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Given an undirected multigraph G and a subset of vertices S C V(G), the STEINER
TREE PACKING problem is to find a largest collection of edge-disjoint trees that each
connects S. This problem and its generalizations have attracted considerable attention
from researchers in different areas because of their wide applicability. This problem was
shown to be APX-hard (no polynomial time approximation scheme unless P=NP). In
fact, prior to this paper, not even an approximation algorithm with asymptotic ratio o(n)
was known despite several attempts.

In this work, we present the first polynomial time constant factor approximation al-
gorithm for the STEINER TREE PACKING problem. The main theorem is an approximate
min-max relation between the maximum number of edge-disjoint trees that each connects
S (S-trees) and the minimum size of an edge-cut that disconnects some pair of vertices
in S (S-cut). Specifically, we prove that if every S-cut in G has at least 26k edges, then
G has at least k edge-disjoint S-trees; this answers Kriesell’s conjecture affirmatively up
to a constant multiple.

1. Introduction

We consider a well-studied generalization of the edge-disjoint a, b-paths prob-
lem, namely, the STEINER TREE PACKING problem. Given an undirected
multigraph G = (V,E) and SCV(G). We say the vertices in S are black
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(also known as terminal vertices) while the vertices in V(G)— S are white
(also known as Steiner vertices); an edge is white if it connects two white
vertices. A S-Steiner-tree (S-tree) is a tree of G that contains every vertex
in S, a S-Steiner-cut (S-cut) is a subset of edges whose removal disconnects
some vertices in S. The STEINER TREE PACKING problem is to find a largest
collection of edge-disjoint S-trees of G.

This problem and its generalization (where different specified subsets of
vertices have to be connected by edge-disjoint trees) have attracted consider-
able attention from researchers in different areas. The STEINER TREE PACK-
ING problem has applications in routing problems arising in VLSI circuit
design [19,26,32,10-14,37,16], where an effective way of sharing different
signals amongst cells in a circuit can be achieved by the use of edge-disjoint
Steiner trees. It also has a variety of computer network applications such as
multicasting [29,2—4,38,9], video-conferencing [15] and network information
flow [34,24], where simultaneous communications can be facilitated by using
edge-disjoint Steiner trees.

When S=V(G), the STEINER TREE PACKING problem is known as the
SPANNING TREE PACKING problem. Tutte [36] and Nash-Williams [28] inde-
pendently proved that a graph has k edge-disjoint spanning trees if and only
if Eq(P)>k(]P|—1) for every partition P of V(G) into nonempty classes,
where Eg(P) denotes the number of edges connecting distinct classes of P.
As a corollary of Tutte and Nash-Williams result, every 2k-edge-connected
graph has k edge-disjoint spanning trees. Karger [18] exploited this approx-
imate min-max relation to give the best known algorithm (near linear time)
to compute a minimum cut of a graph. In fact, the SPANNING TREE PACK-
ING problem is best investigated within the structures offered by matroids
(see [35]), where Edmonds’ matroid partition theorem yields a short proof
of Tutte and Nash-Williams theorem as a corollary.

The STEINER TREE PACKING problem, however, is NP-complete. There-
fore, under the assumption that NP # co-NP, a min-max relation like the
Tutte-Nash-Williams theorem does not exist. Nonetheless, Kriesell [20,21]
conjectures that the approximate min-max corollary of the Tutte—Nash-
Williams theorem does generalize to the STEINER TREE PACKING problem.
In the following, we say a graph is k-S-connected if every S-cut has at least
k edges.

Kriesell’s conjecture ([20,21]). If G is 2k-S-connected, then G has k
edge-disjoint S-trees.

The conjecture is best possible for every k as shown by any k-regular

k-edge-connected graph G with S=V(G).
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1.1. Previous Work

Prior to this work, Kriesell’s conjecture was wide open despite several at-
tempts. It was not known to be true even when 2k is replaced by any o(n)-k
(not even when k = 2 [17]). Similarly, not even a polynomial time o(n)
approximation algorithm was known for the STEINER TREE PACKING prob-
lem. That is, in simple graphs, no known polynomial time approximation
algorithm has an asymptotic performance better than the naive algorithm
of simply finding one spanning tree.

In the special case where every white vertex has an even degree, Kriesell
[21] proves that his conjecture is true. An interesting corollary of this re-
sult is: if G is 2k-S-connected, there is a collection of 2k S-trees such that
every edge is used by at most 2 such S-trees; in other words, we have a 2-
approximation algorithm if we allow half integral solutions. Also, the special
case where there are no white edges is considered by Kriesell [20] and Frank,
Kiraly and Kriesell [8]. In particular, it is proven in [20] that if G has no
white edge and G is (k+1)k-S-connected, then G has k edge-disjoint S-trees.
This result is improved in [8] by replacing (k+ 1)k with 3k; it is based on
a generalization of the Tutte-Nash-Williams theorem to hypergraphs using
matroid theory. Recently, Kriesell [22] proves that if G is (I+2)k-S-connected
where [ is the maximum size of a bridge (see [22] for the definition), then
G has k edge-disjoint S-trees; this result is a common generalization of the
Tutte-Nash-Williams theorem (when [ =0) and the case where there is no
white edge (when [=1).

