 ∩ X2) = k. Notice that v, x ∈ X1 ∩ X2 and u, w, r /∈ X1 ∩ X2.

Therefore, X1 ∩ X2 − v has the properties that r /∈ X1 ∩ X2 − v, x ∈ X1 ∩X2 − v and

din
D (X1 ∩ X2 − v) = k − 1, which, as described above, contradicts the assumption that

D is a Steiner rooted k-arc-connected orientation. So, either D − uv or D − wv is still

a Steiner rooted k-arc-connected orientation. Then reorienting uv or wv will not affect

the rooted k-arc-connectivity and indegree of v becomes 1. Hence we can assume every

Steiner vertex has indegree precisely 1.
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Lemma 4.3.2 allows us to use the result for the Degree-Specified Steiner Rooted

Orientation problem. We remark the following theorem is implicit in [6]. Note that

the Steiner Tree Packing problem in this special case remains NP-complete (see Sec-

tion 3.8). We also remark that the following theorem does not follow from Nash-Williams’

strong orientation; the condition given below is more general than the conditions given

by Nash-Williams.

Theorem 4.3.3 Let G = (V, E) be an undirected graph with terminal set S ⊆ V (G).

If every Steiner vertex (vertices in V (G) − S) is of degree at most 3 and there is no

edge between two Steiner vertices in G, then G has a Steiner rooted k-edge-connected

orientation if and only if

eP ≥ k(t− 1) (4.1)

for every partition P = (V1, . . . , Vt) of V (G) such that each Vi contains a terminal vertex,

where eP denotes the number of crossing edges.

Proof. The plan is to reduce this problem to the Degree-Specified Steiner

Rooted Orientation problem. We first argue that the condition (4.1) is necessary.

For every partition P = {V1, . . . , Vt} such that each Vi contains a terminal vertex, let V1

be the class that contains the root. Then, if there exists a Steiner rooted k-arc-connected

orientation, each Vi for i 6= 1 must have at least k incoming edges. Hence there must be

at least k(t− 1) crossing edges in P for this to happen. So condition (4.1) is necessary.

Now, assuming (4.1), we prove the existence of a Steiner rooted k-edge-connected

orientation by choosing a suitable h, m and showing that the conditions of the min-max

formula of Theorem 4.2.4 are satisfied. First we set up our problem in the language of

Theorem 4.2.4. Since we are looking for a Steiner rooted k-arc-connected orientation, for

each X ⊆ S, we set h(X) = k if r /∈ X and h(X) = 0 otherwise. Then an orientation

that covers the Steiner extension h∗ of h is a Steiner rooted k-arc-connected orientation

(see the proof of Theorem 4.1.3 in Section 4.2.1). By Lemma 4.3.2, we can set m(v) = 1
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for each v ∈ V (G)− S.

Now let us verify that the condition of Theorem 4.2.4 is satisfied. That is, we need

to show that eQ ≥
∑t

i=1 h′(Xi) holds for every subpartition Q = {X1, . . . , Xt} of V . We

can assume that either Xi ⊆ S or Xi ∈ V (G)−S; otherwise h′(Xi) = −∞ or Xi = V (G)

and so the inequality holds trivially. Let Q = {X1, . . . , Xp, Z1, . . . , Zq} be a subpartition

of V where Xi ⊆ S for all i and Zj ∈ V (G)− S for all j.

Let X0 := S −X1− · · ·−Xp. Recall that h′(Xi) = h(Xi) + maxY ⊆V (G)−S{d(Xi, Y )−

m(Y )+E(Y )} = h(Xi)+maxY ⊆V (G)−S{d(Xi, Y )−m(Y )} since there are no edges between

Steiner vertices. For each Xi, let Yi be a set which yields the maximum for h′(Xi). From

the definition of h′(Xi), if a vertex v ∈ V (G)−S has at least two neighbours in Xi, then

it must belong to Yi; if v has no neighbour in Xi, then it must not belong to Yi. If v has

only one neighbour in Xi, then we can assume v ∈ Yi or we can assume v /∈ Yi. Since each

vertex v ∈ V (G)− S is of degree at most 3 and satisfies N(v) ⊆ X0 ∪ . . . ∪Xp, we can

assume {X0∪Y0, X1∪Y1, . . . , Xp∪Yp} has the property that each v belongs to exactly one

Yi. That is, {Y0, . . . , Yp} is a partition of V (G)−S. So P = {X0∪Y0, X1∪Y1, . . . , Xp∪Yp}

is a partition of V (G).

By (4.1), we have eP ≥
∑p

i=1 h(Xi); notice that this holds even if X0 = ∅. Let Wi

be the set of vertices in Yi which have an edge to X0. Consider the subpartition P ′ =

{X1, . . . , Xp}. Now we compare eP ′ to eP . Notice that the edges in δ(Xi, Yi) for 1 ≤ i ≤ p

are counted in eP ′ but not in eP , and the edges in δ(X0, Y1 ∪ . . . ∪ Yp) = ∪p
i=1δ(X0, Wi)

are counted in eP but not in eP ′. Also, the edges in δ(Y0, X1 ∪ . . . ∪Xp) are counted in

both eP and eP ′, and the edges in δ(Y0, X0) are not counted in both eP and eP ′ . Since

each vertex in Wi has exactly one edge to X0 (otherwise it would belong to Y0), we have

eP ′ = eP − d(X0, Y1 ∪ . . . ∪ Yp) +
∑p

i=1 d(Xi, Yi) = eP +
∑p

i=1(d(Xi, Yi)− d(X0, Wi)) =

eP +
∑p

i=1(d(Xi, Yi)− |Wi|) ≥
∑p

i=1(h(Xi) + d(Xi, Yi)− |Wi|) =
∑p

i=1(h
′(Xi) + m(Yi)−

|Wi|) =
∑p

i=1(h
′(Xi) + |Yi − Wi|) since m(v) = 1 for each v ∈ V (G) − S. Let Z ′ :=

Z1 ∪ . . . ∪ Zq − (Y1 −W1)− . . .− (Yp −Wp). So every vertex in Z ′ is either in Y0 or in
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Wi for some i. Therefore, by the definition of Y0 and Wi, each vertex in Z ′ has at least

one edge to X0. Notice that the edges from Z ′ to X0 are counted in eQ but not in eP ′ .

So eQ ≥ eP ′ + |Z ′| ≥
∑p

i=1(h
′(Xi) + |Yi −Wi|) + |Z ′| ≥

∑p
i=1 h′(Xi) + |Z1 ∪ . . . ∪ Zq| =

∑p
i=1 h′(Xi) +

∑q
j=1 m(Zi) =

∑p
i=1 h′(Xi) +

∑q
j=1 h′(Zi), as required.

Since Q is an arbitrary subpartition, this implies that the conditions of Theorem 4.2.4

are satisfied. Hence there exists a Steiner rooted k-arc-connected orientation (with every

Steiner vertex having indegree exactly 1). This completes the proof.

4.4 Steiner Rooted Orientations of Hypergraphs

This section contains the proof of our main result of this chapter (Theorem 4.1.1). The

general scheme is to similar to the approach used in Section 2.2.1. We shall consider a

minimal counterexample H of Theorem 4.4.3 with the minimum number of edges and

then the minimum number of vertices. Note that Theorem 4.4.3 is a stronger version of

Theorem 4.1.1 with an “extension property” introduced (Definition 4.4.1). The extension

property allows us to apply a graph decomposition procedure to simplify the structures

of H significantly (Corollary 4.4.5, Corollary 4.4.6). With these structures, we can con-

struct a bipartite graph representation B of H. Then, the Degree-Specified Steiner

Rooted Orientation problem can be applied in the bipartite graph B to establish

a tight approximate min-max relation (Theorem 4.4.10). To better illustrate the proof

idea, we also include a proof of Theorem 4.4.3 in the special case of rank 3 hypergraphs

(Lemma 4.4.7), where every hyperedge is of size at most 3.

We need some notation to state the extension property we need. A hyperarc a is in

δin(X; Y ) if a enters X and a ∩ Y = ∅. If Y is an emptyset, we denote δin(X; Y ) by

δin(X). We use din(X; Y ) to denote |δin(X; Y )|. A hyperarc a is in
−→
E (X, Y ; Z) if a leaves

X, enters Y and a ∩ Z = ∅. If Z is an emptyset, we denote
−→
E (X, Y ; Z) by

−→
E (X, Y ).

We use
−→
d (X, Y ; Z) to denote |

−→
E (X, Y ; Z)|, and

−→
d (X, Y ) to denote |

−→
E (X, Y )|. The
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following extension property is at the heart of our approach.

Definition 4.4.1 (Extension Property for Steiner Rooted-Orientations.)

Given H = (V, E), S ⊆ V (H) and a vertex s ∈ S, a Steiner rooted-orientation D of H

extends s if:

1. din
D (s) = dH(s);

2. din
D (Y ; s) ≥

−→
d D(Y, s) for every Y ⊆ V (G) for which Y ∩ S = ∅;

We call s the special sink of D.

Condition (2) of the extension property is a technical condition that will be needed

in the proof of Lemma 4.4.4. The next lemma shows that the choice of the root vertex

does not matter. The proof idea is that we can reverse the directions of the arcs in the

r, v-paths.

Lemma 4.4.2 Suppose there exists a Steiner rooted k-hyperarc-connected orientation

that extends s with r as the root. Then there exists a Steiner rooted k-hyperarc-connected

orientation that extends s with v as the root for every v ∈ S − s.

Proof. Let D be a Steiner rooted k-hyperarc-connected orientation that extends s with

r as the root. Let v 6= r be another terminal vertex which is not the special sink s. By as-

sumption, there are k hyperarc-disjoint paths {
−→
P1, . . . ,

−→
Pk} between r and v. Now, let D′

be an orientation with the same orientation as D except the orientations of all the hyper-

arcs in P1 ∪ . . .∪Pk are reversed. To be more precise, let
−→
Pi = {v0, a0, v1, a1, . . . , al−1, vl}

where ai has vi as the tail and vi+1 as a head, then
←−
Pi = {vl,

←−−al−1, . . . ,
←−a0 , v0} where ←−ai

has vi+1 as the tail and vi as a head. For a directed path
−→
P = {v0, a0, v1, a1, . . . , al−1, vl},

recall that a hyperarc ai enters a subset of vertices X if vi /∈ X and vi+1 ∈ X; and ai in

−→
P leaves X if vi ∈ X and vi+1 /∈ X.

