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We consider two related problems, the Minimum Bounded Degree Matroid Basis

problem and the Minimum Bounded Degree Submodular Flow problem. The first
problem is a generalization of the Minimum Bounded Degree Spanning Tree prob-
lem: We are given a matroid and a hypergraph on its ground set with lower and upper
bounds f(e)≤g(e) for each hyperedge e. The task is to find a minimum cost basis which
contains at least f(e) and at most g(e) elements from each hyperedge e. In the second
problem we have a submodular flow problem, a lower bound f(v) and an upper bound
g(v) for each node v, and the task is to find a minimum cost 0-1 submodular flow with the
additional constraint that the sum of the incoming and outgoing flow at each node v is
between f(v) and g(v). Both of these problems are NP-hard (even the feasibility problems
are NP-complete), but we show that they can be approximated in the following sense. Let
opt be the value of the optimal solution. For the first problem we give an algorithm that
finds a basis B of cost no more than opt such that f(e)−2Δ+1≤|B∩e|≤g(e)+2Δ−1
for every hyperedge e, where Δ is the maximum degree of the hypergraph. If there are
only upper bounds (or only lower bounds), then the violation can be decreased to Δ−1.
For the second problem we can find a 0-1 submodular flow of cost at most opt where the
sum of the incoming and outgoing flow at each node v is between f(v)−1 and g(v)+1.
These results can be applied to obtain approximation algorithms for several combinatorial
optimization problems with degree constraints, including the Minimum Crossing Span-

ning Tree problem, the Minimum Bounded Degree Spanning Tree Union problem,
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the Minimum Bounded Degree Directed Cut Cover problem, and the Minimum

Bounded Degree Graph Orientation problem.

1. Introduction

We consider combinatorial optimization problems with degree constraints,
for which the corresponding feasibility problem is already NP-complete. One
approach to deal with these problems is to allow a slight violation of the
degree constraints, and find a solution of this relaxation that has small cost.
A prime example of this approach is the Minimum Bounded Degree

Spanning Tree problem, where we have upper (and possibly lower) bounds
on the degree of the spanning tree at each node. The corresponding feasibility
problem is NP-complete since it includes the Hamiltonian path problem.
Goemans [9] showed that if the value of the optimal solution is opt, then one
can find in polynomial time a spanning tree of cost at most opt that violates
the degree bounds by at most 2. Using the iterative relaxation method, which
is also the main technique in the present paper, Singh and Lau [14] gave an
algorithm that finds a spanning tree of cost at most opt that violates the
bounds by at most 1. The aim of this paper is to obtain similar results for
more general combinatorial optimization problems.

1.1. Minimum Bounded Degree Matroid Basis

The first problem considered is the Minimum Bounded Degree Matroid

Basis problem, which is a generalization of the Minimum Bounded De-

gree Spanning Tree problem. We are given a matroid M=(V,I), a cost
function c : V →R, a hypergraph H = (V,E), and lower and upper bounds
f(e) and g(e) for each hyperedge e∈E(H). The task is to find a basis B of
minimum cost such that f(e)≤ |B∩e| ≤ g(e) for each hyperedge e∈E(H).
One motivation for considering the matroid generalization was the following
problem posed by Frieze [8]: “Given a binary matroid MA over the columns
of a 0,1-matrix A and bounds gi for each row i of A, find a basis B of ma-
troid MA such that there are at most gi ones in any row among columns
in B”.

A problem similar to ours has been considered recently by Chaudhuri
et al. [4]. The results we give in this paper improve their approximation
guarantees. Our first main result is the following:

Theorem 1. There exists a polynomial time algorithm for the Minimum

Bounded Degree Matroid Basis problem which returns a basis B of
cost at most opt such that f(e)−2Δ+1≤ |B∩e| ≤ g(e)+2Δ−1 for each
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e∈E(H), where Δ=maxv∈V |{e∈E(H) : v∈ e}| is the maximum degree of
the hypergraph H and opt is the cost of an optimal solution which satisfies
all the degree constraints.

This theorem can be improved if only upper bounds (or only lower
bounds) are present. The proof of the improvement uses a technique of
Bansal et al. [2], who worked independently on the Minimum Crossing

Spanning Tree problem and obtained the following result for that special
case.

Theorem 2. When only upper bounds are present, there exists a polyno-
mial time algorithm for the Minimum Bounded Degree Matroid Basis

problem which returns a basis B of cost at most opt and |B∩e|≤g(e)+Δ−1
for each e∈E(H). When only lower bounds are present, the algorithm re-
turns a basis B of cost opt and |B∩e|≥f(e)−Δ+1 for each e∈E(H).

It should be noted that this does not match the result of Singh and Lau
[14] on minimum bounded degree spanning trees, since that result guarantees
a violation of the degree bounds by at most 1 even when both upper and
lower bounds are present. We give an example at the end of Section 3 which
indicates that such a result cannot be obtained for general matroids by
current techniques.