For the general case, Petingi and Rodriguez [31] prove that if G is
2(%)|V(G)_S‘k:—S-connected, then G has k edge-disjoint S-trees. Kriesell [21],
by using the result for the case that every white vertex has an even degree,
improves this by weakening the connectivity requirement to 2|V (G)—S|+2k.
Jain, Mahdian and Salavatipour [17], by using a shortcutting procedure,
prove that if G is (|S|/4+ o(|S]|))k-S-connected, then G has k edge-disjoint
S-trees; this improves an exponential connectivity bound in terms of |S| ob-
tained earlier by Kriesell [21]. In both papers [21,17], an optimal bound of
(%lﬂ on the connectivity requirement is obtained for the case |S|=3.

Jain, Mahdian, Salavatipour also study a natural linear programming
relaxation of the STEINER TREE PACKING problem. The FRACTIONAL
STEINER TREE PACKING problem is formulated [17] by the following lin-
ear program. In the following 7 denotes the collection of all S-trees in a
graph G, and ¢, is the given capacity of the edge e.

(1) maximize ) g o7
subject to Ve € E: ) poqrar <ce VT €T :x7 >0
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By using the Ellipsoid algorithm on the dual of the above linear program,
Jain, Mahdian and Salavatipour [17] show that there is a polynomial time
a-approximation algorithm for the FRACTIONAL STEINER TREE PACKING
problem if and only if there is a polynomial time a-approximation algorithm
for the MINIMUM STEINER TREE problem. The MINIMUM STEINER TREE
problem is to find a minimum weight S-tree for a given weighted graph.
Robins and Zelikovsky [33] give a 1.55 approximation algorithm, and Bern
and Plassmann [1] show that it is APX-hard (no polynomial time approxi-
mation scheme unless P=NP). Therefore, by using the results of the MINI-
MUM STEINER TREE problem, the FRACTIONAL STEINER TREE PACKING
problem is APX-hard but can be approximated within a factor of 1.55 to
the optimal solution [17]. As a consequence, the (integral) STEINER TREE
PACKING problem is shown to be APX-hard [17].

Besides designing approximation algorithms, effort has been put in to
designing faster exact algorithms by integer programming approaches [26,
32,10-14,37,16] as well as designing practical heuristic methods [29,2-4,38,
9,15,34].

1.2. Our Contributions

The major contribution of this paper is the following approximate max-S-
tree-packing min-S-cut theorem, which answers Kriesell’s conjecture affir-
matively up to a constant multiple.

Theorem 1.1. If G is 26k-S-connected, then G has k edge-disjoint S-trees.

The proof of Theorem 1.1 is based on a new idea of graph decomposi-
tion, the edge splitting lemma by Mader [25] and a result by Frank, Kiraly
and Kriesell [8]. The proof is constructive so if G is 26k-S-connected, then a
collection of k edge-disjoint S-trees can be constructed in polynomial time.
This implies the first polynomial time constant factor approximation algo-
rithm for the STEINER TREE PACKING problem. In the following, As(G)
denotes the size of a minimum S-cut in G.

Theorem 1.2. There is a polynomial time algorithm to construct a collec-

tion of at least LASQ(GG)J edge-disjoint S-trees.

The CAPACITATED STEINER TREE PACKING problem is a generaliza-
tion of the STEINER TREE PACKING problem where each edge e has an
integer capacity ¢, which bounds the number of trees that can use e (the
STEINER TREE PACKING problem is the special case where ¢, =1 for all
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e€ E(G)). Notice that LP(1) is a relaxation of the CAPACITATED STEINER
TREE PACKING problem and the optimal fractional solution to LP(1) of G
is bounded above by the minimum capacity of a S-cut. By replacing each
edge e of G by ¢, multiple edges and applying Theorem 1.1 on the resulting
graph, say G’, we give the first constant upper bound on the integrality gap

of (1).
Corollary 1.3. The integrality gap of LP(1) is bounded above by 51.

Applying Theorem 1.2 on G’, however, only gives a pseudo-polynomial
time approximation algorithm for the CAPACITATED STEINER TREE PACK-
ING problem to GG. Nonetheless, by combining the approximation algorithm
for the FRACTIONAL STEINER TREE PACKING problem in [17] and the al-
gorithm of Theorem 1.2, we are able to obtain a polynomial time algorithm
for the CAPACITATED STEINER TREE PACKING problem which constructs
an integral solution of value at least |gz| (see Section 4), where 7 is the
value of an optimal integral solution.

2. Overview and the Setup

To understand our approach, it is illuminating to start from the ground
work. In [8], Frank, Kirdly and Kriesell consider a hypergraph generalization
of the SPANNING TREE PACKING problem. A hypergraph H is k-partition-
connected if Er(P) > k(|P|—1) holds for every partition P of V(H) into
non-empty classes, where Ep(P) denotes the number of hyperedges inter-
secting at least two classes. The main theorem in [8] states that a hyper-
graph is k-partition-connected if and only if H can be decomposed into k
sub-hypergraphs each of which is 1-partition-connected. The proof is based
on the observation that the hyperforests (see [8] for the definition of a hy-
perforest) of a hypergraph form the family of independent sets of a matroid
and thus Edmonds’ matroid partition theorem can be applied.

Now, suppose an instance of the STEINER TREE PACKING problem where
G has no white edge is given. We can assume every white vertex is of degree 3
in G by using Mader’s splitting lemma (in Section 3.2). Now, we construct
a hypergraph H with vertex set S. For every white vertex v, there is a
corresponding hyperedge of size 3 in H consisting of the neighbours of v.
Also, wv € E(H) if u,v € S and uv € E(G). By applying the min-max
theorem on the hypergraph problem, the following result on the STEINER
TREE PACKING problem is obtained as a corollary.

