Efficient Edge Splitting-Off Algorithms
Maintaining All-Pairs Edge-Connectivities

Lap Chi Lau and Chun Kong Yung

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Abstract. In this paper we present new edge splitting-off results main-
taining all-pairs edge-connectivities of a graph. We first give an alter-
nate proof of Mader’s theorem, and use it to obtain a deterministic
O~(7"max2 -n?)-time complete edge splitting-off algorithm for unweighted
graphs, where rmax denotes the maximum edge-connectivity requirement.
This improves upon the best known algorithm by Gabow by a factor of
f}(n) We then prove a new structural property, and use it to further
speedup the algorithm to obtain a randomized O(m + Pmax- - n)-time
algorithm. These edge splitting-off algorithms can be used directly to
speedup various graph algorithms.

1 Introduction

The edge splitting-off operation plays an important role in many basic graph
problems, both in proving theorems and obtaining efficient algorithms. Splitting-
off a pair of edges (zu,zv) means deleting these two edges and adding a new
edge uv if u # v. This operation is introduced by Lovdsz [18] who showed that
splitting-off can be performed to maintain the global edge-connectivity of a graph.
Mader extended Lovész’s result significantly to prove that splitting-off can be
performed to maintain the local edge-connectivity for all pairs:

Theorem 1 (Mader [19]). Let G = (V, E) be an undirected graph that has at
least r(s,t) edge-disjoint paths between s and t for all s,t € V — x. If there is
no cut edge incident to x and d(x) # 3, then some edge pair (xu,zv) can be
split-off so that in the resulting graph there are still at least r(s,t) edge-disjoint
paths between s and t for all s,t € V — x.

These splitting-off theorems have applications in various graph problems.
Lovész [18] and Mader [19] used their splitting-off theorems to derive Nash-
Williams’ graph orientation theorems [23]. Subsequently these theorems and
their extensions have found applications in a number of problems, including
edge-connectivity augmentation problems [9, 8, 4], network design problems [13,
16, 7], tree packing problems [1,17, 6], and graph orientation problems [11].

Efficient splitting-off algorithms have been developed to give fast algorithms
for the above problems [12, 22, 4, 20, 6]. However, most of the efficient algorithms

are developed only in the global edge-connectivity setting, although there are
important applications in the more general local edge-connectivity setting.

In this paper we present new edge splitting-off results maintaining all-pairs
edge-connectivities. First we give an alternate proof of Mader’s theorem (The-
orem 1). Based on this, we develop a faster deterministic algorithm for edge
splitting-off maintaining all-pairs edge-connectivities (Theorem 2). Then we prove
a new structural property (Theorem 3), and use it to design a randomized pro-
cedure to further speedup the splitting-off algorithm (Theorem 2). These algo-
rithms improve the best known algorithm by a factor of f)(n), and can be applied
directly to speedup various graph algorithms using edge splitting-off.

1.1 Efficient Complete Edge Splitting-Off Algorithm

Mader’s theorem can be applied repeatedly until d(z) = 0 when d(z) is even and
there is no cut edge incident to x. This is called a complete edge splitting-off at
x, which is a key subroutine in algorithms for connectivity augmentation, graph
orientation, and tree packing.

A straightforward algorithm to compute a complete splitting-off sequence
is to split-off (xu,av) for every pair u,v € N(z) where N(x) is the neighbor
set of x, and then check whether the connectivity requirements are violated by
computing all-pairs edge-connectivities in the resulting graph, and repeat this
procedure until d(z) = 0.

Several efficient algorithms are proposed for the complete splitting-off prob-
lem, but only Gabow’s algorithm [12] can be used in the local edge-connectivity
setting, with running time O(rpax? - n3). Our algorithms improve the running
time of Gabow’s algorithm by a factor of 2(n). In applications where rpay is
small, the improvement of the randomized algorithm could be a factor of 2(n?).

Theorem 2. In the local edge-connectivity setting, there is a deterministic
O(Tmax? - n?)-time algorithm and a randomized O(m + ryax” - n)-time algorithm
for the complete edge splitting-off problem in unweighted graphs.

These edge splitting-off algorithms can be used directly to improve the run-
ning time of various graph algorithms [23,9,13,12,17,7]. For instance, using
Theorem 2 in Gabow’s local edge-connectivity augmentation algorithm [12] in
unweighted graphs, the running time can be improved from O(Tmax2n3) to
O(rmaXQnQ) time. Similarly, using Theorem 2 in Gabow’s orientation algorithm
[12], one can find a well-balanced orientation in unweighted graphs in O(7pax>n?)
expected time, improving the O(rpax2n®) result by Gabow [12]. We will not dis-
cuss the details of these applications in this paper.

Our edge splitting-off algorithms are conceptually very simple, which can be
seen as refinements of the straightforward algorithm. The improvements come
from some new structural results, and a recent fast Gomory-Hu tree construc-
tion algorithm by Bhalgat, Hariharan, Kavitha, and Panigrahi [5]. First, in Sec-
tion 3.2, we show how to find a complete edge splitting-off sequence by using
at most O(|N(z)|) splitting-off attempts, instead of O(|N(z)|?) attempts by the

straightforward algorithm. This is based on an alternative proof of Mader’s the-
orem in Section 3.1. Then, in Section 3.4, we show how to reduce the problem of
checking local edge-connectivities for all pairs, to the problem of checking local
edge-connectivities from a particular vertex (i.e. checking at most O(n) pairs
instead of checking O(n?) pairs). This allows us to use the recent fast Gomory-
Hu tree algorithm [5] to check connectivities efficiently. Finally, using a new
structural property (Theorem 3), we show how to speedup the algorithm by a
randomized edge splitting-off procedure in Section 4.