We claim that D′ is a Steiner rooted k-hyperarc-connected orientation that extends s

with v as the root. First we check that din
D′(X) ≥ k for every X ⊆ V (H) which satisfies
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v /∈ X and X ∩ S 6= ∅. If r ∈ X, then {
←−
P1, . . . ,

←−
Pk} are k hyperarc-disjoint paths from

v to r in D′, where
←−
Pi denotes the reverse path of

−→
Pi. Hence din

D′(X) ≥ k for such X.

So we assume r /∈ X. As D is a Steiner rooted k-hyperarc-connected orientation, we

have din
D (X) ≥ k. Recall that D and D′ differ only on the orientations of the paths

in {P1, . . . , Pk}. Notice that each path
−→
Pi has both endpoints outside of X, and thus

−→
Pi enters X the same number of times as it leaves X. Therefore, by reorienting

−→
Pi to

←−
Pi for all i, we have din

D′(X) = din
D (X) ≥ k for those X which contains a terminal but

contains neither v nor r. This confirms that D′ is a Steiner rooted k-hyperarc-connected

orientation with v as the root.

To finish the proof, we need to check that D′ extends s as defined in Definition 4.4.1.

Since s is a sink in D, by reorienting paths which do not start and end in s, s is still a

sink in D′. So the first condition in Definition 4.4.1 is satisfied. For a subset Y ⊆ V (H)

with Y ∩S = ∅,
−→
Pi enters Y and leaves Y the same number of times. Let a1 be a hyperarc

that enters Y and a2 be a hyperarc that leaves Y in D. Suppose we reverse a1 and a2 in

D′. We have four cases to consider.

• s ∈ a1 and s ∈ a2. Then din
D′(Y ; s) = din

D (Y ; s) ≥
−→
d D(Y, s) =

−→
d D′(Y, s).

• s ∈ a1 and s /∈ a2. Then din
D′(Y ; s) = din

D (Y ; s) + 1 ≥
−→
d D(Y, s) + 1 =

−→
d D′(Y, s).

• s /∈ a1 and s ∈ a2. Then din
D′(Y ; s) = din

D (Y ; s)− 1 ≥
−→
d D(Y, s)− 1 =

−→
d D′(Y, s).

• s /∈ a1 and s /∈ a2. Then din
D′(Y ; s) = din

D (Y ; s) ≥
−→
d D(Y, s) =

−→
d D′(Y, s).

Since we have din
D (Y ; s) ≥

−→
d D(Y, s) to start with, by reorienting

−→
Pi to

←−
Pi, we still have

din
D′(Y ; s) ≥

−→
d D′(Y, s). Hence the second condition in Definition 4.4.1 is also satisfied.

Therefore, D′ is a Steiner rooted k-hyperarc-connected orientation that extends s. This

proves the lemma.

We shall prove the following theorem which clearly implies Theorem 4.1.1.
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Figure 4.1: An illustration of the proof of Lemma 4.4.4.

Theorem 4.4.3 Suppose H = (V, E) is a hypergraph. If S is 2k-hyperedge-connected in

H, then there is a Steiner rooted k-hyperarc-connected orientation of H. In fact, given

any vertex s ∈ S of degree 2k, there is a Steiner rooted k-hyperarc-connected orientation

that extends s.

Let H be a minimal counterexample of Theorem 4.4.3. In the following we say a set

X is tight if d(X) = 2k; X is nontrivial if |X| ≥ 2 and |V (H) −X| ≥ 2. The following

is the key lemma where we use the graph decomposition technique (see Figure 4.1 for an

illustration).

Lemma 4.4.4 There is no nontrivial tight set in H.

Proof. Suppose there exists a nontrivial tight set X, i.e. dH(X) = 2k, |X| ≥ 2 and

|V (H)−X| ≥ 2. Apply the cut decomposition operation as defined in Section 3.4 on X

to obtain two graphs H1 and H2. So, V (H1) = X ∪ {v1}, V (H2) = (V (H) −X) ∪ {v2}

and there is an one-to-one correspondence between the hyperedges in δH1
(v1) and the

hyperedges in δH2
(v2). To be precise, for a hyperedge e it decomposes into e1 = (e ∩
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V (H1)) ∪ {v1} in H1 and e2 = (e ∩ V (H2)) ∪ {v2} in H2 and we refer to them as the

corresponding hyperedges of e in H1 and H2 respectively. Note that |e1|, |e2| ≥ 2.

Since X is non-trivial, both H1 and H2 are smaller than H. We set S1 := (S ∩

V (H1)) ∪ v1 and S2 = (S ∩ V (H2)) ∪ v2, and set the special sink of H1 to be v1 and

the special sink of H2 to be s. Clearly, S1 is 2k-hyperedge-connected in H1 and S2 is

2k-hyperedge-connected in H2. By the choice of H, H2 has a Steiner rooted k-hyperarc-

connected orientation D2 that extends s. By Lemma 4.4.2, we can assume the root of

D2 is v2. Similarly, by the choice of H, H1 has a Steiner rooted k-hyperarc-connected

orientation D1 that extends v1. Let the root of D1 be r.

Now we claim that the concatenation D of the two orientations gives a Steiner rooted

k-hyperarc-connected orientation of G that extends s. Notice for an hyperedge e in

δH(X), its corresponding hyperedge in H1 is oriented with v1 as a head (by the extension

property of D1), and its corresponding hyperedge in H2 is oriented so that v2 is the tail

(as v2 is the root of D2). So, in D, the orientation of e is well-defined and has its tail

in H1. Now we show that D is a Steiner rooted k-hyperarc-connected orientation. By

using Menger’s theorem (Proposition 2.2.2), it suffices to show that din
D (X) ≥ k for every

X ⊆ V (H) for which r /∈ X and X ∩ S 6= ∅. There are two cases to consider:

1. Suppose X ∩ S1 6= ∅. Then din
D1

(X − V (H2)) ≥ k by the orientation of H1. Since

v1 is the special sink of G1, there is no hyperarc going from V (H2) to V (H1) in D.

Hence we have din
D (X) ≥ din

D1
(X − V (H2)) ≥ k, as required.

2. Suppose X∩S1 = ∅. Let X1 = X∩H1 and X2 = X∩H2. The case that X∩H1 = ∅

follows from the properties of D2. So we assume both X1 and X2 are non-empty.

We have the following inequality:

din
D (X) ≥ din

D1
(X1; v1) + din

D2
(X2)−

−→
d D(X1, X2).

Note that
−→
d D1

(X1, v1) ≥
−→
d D(X1, X2). Therefore, by property (ii) of Defini-

tion 4.4.1, din
D1

(X1; v1) ≥
−→
d D1

(X1, v1) ≥
−→
d D(X1, X2). And hence din

D (X) ≥
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din
D2

(X2) ≥ k; the second inequality is by the properties of D2.

This implies that D is a Steiner rooted k-hyperarc-connected orientation of H. Finally,

we need to check that D extends s. The first property of Definition 4.4.1 follows from

our construction. It remains to verify that property (ii) of Definition 4.4.1 still holds in

D. Consider a subset Y ⊂ V (H) with Y ∩ S = ∅. Let Y1 = Y ∩ H1 and Y2 = Y ∩ H2.

The following inequality is important:

din
D (Y ; s) ≥ din

D1
(Y1; v1) + din

D2
(Y2; s)−

−→
d D(Y1, Y2; s).

By property (ii) of Definition 4.4.1 applied to the extension property of H1, we have

din
D1

(Y1; v1) ≥
−→
d D1

(Y1, v1) ≥
−→
d D(Y1, Y2; s)+

−→
d D(Y1, s). Therefore, din

D (Y ; s) ≥
−→
d D(Y1, s)

+din
D2

(Y2; s). By property (ii) of the extension property of D2, we have din
D2

(Y2; s) ≥

−→
d D2

(Y2, s) and hence din
D (Y ; s) ≥

−→
d D(Y1, s) +

−→
d D2

(Y2, s) =
−→
d D(Y1, s) +

−→
d D(Y2, s) =

−→
d D(Y, s), as required. This verifies that D extends s, which contradicts that H is a

counterexample.

From Lemma 4.4.4, we obtain the following two important corollaries.

Corollary 4.4.5 Each hyperedge of H of size at least 3 contains only terminal vertices.

Proof. Suppose e is a hyperedge of H where t ∈ e is a Steiner vertex. Let H ′ be a

hypergraph with the same vertex and edge set as H except we replace e by e′ := e − t.

If H ′ is 2k-hyperedge-connected, then by the choice of H, H ′ has a Steiner rooted k-

hyperedge-connected orientation, hence H also has one; a contradiction. Otherwise,

there exists a set X which separates two terminals with dH(X) = 2k and dH′(X) < 2k.

So e ∈ δH(X). Without loss of generality, we assume t ∈ X. Since X contains a terminal,

|X| ≥ 2. Also, e− t must be contained in V (H)−X; otherwise dH(X) = dH′(X). Hence

|V (H) − X| ≥ |e − t| ≥ 2. Therefore, X is a nontrivial tight set, which contradicts

Lemma 4.4.4.

Corollary 4.4.6 There is no edge between two Steiner vertices in H.



Chapter 4. Steiner Orientations 125

Proof. This follows from a similar argument as in Corollary 4.4.5. Let e be an edge

which connects two Steiner vertices. If H − e is 2k-hyperedge-connected, then by the

choice of H, H− e has a Steiner rooted k-hyperarc-connected orientation, hence H also

has one; a contradiction. Otherwise, there exists a set X which separates two terminals

with dH(X) = 2k and dH−e
(X) < 2k. So e ∈ δH(X). Since X contains a terminal vertex

and an endpoint of e which is a Steiner vertex, |X| ≥ 2. Similarly, |V (H) − X| ≥ 2.

Hence X is a nontrivial tight set, which contradicts Lemma 4.4.4.