Theorem 2.1 ([8]). If G has no white edge and is 3k-S-connected, then G
has k edge-disjoint S-trees.
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Given an instance of the STEINER TREE PACKING problem, our method
is to reduce the general case to the above seemingly restrictive case when
there is no white edge. The key observation is that if Theorem 1.1 holds,
it holds with a rich combinatorial property, which we call the extension
property. The extension property roughly (formally defined in Section 2.1)
says that for any edge-partition of the edges incident to a “small” degree
vertex, the edge-partition can be extended to edge-disjoint S-trees such that
each class in the edge-partition is contained in one S-tree.

The proof can be divided into two steps. Given a graph GG with [ white
edges, we search for a minimum S-cut in G with a white edge, and decompose
G through the cut, resulting in two graphs G; and G2 with a total of at
most [ —1 white edges. The cut decomposition lemma (in Section 3.1) shows
that if Theorem 1.1 holds in both Gy and G5 with the extension property,
then we can always “piece together” the solutions in G| and G2 so that
Theorem 1.1 also holds in G with the extension property. Therefore, by
applying the cut decomposition step recursively, we reduce an instance with
[ white edges to at most [+ 1 instances without a white edge. By the cut
decomposition lemma, if all those I+1 graphs (without a white edge) satisfy
Theorem 1.1 with the extension property, then G satisfies Theorem 1.1 (with
the extension property) by “piecing” their solutions together. This key step
removes the difficulty of having white edges, and gives new insight into
the core of the problem. It should be mentioned that the STEINER TREE
PACKING problem remains APX-hard when there is no white edge.

The second step (in Section 3.3), of course, is to prove that Theorem 1.1
does indeed hold with the extension property when there are no white edges.
By using Mader’s splitting lemma, we can assume that every white vertex
is of degree 3 (in Section 3.2); and this gives us a set of “good” paths.
With a sufficiently high connectivity assumption (26k in Theorem 1.1), by
using Theorem 2.1, we show that the extension property holds for any graph
without a white edge and with every white vertex of degree 3. This step is
more technical, but the intuition is simple — when the graph is highly S-
connected, we have much freedom to construct the edge-disjoint S-trees.
And it turns out that any edge-partition of the edges incident to a “small”
degree vertex can be extended to edge-disjoint S-trees. This completes the
high level description of our approach.

2.1. The Setup

Let G be A-S-connected, a small verter is a black vertex of degree A in G.
Let E(u) be the set of edges that are incident to u, Py(u) ={E1,...,Ex}
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is a balanced edge-subpartition of u if EyUEyU...UE), C E(u), |E;| >2 for
1<i<k, and E;NE;=0 for i# j. We denote the set of neighbours of u in
E; by Ng,(u). A subgraph H spans a subset of vertices U if UCV(H). H
is a S-subgraph of G if it is a connected subgraph of G that spans S, H is a
double S-subgraph of G if it is a S-subgraph of G and every vertex in S is
of degree at least 2 in H.

Definition 2.2 (The Extension Property). Given G, S C V(G), and
a balanced edge-subpartition Py(v) = {Ei,...,E;} of a small vertex v.
{Hy,...,Hy} are k edge-disjoint S-subgraphs that extend Py (v) if for 1<i<
k.

(1) Ei C E(H;);
(2) Hi—wv is a (S —wv)-subgraph that spans Ng,(v).

Theorem 2.3 (The Extension Theorem). If G is 26k-S-connected, then
G has k edge-disjoint double S-subgraphs. Furthermore, for any balanced
edge-subpartition Py (v) of any small vertex v, G has k edge-disjoint double
S-subgraphs that extend P (v).

It is clear that Theorem 2.3 implies Theorem 1.1 as we just need the first
statement. Let G, henceforth, be a counterexample to Theorem 2.3 with the
minimum number of edges, and let Q =26. Without loss of generality, we
also assume that G is connected. Our plan, hence, is to show that G does
not exist and thus Theorem 2.3 holds. The proof of Theorem 2.3 is divided
into three parts. First, in Section 3.1, we prove that G has no white edge
by using the cut decomposition lemma. Then, in Section 3.2, we prove that
every white vertex of G is of degree 3 by using Mader’s splitting lemma.
Finally, in Section 3.3, we prove that the extension property does hold in G
and thus G does not exist.

3. Proof of the Extension Property
3.1. Cut Decomposition

The following lemma is the key step mentioned previously, which reduces
Theorem 2.3 from the general case to the case where there is no white edge.
The cut decomposition operation will be described inside the proof.

Lemma 3.1 (The Cut Decomposition Lemma). G has no white edge.

Proof. Let e be a white edge. If G — e is still Qk-S-connected, then by the
choice of G, we get our desired edge-disjoint double S-subgraphs in G—e and
thus in G.
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G G, G,

Figure 1. The construction of G; and G2 from G.

Cut decomposition. So we consider the case that there is a S-cut T =
{e1,...,eqr} containing e. By the minimality of 7', there are exactly two
connected components Cq and Cy in G—T'. Now we construct a new multi-
graph GG1 by contracting Cs to a single black vertex v, keeping all edges
from vy to C (even if this produces multiple edges); similarly, we construct
another new multigraph G5 by contracting C to a single black vertex wvs.
So V(G1)=C1+v1, V(G)=Co+4vy, TC E(G1) and T C E(G>) (see Figure 1
for an illustration).