1.2 Structural Property and Randomized Algorithm

Mader’s theorem shows the existence of one admissible edge pair, whose splitting-
off maintains the local edge-connectivity requirements of the graph. Given an
edge zv, we say an edge zw is a non-admissible partner of xv if (zv,zw) is not
admissible. We prove a tight upper bound on the number of non-admissible part-
ners of a given edge xv, which may be of independent interest. In the following
Tmax 1= MaXs tevV—g 7'(8,) is the maximum edge-connectivity requirement.

Theorem 3. Suppose there is no cut edge incident to x and ryax > 2. Then the
number of non-admissible partners for any given edge xv is at most 2rpmax — 2.

This improves the result of Bang-Jensen and Jordédn [2] by a factor of ryax,
and the bound is best possible as there are examples achieving it. Theorem 3
implies that when d(z) is considerably larger than ry,,x, most of the edge pairs
incident to x are admissible. Therefore, we can split-off edge pairs randomly to
speedup our efficient splitting-off algorithm. The proof of Theorem 3 is based on
a new inductive argument and will be presented in Section 4.

2 Preliminaries

Let G = (V, E) be a graph. For X, Y C V, denote by §(X,Y) the set of edges
with one endpoint in X — Y and the other endpoint in ¥ — X and d(X,Y) :=
|6(X,Y)|, and also define d(X,Y) :=d(X NY,V — (X UY)). For X C V, define
0(X) :=06(X,V — X) and the degree of X as d(X) := |6(X)|. Denote the degree
of a vertex as d(v) := d({v}). Also denote the set of neighbors of v by N(v), and
call a vertex in N(v) a v-neighbor.

Let A(s,t) be the maximum number of edge-disjoint paths between s and ¢
in V, and let r(s,t) be an edge-connectivity requirement for s,t € V. The con-
nectivity requirement is global if r5 ; = k for all s,t € V, otherwise it is local. We
say a graph G satisfies the connectivity requirements if A(s,t) > r(s,t) for any
s,t € V. The requirement r(X) of aset X C V is the maximum edge-connectivity
requirement between u and v with u € X and v € V — X. By Menger’s theorem,
to satisfy the requirements, it suffices to guarantee that d(X) > r(X) for all
X C V. The surplus s(X) of a set X C V is defined as d(X) — r(X). A graph
satisfies the edge-connectivity requirements if s(X) > 0 for all § # X C V. For
X CV -z, X is called dangerous if s(X) < 1 and tight if s(X) = 0. The
following proposition will be used throughout our proofs.

Proposition 4 ([10] Proposition 2.3). For X,Y C V at least one of the
following inequalities holds:
s(X)+s(Y)>s(XNY)+s(XUY)+2d(X,Y) (4a)
sS(X)+s(Y)>s(X —Y)+s(Y — X)+2d(X,Y) (4b)

In edge splitting-off problems, the objective is to split-off a pair of edges
incident to a designated vertex x to maintain the edge-connectivity requirements
for all other pairs in V — z. For this purpose, we may assume that the edge-
connectivity requirements between x and other vertices are zero. In particular,
we may assume that 7(V —) = 0 and thus the set V' — x is not a dangerous
set. Two edges zu, zv form an admissible pair if the graph after splitting-off
(xu, xv) does not violate s(X) > 0 for all X C V. Given an edge zv, we say
an edge zw is a non-admissible partner of xv if (xv,zw) is not admissible. The
following simple proposition characterizes when a pair is admissible.

Proposition 5 ([10] Claim 3.1). A pair zu, zv is not admissible if and only
if u,v are contained in a dangerous set.

A vertex subset S C N(x) is called a non-admissible set if (zu,zv) is non-
admissible for every u,v € S. We define the capacity of an edge pair to be the
number of copies of the edge pair that can be split-off while satisfying edge-
connectivity requirements. In our algorithms we will always split-off an edge
pair to its capacity (which could be zero), and only attempt at most O(|N(z)|)
many pairs. Following the definition of Gabow [12], we say that a splitting-off
operation voids a vertex u if d(z,u) = 0 after the splitting-off.

Throughout the complete splitting-off algorithm, we assume that there is no
cut edge incident to z. This holds at the beginning by our assumption, and so
the local edge-connectivity between x and v is at least two for each z-neighbor
v. Therefore, we can reset the connectivity requirement between uw and v as
max{r(u,v),2}, and hence splitting-off any admissible pair would maintain the
property that there is no cut edge incident to x at each step.

2.1 Some Useful Results

The first lemma is about a reduction step of contracting tight sets. Suppose
there is a non-trivial tight set T', i.e. T is a tight set and |T'| > 2. Clearly there
are no admissible pairs zu, zv with u,v € T. Let G/T be the graph obtained
by contracting 7" into a single vertex ¢, and define the connectivity requirement
r(t,v) as max,er 7(u, v), while other connectivity requirements remain the same.
The following lemma says that one can consider the admissible pairs in G/T,
without losing any information about the admissible pairs in G. This lemma is
useful in proofs to assume that every tight set is a singleton, and is useful in
algorithms to allow us to make progress by contracting non-trivial tight sets.