1.2. Minimum Bounded Degree Submodular Flow

The second problem considered in this paper is the Minimum Bounded

Degree Submodular Flow problem. Given a finite ground set V , two
subsets X and Y are called crossing if none of X∩Y , V \(X∪Y ), Y \X, and
X \Y is empty. A set function b : 2V →Z∪{+∞} is crossing submodular if
it satisfies the inequality

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y )

for any crossing X and Y . In the Minimum Bounded Degree Submodu-

lar Flow problem we are given a digraphD=(V,E), a crossing submodular
set function b : 2V →Z∪{+∞}, node sets Vf ⊆V and Vg⊆V , and functions
f : Vf →Z+ and g : Vg→Z+. Let us introduce the following notation for the
set of arcs entering or leaving a node set:

δin(X) = {uv ∈ E : u /∈ X, v ∈ X},
δout(X) = {uv ∈ E : u ∈ X, v /∈ X},

δ(X) = δin(X) ∪ δout(X).
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If F ⊆E is an arc set and x : E→R is a function on the arcs, then we use
the notation x(F )=

∑
e∈F x(e). A degree-constrained 0-1 submodular flow is

a vector x∈E→{0,1} with the following properties:

x(δin(X))− x(δout(X)) ≤ b(X) for every X ⊆ V ,(1)

x(δ(v)) ≥ f(v) for every v ∈ Vf ,(2)

x(δ(v)) ≤ g(v) for every v ∈ Vg.(3)

If Vf =Vg=∅, then this is the well-studied submodular flow problem, intro-
duced by Edmonds and Giles [6]. There are several efficient algorithms for
finding a feasible submodular flow, or even a minimum cost submodular flow
for a linear cost function, as long as there is an efficient oracle to evaluate
the function b on any subset X ⊆ V . However, the addition of the degree
constraints (2) and (3) makes the feasibility problem NP-complete, as we
show in Section 4.1. Our second main result is the following:

Theorem 3. There exists a polynomial time algorithm for the Minimum

Bounded Degree Submodular Flow problem which returns a 0-1 sub-
modular flow of cost at most opt that violates each degree constraint by at
most one, where opt is the cost of an optimal solution which satisfies all
the degree constraints.

In Section 2, we show some applications of the main results. Then we
present the proofs of the main results and some corresponding hardness
results in Section 3 for the matroid problem and in Section 4 for the sub-
modular flow problem.

2. Applications

In this section we highlight some applications of the main results.

2.1. Minimum Crossing Spanning Tree

In the Minimum Crossing Spanning Tree problem, we are given a graph
G = (V,E) with edge cost function c, a collection of cuts (edge subsets)
C={C1, . . . ,Cm} and bound gi for each cut Ci. The task is to find a tree T
of minimum cost such that T contains at most gi edges from cut Ci. See [3]
for various applications of this problem. The Minimum Bounded Degree

Spanning Tree problem is the special case where C = {δ(v) : v ∈ V }. The
following result (see also [2]) can be obtained as a corollary of Theorem 2.

Independent of the work in [2], we obtained Corollary 1 with a weaker bound using
Theorem 1.
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Note that d = 2 for the Minimum Bounded Degree Spanning Tree

problem.

Corollary 1. [2] There exists a polynomial time algorithm for the Mini-

mum Crossing Spanning Tree problem that returns a tree T with cost
at most opt and such that T contains at most gi+d−1 edges from cut Ci

for each i where d=maxe∈E |{i : e∈Ci}|. Here opt is the cost of an optimal
solution which satisfies all the cut constraints.

Proof. Let M =(E,I) denote the graphic matroid over the graph G. The
hypergraph H is defined with V (H) =E(G) and E(H) = {Ci : 1≤ i≤m}.
Note that Δ=maxv∈V (H) |{e∈E(H) : v∈e}|=maxe∈E(G) |{Ci : e∈Ci}|=d.
So, using Theorem 2, we obtain a basis T of matroid M (which is a spanning
tree), such that |T ∩Ci|≤gi+d−1 for every i∈{1, . . . ,m}.

2.2. Minimum Bounded-Ones Binary Matroid Basis

For the Minimum Bounded-Ones Binary Matroid Basis problem
posted by Frieze [8], we are given a binary matroid MA over the columns
of a 0,1-matrix A and bounds gi for each row i of A. The task is to find a
minimum cost basis B of matroid MA such that there are at most gi ones in
any row among columns in B. The following result is obtained as a corollary
of Theorem 2.

Corollary 2. There exists a polynomial time algorithm for the Minimum

Bounded-Ones Binary Matroid Basis problem which returns a basis
B of cost at most opt such that there are at most gi+d−1 ones in any row
restricted to columns of B. Here d is the maximum number of ones in any
column of A and opt is the cost of an optimal solution satisfying all the
row constraints.

Proof. Let M = MA and define a hypergraph H where the vertex set
is the columns of A. The hyperedges correspond to rows of A where
ei = {Aj : Aij=1} where Aj is the jth column of A. Note that Δ =
maxv∈V (H) |{e ∈E(H) : v∈e}|=maxj |{i : aij = 1}|= d, which is the maxi-
mum number of ones in any column of A. So, using Theorem 2, we obtain a
basis of M=MA such that number of ones in any row is at most gi+d−1.