Let S7 be the set of black vertices in C plus v1 and S5 be the set of black
vertices in C plus vo. Now we check the properties of G and G». First, since
e is in T, by contracting a component of size at least two (each component
has at least one white vertex and one black vertex since e is white) to a
single vertex, (G and G2 have fewer edges than G. Second, if G is Qk-S-
connected, then G is Qk-Si-connected and Gy is Qk-Ss-connected, since
we keep multiple edges. Therefore, by the choice of G, Theorem 2.3 holds in
both G and Gs. Note that v; and vy are small vertices since |T'|=Qk, and
(GG1 and G2 have a total of at most [ —1 white edges if G’ has [ white edges.

This ends the description of the cut decomposition operation’.

Let ve C} be a small vertex of G and Py (v)={E1,...,E;} be a balanced
edge-subpartition of v. Our goal is to show that G has k edge-disjoint dou-
ble S-subgraphs that extend Py (v) (the case where G has no small vertex
is similar but easier, we omit the details for brevity). And our plan is to
combine k edge-disjoint double S;-subgraphs in G that extend P (v) and
k edge-disjoint double Sp-subgraphs in Gy that extend Ry(va) (Ri(ve) to
be defined) to obtain k edge-disjoint double S-subgraphs in G that extend
Pr(v). Since Theorem 2.3 holds in G, we can find k edge-disjoint double
Sy-subgraphs {H{,...,Hl} of G that extend Pk (v). Let F; be the set of
edges in Hi1 that are incident to vy. Since vy is a black vertex in GG; and
H} is a double Si-subgraph, we have |F;| > 2. Also, F;NF; =0 for i # j

! Similar constructions have been used in [28,25,30]
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G, G, G

Figure 2. If a,b€ C is connected in H} by a path through v; in G1, they are still
connected in H; through Cs.

since H} and H]l are edge-disjoint for i # j. Therefore, Ry (vi)={F1,...,Fy}
is a balanced edge-subpartition of v in G;. Note that since vy and vy are
incident to the same set of edges T', Ry (ve)={F1,...,Fi} is also a balanced
edge-subpartition of vs in Gs. Since Theorem 2.3 holds in Gs, there are k
edge-disjoint double Sy-subgraphs {H?%,...,H?} of Go that extend Ry (ve).
We define a subgraph H; of G, by setting E(H;) to be the union of E(H})
and E(H?) with the exception that an edge of T in Gy (or in G3) becomes
in H; the corresponding edge in G. We shall show that {Hy,...,Hy} are k
edge-disjoint double S-subgraphs of G that extend Py (v).

First, notice that Hi1 and HE use exactly the same edges in T, Hi1 and
Hj1 are edge-disjoint for i # j, and H? and HJ2 are edge-disjoint for i # j,
so H; and H; are edge-disjoint for 7 # j. Now we shall show that H; —v
spans Ng, (v). Let u€ Ng,(v). If u€ Oy, u is spanned by H}; if u€ Cy, then
u € N, (v2) by our construction, so u is spanned by sz Therefore, H; —v
spans Ng, (v). Also, it follows from our construction that H; —v spans S—uv.
So, to show that H;,—v is a (S—v)-subgraph of G that spans Ng, (v), it remains
to show that H; —wv is a connected subgraph of G. For any a,be V(H;)—wv,
we consider the following three cases:

1. a,beC].

If a and b are connected in Hi1 — v without using vy, they are connected
in H;—v. So we consider the case that they are connected in H l»l—v using
v1 (see Figure 2 for an illustration).

Let e; and es be the edges incident to v; in a path that connects a and b.
Since eq,es GE(H})GT, by our construction, e1,es € F;. Let w1 and ug be
the endpoints of e; and ey in Co, S0 u1,u2 € Np, (v2). Recall that sz — U9
is a (S2 —v2)-subgraph of G2 — vy that spans Np,(v2), so there is a path
in sz —wv9 between u; and us. By combining the edges in the a,v;-path
in Hil — v, the edges in the u,us-path in sz — vy and the edges in the
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v1,b-path in H}! —v, we get a path from a to b in H; —v. As a result, a
and b are connected in H; —v.

2. aeCy, be(s.
Since H}—v is a (S1—v)-subgraph of G1—v, there is a a,v1-path in H} —v.
Let e be the edge incident to v1 in the a,vi-path. Since e€ E(H})NT, by
our construction, e € F;. Let u be the endpoint of e in Cy. Since Hf—vg is
a (Sy—w2)-subgraph of Go—vy that spans Ng, (v2), there is a u,b-path in
HE —vy. Therefore, there is a a,b-path in H; —v by combining the edges
in the a,v-path and the edges in the u,b-path.

3. a,be(Cl.
Recall that HZ2 — vy is a (Sy —wvy)-subgraph of G2 —v9, so a and b are
connected in Hf —vg and thus in H; —v.