Lemma 6 ([19], [10] Claim 3.2). Let T be a non-trivial tight set. For an z-
neighbor w in G/T, let w' be the corresponding vertex in G if w # t, and let w’
be any x-neighbor in T in G if w =t. Suppose (xu,zv) is an admissible pair in
G/T, then (zu',zv") is an admissible pair in G.

The next lemma proved in [7] shows that if the conditions in Mader’s the-
orem are satisfied, then there is no “3-dangerous-set structure”. This lemma is
important in the efficient edge splitting-off algorithm.

Lemma 7 ([7] Lemma 2.7). If d(z) # 3 and there is no cut edge incident to
x, then there are no mazximal dangerous sets X,Y,Z and u,v,w € N(x) with
veXNY,veXNZ, weYNZ andu,v,wg¢ XNYNZ.

Nagamochi and Ibaraki [21] gave a fast algorithm to find a sparse subgraph
that satisfies edge-connectivity requirements, which will be used in Section 3.3
as a preprocessing step.

Theorem 8 ([21] Lemma 2.1). There is an O(m)-time algorithm to construct
a subgraph with O(rmax -n) edges that satisfies all the connectivity requirements.

As a key tool in checking local edge-connectivities, we need to construct a
Gomory-Hu tree, which is a compact representation of all pairwise min-cuts of
an undirected graph. Let G = (V, E) be an undirected graph, a Gomory-Hu tree
is a weighted tree T' = (V| F') with the following property. Consider any s,t € V,
the unique s-t path P in T, an edge ¢ = uwv on P with minimum weight, and
any component K of T'— e. Then the local edge-connectivity between s and ¢
in G is equal to the weight of e in T, and §(K) is a minimum s-t cut in G. To
check whether the connectivity requirements are satisfied, we only need to check
the pairs with A\(u,v) < rpax. A partial Gomory-Hu tree Ty, of G is obtained
from a Gomory-Hu tree T' of G by contracting all edges with weight at least
k. Therefore, each node in T} represents a subset of vertices S in G, where
the local edge-connectivity between each pair of vertices in S is at least k. For
vertices u,v € G in different nodes of T}, their local edge-connectivity (which
is less than k) is determined in the same way as in an ordinary Gomory-Hu
tree. Bhalgat et.al. [5] gave a fast randomized algorithm to construct a partial
Gomory-Hu tree. We will use the following theorem by setting k = rpa.x. The
following result can be obtained by using the algorithm in [15], with the fast tree
packing algorithm in [5].

Theorem 9 ([15,5]). A partial Gomory-Hu tree Ty, can be constructed in O(km)
expected time.

3 Efficient Complete Edge Splitting-Off Algorithm

In this section we present the deterministic splitting-off algorithm as stated in
Theorem 2. First we present an alternative proof of Mader’s theorem in Sec-
tion 3.1. Extending the ideas in the alternative proof we show how to find a
complete edge splitting-off sequence by only O(|N(z)|) edge splitting-off at-
tempts in Section 3.2. Then, in Section 3.3, we show how to efficiently perform
one edge splitting-off attempt, by doing some preprocessing and applying some
fast algorithms to check edge-connectivities. Combining these two steps yields
an O(rmax2 -n?) randomized algorithm for the complete splitting-off problem.
Finally, in Section 3.5, we describe how to modify some steps in Section 3.3 to
obtain an O(rmax? - n2) deterministic algorithm for the problem.

3.1 Mader’s Theorem

We present an alternative proof of Mader’s theorem, which can be extended to
obtain an efficient algorithm. The following lemma about non-admissible sets
can be used directly to derive Mader’s theorem.

Lemma 10. Suppose there is no 3-dangerous set structure. Then, for any non-
admissible set U C N(z) with |U| > 2, there is a dangerous set containing U.

Proof. We prove the lemma by a simple induction. The statement holds trivially
for |U| = 2 by Proposition 5. Consider U = {u1,us,...,uxt+1} C N(z) where ev-
ery pair (u;,u;) is non-admissible. By induction, since every pair (u;, u;) is non-
admissible, there are maximal dangerous sets X, Y such that {uy, ..., ux—1,ur} C
X and {uy,...,ux—1,ur+1} C Y. Since (uk,ur+1) is non-admissible, by Propo-
sition 5, there is a dangerous set Z containing uj and wugy1. If ugp4q ¢ X and
up ¢ Y and there is some u; ¢ Z, then X,Y and Z form a 3-dangerous-set
structure with v = u;, v = ug, w = ugy1. Hence either X, Y or Z contains U. O

To prove Mader’s theorem, consider a vertex x € V with d(x) is even and
there is no cut edge incident to it. By Lemma 7, there is no 3-dangerous set
structure in G. Suppose that there is no admissible pair incident to . Then, by
Lemma 10, there is a dangerous set D containing all the vertices in N(z). But
this is impossible since r(V—D—z) = r(D) > d(D)—1 = d(V—D—x)+d(z)—1 >
d(V — D —z) + 1, contradicting that the connectivity requirements are satisfied
in G. This completes the proof.