4.4.1 The Bipartite Representation of H

Using Corollary 4.4.5 and Corollary 4.4.6, we shall construct a bipartite graph from H,

which allows us to apply the results on the Degree-Specified Steiner Rooted-

Orientation problem to H. Let S be the set of terminal vertices in H. Let E ′ be the

set of hyperedges in H which do not contain a Steiner vertex, i.e. a hyperedge e is in E ′ if

e∩(V (H)−S) = ∅. We construct a bipartite graph B = (S, (V (H)−S)∪E ′; E) from the

hypergraph H as follows. Every vertex v in H corresponds to a vertex v in B, and also

every hyperedge e ∈ E ′ corresponds to a vertex ve in B. By Corollary 4.4.5, hyperedges

which intersect V (H)−S are graph edges (i.e. hyperedges of size 2); we add these edges

to E(B). For every hyperedge e ∈ E ′, we add vew to E(B) if and only if w ∈ e in H. Let

the set of terminal vertices in B be S; all other vertices are non-terminal vertices in B. By

Corollary 4.4.5 and Corollary 4.4.6, there is no edge between two non-terminal vertices

in B. Hence B is a bipartite graph. To distinguish the non-terminal vertices correspond

to Steiner vertices in H and the non-terminal vertices correspond to hyperedges in E ′, we

call the former the Steiner vertices and the latter the hyperedge vertices. See Figure 4.2

for an illustration.
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H 0 s0s

hyperedge vertices

B

Figure 4.2: The bipartite representation B of H.

4.4.2 Rank 3 Hypergraphs

To better illustrate the proof idea for the general case, we first prove the case for rank

3 hypergraphs. This motivates the proof for general hypergraphs, which is considerably

more complicated.

Lemma 4.4.7 H is not a rank 3 hypergraph.

Proof. Suppose, by way of contradiction, that H is of rank 3. Since H is of rank

3, all hyperedge vertices in B are of degree at most 3. The crucial use of the rank 3

assumption is the following, which allows us to relate the hyperedge-connectivity of H

to edge-connectivity in B.

Proposition 4.4.8 S is 2k-hyperedge-connected in H iff S is 2k-edge-connected in B.

Proof. Consider a, b ∈ S. If there are 2k hyperedge-disjoint paths from a to b in H,

then clearly there are 2k edge-disjoint paths from a to b in B. Suppose there are 2k

edge-disjoint paths from a to b in B. Since each hyperedge vertex z ∈ E ′ is of degree at

most 3, no two edge-disjoint paths in B share a hyperedge vertex. Hence there are 2k

hyperedge-disjoint paths from a to b in H.

With Proposition 4.4.8, we can apply Mader’s splitting-off lemma (Lemma 3.5.1) to

prove the following.
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Lemma 4.4.9 Every Steiner vertex v of H is of degree at most 3.

Proof. If a Steiner vertex v is not of degree 3 in H, then it is not of degree 3 in B. So

we can apply Mader’s splitting-off lemma (Lemma 3.5.1) to find a suitable splitting at v

in B. Let e1 = s1v and e2 = vs2 be the pair of edges that we split-off, and e = s1s2 be

the new edge. By Corollary 4.4.6, s1 and s2 are terminal vertices. We add a new Steiner

vertex e to V (B) and replace the edge s1s2 by two new edges es1 and es2. Since B is

bipartite, the resulting graph, denoted by B ′, is bipartite. Notice that B ′ corresponds to

a hypergraph H ′ with V (H ′) = V (H) and E(H ′) = E(H) − {e1, e2} + {e}. S remains

k-edge-connected in B ′, so by Proposition 4.4.8, S is k-hyperedge-connected in H ′. By

the minimality of H, there is a Steiner rooted k-hyperarc-connected orientation of H ′.

Suppose s1s2 in H ′ is oriented as −−→s1s2 in H ′, then we orient es1 and es2 as −→s1e and −→es2 inH.

All other hyperedges in H have the same orientations as the corresponding hyperedges

in H ′. It is easy to see that this orientation is a Steiner rooted k-hyperarc-connected

orientation of H, a contradiction.

Now we are ready to finish the proof of Lemma 4.4.7. Construct B ′ = B − s, where

we remove all edges in B which are incident with s. Treat all the vertices in V (B) − S

as Steiner vertices. We shall use Theorem 4.3.3 to prove that there is a Steiner rooted

k-arc-connected orientation of B ′. Since S is 2k-edge-connected in B, for any parti-

tion P = {P1, . . . , Pt} of V (B′) such that each Pi contains a terminal vertex, we have

∑t
i=1 dB′(Pi) =

∑t
i=1 dB(Pi)−dB(s) ≥ 2kt−2k = 2k(t−1). So there are at least k(t−1)

edges crossing P in B ′. Hence B′ is k-partition-connected.

By Theorem 4.3.3 and Lemma 4.3.2, there is a Steiner rooted k-edge-connected orien-

tation D′ of B′ with the additional property that each Steiner vertex has indegree exactly

1. By orienting the edges in δB(s) to have s as the head, we obtain an orientation D of

B. Note that each Steiner vertex still has indegree exactly 1, and so D corresponds to

a hypergraph orientation of H. By this construction, property (i) of Definition 4.4.1 is
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satisfied.

Consider an arbitrary Y for which Y ∩ S = ∅. Since every vertex y in Y is of

degree at most 3 by Lemma 4.4.9, y can have at most one outgoing arc to s; otherwise

dH({s, y}) < 2k which contradicts our assumption (recall that dH(s) = 2k as s is the

special sink). Since Y induces an independent set by Corollary 4.4.6 and each vertex in

Y has indegree exactly 1, each y ∈ Y has an incoming arc from outside Y . Notice that

those incoming arcs are of size 2 by Corollary 4.4.5, so we have din
D (Y ; s) ≥

−→
d (Y, s); this

implies that D satisfies property (ii) of Definition 4.4.1 as well.

Finally we verify that D is a Steiner rooted k-hyperedge-connected orientation. Con-

sider a subset X ⊆ V (H) which contains a terminal but not the root. If X contains a

terminal other than s, then clearly din
D (X) ≥ k by the orientation on H− s. So suppose

X ∩S = s. As argued above, since each Steiner vertex v is of degree 3, v has at most one

outgoing arc to s. As each Steiner vertex is of indegree 1 and there is no edge between two

Steiner vertices, we have din
D (X) ≥ din

D (s) = 2k as s is the special sink. This shows that

D is a Steiner rooted k-hyperarc-connected orientation that extends s, which contradicts

the assumption that H is a counterexample.

Notice that the above result implies a special case of Nash-Williams’ strong orientation

theorem: If S is 2k-edge-connected in G, then G has a Steiner rooted k-arc-connected

orientation. Our proof of this special case is different from that of Nash-Williams, as we

use a different induction hypothesis. As far as the algorithmic aspects are concerned, a

naive implementation of the two approaches have similar running times. This is because

both methods involve reducing the original instance into instances with no tight sets

(using the cut-decomposition operation), and then applying combinatorial techniques to

those instances (in our case similar techniques as in Theorem 2.2.26 are used, and in Nash-

Williams’ case edge splitting-off techniques are used). A more efficient implementation

of Nash-Williams’ theorem can be found in [35].
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4.4.3 General Hypergraphs

For the proof of Theorem 4.4.3 for the case of rank 3 hypergraphs, a crucial step is to apply

Mader’s splitting-off lemma to the bipartite representation B ofH to obtain Lemma 4.4.9.

In general hypergraphs, however, a suitable splitting at a Steiner vertex which preserves

the edge-connectivity of S in B might not preserve the hyperedge-connectivity of S

in H. And there is no analogous edge splitting-off result which preserves hyperedge-

connectivity.

Our key observation is that, if we were able to apply Mader’s lemma as in the proof

of Lemma 4.4.7, then every Steiner vertex would end up with indegree bd(v)/2c in

the resulting orientation of B. This motivates us to apply the Degree-Specified

Steiner Rooted-Orientation problem by “hardwiring” m(v) = bd(v)/2c to simu-

late the splitting-off process. Also, we “hardwire” the indegree of the sink to be 2k for

the extension property. (In the example of Figure 4.2, the indegrees of the Steiner ver-

tices are specified to be 3,2,1 from left to right; the sink becomes a non-terminal vertex

with specified indegree 2k.) Quite surprisingly, such an orientation always exists when

S is 2k-hyperedge connected in H. The following theorem is the final (and most techni-

cal) step to the proof of Theorem 4.4.3, which shows that a minimal counterexample of

Theorem 4.4.3 does not exist.

Theorem 4.4.10 Suppose that S is 2k-hyperedge-connected in H, there is no edge be-

tween two Steiner vertices, and no hyperedge contains a Steiner vertex. Let s0 ∈ S be a

vertex of degree 2k. Then H has a Steiner rooted k-hyperarc-connected orientation that

extends s0.

Proof. We will use the theorem on the Degree-Specified Steiner Rooted-

Orientation problem of graphs (Theorem 4.2.4). To get an instance of that problem,

we construct a bipartite graph G from the hypergraph H as in the proof of Lemma 4.4.7.

Let the set of terminals be S ′ := S − s0. All other vertices are non-terminal vertices. To
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distinguish the three types of non-terminal vertices (vertices in V (H)−S, the hyperedge

vertices, and the special sink s0), we use the term Steiner vertex exclusively for vertices

in V (H)− S. So, the set of terminal vertices S ′ and s0 is on one side of G, and the set

of all Steiner vertices and hyperedge vertices is on the other side of G. Notice that edges

in δ(s0) are the only edges between non-terminal vertices.

The in-degree specification m is defined by:

m′(v) :=























bdH(v)/2c if v is a Steiner vertex

1 if v is a hyperedge vertex

2k if v = s0 is the sink

Let r ∈ S be the root vertex. Set h(X) := k for every X ⊆ S ′ with r /∈ X, and h(X) := 0

otherwise. Recall (from the proof of Theorem 4.1.3 in Section 4.2.1) that finding a

Steiner rooted k-arc-connected orientation in G which satisfies the indegree specification

m : (V (G)−S)→ Z+ is equivalent to finding an orientation in G that covers the Steiner

extension h∗ of h which satisfies the indegree specification m : (V (G) − S) → Z+. By

Lemma 4.2.2, the latter problem is equivalent to finding an orientation in G that covers

h′ (with no indegree specification) which defined as follows.

• h′(Z) = m(Z) for Z = {v}, v ∈ V (G)− S ′.

• h′(Si) = k + maxZ⊆V (G)−S′{d(Si, Z)−m(Z) + E(Z)} if r /∈ Si ⊆ S ′;

• h′(Si) = maxZ⊆V (G)−S′{d(Si, Z)−m(Z) + E(Z)} if r ∈ Si ⊆ S ′;

• h′(∅) = h′(V (G)) = 0;

• h′(X) = −∞ otherwise.