Therefore, H; —v is a (S —v)-subgraph that spans Ng,(v) (the second
property of Definition 2.2 holds). By our construction, E; C E(H;) (the first
property of Definition 2.2 holds) which also implies that H; is a S-subgraph
of G. Furthermore, since u; is of degree at least 2 in H} for any uj € S1 and
ug is of degree at least 2 in le for any us € 5o, u is of degree at least 2 in
H; for any u € S. Therefore, H; is a double S-subgraph of G. As a result,
{Hy,...,Hy} are k edge-disjoint double S-subgraphs of G that extend Py (v).
Since v and Pp(v) are picked arbitrarily, this shows that Theorem 2.3 holds
in G, a contradiction. Therefore, G has no white edge and this completes the
proof. |

3.2. Edge Splitting

A basic tool in the proof is Mader’s splitting lemma, which is proven to
be useful in many edge-connectivity problems. Let GG be a graph, e; = xy,
ea =xz be two edges, y# z. The operation of obtaining G(ej,ez) from G by
deleting e; and es and then adding exactly one new edge between y and z
(multiple edges between y and z may be produced) is said to be splitting
at x. This splitting at x is called suitable, if the number of edge-disjoint
a,b-paths in G(ep,ez) is at least the number of edge-disjoint a,b-paths in G
for every pair a,b€ V(G)—x. Note that if we perform a suitable splitting at
a white vertex, it does not decrease the S-connectivity. The splitting lemma
provides a sufficient condition for the existence of a suitable splitting at a
certain vertex x:

Lemma 3.2 (Mader’s Splitting Lemma [25]). Let z be a vertex of a
graph G. Suppose that x is not a cut vertex and that x is incident with at
least 4 edges and adjacent to at least 2 vertices. Then there exists a suitable
splitting of G at x.
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Lemma 3.3. There is no white cut vertex in G.

Proof. Suppose w is a white cut vertex in G. Let {C1,...,C;} be the con-
nected components of G —w where [ >2. We construct G; =G[C; U{w}] for
1 <4 <I. Suppose all the black vertices are in only one component, say C.
Since G is Qk-S-connected, G is also Qk-S-connected and G has fewer
edges than G. So, by the choice of G, Theorem 2.3 holds in G;. But this
implies that Theorem 2.3 also holds in G, a contradiction.

So we assume that at least two components of G —w have black vertices.
Let S; be the black vertices in G;. For any a € S;, since G is Qk-S-connected,
it has Qk edge-disjoint paths to a vertex b € S; for some j # . Since w
is a cut vertex, those Qk edge-disjoint a,b-paths must all pass through w.
As a result, there are Qk edge-disjoint a,w-paths in G for any a € S;. This
implies that each G; is Qk-(S; +w)-connected. By the choice of G, each G;
has k edge-disjoint double (S;4+w)-subgraphs. By combining those k (S;+w)-
subgraphs of each G;, we obtain k edge-disjoint double S-subgraphs of G.
Similarly, we can construct k edge-disjoint double S-subgraphs of G that
extend any balanced edge-subpartition Py (v) of any small vertex v (if any);
a contradiction. Therefore, by the choice of G, G has no white cut vertex. I

Lemma 3.4. Every white vertex in G is incident with exactly three edges
and adjacent to exactly three vertices.

Proof. Suppose a white vertex w is adjacent to only one vertex u. Since
G is Qk-S-connected, G — w is still Qk-S-connected. By the choice of G,
Theorem 2.3 holds in G—w. Since u is not a small vertex, Theorem 2.3 also
holds in G, a contradiction. So we can assume that w is adjacent to at least
two vertices.

Suppose a white vertex w is incident with only two edges, by the previous
argument, w is adjacent to two vertices {y,z}. Since G is Qk-S-connected
and wé¢ S, G—w+yz is Qk-S-connected and it has one fewer edge than G.
By the choice of G, Theorem 2.3 holds in G —w+yz. For any k edge-disjoint
double S-subgraphs {Hy,...,Hy} of G—w+yz, if yz is in H;, we can construct
H! from H; by replacing yz with {wy,wz} so that H/ is a double S-subgraph
of G. Note the remaining double S-subgraphs in G —w+yz are also double
S-subgraphs in G. So G has k edge-disjoint double S-subgraphs. Similarly,
if the extension property holds in G —w + yz, then the extension property
holds in G. But this implies that Theorem 2.3 holds in G, a contradiction.
So we can further assume that w is incident with more than two edges.

Suppose a white vertex w is incident with at least four edges. By the
previous argument, w is adjacent to at least two vertices. And by Lemma 3.3,
w is not a cut vertex. Therefore, by Lemma 3.2, there exists a suitable
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splitting of G at w, say the resulting graph is G*. Since G is Qk-S-connected
and the splitting is suitable, G* is Qk-S-connected and has one fewer edge
than G. By the choice of G, Theorem 2.3 holds in G*. By a similar argument
as in the previous paragraph, it follows that Theorem 2.3 also holds in G; a
contradiction. Therefore, the only possibility left is when w is incident with
exactly three edges.

Suppose w is incident with three edges but adjacent to only two vertices
{y,z} so that there are two edges e1,e2 between w and y. Since G is Qk-S-
connected, w ¢ S and w is incident with exactly three edges and adjacent
only to {y,z}, it follows that G—e; is Qk-S-connected and both w and y are
not small vertices. By the choice of G, Theorem 2.3 holds in G—eq. Since w
and y are not small vertices, Theorem 2.3 also holds in G, a contradiction.
As a result, every white vertex w of G must be incident with exactly 3 edges
and adjacent to exactly 3 vertices; this completes the proof. |

3.3. The Extension Property

Now we are ready to prove Theorem 2.3. The case when |S|=2 follows from
Menger’s theorem. Henceforth, we assume that |S| > 3. Let v be a small
vertex, and Py (v) ={E1,...,Ex} be a balanced edge-subpartition of v. Our
goal, hence, is to show that G has k edge-disjoint double S-subgraphs that
extend Py (v). Let W ={wi,...,ws} be the set of white neighbours of v and
B={b1,...,by} be the set of black neighbours of v. By Lemma 3.4, each w;
is incident with exactly three edges and adjacent to exactly three vertices,
so we let Ng(w;)={v,z;,y;} and call {z;,y;} a couple. Since w; is a white
vertex, by Lemma 3.1, x; and y; are black vertices. For each black neighbour
b; of v, the weight of b;, denoted by c(b;), is the number of multiple edges
between v and b;.