3.2 An Upper Bound on Splitting-Off Attempts

Extending the ideas in the proof of Lemma 10, we present an algorithm to
find a complete splitting-off sequence by making at most O(|N(z)|) splitting-off
attempts (to split-off to capacity). In the algorithm we maintain a non-admissible
set C; initially C = . The algorithm will apply one of the following three
operations guaranteed by the following lemma. Here we assume that {u} is a
non-admissible set for every u € N(x). This can be achieved by a pre-processing
step that split-off every (u,u) to capacity.

Lemma 11. Suppose that C is a non-admissible set and there is a verter u €
N(z) — C. Then, using at most three splitting-off attempts, at least one of the
following operations can be applied:

1. Splitting-off an edge pair to capacity that voids an x-neighbor.
2. Deducing that every pair in C U {u} is non-admissible, and add u to C.
3. Contracting a tight set T' containing at least two x-neighbors.

Proof. We consider three cases based on the size of C. When |C| = 0, we simply
assign C' = {u}. When |C| = 1, pick the vertex v € C, and split-off (u,v) to
capacity. Either case (1) applies when either u or v becomes void, or case (2)

applies in the resulting graph after (u,v) is split-off to capacity. Hence, when
|C| <1, either case (1) or case (2) applies after only one splitting-off attempt.

The interesting case is when |C| > 2 and let v,vy € C. Since C is a non-
admissible set, by Lemma 10, there is a maximal dangerous set D containing
C. First, we split-off (u,v;) and (u,v2) to capacity. If case (1) applies then we
are done, so we assume that none of the three z-neighbors voids, implying that
(u,v1) and (u,v9) are non-admissible in the resulting graph G’ after splitting-
off these edge pairs to capacity. Note that the edge pair (v1,vs) is also non-
admissible since non-admissible edge pair in G remains non-admissible in G’. By
Lemma 10, there exists a maximal dangerous set D’ covering the non-admissible
set {u,v1,v2}. Then inequality (4b) cannot hold for D and D’, since 1+ 1 =
s(D)+s(D’) > s(D—D')+s(D'—D)+2d(D,D') > 0+0+2d(x, {vy,va}) > 2-2.
Therefore inequality (4a) must hold for D and D', hence 1+ 1 = s(D)+s(D’) >
s(DND")+ s(DUD").

This implies that either DU D’ is a dangerous set for which case (2) applies,
since C' U {u} is contained in a dangerous set and hence every pair is a non-
admissible pair by Proposition 5, or D N D’ is a tight set for which case (3)
applies since v; and wvs are z-neighbors. Note that vi,vs are contained in a
tight set if and only if after splitting-off one copy of (xv1,xzvse) the connectivity
requirement of some pair is violated by two. Hence this can be checked by one
splitting-off attempt, and thus we can distinguish between case (2) and case (3),
and in case (3) we can find such a tight set efficiently. Therefore, by making
at most three splitting-off attempts ((zu, zv1), (zu, zvy), (xv1,xV2)), one of the
three operations can be applied. a

The following result can be obtained by applying Lemma 11 repeatedly.

Lemma 12. The algorithm computes a complete edge splitting-off sequence us-
ing at most O(|N(x)|) numbers of splitting-off attempts.

Proof. The algorithm maintains the property that C is a non-admissible set,
which holds at the beginning when C' = (). It is clear that in case (2) the set
C remains non-admissible. In case (1), by splitting-off an admissible pair, every
pair of vertices in C remains non-admissible. Also, in case (3), by contracting a
tight set, every pair of vertices in C' remains non-admissible by Lemma 6.

The algorithm terminates when there is no vertex in N(z)— C. At that time,
if C = 0, then we have found a complete splitting-off sequence; if C' # (), then by
Mader’s theorem (or by the proof in Section 3.1), this only happens if d(z) = 3
and d(x) is odd at the beginning. In any case, the longest splitting-off sequence
is found and the given complete edge splitting-off problem is solved.

It remains to prove that the total number of splitting-off attempts in the
whole algorithm is at most O(]N(z)|). To see this, we claim that each of the
operations in Lemma 11 will be performed at most |N(x)| times. Indeed, case
(1) and (3) will be applied at most | N (z)| times since each application reduces the
number of z-neighbors by at least one, and case (2) will be applied at most | N (z)|
times since each application reduces the number of z-neighbors in N(z) — C by
one. O

3.3 Algorithm Outline

The following is an outline of the whole algorithm for the complete splitting-off
problem. First we use the O(m) time algorithm in Theorem 8 to construct a
subgraph of G with O(rnyax -) edges satisfying the connectivity requirements.
To find a complete splitting-off sequence, we can thus restrict our attention to
maintain the local edge-connectivities in this subgraph.

In the next preprocessing step, we will reduce the problem further to an
instance where there is a particular indicator vertex t # x, with the property
that for any pair of vertices u,v € V' — 2 with A(u, v) < Tmax, then it holds that
AMu,v) = min{A(u,t), A(v,t)}. With this indicator vertex, to check the local
edge-connectivity for all pairs with A(u,v) < rpax, we only need to check the
local edge-connectivities from ¢ to every vertex v with A(v,t) < rpax. This allows
us to make only O(n) queries (instead of O(n?) queries) to check the local edge-
connectivities. This reduction step can be done by computing a partial Gomory-
Hu tree and contracting appropriate tight sets; see the details in Section 3.4.
The total preprocessing time is at most O(m + Tmax2 - n), by using the fast
Gomory-Hu tree algorithm in Theorem 9.