2.3. Minimum Bounded Degree Spanning Tree Union

In the Minimum Bounded Degree Spanning Tree Union problem, we
are given a graph G=(V,E) with edge cost function c, a positive integer k,
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and degree upper bounds g(v) for each vertex v. The task is to find a sub-
graph H which is the union of k edge-disjoint spanning trees and the degree
of v in H is at most g(v). The Minimum Bounded Degree Spanning

Tree problem is a special case when k=1. Theorem 2 implies the following
result, which is optimal in terms of the degree upper bounds.

Corollary 3. There exists a polynomial time algorithm for the Minimum

Bounded Degree Spanning Tree Union problem which returns a sub-
graph G of cost at most opt which is the union of k edge-disjoint spanning
trees and the degree of v in H is at most g(v)+1. Here opt is the cost of
an optimal solution which satisfies all the degree upper bounds.

Proof. Let M = (E,I) denote the union of k graphic matroids over the
graph G, which is a matroid by the matroid union theorem. The hypergraph
H is defined with V (H) =E(G) and E(H) = {δ(v) : v ∈ V (G)}. Note that
Δ=maxv∈V (H) |{e ∈E(H) : v ∈ e}|=maxe∈E(G) |{v ∈ V (G) : e ∈ δ(v)}| = 2.
So, using Theorem 2, we obtain a basis T of matroid M (which is the union
of k edge-disjoint spanning trees), such that |T ∩δ(v)|≤g(v)+1.

2.4. Minimum Bounded Degree Directed Cut Cover

Let D=(V,E) be a digraph. A set of vertices ∅ �=X�V is called a directed
cut if δout(X) = ∅. A subset of arcs F is called a directed cut cover if |F ∩
δ(X)| �= ∅ for every directed cut X. In the Minimum Bounded Degree

Directed Cut Cover problem, we are given a digraph D=(V,E), a cost
function c : E → Z, and degree constraints f(v) and g(v) for each v ∈ V .
The task is to find a directed cut cover F ⊆E of minimum cost such that
f(v) ≤ |F ∩ δ(v)| ≤ g(v) for every v ∈ V . Theorem 3 implies the following
result, which is optimal in terms of the degree bounds.

Corollary 4. There exists a polynomial time algorithm for the Minimum

Bounded Degree Directed Cut Cover problem which returns a di-
rected cut cover F of cost at most opt with the property that f(v)−1≤|F∩
δ(v)| ≤ g(v)+1 for each vertex v ∈ V , where opt is the cost of an optimal
solution which satisfies all the degree constraints.

Proof. Set b(X)=−1 if V \X is a directed cut, and set b(X)=∞ otherwise.
Then b is a crossing submodular set function, because if directed cuts X and
Y are crossing, then X∩Y and X∪Y are also directed cuts. In this setting, a
0-1 submodular flow corresponds to a directed cut cover. So, by Theorem 3,
we obtain a directed cut cover F such that f(v)−1≤|F ∩δ(v)|≤g(v)+1 for
every v∈V .
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2.5. Minimum Bounded Degree Graph Orientation

In the Minimum Bounded Degree Graph Orientation problem, we
are given a digraph D = (V,E), a cost function c : E → Z, and bounds
f(v) ≤ g(v) for every v ∈ V . The task is to find an arc set of minimum
cost whose reversal makes the digraph strongly k-arc-connected, so that the
number of arcs reversed at each node v is between f(v) and g(v). Theorem 3
implies the following result, which is optimal in terms of the degree bounds.

Corollary 5. There exists a polynomial time algorithm for the Minimum

Bounded Degree Graph Orientation problem which finds an arc set of
cost at most opt whose reversal makes the digraph strongly k-arc-connected
and such that the number of arcs reversed at each node v is between f(v)−1
and g(v)+1. Here opt is the cost of an optimal solution which satisfies all
the degree constraints.

Proof. This can be done by considering the submodular flow problem de-
fined by the set function b(X)= |δin(X)|−k (∅ �=X�V ) (see [7]), which is a
submodular set function. In this setting, a 0-1 submodular flow corresponds
to an arc set whose reversal makes the digraph strongly k-arc-connected. So
this result follows from Theorem 3.

It is shown in Section 4.1 that the corresponding feasibility problem is
NP-complete, and thus the feasibility problem for bounded degree submod-
ular flow is also NP-complete.

3. Minimum Bounded Degree Matroid Basis

Proof of Theorem 1 The main technique used to prove Theorem 1 is the
iterative relaxation method used in [12,14], which is based on the iterative
rounding method introduced by Jain [10]. We first formulate a linear pro-
gramming relaxation for the Minimum Bounded Degree Matroid Basis

problem. Let r : 2V →Z+ denote the rank function of matroid M .

minimize c(x) =
∑

v∈V
cv xv(4)

subject to x(V ) = r(V )(5)

x(S) ≤ r(S) ∀S ⊆ V(6)

f(e) ≤ x(e) ≤ g(e) ∀ e ∈ E(H)(7)

0 ≤xv ≤ 1 ∀ v ∈ V(8)
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1. Initialization B←∅,
2. While B is not a basis do

(a) Compute a basic optimal solution x. Delete an element v with xv=0. Update
each hyperedge e←e\{v}. Update matroid M←M \v.