Consider a black vertex u # wv. Since G is Qk-S-connected, by
Menger’s theorem, there are Qk edge-disjoint paths, denoted by P(u) =
{P1(u),...,Por(u)}, from u to v. Note that since v is a small vertex, each
path in P(u) uses exactly one edge in E(v). We assume vw; is in the path
Pi(u) for 1 <i <. Since w; is of degree 3 by Lemma 3.4, P;(u) contains
exactly one of w;z; or w;y;, and Pj(u) does not contain w;x; or w;y; for j#i.

Let G’ be G—v—W. Consider P;(u) induced in G', denoted by P/(u) (see
Figure 3 for an illustration).

Let P'(u)={P{(u),..., Py, (u)}, notice that P'(u) contains edge-disjoint
paths in G'. For 1 <i<a, P/(u) is a path from u to either z; or y; in G'.
Also, for each black neighbour b; of v, there are c¢(b;) edge-disjoint paths in
P'(u) from u to b; in G'.
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Figure 3. The paths in dotted lines are paths in P’ (u).

Let Z be a minimum (S —v)-cut of G" and {C1,...,C;} be the connected
components of G’ —Z. We let S; and B; be the set of black vertices and the
set of black neighbours of v in Cj, respectively. Also, ¢(B;) denotes the sum
of the weights of vertices in B; and X; denotes the collection of couples with
both vertices in C;. By the minimality of Z, each edge e in Z connects two
vertices in different components, and we call it a crossing edge. Similarly, a
couple {x;,y;} is a crossing couple if x; and y; are in different components,
and we denote the collection of crossing couples by Xc¢.

Now we give an outline of our proof of Theorem 2.3 when G has no white
edge and every white vertex is of degree 3 and adjacent to exactly 3 vertices.
We present the lemmas following the outline.

Outline. First, we show in Lemma 3.5 that if G’ is 6k-(S — v)-connected,
then we can construct k edge-disjoint double S-subgraphs of G that extend
Pr(v) by using Theorem 2.1. Hence, by the choice of G, we can assume G’
has a (S —v)-cut Z so that |Z| < 6k. Then, we show in Lemma 3.6 that
G’ — Z has exactly 2 connected components C; and Cy, and in Lemma 3.7
that there are at least Qk —2|Z| crossing couples. Consider any two black
vertices uy,ug € Cj, by using the paths in P’(u;) and P’(ug2) and the above
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facts (i.e. Lemma 3.5 and Lemma 3.7), we show in Lemma 3.9 that there are
at least Tk edge-disjoint paths from u; to us in C;. We further reserve at most
k edges in each component to be used later. As a result, each component C;
is 6k-S;-connected and thus there are k edge-disjoint double S;-subgraphs
in C; by Theorem 2.1. Finally, by exploiting the property that P (v) is a
balanced edge-subpartition, we show in Lemma 3.10 that we can use the
crossing edges in Z to connect the S;-subgraphs to form k edge-disjoint
double S-subgraphs of G that extend Pj(v), a contradiction. This concludes
the outline. |

Lemma 3.5. G’ is at most (6k—1)-(S —v)-connected.

Proof. Since |S| >3, |S—v|>2. If G’ is 6k-(S—v)-connected, then there are 2k
edge-disjoint (S —wv)-subgraphs {HY,...,H}, } in G’ by Theorem 2.1. Notice
that since the union of two edge-disjoint (S—v)-subgraphs is a double (S—v)-
subgraph, by setting H = H, UH,;, {H{,...,H, } are k edge-disjoint double
(S —w)-subgraphs of G'. Now, let H; =H]U{vb;|vb; € E;} U{vw;,w;z |lvw; €
E;}. So, E;C H;, and H;—v is a double (S—wv)-subgraph that spans Ng, (v).
Also, since H is a double (S—wv)-subgraph of G’ and |E;| >2, H; is a double
S-subgraph of G. By Definition 2.2, {Hq,...,Hy} are k edge-disjoint double
S-subgraphs of G that extend Py(v), a contradiction. |

Lemma 3.6. G’ —Z has 2 connected components.

Proof. We just need to show that G’ has at most 2 connected components,
then the statement that G’ — Z has 2 connected components follows from
the minimality of Z. Notice that from our construction of G’ from G, the
set of neighbours of every white vertex that remained in G’ is the same as
in G. Since G is connected, no component in G’ contains only white vertices.
Therefore, it suffices to show that there are at most two components in G’
that contain black vertices.