After these two preprocessing steps, we can perform a splitting-off attempt
(split-off a pair to capacity) efficiently. For a vertex pair (u,v), we replace
min{d(z,u),d(z,v)} copies of zu and zv by copies of uv, and then determine
the maximum violation of connectivity requirements by constructing a partial
Gomory-Hu tree and checking the local edge-connectivities from the indicator
vertex t to every other vertex. If ¢ is the maximum violation of the connectivity
requirements, then exactly min{d(z, u), d(z,v)}—[q/2] copies of (zu, zv) are ad-
missible. Therefore, using Theorem 9, one splitting-off attempt can be performed
in O(rmax ‘m+mn) = O(rmax2 -n) expected time. By Lemma 12, the complete
splitting-off problem can be solved by at most O(|N(z)|) = O(n) splitting-off
attempts. Hence we obtain the following result.

Theorem 13. The complete edge splitting-off problem can be solved in
O(Tmax? - IN(2)] - 1) = O(Tmax> - n?) expected time.

3.4 Indicator Vertex

We show how to reduce the problem into an instance with a particular indicator
vertex t # x, with the property that if A(u, v) < rpax for u,v # x, then A(u,v) =
min{A(u, t), A(v,t)}. Hence if we could maintain the local edge-connectivity from
t to v for every v € V —x with A(v,t) < rmax, then the connectivity requirements
for every pair in V — z will be satisfied. Furthermore, by maintaining the local
edge-connectivity, the indicator vertex ¢ will remain to be an indicator vertex,
and therefore this procedure needs to be executed only once. Without loss of
generality, we assume that the connectivity requirement for each pair of vertices
u,v € V — 1z is equal to min{A(u,v), rmax}, and r(x,v) = 0 for every v € V — z.

First we compute a partial Gomory-Hu tree T, . in O(rmax -m) time by
Theorem 9, which is O(rmax? - 1) after applying the sparsifying algorithm in

Theorem 8. Recall that each node in 7}, , represents a subset of vertices in G.
In the following we will use a capital letter (say U) to denote both a node in
T;..... and the corresponding subset of vertices in G. If T, has only one node,
then this means that the local edge-connectivity between every pair of vertices in
G is at least rya.x. In this case, any vertex ¢ # x is an indicator vertex. So assume

that T, has at least two nodes. Let X be the node in T, that contains x

Tmax Tmax
in G, and Uy, ...,U, be the nodes adjacent to X in T, _ , and let XU; be the
edge in T, with largest weight among XU, for 1 < i < p. See Figure (a).

Suppose X contains a vertex t # z in GG. The idea is to contract tight sets so
that ¢ will become an indicator vertex in the resulting graph. For any edge XU;

in T, .., let T/ be the component of T, __that contains U; when XU; is removed
from 7., . We claim that each U} := Upyer/ U is a tight set in G see Figure (a).

By the definition of a Gomory-Hu tree, the local edge-connectivity between any
vertex u; € U; and t is equal to the edge weight of XU, in T,.__ . Also, by the
definition of a Gomory-Hu tree, d(U}) is equal to the weight of edge XU, in
Tr,...- Therefore, U is a tight set in G, because r(u;,t) = A(u;,t) = d(U}) for
some pair u;,t € V —z. By Proposition 5, we can contract each U} into a single
vertex u; for 1 < 4 < p without losing any information about admissible pairs
in G. Since each U} becomes a single vertex, the vertex ¢t becomes an indicator
vertex in the resulting graph.

Suppose X contains only x in G. Then U; may not be a tight set, since there
may not exist a pair u,v € V —z with r(u,v) = Mu,v) = d(Uy) (note that
there is a vertex v with A(x,v) = d(U7), but r(x,v) = 0 for every vertex v). In
this case, we will contract some tight sets so that any vertex in U; will become
an indicator vertex. Let W1 # X,..., W, # X be the nodes (if any) adjacent
to Uy in T, ; see Figure (b). By using similar arguments as before, it can be
shown that each U} is a tight set for 2 < i < p (through u; € U; and u; € Uy).
Therefore we can contract each U} into a single vertex u; for 2 < ¢ < p. Similarly,
we can argue that each W (defined analogously as U;) is a tight set, and hence
we can contract each W7 into a single vertex w; for each 1 < j < g. We can
see that any vertex ¢ € U; is an indicator vertex in the resulting graph, because
A(t,v) > min{A\(w,v), rmax } for any pair of vertices v, w.

Henceforth we can consider this resulting graph instead of G for the purpose
of computing a complete splitting-off sequence, and using ¢ as the indicator
vertex to check connectivities. The running time of this procedure is dominated
by the partial Gomory-Hu tree computation, which is at most O(rmaXQ -n).

3.5 Deterministic Algorithm

We describe how to modify the randomized algorithm in Theorem 13 to obtain a
deterministic algorithm with the same running time. Every step in the algorithm
is deterministic except the Gomory-Hu tree construction in Theorem 9. The
randomized Gomory-Hu tree construction is used in two places. First it is used in
finding an indicator vertex in Section 3.4, and for this purpose it is executed only
once. Here we can replace it by a slower deterministic partial Gomory-Hu tree
construction algorithm. It is well-known that a Gomory-Hu tree can be computed
using at most n — 1 max-flow computations [14]. By using the Ford-Fulkerson
flow algorithm, one can obtain an O(ryay? - n?)-time deterministic algorithm
to construct a partial Gomory-Hu tree T, . The randomized partial Gomory-
Hu construction is also used in every splitting-off attempt to check whether the
connectivity requirements are satisfied. With the indicator vertex ¢, this task
reduces to checking the local edge-connectivities from ¢ to other vertices, and
there is a fast deterministic algorithm for this simpler task by Bhalgat et.al. [5].