(b) For each element v with xv =1, include v in B and decrease f(e) and g(e) by
1 for each e�v. Update matroid M←M/v.

(c) For every e∈E(H) with |e|≤2Δ, remove e from E(H).
3. Return B.

Figure 1. The algorithm for the Minimum Bounded Degree Matroid

Basis problem.

This linear program is exponential in size but can be separated over in
polynomial time if given an access to the independent set oracle [5]. Given
a matroid M=(V,I) and an element v∈V , we denote by M \v the matroid
obtained by deleting v, i.e., M \ v = (V ′,I ′) where V ′ = V \ {v} and I ′ =
{S∈I : v /∈S}. We also denote by M/v the matroid obtained by contracting
v, i.e., M/v=(V ′,I ′) where V ′=V \{v} and I ′={S \{v} : S∈I,v∈S}.

The algorithm is given in Figure 1. Suppose that the algorithm terminates
successfully. Then Theorem 1 follows from a similar argument as in [14],
which goes as follows. First, observe that the matroid M is updated to
M \ v whenever we remove v with xv = 0 and updated to M/v whenever
we pick v with xv = 1. This way the residual linear programming solution
(current LP solution restricted to V \{v}) remains a feasible solution for the
modified linear program in the the next iteration. Also, in Step 2c when we
remove a degree constraint, the current linear programming solution remains
a feasible solution. Therefore the cost of B plus the cost of the LP solution
does not increase in any iteration, so at the final step the cost of B is at
most the cost of the first LP solution, which is at most opt. Moreover, since
we only remove a degree constraint of a hyperedge when it contains at most
2Δ elements, the degree constraints are violated by at most 2Δ− 1, and
Theorem 1 would follow. Thus it remains to show that the algorithm always
terminates successfully. That is, it can always find an element v with xv=0
in Step 2a or an element v with xv=1 in Step 2b or it finds a hyperedge e
with |e|≤2Δ in Step 2c.

Suppose for contradiction none of the above conditions holds. Then
0<xv<1 for each v ∈ V and |e| > 2Δ for each e ∈ E(H). Let T = {S ⊆
V : x(S)= r(S)} be the collection of all tight sets at solution x. Let χS de-
note the characteristic vector of S, i.e, χS(v) = 1 if v ∈ S else χS(v) = 0.
A family of sets L ⊆ 2V is called a chain if the following condition holds:
for every A,B ∈ L we have either A ⊂ B or B ⊂ A. The following claim
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can be obtained by standard uncrossing argument similarly to the proof for
spanning trees in [14]. For completeness, we include the proof here.

Claim 3.1. For any basic solution x, there exists a chain L⊆T such that
the following holds.

1. The vectors in {χS : S∈L} are linearly independent.
2. span({χS : S∈L})=span({χS : S∈T }).

Proof. If S and T are both in T , then

x(S) + x(T ) = r(S) + r(T )

≥ r(S ∩ T ) + r(S ∪ T ) ≥ x(S ∩ T ) + x(S ∪ T ) = x(S) + x(T ),

so we have equality throughout, and both S∩T and S∪T are in T . Let L be a
maximal chain in T . We show that span({χS : S∈L})=span({χS : S∈T }).
Suppose indirectly that there is a set R∈T for which χR /∈ span({χS : S ∈
L}), and choose one that is inclusionwise incomparable to as few sets of L as
possible. There must be at least one incomparable set T because the chain
is maximal. By our previous observation, R∩T and R∪T are both in T .
Since χR+χT = χR∩T +χR∪T and χR is not in span({χS : S ∈L}), one of
R∩T and R∪T is not in span({χS : S ∈ L}). This gives a contradiction,
because both R∩T and R∪T are inclusionwise incomparable to fewer sets in
L than R. Thus span({χS : S∈L})=span({χS : S∈T }), and any maximal
independent subfamily of L would do.

As x is a basic solution, there is a set E′⊆E of tight hyperedges (a hy-
peredge e is tight if x(e) = g(e) or x(e) = f(e)) such that the vectors in
{χS : S∈L}∪{χe : e∈E′} are linearly independent and |V |= |E′|+ |L|. We
now derive a contradiction to this by a counting argument. We assign 2Δ
tokens to each vertex v∈V for a total of 2Δ|V | tokens. We then redistribute
the tokens so that each hyperedge in E′ collects at least 2Δ tokens, each
member of L collects at least 2Δ tokens, and there are still at least one extra
token. This implies that 2Δ|V |>2Δ|E′|+2Δ|L|, which gives us the desired
contradiction.