We remark that if we do not know whether r ∈ Si, then we just write h′(Si) = h(Si) +

maxZ⊆V (G)−S′{d(Si, Z)−m(Z) + E(Z)}.
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By the theorem on degree-specified orientations (Theorem 4.2.4), G has a Steiner

rooted k-arc-connected orientation with the specified in-degrees if and only if

eQ ≥
t

∑

i=1

h′(Xi) (4.2)

holds for every subpartition Q = {X1, . . . , Xt} of V (G).

Since h′(s0) = m(s0) = 2k and d(s0) = 2k, from the definition of h′ above, we can

assume that s0 does not belong to the set Z in the formula of h′(Si) for any Si. Also,

since h′(s0) = m(s0) = d(s0), we can assume that {s0} is in the subpartition of (4.2) (by

putting s0 in Q can only make (4.2) more difficult to hold).

We use the following notation. Here we only consider a set Xi if h(Xi) 6= −∞;

otherwise (4.2) holds trivially; thus Xi ⊆ S ′ or Xi ∈ V (G)−S ′ (note that Xi ⊆ V (G)−S ′

can be assumed to be a singleton). If Xi ⊆ S ′, we denote it by Si. We assume this is the

case for X1, . . . , Xp. If Xi is a hyperedge vertex, we denote it by ai; we define A := ∪ai. If

Xi is a Steiner vertex, we denote it by bi; we define B := ∪bi. We denote S∗ := ∪Si∪{s0}.

For any subset S ′′ ⊆ S ′ ∪ {s0}, we denote S ′′ := S ′ − S ′′. So, for example, S∗ = S ′ − S∗.

By (4.2), we need to prove that:

eQ =

p
∑

i=1

d(Si) + d(s0) +
∑

v∈A

d(v, S∗) +
∑

v∈B

d(v, S∗)

≥

p
∑

i=1

h′(Si) + h′(s0) +
∑

v∈A

h′(v) +
∑

v∈B

h′(v).

Since d(s0) = h′(s0) and h′(Ai) = 1 and h′(Bi) = bdH(Bi)/2c, the above is equivalent to:

eQ =

p
∑

i=1

d(Si) +
∑

v∈A

d(v, S∗) +
∑

v∈B

d(v, S∗) ≥

p
∑

i=1

h′(Si) + |A|+
∑

v∈B

bd(v)/2c. (4.3)

By comparing the two sides of (4.3), we can assume the following without loss of

generality.

Proposition 4.4.11 A hyperedge vertex a is in A if and only if d(a, S∗) = 0. A Steiner

vertex b is in B if and only if d(b, S∗) > bd(b)/2c.
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Therefore, by Proposition 4.4.11, we can take

eQ =

p
∑

i=1

d(Si) +
∑

v∈B

d(v, S∗).

We denote by U the set of all Steiner vertices, and denote by E the set of all hyperedge

vertices. Define Y := U ∪E. Recall that for Si, h′(Si) = h(Si)+maxZ⊆V (G)−S′{d(Si, Z)−

m(Z)}; let Yi ⊆ V (G)−S ′ be a set that yields the maximum value for h′(Si). We denote

the Steiner vertices which belong to Yi by Ti, and T := ∪Ti. For a subset T ′′ ⊆ U , we

denote T ′′ := U − T ′′. One should distinguish the difference between S ′′ and T ′′, the

former is defined to be S ′ − S ′′ while the latter is defined to be U − T ′′. Informally,

the former means the complement on the terminal vertices while the latter means the

complement on the Steiner vertices. To avoid confusion, the former notation will only

be used for sets which have S as a prefix, while the latter notation will only be used for

sets which have T as a prefix.

From the definition of h′, we can assume the following without loss of generality.

Proposition 4.4.12 A hyperedge vertex e belongs to Yi if and only if d(e, Si) > 0. A

Steiner vertex v belongs to Yi if and only if d(v, Si) > bd(v)/2c.

Remark: We claim that we can assume that p ≥ 1. Suppose p = 0. Then S∗ = {s0}.

Since S is 2k-hyperedge-connected in H and s0 ∈ S is of degree exactly 2k, there is no

hyperedge vertex a with N(a) = {s0} and there is no Steiner vertex b with d(b, s0) >

bd(b)/2c. So, by Proposition 4.4.11, A = ∅ and B = ∅, and thus (4.3) and hence (4.2)

hold. So we can assume p ≥ 1. If p = 1, then we claim that we can assume that S1 6= S ′.

Otherwise, S∗ = ∅. By Proposition 4.4.11, we have A = E and U = B. So, by (4.2),

eQ = d(S ′ + s0, E ∪ U) = d(S ′ + s0, Y ). Similarly, by Proposition 4.4.12, Yi = Y . So

h′(S ′) = d(S ′, Y )−h′(Y ). Hence, eQ = d(S ′ +s0, Y ) = d(S ′, Y )+d(s0)−h′(Y )+h′(Y ) =

h′(S ′) + h′(s0) +
∑

v∈Y h′(v), and thus (4.2) holds.

Notice that T ⊆ B by Proposition 4.4.11 and Proposition 4.4.12. Since d(Si) =
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d(Si, Yi) + d(Si, Y − Yi) and h′(Si) = h(Si) + d(Si, Yi)−m(Yi), we have

d(Si) = h′(Si)− h(Si) + d(Si, Y − Yi) + m(Yi)

≥ h′(Si)− h(Si) + d(Si, Y − Yi) + |NE(Si)|+
∑

v∈Ti

bd(v)/2c,

where NE(Si) denotes the set of hyperedge vertices which are adjacent to Si.

Hence,

eQ =

p
∑

i=1

d(Si) +
∑

v∈B

d(v, S∗)

=

p
∑

i=1

(

h′(Si)− h(Si) + |NE(Si)|+
∑

v∈Ti

bd(v)/2c+ d(Si, Y − Yi)
)

+
∑

v∈B

d(v, S∗). (4.4)

Focus on the last three terms of (4.4) which is

p
∑

i=1

∑

v∈Ti

bd(v)/2c+

p
∑

i=1

d(Si, Y − Yi) +
∑

v∈B

d(v, S∗). (4.5)

Since all vertices in T are in B, the last term of (4.5) becomes

∑

v∈B

d(v, S∗) =
∑

v∈T∩B

d(v, S∗) +
∑

v∈T∩B

d(v, S∗) =
∑

v∈T

d(v, S∗) +
∑

v∈T∩B

d(v, S∗).

By Proposition 4.4.12, there is no hyperedge vertex in Y −Yi which is adjacent to Si.

So the middle term of (4.5) is

p
∑

i=1

d(Si, Y − Yi) =
∑

v∈T

d(v, S∗ − s0) +
∑

v∈T

d(v, S∗ − s0 − S(v)),

where S(v) := Si for v ∈ Ti.

Adding up, (4.5) is equal to:

∑

v∈T

bd(v)/2c+
∑

v∈T

d(v, S∗ − s0) +
∑

v∈T

d(v, S∗ − s0 − S(v)) +
∑

v∈T

d(v, S∗) +
∑

v∈T∩B

d(v, S∗)

=
∑

v∈T

bd(v)/2c+
∑

v∈T

d(v, S∗ − s0) +
∑

v∈T

d(v, S(v)) +
∑

v∈T∩B

d(v, S∗)

=
∑

v∈T

bd(v)/2c+
∑

v∈T∩B

d(v, S ′) +
∑

v∈T−B

d(v, S∗ − s0) +
∑

v∈T

d(v, S(v)). (4.6)
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Plug back (4.6) into (4.4). To prove that it is at least the right hand side of (4.3),

one must show:

−

p
∑

i=1

h(Si) +

p
∑

i=1

|NE(Si)| − |A|

−
∑

v∈B

bd(v)/2c+
∑

v∈T

bd(v)/2c+
∑

v∈T∩B

d(v, S ′) +
∑

v∈T−B

d(v, S∗ − s0) +
∑

v∈T

d(v, S(v)) ≥ 0.

(4.7)

Since T ⊆ B, the bottom line of (4.7) is

−
∑

v∈T∩B

bd(v)/2c+
∑

v∈T∩B

d(v, S ′) +
∑

v∈T−B

d(v, S∗ − s0) +
∑

v∈T

d(v, S(v))

=
∑

v∈T∩B

dd(v)/2e −
∑

v∈T∩B

d(v, s0) +
∑

v∈T−B

d(v, S∗ − s0) +
∑

v∈T

d(v, S(v))

=
∑

v∈T∩B

dd(v)/2e+
∑

v∈T−B

d(v, S∗ − s0) +
∑

v∈T

d(v, S(v) + s0)−
∑

v∈B

d(v, s0)

=
∑

v∈T∩B

dd(v)/2e+
∑

v∈T−B

d(v, S∗) +
∑

v∈T

d(v, S(v) + s0)−
∑

v∈U

d(v, s0),

since T −B = U −B.

Plugging back into (4.7), we need to show:

p
∑

i=1

|NE(Si)| − |A|+
∑

v∈T∩B

dd(v)/2e+
∑

v∈T−B

d(v, S∗) +
∑

v∈T

d(v, S(v) + s0)−
∑

v∈U

d(v, s0)

≥

p
∑

i=1

h(Si). (4.8)

Let F = {S1, . . . , Sp}. We say a hyperedge vertex v ∈ E is contained in a set Si if

N(v) ⊆ Si. Let A2 ⊆ A be the set of hyperedge vertices which are not contained in Si

for some i. Let E2 ⊆ E be the set of hyperedge vertices which are not contained in Si

for some i and are not contained in S∗. Informally, these hyperedge vertices correspond

to “crossing” hyperedges, which are used to connect different Si.