Theorem 14 ([5]). Given an undirected graph G and a vertex t, there is an
O(Tmax - m)-time deterministic algorithm to compute min{Ag (t,v), rmax} for all
vertices v € G.

Thus we can replace the randomized partial Gomory-Hu tree algorithm by
this algorithm, and so Theorem 13 still holds deterministically. Hence there is a
deterministic O(7yax?-n?) time algorithm for the complete splitting-off problem.

4 Structural Property and Randomized Algorithm

Before we give the proof of Theorem 3, we first show how to use it in a randomized
edge splitting-off procedure to speedup the algorithm. By Theorem 3, when the
degree of z is much larger than 2r,,«, even a random edge pair will be admissible
with probability at least 1 — 2rp.y/(d(z) — 1). Using this observation, we show
how to reduce d(z) to O(rmax) in O(Tmax‘% -n) time. Then, by Theorem 13, the
remaining edges can be split-off in O(rmay? - d(z) - 1) = O(rmax” - 1) time. So
the total running time of the complete splitting-off algorithm is improved to
O(m + Pmax® -), proving Theorem 2.

The idea is to split-off many random edge pairs in parallel, before checking
if some connectivity requirement is violated. Suppose that 21+t9-1 < d(z) < 2l+a
and 2171 < rpax < 2¢ for some positive integers [and ¢. To reduce d(z) to Qit+a—1,
we need to split-off at most 2!%9~! z-edges. Since each z-edge has fewer than
2rmax non-admissible partners by Theorem 3, the probability that a random

.. .. . (d(2)—1)—27rmax glta—1l_ol+l ga—-2_4
edge pair is admissible is at least P > T CTES

. Now,

consider a random splitting-off operation that split-off at most 292 edge pairs at
random in parallel. The operation is successful if all the edge pairs are admissible.
The probability for the operation to succeed is at least (2(;2,;1)26172 = 0(1).
After each operation, we run the checking algorithm to determine whether this

operation is successful or not. Consider an iteration that consists of ¢ - logn

operations, for some constant c. The iteration is successful if it finds a set of
29~2 admissible pairs, i.e. any of its operations succeeds. The probability for an
iteration to fail is hence at most 1/n¢ for ¢ > 3. The time complexity of an
iteration is O(rmax2 -n).

Since each iteration reduces the degree of x by 2972, with at most 2/+! =
O(Tmax) successful iterations, we can then reduce d(z) to 21971 i.e. reduce d(x)
by half. This procedure is applicable as long as ¢ > 3. Therefore, we can reduce
d(x) to 272 by using this procedure for O(logn) times. The total running time
is thus O(2l"’1 10gn - Tmax? * M) = O(Tmax3 -n). Note that there are at most
O(max) iterations and the failure probability of each iteration is at most 1/nc.
By the union bound, the probability for above randomized algorithm to fail
is at most 1/n°"!. Therefore, with high probability, the algorithm succeeds in
O(Tmax® - n) time to reduce d(z) to O(rmax). Since the correctness of solution
can be verified by a Gomory-Hu Tree, this also gives a Las Vegas algorithm with
the same expected runtime.

4.1 Proof of Theorem 3

In this subsection we will prove that each edge has at most 2ry,.x — 2 non-
admissible partners. Given an edge pair (zv,zw), if it is a non-admissible pair,
then there is a dangerous set D with {xv,zw} C §(D) by Proposition 5, and we
say such a dangerous set D covers xv and xw. Let P be the set of non-admissible
partners of zv in the initial graph. Our goal is to show that |P| < 2rp.x — 2.

Proposition 15 ([2] Lemma 5.4). Suppose there is no cut edge incident to
x. For any disjoint vertex sets Sy, Se with d(S1,S2) = 0 and d(x,S1) > 1 and
d(z,S2) > 1, then S1 U Sy is not a dangerous set.

We first present an outline of the proof. Let Dp be a minimal set of maximal
dangerous sets such that (i) each set D € Dp covers the edge zv and (ii) each
edge in P is covered by some set D € Dp. First, we consider the base case
with |Dp| < 2. The theorem follows immediately if |Dp| = 1, so assume Dp =
{D1, D3}. By Proposition 15, d(Dy — Dy, D1 N D3) > 1 as Dp is minimal. Hence
d(D,V —x — D) > 1 for each D € Dp. Since d(D) < rmax + 1 and D covers
zv for each D € Dp, each set in Dp can cover at most 7.« — 1 non-admissible
partner of zv, proving |P| < 2rpax — 2.

The next step is to show that |Dp| < rpax — 1 when |Dp| > 3, where the
proofs of this step use very similar ideas as in [2,24]. When |Dp| > 3, we show
in Lemma 16 that inequality (4a) must hold for each pair of dangerous sets in
Dp. Since each dangerous set is connected by Proposition 15, this allows us to
conclude in Lemma 17 that |Dp| < rpmax — 1. This implies that |P| < r2 ..