The reassignment is as follows. Each element v gives Δ tokens to the
smallest member in L it is contained in and one token to each hyperedge
e∈E′ it is contained in. As any element is contained in at most Δ hyper-
edges, thus the redistribution is valid as we distribute at most 2Δ tokens
per element. Now, consider any set S ∈ L and let R be the largest set in
L contained in S. We have x(S) = r(S) and x(R) = r(R). Thus, we have
x(S \R)=r(S)−r(R). As constraints for R and S are linearly independent
and xv > 0 for each v ∈ V , this implies r(S) �= r(R). Since r is a matroid
rank function, r(S)− r(R)≥ 1 as they are both integers. Since 0< xv < 1,
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this implies |S \R| ≥ 2. Thus, S can collect at least 2Δ tokens by taking
Δ tokens from each element in S \R, as required. Consider any hyperedge
e∈E′. As |e|≥2Δ and it can collect one token from each element in e, there
are at least 2Δ tokens for each edge e, as required.

Now, it remains to argue that there is an extra token left. If any of the
elements is in strictly less than Δ hyperedges of E′ or if V /∈L then we have
one extra token. Otherwise, we have

∑
e∈E′ χe=Δ ·χV , which shows linear

dependence among the constraints as V ∈ L. Hence, we have the desired
contradiction, and the proof of Theorem 1 follows.

Now we show how to use the proof technique of Bansal et al [2] to obtain
Theorem 2.

Proof of Theorem 2 The proof for upper bounds is similar to the proof of
Theorem 1 except for the counting argument. The only important difference
is that in Step 2c we remove a hyperedge e if g(e)+Δ−1≥|e|; this is possible
since in that case the degree upper bound on e can be violated by at most
Δ−1. It follows that we may assume that |e|−g(e)≥Δ for all hyperedges.

The proof that |V | > |E′|+ |L| if 0 < x < 1 goes as follows. Let L =
{S1, . . . ,Sk}, where S1 � S2 � · · · � Sk, and let S0 := ∅. Then |e| −x(e) ≥
|e|−g(e) ≥ Δ for every e ∈ E′, and x(Si \ Si−1) = r(Si)− r(Si−1) ≥ 1 for
i=1, . . . ,k. Using these inequalities, we obtain that

|E′|+ |L′| ≤
∑

e∈E′

|e| − x(e)

Δ
+

k∑

i=1

x(Si \ Si−1)

=
∑

v∈V

1− x(v)

Δ
|{e ∈ E′ : v ∈ e}|+ x(Sk) ≤ |V |,

and if equality holds, then |{e∈E′ : v∈ e}|=Δ for every v∈V and Sk=V .
But then Δ ·χSk

=
∑

e∈E′ χe, which contradicts the linear independence.
If only lower bounds are present, then we can delete a hyperedge e in

Step 2c if f(e)≤Δ−1, so we may assume that f(e)≥Δ for all hyperedges.
To show |V |> |E′|+ |L| we use that x(e) = f(e)≥Δ for every e ∈ E′ and
|Si \Si−1|−x(Si \Si−1)≥ 1 for i= 1, . . . ,k, where the latter holds because
x(Si \Si−1)< |Si \Si−1| and both are integer. Thus

|E′|+ |L′| ≤
∑

e∈E′

x(e)

Δ
+

k∑

i=1

(|Si \ Si−1| − x(Si \ Si−1))

=
∑

v∈V

x(v)

Δ
|{e ∈ E′ : v ∈ e}|+ |Sk| − x(Sk) ≤ |V |,
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and if equality holds, then |{e∈E′ : v∈ e}|=Δ for every v∈V and Sk=V .
But then Δ ·χSk

=
∑

e∈E′ χe, which contradicts the linear independence.

Remark 1. It is shown in [14] that for the Minimum Bounded Degree

Spanning Tree problem the violation of the degree bounds can be bounded
byΔ−1 (which is equal to 1 sinceΔ=2 in that problem) even in the presence
of both lower and upper bounds on the degrees. In the generalization for
matroids, it seems that our method cannot guarantee a solution that violates
the bounds by at most Δ− 1 if both lower and upper degree bounds are
present. The reason is that there may be a basic solution with non-integer
values, but Step 2c can not be applied, as the following example shows.

Let V = {u1,u2, . . . ,u6,v1,v2 . . . ,v6} be a ground set of 12 elements, and
let M=(V,I) be the partition matroid where each basis contains 1 element
from each of {u1,v1}, {u3,v3}, {u4,v2}, and {u6,v5}, and 2 elements from
{u2,u5,v4,v6}. Let H=(V,E) be the hypergraph containing the hyperedges
{u1,u2,u3}, {u3,u4,u5}, {u5,u6,u1}, {u2,u4,u6}, and {v1,v2,v3}, {v3,v4,v5},
{v5,v6,v1}, {v2,v4,v6}. In this example Δ=2. For the first four hyperedges,
let the lower bound f(e) be 2, and for the last four hyperedges, let the
upper bound g(e) be 1. Then the following is a basic solution: ui = 2/3
(i=1, . . . ,6), vi=1/3 (i=1, . . . ,6). It is not possible to delete any hyperedges
since f(e)≥Δ or |e|−g(e)≥Δ for each hyperedge e∈E.