Two times the first two terms of (4.8) is:

2(

p
∑

i=1

|NE(Si)| − |A|)
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= 2(
∑

e∈E

|{X ∈ F : e ∩X 6= ∅}| − |A|)

= 2
(

∑

e∈A

|{X ∈ F : e ∩X 6= ∅}| − |A|+
∑

e∈E−A

|{X ∈ F : e ∩X 6= ∅}|
)

= 2
∑

e∈A2

({|X ∈ F : e ∩X 6= ∅}| − 1) + 2
∑

e∈E−A

|{X ∈ F : e ∩X 6= ∅}|

≥
∑

e∈A2

|{X ∈ F : e ∩X 6= ∅}|+ 2
∑

e∈E−A

|{X ∈ F : e ∩X 6= ∅}|

=
(

∑

e∈A2

|{X ∈ F : e ∩X 6= ∅}|+
∑

e∈E−A

|{X ∈ F : e ∩X 6= ∅}|
)

+
∑

e∈E−A

|{X ∈ F : e ∩X 6= ∅}|

≥

p
∑

i=1

|NE2
(Si)|+ |NE2

(S∗)|,

since every hyperedge vertex in E − A has an edge to S∗ by Proposition 4.4.11.

With this, two times the left hand side of (4.8):

≥

p
∑

i=1

|NE2
(Si)|+ |NE2

(S∗)|+
∑

v∈T∩B

d(v) + 2
∑

v∈T−B

d(v, S∗)

+2
∑

v∈T

d(v, S(v) + s0)− 2
∑

v∈U

d(v, s0)

Rewrite
∑

v∈T∩B d(v) as
∑

v∈T∩B(d(v, s0) + d(v, S∗ − s0) + d(v, S∗)), rewrite 2 times

∑

v∈T−B d(v, S∗) as
∑

v∈T−B(d(v, S∗) + d(v, s0) + d(v, S∗− s0)), and also rewrite 2 times

∑

v∈T d(v, S(v)+ s0) as
∑

v∈T (d(v, S(v)+ s0)+ d(v, s0)+ d(v, S∗−S(v)− s0)+ d(v, S∗)).

Regrouping the terms, we have two times the left hand side of (4.8) is

≥
(

NE2
(S∗) +

∑

v∈T∩B

d(v, S∗) +
∑

v∈T−B

d(v, S∗) +
∑

v∈T

d(v, S∗)
)

+
(

p
∑

i=1

|NE2
(Si)|+

∑

v∈T∩B

d(v, S∗ − s0) +
∑

v∈T−B

d(v, S∗ − s0)

+
∑

v∈T

(d(v, S(v) + s0) + d(v, S∗ − S(v)− s0))
)

+
(

∑

v∈T∩B

d(v, s0) +
∑

v∈T−B

d(v, s0) +
∑

v∈T

d(v, s0)− 2
∑

v∈U

d(v, s0)
)

(4.9)
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The last line of (4.9) is the easiest, which is equal to −
∑

v∈U d(v, s0) ≥ −d(s0) = −2k.

The second line of (4.9) can be rewritten as follows:

p
∑

i=1

(

|NE2
(Si)|+

∑

v∈T

d(v, Si) +
∑

v∈Ti

d(v, Si + s0) +
∑

v∈T−Ti

d(v, Si)
)

=

p
∑

i=1

dH(Si ∪ {v ∈ Ti}),

where H is the original hypergraph. If p ≥ 2, then clearly Si 6= ∅. If p = 1, as remarked

earlier, we also have Si = S∗ 6= ∅. So, each Si ∪ {v ∈ Ti} is an S-separating set in H. As

S is 2k-hyperedge-connected in H, the second line of (4.9) is at least 2kp.

Suppose S∗ = ∅. Then two times the right hand side of (4.8) is equal to 2
∑p

i=1 h(Si) =

2k(p − 1), since one Si must contain the root r. Clearly, the first line of (4.9) is non-

negative. So, two times the left hand side of (4.8) is at least 0 + 2kp− 2k = 2k(p− 1),

and thus (4.8) holds.

Henceforth we assume S∗ 6= ∅. The first line of (4.9) is equal to dH(S∗∪{v ∈ T −B}),

where H is the original hypergraph. Notice that (S∗ ∪ {v ∈ T − B}) is an S-separating

set in H, since S∗ 6= ∅ and S∗ 6= ∅. As S is 2k-hyperedge-connected in H, we must have

dH(S∗ ∪ {v ∈ T −B}) ≥ 2k, which implies the first line is at least 2k. So, two times the

left hand side of (4.8) is at least 2k + 2kp − 2k = 2kp. Two times the right hand side

of (4.8) is at most 2kp. Hence (4.8) holds. This implies (4.3) and hence (4.2) are true,

which is exactly what we want.

So, we have a k-arc-connected orientation of G with the specified indegrees, which

corresponds to a k-hyperarc-connected orientation of H since each hyperedge vertex has

indegree 1. It remains to check that this extends s0. The first property of the extension

property (Definition 4.4.1) follows immediately from our construction, since the indegree

of s0 is 2k. To check the second property of the extension property, we use a similar

argument as in Lemma 4.4.7. Consider an arbitrary Y ⊂ V (H) for which Y ∩ S = ∅.

Since s0 is of degree 2k and S is 2k-hyperedge-connected in H, each vertex v ∈ Y has at

most bd(v)/2c edges to s0. Recall that the indegree of v in the orientation is bd(v)/2c.
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Since there are no edges between two Steiner vertices, all the incoming arcs of v come

from V (H)− Y . Notice that these incoming arcs are of size 2 by Corollary 4.4.5, and so

do not intersect s0. Hence, din(Y ; s) ≥
−→
d (Y, s), as required.

Theorem 4.4.10 shows that a minimal counterexample does not exist, and thus finishes

the proof of Theorem 4.1.1.

We remark that in the proof of Theorem 4.4.10, the indegree specifications on the

Steiner vertices have two uses. The major use is to apply Theorem 4.2.4 to establish the

connectivity upper bound, which consists of the bulk of the proof. The other use is that

it is crucial in proving the extension property (Definition 4.4.1).

4.5 Element-Disjoint Steiner Rooted Orientations

In this section we show another application of the Degree-Specified Steiner Ori-

entation problem. We consider the Element-Disjoint Steiner Rooted Orien-

tation problem, where our goal is to find an orientation D of G that maximizes the

Steiner rooted-element-connectivity (please refer to Section 4.1.2 for definitions). The

main result of this section is a proof of Theorem 4.1.2.

In [14] the problem of Packing Element-Disjoint Steiner Trees is considered,

where the goal is to find a maximum number of element disjoint Steiner trees of an

undirected graph. Cheriyan and Salavatipour [14] show that this problem is Ω(log n)-

hard to approximate, and at the same time present a randomized O(log n)-approximation

algorithm. In particular, they prove that if S is O(log n)k-element-connected in G,

then G has k element-disjoint Steiner trees [14]; this is best possible as shown by the

examples in [7]. Clearly, if G has k element-disjoint Steiner trees, then G has a Steiner

rooted k-element-connected orientation. Therefore, the result in [14] implies an O(logn)-

approximation algorithm for the Element-Disjoint Steiner Rooted Orientation

problem as well.
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Here we prove a tight connectivity upper bound for the problem. By applying the

min-max formula of Theorem 4.2.4, we will prove that if S is 2k-element-connected in

G, then G has a Steiner rooted k-element-connected orientation. This implies the first

polynomial time constant factor approximation algorithm for the problem as well.

The proof consists of two steps. The first step is to reduce the problem from general

graphs to the graphs with no edges between Steiner vertices. This was also shown in

[43, 14] but we will give a proof here for completeness. The second step is to reduce

the problem in this special instance into the Degree-Specified Steiner Rooted

Orientation problem. The idea is that if we constrain the indegree of each Steiner

vertex to be 1, then a Steiner rooted k-edge-connected orientation is also a Steiner rooted

k-element-connected orientation; this is because each Steiner vertex cannot be in two

edge-disjoint paths. This turns out to give a tight connectivity bound, which again

demonstrates the strength of the Degree-Specified Steiner Orientation problem.

We remark that the property that every Steiner vertex is of indegree 1 in the orienta-

tion will be used twice - once in Lemma 4.5.2 to establish the connectivity upper bound,

and once in the following lemma for the reduction. In the following lemma conditions

(1)-(3) have been proved in [43, 14].

Lemma 4.5.1 (See also [43, 14].) Given an undirected graph G = (V, E) and a set S

of terminal vertices. Suppose S is k-element-connected in G. Then we can construct in

polynomial time a graph G′ = (V ′, E ′) with the following properties:

1. S ⊆ V ′;

2. there is no edge between Steiner vertices in G′;

3. S is k-element-connected in G′;

4. if there is a Steiner rooted l-element-connected orientation in G′ with every Steiner

vertex of indegree 1, then there is a Steiner rooted l-element-connected orientation

in G.



Chapter 4. Steiner Orientations 139

Proof. Given G, if there is no edge uv between two Steiner vertices, then G′ := G

and we have nothing to prove. In the following, we will show that we can construct G′

from G by deleting and/or contracting edges between Steiner vertices. Let G0 := G. By

assumption, G0 satisfies properties (1) and (3). Suppose Gt satisfies properties (1) and

(3) for t ≥ 0. If Gt also satisfies (2), then G′ := Gt as desired. Otherwise, we shall

construct a graph Gt+1 which still satisfies properties (1) and (3) and has fewer edges

between Steiner vertices than that in Gt. Let uv be an edge in Gt between two Steiner

vertices. If S is k-element-connected in Gt − uv, then we simply set Gt+1 := Gt − uv.

Clearly, Gt+1 still satisfies properties (1) and (3) and has fewer edges between Steiner

vertices than that in Gt, as required.

So suppose S is not k-element-connected in Gt − uv; we shall show that Gt+1 :=

Gt/{uv} would have the desired properties (recall that Gt/{uv} means contracting the

edge uv in Gt). Property (1) is trivial. It is also clear that Gt+1 has fewer edges between

Steiner vertices than that in Gt. It remains to show that S is k-element-connected in

Gt+1 (i.e. property (3) is satisfied). Since S is not k-element-connected in Gt − uv, by

Menger’s theorem, in Gt, there is a set T of k elements which contains uv and whose

removal disconnects a pair of terminal vertices a, b. Suppose Pab is an arbitrary set of k

element-disjoint paths between a and b. Then Pab must contain a path that uses the edge

uv. Suppose, by way of contradiction, that S is not k-element-connected in Gt/{uv}.