To improve this bound, we use a new inductive argument to show that |P| <
Tmax — 1 + |Dp| < 2rmax — 2. First we prove in Lemma 18 that there is an
admissible pair (xa, zb) in P (so by definition a,b # v). By splitting-off (za, 2b),
let P = P — {za,zb} with |P’'| = |P| — 2. In the resulting graph, we prove
in Lemma 19 that |Dp/| < |Dp| — 2. Hence, by repeating this reduction, we

can show that after splitting-off ||Dp|/2] pairs of edges in P, the remaining
edges in P is covered by one dangerous set. Therefore, we can conclude that
|P| < rmax — 1+ |Dp| < 2rmax — 2. In the following we will first prove the upper
bound on |Dp|, then we will provide the details of the inductive argument.

An Upper Bound on |Dp|: By contracting non-trivial tight sets, each edge
in P is still a non-admissible partner of xv by Lemma 6. Henceforth, we will
assume that all tight sets in G are singletons. Also we assume there is no cut
edge incident to x and rya.x > 2 as required in the proof by Theorem 3. Recall
that Dp is a minimal set of maximal dangerous sets such that (i) each set D € Dp
covers the edge zv and (ii) each edge in P is covered by some set D € Dp. We
use the following result.

Lemma 16 ([2] Lemma 5.4, [24] Lemma 2.6). If |Dp| > 3, then inequal-
ity (4a) holds for every X,Y € Dp. Furthermore, X NY = {v} and is a tight
set for any X,Y € Dp.

Lemma 17. |Dp| < ryax — 1 when |Dp| > 3.

Proof. By Lemma 16, we have X N Y = {v} for any X,Y € Dp. For each set
X € Dp, we have d(z,v) > 1 and d(z, X —v) > 1 by the minimality of Dp.
Therefore, we must have d(v, X —v) > 1 by Proposition 15. By Lemma 16, X —v
and Y — v are disjoint for each pair X,Y € Dp. Since d(v, X —v) > 1 for each
X € Dp and d(z,v) > 1, it follows that [Dp| < d(v) — 1. By Lemma 16, {v} is
a tight set, and thus |Dp| < d(v) = 1 < rpax — 1. m|

An Inductive Argument: The goal is to prove that |P| < rpax — 1+ |Dp|.
By Lemma 17, this holds if d(x, X — v) = 1 for every dangerous set X € Dp.
Hence we assume that there is a dangerous set A € Dp with d(z, A —v) > 2;
this property will only be used at the very end of the proof. By Lemma 16,
inequality (4a) holds for A and B for every B € Dp. By the minimality of Dp,
there exists a z-neighbor a € A which is not contained in any other set in Dp.
Similarly, there exists b € B which is not contained in any other set in Dp. The
following lemma shows that the edge pair (za,xb) is admissible.

Lemma 18. For any A, B € Dp satisfying inequality (4a), an edge pair (xa, zb)
is admissible ifa € A— B and b€ B — A.

Proof. Suppose, by way of contradiction, that (za,xb) is non-admissible. Then,
by Proposition 5, there exists a maximal dangerous set C' containing a and b. We
claim that v € C'; otherwise there exists a 3-dangerous-set structure, contradict-
ing Lemma 7. Then d(x, ANC) > d(z,{v,a}) > 2, and so inequality (4b) cannot
hold for A and C, since 1+1 > s(A)+5(C) > s(A—C) +s(C—A)+2d(A,C) >
0 + 0 + 2 - 2. Therefore, inequality (4a) must hold for A and C. Since A and
C are maximal dangerous sets, A U C' cannot be a dangerous set, and thus
141> s(A)+s(C) > s(AUC)+s(ANC)+2d(A,C) > 2+ s(ANC) + 0, which
implies that AN C is a tight set, but this contradicts the assumption that each
tight set is a singleton as {v,a} C ANC. O

After splitting-off (za,xb), let the resulting graph be G’ and P’ = P —
{za, xb}. Clearly, since each edge in P’ is a non-admissible partner of zv in G,
every edge in P’ is still a non-admissible partner of zv in G’. Furthermore, by
contracting non-trivial tight sets in G’, each edge in P’ is still a non-admissible
partner of zv by Lemma 6. Hence we assume all tight sets in G’ are singletons. Let
Dp: be a minimal set of maximal dangerous sets such that (i) each set D € Dp:
covers the edge zv and (ii) each edge in P’ is covered by some set D € Dp. The
following lemma shows that there exists Dps with |Dp/| < |Dp| — 2.

Lemma 19. When |Dp| > 3, the edges in P’ can be covered by a set Dp: of
mazximal dangerous sets in G’ such that (i) each set in Dp: covers xv, and (i)
each edge in P’ is covered by some set in Dp:, and (iii) |Dp/| < |Dp| — 2.