4. Minimum Bounded Degree Submodular Flow

Proof of Theorem 3 The proof of this theorem is also based on the iter-
ative relaxation method used in [12,14]. Let us define the linear relaxation
of the problem by

minimize c(x) =
∑

e∈E
c(e)x(e)(9)

x(δin(X)) − x(δout(X)) ≤ b(X) for every X ⊆ V ,(10)

x(δ(v)) ≥ f(v) for every v ∈ Vf ,(11)

x(δ(v)) ≤ g(v) for every v ∈ Vg,(12)

0 ≤ x(e) ≤ 1 for every e ∈ E.(13)

Let x∗ be an optimal basic solution of the linear programming relaxation.
This can be obtained in polynomial time by the ellipsoid method. Obviously
c(x∗)≤opt. We will find a 0-1 submodular flow of cost at most c(x∗) that
violates the degree bounds by at most one.

The problem can be reduced to an instance containing fewer arcs in two
cases:
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• If x∗(e) = 0 for some e ∈E, then we delete the arc e from the digraph.
A solution of the resulting problem solves the original problem.

• If x∗(e)=1 for some e=uv∈E, then we delete the arc e from the digraph,
decrease f(u),f(v),g(u),g(v) by 1, and change b as follows:

b′(X) =

⎧
⎪⎨

⎪⎩

b(X) − 1 if u /∈ X and v ∈ X,

b(X) + 1 if u ∈ X and v /∈ X,

b(X) otherwise.

The set function b′ is also crossing submodular. If we have a solution x′
for this modified problem, then we can obtain a solution for the original
problem by setting x′(e)=1.

This way we can reduce the problem to an instance where 0<x∗(e)<1 for
every e∈E. We may also delete isolated nodes by changing b appropriately.
Now we try to remove degree bounds so that the solutions of the resulting
problem are feasible for the original problem. One difference from the proof
of Theorem 1 is that in some iterations we increase the number of vertices
in the graph, but in each step we will decrease |E|+ |Vf |+ |Vg| by at least
one and thus the number of steps is polynomial.

First let us observe that g(v)> 0 for every v ∈ Vg and f(v)< |δ(v)| for
every v ∈ Vf , since otherwise there would be some arc e with x∗(e) = 0 or
x∗(e)=1. Removal of an upper degree bound at a node v is possible in the
following two cases:

• If |δ(v)| ≤ g(v)+ 1, then we can remove the upper bound at v, since a
solution of the resulting problem cannot violate the original degree bound
by more than 1.

• If g(v)= 1, then we replace v by two nodes v1 and v2. An arc uv∈E is
replaced by uv1, while an arc vu∈E is replaced by v2u. The set function
b is modified as follows:

b′(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if X = v1 or X = V − v2,

b(X) if X ∩ {v1, v2} = ∅,
b(X − {v1, v2}+ v) if {v1, v2} ⊆ X,

∞ otherwise.

The set function b′ is crossing submodular: it can be obtained by first
splitting v in two and setting b′(X) =∞ on any set separating v1 and
v2, and then changing the values of b′(v1) and b′(V − v2); both of these
operations preserve crossing submodularity. No degree upper bound and
lower bound are given for v1 and v2, i.e. V

′
g =Vg−v,V ′

f =Vf−v. Note that
the current solution corresponds to a feasible solution of this relaxation.
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The definition of b′ implies that x(δ(v1)) ≤ 1 and x(δ(v2)) ≤ 1 for any
solution x. This means that the corresponding solution on the original
digraph violates the degree bounds at v by at most 1.

After the above modifications, we may assume that g(v)≥2 and |δ(v)|≥
g(v)+2 for every v ∈ Vg. Removal of a lower degree bound at a node v is
possible in the following two cases:

• If f(v)≤1, then we can remove the lower bound at v, since a solution of
the resulting problem cannot violate the original bound by more than 1.

• If f(v)=2 and |δ(v)|=3, then we replace v by two nodes v1 and v2. An
arc uv ∈ E is replaced by uv1, while an arc vu ∈ E is replaced by v2u.
For the modification of b there are two cases. If |δout(v)| ≤ 1, then it is
modified as follows:

b′(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if X = V − v1,

b(X) if X ∩ {v1, v2} = ∅,
b(X − {v1, v2}+ v) if {v1, v2} ⊆ X,

∞ otherwise.

If |δin(v)|≤1, then the modified set function is

b′(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if X = v2,

b(X) if X ∩ {v1, v2} = ∅,
b(X − {v1, v2}+ v) if {v1, v2} ⊆ X,

∞ otherwise.

The set function b′ is crossing submodular. No lower bound is given for v1
and v2, i.e. V

′
f =Vf−v. Note that there is no degree upper bound on v by

the previous rule (since g(v)≥f(v)≥|δ(v)|−1), and the current solution
corresponds to a feasible solution in this relaxation. The definition of b′
implies that x(δ({v1,v2})) ≥ 1 for any solution x. This means that the
corresponding solution on the original digraph violates the lower bound
at v by at most 1.