By Menger’s theorem, in Gt, there is a set R of k elements which contains {u, v} and

whose removal disconnects a from another terminal vertex c. Since Pab must contain

a path that uses the edge uv and R contains {u, v}, R cannot intersect all k element

disjoint paths in Pab and hence R cannot disconnect a and b. So c 6= b. Suppose Pac is

an arbitrary set of k element-disjoint paths between a and c. Then Pac must contain a

path that uses u but not v, and a path that uses v but not u. In particular Pac does not

use the edge uv. Since a, b are in the same component, by the same argument, any set of

k element-disjoint paths between b and c does not use the edge uv. This implies a and
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b are connected in Gt − uv, through c, and thus yields a contradiction. Therefore, S is

k-element-connected in Gt+1, as required.

By repeating the above procedure, we will eventually obtain a graph Gm such that it

satisfies properties (1) and (3), and also has no edges between two Steiner vertices. We

set G′ := Gm, and hence (1)-(3) hold.

Finally we prove (4) by showing that if we have a Steiner rooted l-element-connected

orientation of G′ = Gm with every Steiner vertex of indegree 1, then there is a Steiner

rooted l-element-connected orientation of G = G0. In the following, we say a graph G

is good if G has a subgraph H such that H has a Steiner rooted l-element-connected

orientation of G with every Steiner vertex of indegree 1. Clearly, if G is good, then G

has a Steiner rooted l-element-connected orientation by orienting the edges without an

orientation arbitrarily. By assumption, G′ = Gm is good. Suppose Gt+1 is good, then

we shall show that Gt is good too. Suppose we delete an edge ab between two Steiner

vertices a, b in Gt to obtain Gt+1. In this case we do not assign an orientation to the edge

ab in Gt, while all other edges in Gt has the same orientation as in Gt+1 (including the

edges without an orientation). Clearly Gt is good.

Suppose we contract an edge ab between two Steiner vertices a, b in Gt to one Steiner

vertex c in Gt+1. By the assumption that Gt+1 is good, Gt+1 has a subgraph Ht+1

for which there is a l-element-connected orientation Dt+1 with every Steiner vertex of

indegree 1. If c has no incoming arc in Dt+1, then c is not useful in the orientation Dt+1,

and hence Gt is good by using the same orientation as in Gt+1 (with all the edges between

a and b unoriented). So assume that x is the only vertex adjacent to c with xc oriented as

−→xc in Dt+1. If the preimage of the edge xc in Gt+1 is the edge xa, then we orient ab as
−→
ab

in Gt; if the preimage of the edge xc in Gt+1 is xb, then we orient ab as
−→
ba in Gt. If there

are multiple edges between a and b, then only one of them is assigned an orientation.

All other edges in Gt have the same orientation as in Gt+1 (including the edges without

an orientation). We set Ht to be the subgraph of Gt with edges having an orientation,



Chapter 4. Steiner Orientations 141

and Dt be the orientation of Ht. It is easy to see that if there are l element-disjoint

paths between the root and a terminal vertex in Dt+1, then there are l element-disjoint

paths between the root and a terminal vertex in Dt (since c is of indegree 1 in Dt+1).

Furthermore, every Steiner vertex is still of indegree 1 in Dt. So, Gt is good. Repeating

the same argument, G = G0 is good, and we are done.

The previous lemma shows that we can assume there is no edge between Steiner

vertices.

Remark 1: In the following, for convenience, we will assume there is no edge between

terminal vertices as well. This can be achieved by introducing a new Steiner vertex of

degree 2 for each edge between two terminal vertices.

Remark 2: The following lemma is actually a special case of Theorem 4.4.10; we

give a proof here because it is much simpler than the proof of Theorem 4.4.10.

Lemma 4.5.2 Given an undirected graph G = (V, E) and a set S of terminal vertices.

Suppose that G is a bipartite graph with S on one side and V (G)− S on the other side.

If S is 2k-element-connected in G, then G has a Steiner rooted k-element-connected

orientation with every Steiner vertex of indegree 1.

Proof. Our plan is to reduce this problem to the Degree-Specified Steiner

Rooted Orientation problem. The observation is that if we set m(v) = 1 for all

v ∈ V (G)− S, then a Steiner rooted k-arc-connected orientation is also a Steiner rooted

k-element-connected orientation. So, now, we just need to prove the existence of a

Steiner rooted k-arc-connected orientation with the specified indegrees. To do so, we

apply Theorem 4.2.4 to show that 2k-element-connectivity is enough to guarantee such

a degree-specified orientation.

Let Q = {X1, . . . , Xp, Z1, . . . , Zq} be a subpartition of V , where Xi ⊆ S for all i and

Zj ∈ V (G)− S for all j. We need to show that

eQ ≥

p
∑

i=1

h′(Xi) +

q
∑

j=1

h′(Zj). (4.10)
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For each Xi, h′(Xi) ≤ k + maxYi⊆V (G)−S{d(Xi, Yi)−m(Yi) + E(Yi)} = k + maxYi⊆V (G)−S

{d(Xi, Yi)− |Yi|} since there are no edges between Steiner vertices and m(v) = 1 for all

v ∈ V (G) − S. In fact, we can set Yi = Γ(Xi) where Γ(Xi) denotes the set of Steiner

vertices with an edge to Xi, as it attains the maximum of h′(Xi). Let d(Xi) denote

the number of edges with precisely one endpoint in Xi. Since Yi = Γ(Xi), we have

d(Xi) = d(Xi, Yi). Recall that h′(Xi) ≤ k+d(Xi, Yi)−|Yi|, so d(Xi) ≥ h′(Xi)+ |Yi|−k =

h′(Xi) + |Γ(Xi)| − k. Let I be the set of vertices in Z1 ∪ . . . ∪ Zq with all its neighbours

in X1 ∪ . . . ∪Xp, and Z∗ := Z1 ∪ . . . ∪ Zq. So,

eQ ≥

p
∑

i=1

d(Xi) + |Z∗| − |I| ≥

p
∑

i=1

(h′(Xi) + |Γ(Xi)| − k) +
∑

Zj∈Z∗−I

h′(Zj)

To prove (4.10), it remains to show that

p
∑

i=1

(|Γ(Xi)| − k) ≥
∑

Zj∈I

h′(Zj) = |I|. (4.11)

For v ∈ V (G)− S, we say v is contained in Xi if NG(v) ⊆ Xi. Let Γ′(Xi) be the subset

of vertices of Γ(Xi) which are not contained in Xi, and I ′ be the subset of I so that

v ∈ I ′ is not contained in Xi for some i. A Steiner vertex which is contained in some Xi

contributes one to both sides of (4.11). So to prove (4.11), it suffices to show

p
∑

i=1

|Γ′(Xi)| ≥ |I
′|+ kp. (4.12)

Since S is 2k-element-connected in G, we have |Γ′(Xi)| ≥ 2k. Hence
∑p

i=1 |Γ
′(Xi)| ≥ 2kp.

If |I ′| ≤ kp, then (4.12) is satisfied. So assume |I ′| > kp. Since each element v in I ′ is

not contained in any Xi, so v contributes at least 2 on the left hand side. Therefore,

∑p
i=1 |Γ

′(Xi)| ≥ 2|I ′| > |I ′|+ kp and (4.12) is again satisfied. So (4.12) always holds and

this completes the proof.

As discussed above, the following theorem (Theorem 4.1.2) follows immediately from

Lemma 4.5.1 and Lemma 4.5.2.
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Theorem 4.1.2: Given an undirected graph G = (V, E) and a set S of

terminal vertices. If S is 2k-element-connected in G, then G has a Steiner

rooted k-element-connected orientation.

4.6 Steiner Strongly Connected Orientations

Recall that a set of vertices S is strongly k-arc-connected in a directed graph D if there are

k-arc-disjoint paths from u to v for every ordered pair of vertices u, v ∈ S. In this section

we give a simple proof of the following special case of Nash-Williams’ strong orientation

theorem: If S is 2k-edge-connected in G, then G has a Steiner strongly k-arc-connected

orientation.

As in the case of the Steiner Tree Packing problem and the Steiner Rooted-

Orientation problem, we define an appropriate extension property and show that this

helps to decompose the problem into simpler instances. The rest of the proof is similar

to Lovász’s proof of Nash-Williams’ weak orientation theorem as shown in Section 2.2.4.

Definition 4.6.1 (The Extension Property for Strong Orientations)

Given G = (V, E), a vertex s ∈ S, and an orientation to each edge adjacent to s, an

orientation D of G extends s if it is consistent with the orientations of those edges

adjacent to s.

In the following we say a terminal vertex v is tight if its degree is equal to 2k. Notice

that a tight terminal vertex must have indegree k and outdegree k in a Steiner strongly

k-arc-connected orientation; we say such an orientation is a valid orientation of δG(v).

Theorem 4.6.2 Let G be an undirected graph and S ⊆ V (G). If S is 2k-edge-connected

in G, then G has a Steiner strongly k-arc-connected orientation. Furthermore, given

a tight terminal vertex v and a valid orientation of δG(v), there is a Steiner strongly

k-arc-connected orientation D of G that extends v.
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Proof. Let G be a counterexample with the minimum number of edges. Without loss

of generality, we can assume that G is 2-edge-connected. First we show that, by using

the extension property, we can restrict our attention to graphs with simpler structures.

We say a subset of vertices X is a tight set if X is a S-separating set and dG(X) = 2k.

A tight set is non-trivial if |X| ≥ 2 and |V (G)−X| ≥ 2. The extension property will be

used to establish the following lemma.

Lemma 4.6.3 G has no non-trivial tight set.

Proof. Let X be a nontrivial cut of G, and v be the vertex to be extended. Apply the cut

decomposition operation on X to obtain two graphs G1 and G2. So, V (G1) = X ∪ {v1},

V (G2) = (V (G)−X)∪{v2} and δG(X) = δG1
(v1) = δG2

(v2). Since X is non-trivial, both

G1 and G2 are smaller than G. We assume without loss of generality that v ∈ G1. Let

S1 := (S ∩ V (G1))∪ {v1} and S2 := (S ∩ V (G2))∪ {v2}. Since S is 2k-edge-connected in

G, S1 and S2 are 2k-edge-connected in G1 and G2 respectively (by Proposition 3.4.1 (1)).