Consider any two black vertices ui,us #v. In G, if v has a black neigh-
bour b, then in G’ there is a path in P’(uq) from u; to b and a path in P’ (usg)
from uy to b. So 11 and ug are connected in G’ and thus G’ is connected. So
suppose v has only white neighbours in G. Consider G” = G'+{w;x;,w;y; } for
an arbitrary ¢, then the union of the edges in P/(u;), the edges in P/(ug) and
{w;z;,w;y;} contains a uy,us-path in G”. Therefore, any two black vertices
are in the same component in G’ and thus G” is connected. Notice that w;
is a degree 2 vertex in G”, therefore G’ = G” —w; has at most 2 connected
components. |

Lemma 3.7. There are at least Qk —2|Z| crossing couples, that is, | Xc|>
Qk—2|Z|.
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Proof. Let u; be a black vertex in C;. In G’, u; has at least ¢(Bz)+| X2| edge-
disjoint paths in P’(uy) to Cs. Since Z is an edge-cut in G, it follows that
c(Ba)+|X2| <|Z|. Similarly, we have ¢(B)+|X1|<|Z|. By Lemma 3.6, there
are only two components in G'—Z. So Qk =|X¢c|+| X1 |+|Xa|+c(B1)+¢(Bs),
and we have | X¢|>Qk—2|Z|. |

Now, we plan to use the paths in P’(a) and P’(b) for any two black
vertices a,b in the same component of G'—Z to establish the connectivity of
each component of G’ —Z. We say v; and vo have A common paths if there
are A edge-disjoint paths starting from vy, A edge-disjoint paths starting
from vy, and an one-to-one mapping of the paths from vy to the paths from
v9 so that each pair of paths in the mapping ends in the same vertex. The
following lemma gives a lower bound on the number of edge-disjoint paths
between two vertices based on the number of their common paths, which
will be used in Lemma 3.9 to prove that each Cj; is 7k-S;-connected.

Lemma 3.8. If vy and vy have 2A+1 common paths in GG, then there exist
A+ 1 edge-disjoint paths from vy to vy in G.

Proof. Suppose not, by Menger’s theorem, there is an edge-cutset T of size
at most A that disconnects v; and vy in G. Since |T| <, at least A+1 paths
starting from v1 remain in G —T'; and the same holds for vs. So, v1 and v
have at least (A\+1)+ (A+1)—(2A+1) =1 common path in G —T. This
implies that v; and vy are connected in G —T, a contradiction. ]

Lemma 3.9. Each connected component C; of G' — Z is Tk-S;-connected.

Proof. Let a,b be two black vertices in C;. In G, P'(a) has one path to each
couple. Assume that, among those | X| paths in P’'(a) to crossing couples,
€. paths use edges in Z; and ¢, is defined similarly. Then, in G’ — Z, a has
| Xc| — €4 edge-disjoint paths such that each starts from a and ends in a
different crossing couple. Similarly, in G’ — Z, b has | X¢| — €, edge-disjoint
paths such that each starts from b and ends in a different crossing couple.
Therefore, in G'—Z, a and b have at least (| X¢c|—€q)+ (| Xc|—e) — | Xc|=
| X |—€qa—€p pairs of paths that each pair of paths ends in the same crossing
couple. Since a,b are in the same component, each such pair ends in the
same endpoint of a crossing couple. So, a and b have at least | X¢|—e€,— €
common paths in C;.

On the other hand, in G’, P'(a) has ¢(By) + | X2| edge-disjoint paths
to Co. Also, as mentioned in the previous paragraph, P’(a) has e, edge-
disjoint paths to crossing couples that use edges in Z. Notice that these
¢(Bsy)+| Xa|+e, paths are edge-disjoint. Since Z is an edge-cut, Z has at least
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one edge in each such path. So, a has at least ¢(B2)+|X2|+ €, edge-disjoint
paths such that each path starts from a and ends in a different crossing edge
in Z, note that they are also edge-disjoint from the paths mentioned in the
previous paragraph. Similarly, P’(b) has ¢(Bsy)+|X2|+¢€, edge-disjoint paths
such that each path starts from b and ends in a different crossing edge in Z.
Therefore, a and b have at least (¢(Bs)+|Xa|+€q)+(c(B2)+|Xa|+e)—|Z]=
2¢(Bg)+2|X2|+e€,+€,— | Z| pairs of paths such that each pair of paths ends
in the same crossing edge in Z. Since a and b are in the same component,
each such pair of paths ends in the same endpoint of a crossing edge. So, a
and b have at least 2¢(Bs)+2|X2|+ €, + €, —|Z| more common paths in C;.

As aresult, by the previous two paragraphs, a and b have at least 2¢(Bg)+
2| X3+ |Xc|—|Z| common paths in C;. Recall that ¢(Bs)+|Xa| + | X¢c| =
Qk—c(B1)—|X1| and ¢(B1)+|X1] <|Z| (see the proof in Lemma 3.7), so a
and b have at least Qk+c(B2)+|X2|—2|Z|>Qk—2|Z|>(Q—12)k (|Z| <6k
by Lemma 3.5) common paths in C;j. Therefore, by Lemma 3.8, there are
at least (QQ/2—6)k edge-disjoint a,b-paths in C;. Since @ =26, this implies
that C; is Tk-S;-connected. I

Lemma 3.10. G has k edge-disjoint double S-subgraphs {Hy,Ho,...,Hy}
that extend Pp(v).

Proof. We pick arbitrarily min{k,|Z|} edges in Z and call them the con-
necting edges. For each connecting edge e with a white endpoint w in Cj,
we remove one edge ¢’ in C; which is incident with w (by Lemma 3.1, the
other endpoint of ¢/ must be black), and we call ¢’ a reserve edge. Let the
resulting component be C!. Since we remove at most k edges and C; is 7k-S;-
connected by Lemma 3.9, each C is 6k-S;-connected. By Theorem 2.1, there
are 2k edge-disjoint S;-subgraphs in C!. So there are k edge-disjoint double
S;-subgraphs {H{,...,H}} in each C/ for i€ {1,2}, except when |S;|=1 for
which we will consider separately later.