After the above modifications, we may assume that |δ(v)| ≥ 4 for every
v∈Vf ∪Vg. The solution corresponding to x∗ is still a feasible solution, but
it is not necessarily a basic solution, so we have to solve the LP again and
continue this process until a basic solution is obtained where there are no 0-1
arcs and no degree bounds can be deleted. Note that if there is an efficient
oracle to evaluate b on any subset X ⊆V , then this can be easily modified
to give an efficient oracle to evaluate b′ on any subset X ′ ⊆ V ′, and so the
submodular flow problem can still be solved efficiently. (In fact, it is not



716 TAMÁS KIRÁLY, LAP CHI LAU, MOHIT SINGH

necessary to solve the LP to optimality, it is enough to perform the easier
task of finding a basic solution that is not worse than the current solution.
This guarantees that the final solution has cost at most opt.)

At the end of the process either all arcs are fixed to 0 or 1 and we are
done, or 0 < x∗(e) < 1 for every e ∈ E, there are no isolated nodes, and
|δ(v)|≥4 for every v∈Vf ∪Vg. We show that the latter case is impossible.

We call a set X ⊆ V tight if x∗(δin(X))−x∗(δout(X)) = b(X). Let T be
the family of tight sets. For simplicity, let us denote the characteristic vector
of δin(X) minus the characteristic vector of δout(X) by χX (note that it is
different from the χX in the matroid section). For any X and Y in T we
have χX+χY =χX∩Y +χX∪Y , so if X and Y are crossing, then the crossing
submodularity of b implies that X∩Y and X∪Y are also in T .

A family of sets F⊂2V is called cross-free if for every pair of sets A,B∈F
we have either A⊆B, B⊆A, A∩B=∅ or A∪B=V , and it is called laminar
if every pair satisfies one of A⊆B, B⊆A, or A∩B=∅. The following claim
can be obtained similarly to Claim 3.1.

Claim 4.1. There exists a cross-free family F∗ ⊆ T such that the vectors
in {χX : X ∈ F∗} are linearly independent, and span({χX : X ∈ F∗}) =
span({χX : X∈T }).

Proof. Let F be a maximal cross-free subfamily of T . We show that
span{χX : X ∈ F} = span{χX : X ∈ T }, which implies the claim because
we may choose an arbitrary maximal independent subfamily of F as F∗. In-
directly, suppose that there is a set Y ∈T for which χY /∈span{χX : X∈F},
and choose one that is crossing as few sets of F as possible. It must cross
at least one set Z ∈ F , otherwise it could be added to F . As we have ob-
served, Y ∩Z and Y ∪Z are also in T , and χY +χZ =χY ∩Z +χY ∪Z . Since
χY is not in span{χX : X ∈F}, at least one of χY ∩Z and χY ∪Z is also not
in span{χX : X ∈F}. This contradicts the choice of Y because both Y ∩Z
and Y ∪Z cross fewer sets in F than Y .

Since x∗ is a basic solution, there is a set of nodes V ∗ such that x∗
satisfies a degree bound with equality at each node in V ∗, and x∗ is the
unique solution of the equation system given by these tight constraints and
the tight constraints of F∗. It follows that |E| ≤ |F∗|+ |V ∗|. We show that
this is impossible using a simple counting argument.

We assign 2|E| tokens to the nodes as follows: for every arc in E it receives
two tokens, and then it gives one token to each of its two endpoints. The
idea of the proof is to reassign these tokens to the members of F∗ and V ∗ so
that every member of F∗ and V ∗ gets at least two tokens, and furthermore
at least one token is not assigned to any member in F∗ and V ∗. This would
imply that |E|> |F∗|+ |V ∗|, contradicting |E|≤|F∗|+ |V ∗|.



DEGREE BOUNDED MATROIDS AND SUBMODULAR FLOWS 717

Let r∈V be an arbitrary node. We define the family

H∗ := {X ⊆ V − r : X ∈ F∗} ∪ {X ⊆ V − r : V −X ∈ F∗}.

Notice that H∗ is laminar. For a set X∈H∗, we define X ′∈F∗ to be either
X or V −X (depending on which one is in F∗). We will assign 2 tokens to
each member of H∗ so that every member gets tokens from its nodes, thus
the tokens of r are not used.

A node v ∈ V ∗ has at least 4 tokens since |δ(v)| ≥ 4. We assign 2 of its
tokens to v (as degree constraint) and 2 tokens to the smallest member of
H∗ containing v. If no member of H∗ contains v, we have 2 unused tokens.