By the minimality of G, there is a Steiner strongly k-arc-connected orientation D1 of G1

that extends v. Notice D1 defines a valid orientation on δG1
(v1). Set the orientation of

δG2
(v2) to be consistent with the orientation of δG1

(v1). So this is a valid orientation of

δG2
(v2). By the minimality of G, there is a Steiner strongly k-arc-connected orientation

D2 of G2 that extends v2. By setting D to be the concatenation of D1 and D2, we claim

that D is a Steiner strongly k-arc-connected orientation that extends v. By construction,

D extends v.

We need to verify that D is a Steiner strongly k-arc-connected orientation of G.

By Menger’s theorem, it is equivalent to verify that din
D (Y ) ≥ k for every S-separating

set Y . Suppose Y ⊆ V (G1), then din
D (Y ) = din

D1
(Y ) ≥ k as required; and similarly

for Y ⊆ V (G2). The interesting case is when Y1 := Y ∩ V (G1) 6= ∅ and Y2 := Y ∩

V (G2) 6= ∅. By the fact that Y is an S-separating set and X is an S-separating set,

we can assume (renaming if necessary) that there is a terminal vertex y in Y1 and a



Chapter 4. Steiner Orientations 145

terminal vertex x in V (G2)− Y . Since D1 and D2 are Steiner strongly k-arc-connected

orientations, we have din
D1

(Y1) ≥ k and din
D2

(Y2 + v2) ≥ k. Notice that din
D2

(Y2 + v2) =

din
D2

(Y2) + din
D2

(v2) −
−→
d D2

(Y2, v2) −
−→
d D2

(v2, Y2). As v2 is a tight vertex, din
D2

(v2) = k.

So din
D2

(Y2) −
−→
d D2

(v2, Y2) ≥
−→
d D2

(Y2, v2). Note that
−→
d D2

(v2, Y2) ≥
−→
d D(Y1, Y2). Hence,

din
D (Y2) −

−→
d D(Y1, Y2) ≥ din

D2
(Y2) −

−→
d D2

(v2, Y2) ≥
−→
d D2

(Y2, v2) ≥
−→
d D2

(Y2, Y1). Since

din
D (Y ) = din

D (Y1) + din
D (Y2)−

−→
d D(Y1, Y2)−

−→
d D(Y2, Y1), we have din

D (Y ) ≥ din
D (Y1) ≥ k, as

required. This completes the proof.

By applying Mader’s splitting-off lemma as in Section 3.5 (or Theorem 4.3.1, or

Lemma 4.4.9), we can assume the following.

Lemma 4.6.4 Every Steiner vertex is of degree 3 in G and is adjacent to exactly 3

vertices.

The following are the consequences of Lemma 4.6.3.

Lemma 4.6.5 There is no edge in G between two terminal vertices a, b with degree greater

than 2k. Also, there is no edge in G between a terminal vertex of degree greater than 2k

and a Steiner vertex.

Proof. Suppose e = ab is in G. By the minimality of G, S is not 2k-edge-connected in

G−e. So, by Menger’s theorem, there is a S-separating set X with e ∈ δ(X) and d(X) =

2k. If a, b are terminal vertices of degree greater than 2k, both |X|, |V (G) − X| ≥ 2,

which contradicts Lemma 4.6.3. The proof of the second statement is analogous.

Lemma 4.6.6 There is no edge between two odd-degree vertices in G. In particular,

there is no edge between two Steiner vertices.

Proof. The proof of the first statement is similar to the proof of Lemma 4.6.5, and

then the second statement follows from Lemma 4.6.4.
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With the above lemmas, we can prove that G does not exist. If |S| = 2, then the

theorem follows from Menger’s theorem; we find 2k edge-disjoint paths and orient them

consistently with the valid orientation of δG(v). So assume |S| ≥ 3. Then we claim that

there must exist a terminal vertex s 6= v which is of degree 2k, where v is the vertex to

be extended. Suppose, by way of contradiction, that every vertex in S − v is of degree

greater than 2k. Then, by the first statement of Lemma 4.6.5, there is no edge between

vertices in S−v. Also, by the second statement of Lemma 4.6.5, there is no edge between

vertices in S − v and V (G) − S. So we must have δ(S − v) = δ(v), but d(S − v) > 4k

(as |S − v| ≥ 2) and d(v) = 2k (by assumption), a contradiction. So there is a terminal

vertex s 6= v of degree 2k in G.

Now, apply Mader’s splitting-off lemma to completely split-off s; let the resulting

graph be G′. By the choice of G, there is a Steiner strongly k-arc-connected orientation

D′ of G′. If xy is an edge in G′ resulting from splitting-off sx and sy of G and it is

oriented as −→xy in D′, then we orient sx and sy in G as −→xs and −→sy and call the resulting

orientation D. We claim that D is a Steiner strongly k-arc-connected orientation of G.

By Menger’s theorem, we just need to check that din
D (X) ≥ k for every S-separating set

X.

Suppose X ∩ S = {s}. We claim that k = din
D (s) =

−→
d (V (G)−X, s) +

−→
d (X − s, s) ≤

−→
d (V (G)−X, s) +

−→
d (V (G)−X, X − s) = din

D (X) holds. The equalities are easy, we will

prove the inequality. By assumption, each vertex w in X−s is a Steiner vertex, and thus

w has degree 3 and is adjacent to 3 vertices. So each vertex w in X − s has at most one

outgoing arc to s. For each such w which has an outgoing arc to s, since D′ is a strongly-

connected orientation and X − s is an independent set (by Lemma 4.6.6), w must have

an incoming arc from V (G) − X. Hence
−→
d (V (G) − X, X − s) ≥

−→
d (X − s, s) and the

inequality in the above argument follows. The case when X ∩ S = S − s is similar; we

consider dout
D (V (G)−X) = din

D (X) and apply the previous argument on dout
D (V (G)−X)

since (V (G)−X) ∩ S = {s}.
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Finally, suppose X ∩ (S − s) 6= ∅ and (V (G) − X) ∩ (S − s) 6= ∅. If s ∈ X, then

din
D (X) ≥ din

D′(X − s) ≥ k; if s /∈ X, then din
D (X) ≥ din

D′(X) ≥ k. So, din
D (X) ≥ k

as required. Therefore, D is a Steiner strongly k-arc-connected orientation of G. This

completes the proof.

Finally we remark that our approach taken is similar to Mader’s [71] proof of Nash-

Williams’ strong orientation theorem, but is considerably simpler in this special case.

4.7 Hardness Results

Nash-Williams’ strong orientation theorem (Theorem 2.2.13) implies that the maximum

k for which a graph has a Steiner strongly k-arc-connected orientation can be found

in polynomial time. By the theorem, this is equivalent to finding the maximum k for

which the graph is Steiner 2k-edge-connected, and this can be done using O(n) flow

computations. Moreover, the algorithmic proof of Nash-Williams’ theorem provides an

algorithm for finding such an orientation. Usually the rooted counterparts of graph

connectivity problems are easier to solve. For example, finding a minimum cost k-arc-

connected subgraph of a directed graph is NP-hard, while a minimum cost rooted k-arc-

connected subgraph can be found in polynomial time [32]. It is a very rare phenomenon

that the rooted version of a connectivity problem is more difficult than the non-rooted

one. In this light, the following result is somewhat surprising.

Theorem 4.7.1 The Steiner Rooted-Orientation problem is NP-complete.

Proof. First we introduce the NP-complete problem to be reduced to the Steiner

Rooted-Orientation problem. Let G = (V, E) be a graph, and R : V × V → Z+ a

demand function for which R(v, v) = 0 for every v ∈ V . An R-orientation of G is an

orientation where for every pair u, v ∈ V there are at least R(u, v) edge-disjoint paths

from u to v.
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Theorem 4.7.2 [34] The problem of finding an R-orientation of a graph is NP-complete,

even if R has maximum value 3.

In the following we show that the R-orientation problem can be reduced to the Steiner

rooted orientation problem, thus the latter is NP-complete.

Let (G = (V, E), R) be an instance of the R-orientation problem. We define a graph

G′ = (V ′, E ′) such that G is an induced subgraph of G′. In addition to the vertices of

V , V ′ contains the root r, and vertices au,v, bu,v for every ordered pair (u, v) ∈ V × V ,

u 6= v. In addition to the edges of E, E ′ contains the following 4 types of edges:

1. R(u, v) edges from r to au,v for every pair u, v,

2. R(u, v) edges from au,v to u for every pair u, v,

3. R(u, v) edges from v to bu,v for every pair u, v,

4. for every pair of pairs (u, v) and (x, y) for which u 6= x or v 6= y, R(u, v) edges from

au,v to bx,y.

Let

S := {bu,v : u, v ∈ V, u 6= v},

k :=
∑

u,v∈V, u6=v

R(u, v).

A := {au,v : u, v ∈ V, u 6= v}.

We set the vertices in S to be the terminal vertices, and all other vertices the Steiner

vertices.

Lemma 4.7.3 The graph G′ has a Steiner rooted k-edge-connected orientation if and

only if G has an R-orientation.

Proof. Let D′ be a Steiner rooted k-edge-connected orientation of G′. Since the degree

of r is k in G′, each edge of type 1 must be oriented away from r. Since the degree of

every node in S is k in G, each edge of type 3 and 4 must be oriented towards S.
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For any pair (u, v) ∈ V ×V , let us consider the set X = V ∪ (A−au,v)+ bu,v. X must

have in-degree at least k in D′, which means, in the light of the above facts, that the

edges from au,v to u must be oriented towards u. Thus, all edges of type 2 are oriented

towards V .

Let (u, v) ∈ V × V be a fixed pair. Since D′ is a Steiner rooted k-edge-connected

orientation, there are k edge-disjoint paths from r to bu,v. Of these paths, k−R(u, v) are

necessarily composed of an edge of type 1 and an edge of type 4. The remaining R(u, v)

paths necessarily start with the edges rau,v and au,vu, and end with the edge vbu,v. Thus,

in order to “complete” these paths, there must be R(u, v) edge-disjoint paths from u to

v in D′[V ]. The above argument applied to all pairs (u, v) ∈ V × V shows that D′[V ] is

an R-orientation of G.

To prove the other direction of the claim, let D be an R-orientation of G. We define

an orientation D′ of G′ by orienting the edges in E according to D, and orienting the

other edges as described earlier in this proof. It is easy to see that the obtained digraph

D′ is a Steiner rooted k-edge-connected orientation of G′.

Since R has maximum value 3, the size of G′ is polynomial in the size of G. Thus the

construction is polynomial and this proves that the Steiner rooted orientation problem

is NP-complete.