Now we set H; = HJ1 U Hj2 U {wvb;|vb; € E;} U{vw;, w;x;, w;y;lvw; € Ej} for
1 <j <k. Notice that E; C E(H;) and Hj —v spans NE].(U) for 1<j<k.
Suppose there is a crossing couple {x;,y;} such that vw; € E;, then Hj is
also connected and thus is a S-subgraph of G that F; C E(H;) and Hj—wv is
a (S —wv)-subgraph that spans Ng;(v). Let’s assume that {vws,...,vw x|}
be the set of edges such that the corresponding couples are crossing. By
Lemma 3.7, | X¢| > QFk—2|Z|. Since Pg(v) is a balanced edge-subpartition,
|E;] > 2 for 1 <i < k. So, there are at most min{k,|Z|} classes of Py(v)
with no edges in {vwi,...,vwgp_9z|}. Hence there are at most min{k,|Z|}
of Hj’s, say {H1,..., Hyin{r, 2|y}, are not connected by the crossing couples.
Now, by adding each connecting edge and its reserve edge (if any) to a
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different H; that has not been connected by a crossing couple, {H,...,Hy}
are k edge-disjoint S-subgraphs of G that extend Py (v).

The only property left to be checked is if H; is a double edge-disjoint
S-subgraph for 1 < i < k. Suppose |S1|>2, then every vertex u € S has
degree at least 2 in every H; since u has degree at least 2 in every H il. The
subtle case is |S1|=1, say S1 = {z}, where each H} is trivial. Note that x
is in every crossing couple in this case. Let {Hjy,...,H;} be the S-subgraphs
that = is a degree 1 vertex in them. Suppose {{x,y1},{z,y2},...,{z,y.}} are
crossing couples such that {{vwy,zwi,y1w1},..., {vwe, zwe,yewe}} C E(H;)
and {vwi,vwy,...,vw.} C E; and ¢> 2, then we can delete {zws,...,zw.}
from Hj; and do not affect the properties of H; that are required in the
preceding paragraph. We repeat this procedure until there are at least [
edges, say {xwi,...,zw;}, that are not used in any H;. Then we can add
each such edge to a different S-subgraph in {H1,..., H;} so that x is of degree
at least 2 in each of {Hq,...,Hi}. We do the same “switching” procedure if
|Sa|=1. Since there are at least Qk—2|Z|> (Q —12)k =14k crossing couples
and there are only 2 components in G’ — Z, the “switching” procedure is
guaranteed to succeed. After all, {Hi,...,Hy} are k edge-disjoint double
S-subgraphs of G that extend Py (v). |

Lemma 3.10 finishes the proof of Theorem 2.3 by showing that the min-
imum counterexample G does not exist.

4. Algorithmic Aspects and Generalization

The algorithm consists of two parts: The first step transforms the input
graph G with | white edges to at most [+1 graphs {G1,...,Gj4+1} such that
each has no white edge, and every white vertex is of degree 3 and adjacent to
exactly three black vertices. And the second step extends a balanced edge-
subpartition of a small vertex in G; to k edge-disjoint double S;-subgraphs
for each 1 < i <[+ 1 and combines their solutions (where S; is the set
of black vertices in G;). Theorem 2.1 can be solved by Edmonds’ matroid
partition algorithm [7,8]. The remaining steps can also be implemented in
polynomial time, this justifies Theorem 1.2. Now, we use our algorithm and
also the algorithm for the FRACTIONAL STEINER TREE PACKING problem
to give a polynomial time approximation algorithm for the CAPACITATED
STEINER TREE PACKING problem.

Theorem 4.1. There is a polynomial time algorithm for the CAPACITATED
STEINER TREE PACKING to construct an integral solution of value at least
| 55), where T is the value of an optimal integral solution.
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Proof. Given an instance of the CAPACITATED STEINER TREE PACKING
problem, let 7*,7 be the value of an optimal fractional, integral solution,
respectively. We first use the approximation algorithm for the FRACTIONAL
STEINER TREE PACKING problem [17] to obtain a fractional solution of
value 3 such that 1.558>7*. One feature of the above algorithm is that

there are at most a polynomial number of trees in the fractional solu-

tion with zp >0, say {z1,.. (n)}- Suppose Zp(n ;] > 3522 p(q) x;, then

p(n)Lx1J>155 f(l)x» 155ﬂ> 37 > 57 S0, {|21],-.., [Tpem |} is an

integral solution Wthh is at least 26, and we are done.

Otherwise, Z il V2 > 2 pn) Ulwi]. Then, (Z& —1) finl) || <
f(q)( - L J) < p( )7 which imphes f( 1) szJ < 261;51?55}7(”)' SO? /6 =

SR @i = S (i) + 000 (i L)) < gg55p(n) +p(n) = 552555 (n).
Therefore, 7* < %655i<§g p(n). Note that in any solution, at most a value of 7*
capacity is used in an edge (in other words, if ¢, > 7%, the excess capacity

—7* will never be used). Now, to find an integral solution, we replace every
edge e of G by min{c,, | 7* |} multiple edges and call the resulting graph G'.
Notice that the total number of edges in G’ is bounded by a polynomial
of n and the value of an optimal solution in G’ is the same as in G. So,
we can apply the algorithm in Theorem 1.2 to obtain |z | edge-disjoint S-
trees of G’ in polynomial time, which correspond to an integral solution of
G with value at least |gz|. Therefore, in either case, the integral solution

constructed is at least |55 ]. |
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