To show that each member of H∗ receives two tokens in this assignment,
we proceed in an order compatible with the partial order of inclusion. Let
X∈H∗ and let {X1, . . . ,Xk} be the maximal members of H∗ inside X. There
must be an arc with an endpoint in X−∪k

i=1Xi, otherwise the constraints
corresponding to X ′,X ′

1, . . . ,X
′
k would be linearly dependent: the constraint

for X ′ would be a ±1 combination of the constraints for X ′
1, . . . ,X

′
k, where

the i-th coefficient depends on whether X ′
i =Xi or X ′

i =V −Xi. Moreover,
if only one such arc e existed, then x∗(e) would be an integer because it
would be determined by an integer combination of b(X ′), b(X ′

1), . . . , b(X
′
k).

Since 0<x∗(e)< 1 for every arc, it follows that there are at least two arcs
with an endpoint in X−∪k

i=1Xi, hence there are at least two nodes inside
X for which X is the smallest member of H∗ containing them. Therefore X
receives two tokens by the assignment rule.

Hence every member of H∗ and V ∗ is assigned 2 tokens, and there is an
unused token at r since it is not an isolated node and no member of H∗
contains r. This contradicts the assumption that |E| ≤ |F∗|+ |V ∗|, so we
proved the theorem.

4.1. Hardness of The Feasibility Problem

In this section we prove that a special case of the degree-constrained 0-1
submodular flow problem is NP-complete. The construction also shows that
the feasibility problems for Bounded Degree Graph Orientation and
Bounded Degree Directed Cut Cover are NP-complete. A subset of
arcs in a digraph is called independent if no two arcs have a common node.
In the following E[W ] denotes the set of induced arcs in W , i.e. arcs with
both endpoints in W .

Theorem 4. Given a digraph D = (V,E) and a subset W ⊆ V of nodes,
it is NP-complete to decide if it is possible to change the orientation of an
independent subset of arcs in E[W ] so that the resulting digraph is strongly
connected.
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Proof. We reduce SAT to this problem. Let us consider a SAT instance with
variables x1, . . . ,xn and clauses c1, . . . , cm. We associate a digraph D=(V,E)
and a node set W ⊆V to this instance using the following construction; see
Figure 2 for an illustration.

Figure 2. Construction of digraph D if xj is in clause ci and ¬xj is in
clause ch.

For the variable xj, let mj be the number of clauses that contain xj
or ¬xj. We construct a cycle Cj of length 4mj : the nodes are uji ,v

j
i ,w

j
i ,z

j
i

(i = 1, . . . ,mj), the oriented arcs are ujiv
j
i ,w

j
i v

j
i ,z

j
iw

j
i ,z

j
i u

j
i+1 (i = 1, . . . ,mj ,

the last arc is zjmju
j
1). The node set W consists of all these nodes.

In addition, we add a node t and nodes si (i=1, . . . ,m), and add arcs sit
(i=1, . . . ,m). For a given variable xj , suppose that ci is the l-th clause that

contains xj or ¬xj. If it contains xj, then we add the arcs siu
j
l ,u

j
l si,w

j
l t, tw

j
l .

If it contains ¬xj, then we add the arcs siw
j
l ,w

j
l si,u

j
l t, tu

j
l . This finishes the

construction of the digraph D.
Consider the cycle Cj of length 4mj associated to the variable xj .

The nodes vji have out-degree 0, while the nodes zji have in-degree 0
(i= 1, . . . ,mj). This means that we have to change the orientation of 2mj

independent arcs in the cycle in order to get a strong orientation. Thus we

have two possibilities: either we change the orientation of the arcs ujiv
j
i ,z

j
iw

j
i

(i = 1, . . . ,mj), or of the arcs wj
i v

j
i ,z

j
i u

j
i+1 (i = 1, . . . ,mj). We say that the

former corresponds to the ‘true’ value of xj, while the later corresponds to
the ‘false’ value.

In this way, there is a one-to-one correspondence between orientations
of the above structure and possible evaluations of the variables. We claim
that the orientation is strongly connected if and only if the corresponding
evaluation satisfies the SAT formula. Suppose that the formula is not satis-
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fied, i.e. there is a clause ci containing only false literals. Consider the node
set consisting of si and its neighbors of type u and w. By the construction,
this set has in-degree 0 in the orientation corresponding to the evaluation.
Therefore the orientation cannot be strongly connected.

Now suppose that an evaluation satisfies the formula. Then each node si
(i=1, . . . ,m) can be reached from t by a path of length 4 (which corresponds
to the “true” literal in ci). Since there is an arc from si to t for each si, and
all other nodes obviously have paths to and from t or some si, the orientation
is strongly connected.

Corollary 6. The feasibility problem for degree-constrained 0-1 submodu-
lar flows is NP-complete.

Proof. To write the above problem as a feasibility problem for degree-
constrained submodular flows, we can use the transformation to submodular
flow in Section 2.5, with k=1, degree upper bounds g(v)=1 if v∈W , and
g(v)=0 otherwise. There are no lower bounds on the degrees.

5. Concluding Remarks

Recently Bansal et.al. [1] show how to extend the iterative relaxation method
to obtain new or improved bicriteria approximation algorithms for minimum
crossing spanning tree, crossing matroid intersection, and crossing lattice
polyhedra. Also the method in this work has been used to prove a graph
theoretical result on degree bounded forest covering [11].
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