The question remains whether the Steiner rooted k-edge-connected orientation prob-

lem is polynomially solvable for fixed k. We do not even know whether it is solvable

for k = 2 (for k = 1 it is easy). In the following we prove that the corresponding in-

hypergraph orientation problem is NP-complete even for k = 1; this contrasts with the

out-hypergraph orientation problem that we studied in Theorem 4.1.1 for which the case

k = 1 is easy.

Theorem 4.7.4 Given a hypergraph H = (V, E) with a root node r ∈ V and a terminal

set S ⊆ V − r, it is NP-complete to decide whether H has an in-hypergraph orientation
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such that there is a path from r to every terminal node.

Proof. Let H = (V, E) be a hypergraph. The hyperedge cover problem is to decide if

V can be covered by k hyperedges. This is known to be NP-complete. We reduce this

problem to our orientation problem.

We define a hypergraph H ′ = (V ′, E ′) in the following way. Let V ′ := V ∪ {ve : e ∈

E}+ r, let S := V be the set of terminal vertices, and let E ′ consist of the following two

types of hyperedges:

1. k parallel hyperedges consisting of the vertices r, {ve : e ∈ E},

2. for every v ∈ V , one hyperedge consisting of the vertices v, {ve : v ∈ e}.

Let D′ be an orientation of H ′. There is a path from r to every terminal vertex if and

only if the following hold:

• The hyperedges of type 2 are oriented towards V ,

• Let T be the set of vertices of H ′ which are the heads of some type 1 hyperedges.

Let ET be the set of hyperedges in H which corresponds to T . Then |ET | ≤ k and

ET covers V .

It follows that the hyperedge cover problem for H is solvable if and only if the orienta-

tion problem is solvable for H ′. This proves the in-hypergraph Steiner rooted-orientation

problem is NP-complete even for k = 1.

For element-connectivity, we show that the Steiner Rooted-Orientation prob-

lem is NP-complete.

Theorem 4.7.5 The Element-Disjoint Steiner Rooted Orientation problem is

NP-hard.
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Proof. We show that 3-SAT can be reduced to the Steiner element-connected orienta-

tion problem. Suppose that we are given an instance of 3-SAT with variables x1, . . . , xk

and clauses c1, . . . , cl. We construct a graph G on the following set of nodes:

• A root r,

• Two Steiner nodes vxi
and v¬xi

for every variable xi,

• Two terminal nodes sj and s′j for every clause cj,

• 8 Steiner nodes for every clause cj: a0
j , a

1
j , a

2
j , a

3
j , b0

j , b
1
j , b

2
j , b

3
j .

Let S be the set of terminal nodes, and let k := 4l, where l is the number of clauses.

Let the graph G consist of the following edges:

• An edge between vxi
and v¬xi

for every i,

• An edge between r and aα
j for every j and every α,

• Edges from b1
j , b2

j and b3
j to b0

j and to s′j for every j,

• An edge between b0
j and sj for every j,

• If x is the α-th literal in cj, then edges from vx to aα
j and bα

j (α ∈ {1, 2, 3}), and an

edge between v¬x and a0
j ,

• Edges from a0
j to every terminal node except for sj,

• Edges from a1
j , a2

j and a3
j to every terminal node except for s′j.

We shall show that the graph G has a Steiner rooted k-element-connected orientation

if and only if the 3-SAT formula is satisfiable.

Let D be a Steiner rooted k-element-connected orientation of G. Since the degree of

r and of every terminal node is k in G, the terminals must have in-degree k and r must

have out-degree k in D. This means that we already have k − 1 paths of length 2 from



Chapter 4. Steiner Orientations 152

r to each sj (through aα
i except a0

j), and we have k − 3 paths of length 2 from r to each

s′j (through aα
i except a1

j , a
2
j , a

3
j).

As for the remaining 3 paths from r to each s′j, their second nodes must be a1
j , a2

j and

a3
j , and their last non-terminal nodes must be b1

j , b2
j and b3

j . This means that for each

literal x ∈ cj, the edge between vx and aα
j must be oriented towards vx, and the edge

between vx and bα
j must be oriented towards bα

j (there is no other way to complete the

paths).

Let us consider the remaining one path from r to sj. The second node of the path is

a0
j , the last non-terminal node is b0

j , and the node before that is b1
j , b2

j or b3
j . By taking

into account what we have already proved about the orientations of the edges, and the

fact that all other nodes a0
j′ (j ′ 6= j) are used by some other path, the path can only be

the following for some α ∈ {1, 2, 3}:

{r, a0
j , v¬x, vx, b

α
j , b0

j , sj},

where x is the α-th literal in cj. It follows that our 3-SAT formula is satisfied if we set

xi to be true if the edge (vxi
, v¬xi

) is oriented towards vxi
in D, and we set xi to be false

otherwise.

Now we prove that if the 3-SAT formula can be satisfied, then there is a Steiner

rooted k-element-connected orientation. As we have shown in the above paragraphs, the

orientation of several edges is forced, and they give k element-disjoint paths from r to

each s′j, and k − 1 element-disjoint paths from r to each sj.

We orient the edge (vxi
, v¬xi

) towards vxi
if xi is true in the valuation satisfying the

formula, and orient it towards v¬xi
if xi is false. The edges of type (bα

j , b0
j) are oriented

towards b0
j , and the edges of type (a0

j , vx) are oriented towards vx.

Suppose that x is the α-th literal in cj, and it is true in the valuation satisfying the

formula. The following path is element-disjoint from the k − 1 paths already given from

r to sj:

{r, a0
j , v¬x, vx, b

α
j , b0

j , sj}.
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This shows that there are k element-disjoint paths from r to each terminal. This com-

pletes the proof of the theorem.

One can consider minimum cost versions of the orientation problems discussed in this

chapter. For each edge, the two different orientations have separate costs, and the cost

of an orientation of the graph is the sum of the costs of the oriented edges. It turns out

that in both the edge-disjoint and the element-disjoint cases the minimum cost problem

is more difficult to approximate than the basic problem. Even for k = 1, when the

edge-disjoint and element-disjoint problems coincide, we can obtain the following result:

Theorem 4.7.6 The Minimum Cost Steiner Rooted Orientation problem is NP-

hard to approximate within a factor of Ω(log(n)), even for k = 1.

Proof. We reduce the Set Cover problem (which is NP-hard to approximate within

a factor of Ω(log(n)) [20]) to the Min Cost Steiner Rooted Orientation problem, such

that the number of sets in the cover corresponds to the cost of the orientation.

Given an instance of the set cover problem with ground set V and a family F of sets

with union V , we define a graph G′ = (V ′, E ′), and edge costs for both orientations of

each edge. Let V’ consist of the following nodes:

• the nodes in V ,

• a node vZ for each Z ∈ F ,

• a root r.

The set of terminal nodes is V ∪ {r}. The graph G′ consists of two types of edges,

with the following costs for their orientations:

1. An edge rvZ for each Z ∈ F . The cost is 0 if oriented towards r, and 1 if oriented

towards vZ.
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2. Edges between vZ and each node in Z, for every Z ∈ F . The cost is 0 if the edge

is oriented towards V , and the cost is |V | if the edge is oriented towards vZ .

Since the union of the sets in F is V , there is a Steiner rooted connected orientation

of cost at most |V |: for each node u ∈ V we select an arbitrary set Zu ∈ F containing

u; we orient the edges rvZu
towards vZu

, orient the other edges of type 1 towards r, and

orient each edge of type 2 towards V . We can thus assume that in a minimum cost

orientation every edge of type 2 is oriented towards V .

Such an orientation is Steiner rooted connected if and only if the family

{Z ∈ F : the edge rvZ is oriented towards vZ}

is a set cover. So the cost of the minimum cost orientation equals the number of sets in

a minimum cover.



Chapter 5

Concluding Remarks

In this thesis, we have studied two graph connectivity problems: the Steiner Tree

Packing problem and the Steiner Rooted-Orientation problem. The main results

are approximate min-max relations which show that the optimal values of our problems

are within a constant factor to the natural connectivity upper bound. The proofs of these

approximate min-max relations also give polynomial time constant factor approximation

algorithms to these NP-complete problems.

For the Steiner Tree Packing problem, there are several directions for future

work. The most exciting open problem is to settle Kriesell’s conjecture. Although I

believe that the conjecture is true, the current technique does not seem to be strong

enough to prove it. Another direction is to prove an approximate min-max relation for

the Steiner Network Packing problem as discussed in Section 3.11; this also seems

to be very challenging. Motivated by the hypergraph orientation result (Theorem 4.1.1),

it would be interesting to study the Steiner Tree Packing problem in hypergraphs.

We know that it is NP -hard to approximate this problem to within a factor of Ω(log n).

On the other hand, we do not have any algorithmic result on this problem.

The main result (Theorem 4.1.1) on the Steiner Rooted-Orientation problem

makes the first step to generalize Nash-Williams’ strong orientation theorem to hyper-

155



Chapter 5. Concluding Remarks 156

graphs, but a full generalization is still far away. The main idea of Theorem 4.1.1 is to

reduce the Steiner Rooted-Orientation problem in hypergraphs to a graph orien-

tation problem concerning edge-connectivity, on which the submodular flow technique

can be applied. However, this approach would not work for more general hypergraph ori-

entation problems (e.g. obtaining a Steiner strongly k-hyperarc-connected orientation).

Moreover, we do not know of any tool to deal with orientation problems beyond edge-

connectivity. This is also the reason that there is very little progress in the literature

on orientation problems concerning vertex-connectivity and hyperarc-connectivity. It is

a common belief that substantially new ideas are required to solve these problems. The

following problem seems to be a concrete intermediate problem which captures the main

difficulty: if S is 2k-element-connected in G, is it true that G has a Steiner strongly k-

element-connected orientation? I believe that settling it would be a major step towards

other orientation problems concerning vertex-connectivity and hyperarc-connectivity.

Finally, the proofs of the main results in this thesis use a new technique of graph

decomposition by introducing some appropriate extension properties. It would be nice

to see this technique used to solve more problems.
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[9] S. Chen, O. Günlük, B. Yener. Optimal packing of group multicastings. IEEE

INFOCOMM’98, 1998.
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[53] T. Király. Edge-connectivity of undirected and directed hypergraphs. Ph.D. thesis,
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