Proof. We will use the dangerous sets in Dp to construct Dp:. Since each pair
of sets in Dp satisfies inequality (4a), we have s(AU D) = 2 before splitting-off
(za, xb) for each D € Dp. Also, before splitting-off (za, zb), for A, B,C € Dp,
inequality (4b) cannot hold for AU B and C because 2+ 1 = s(AU B) + s(C) >
s((AUB) —C) +s(C — (AUB))+2d(AUB,C) > 240+ 2- 1, where the last
inequality follows since v € AN BN C and (AU B) — C' is not dangerous (as it
covers the admissible edge pair (za, zb)). Therefore inequality (4a) must hold for
AUB and C, which implies that s(AUBUC) < 3 since 2+1 = s(AUB)+s(C) >
s((AUB)UC)+ s((AUB)NC). For A and B as defined before Lemma 18,
since s(A U B) = 2 before splitting-off (za,xb), AU B becomes a tight set after
splitting-off (za,xb). For any other set C' € Dp — A — B, since s(AUBUC) <3
before splitting-off (xa, 2b), AUBUC becomes a dangerous set after splitting-off
(za, xb). Hence, after splitting-off (za, zd) and contracting the tight set AU B
into v, each set in Dp — A — B becomes a dangerous set. Then Dpr = Dp— A— B
is a set of dangerous sets covering each edge in P’, satisfying properties (i)-(iii).
By replacing a dangerous set C' € Dp/ by a maximal dangerous set ¢/ O C and
removing redundant dangerous sets in Dps so that it minimally covers P’, we
have found Dp: as required by the lemma. ad

Recall that we chose A with d(x, A —v) > 2, and hence d(x,v) > 2 after
the splitting-off and contraction of tight sets. Therefore, inequality (4a) holds
for every two maximal dangerous sets in Dps. By induction, when |Dp| > 3, we
have |P| = |P'| 4+ 2 < rmax — 1 + |Dpr| + 2 < rmax — 1 + |Dp|. In the base case
when |Dp| = 2 and A, B € Dp satisfy (4a), the same argument in Lemma 19 can
be used to show that the edges in P’ is covered by one tight set after splitting-off
(za,zb), and thus |P| = |P'|+2 < rmax — 1+2 < rmax — 14 |Dp|. This completes
the proof that |P| < rmax — 1 + |Dp|, proving the theorem.

Concluding Remarks

Theorem 3 can be applied to constrained edge splitting-off problems, and give
additive approximation algorithms for constrained augmentation problems. The
efficient algorithms can also be adapted to these problems. We refer the reader
to [25] for these results.

References

1.

2.

10.
11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Bang-Jensen, A. Frank, and B. Jackson. Preserving and increasing local edge-
connectivity in mixed graphs. STAM J. Disc. Math., 8(2):155-178, 1995.

J. Bang-Jensen and T. Jordan. Edge-connectivity augmentation preserving sim-
plicity. SITAM Journal on Discrete Mathematics, 11(4):603-623, 1998.

A. Bernath, T. Kirdly. A new approach to splitting-off. IPCO ’08: 401415, 2008.
A. A. Bencziur and D. R. Karger. Augmenting undirected edge connectivity in
O(n?) time. Journal of Algorithms, 37(1):2-36, 2000.

A. Bhalgat, R. Hariharan, T. Kavitha and D. Panigrahi. An O(mn) Gomory-Hu
tree construction algorithm for unweighted graphs. STOC 2007, 605-614.

A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. Fast edge splitting and
Edmonds’ arborescence construction for unweighted graphs. SODA 08, 455-464.
Y.H. Chan, W. S. Fung, L.C. Lau and C.K. Yung. Degree Bounded Network Design
with Metric Costs. FOCS 08, 125-134.

E. Cheng and T. Jorddn. Successive edge-connectivity augmentation problems.
Mathematical Programming, 84(3):577-593, 1999.

A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM Jour-
nal on Discrete Mathematics, 5(1):25-53, 1992.

A. Frank. On a theorem of Mader. Ann. of Disc. Math., 101:49-57, 1992.

A. Frank and Z. Kiraly. Graph orientations with edge-connection and parity con-
straints. Combinatorica, 22(1):47-70,2002.

H. N. Gabow. Efficient splitting off algorithms for graphs. STOC 94, 696-705.
M.X. Goemans and D.J. Bertsimas. Survivable networks, linear programming re-
laxations and the parsimonious property. Math. Prog., 60(1):145-166, 1993.

R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551-570, 1961.

R. Hariharan, T. Kavitha and D. Panigrahi. Efficient algorithms for computing all
low st edge connectivities and related problems. SODA 07, 127-136.

T. Jorddn. On minimally k-edge-connected graphs and shortest k-edge-connected
Steiner networks. Discrete Applied Mathematics, 131(2):421-432, 2003.

L.C. Lau. An approximate max-Steiner-tree-packing min-Steiner-cut theorem.
Combinatorica 27(1):71-90, 2007.

L. Lovész. Lecture. Conference of Graph Theory, Prague, 1974. (See also Combi-
natorial problems and exercises. North-Holland, 1979.)

W. Mader. A reduction method for edge-connectivity in graphs. Annals of Discrete
Mathematics, 3:145-164, 1978.

H. Nagamochi. A fast edge-splitting algorithm in edge-weighted graphs. IEICE
TRANSACTIONS on Fundamentals of Electronics, Communications and Com-
puter Sciences, 1263-1268, 2006.

H. Nagamochi, T. Ibaraki. Linear time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica, 7(1):583-596, 1992.

H. Nagamochi and T. Ibaraki. Deterministic O(nm) time edge-splitting in undi-
rected graphs. Journal of Combinatorial Optimization, 1(1):5-46, 1997.

C.S.J.A. Nash-Williams. On orientations, connectivity and odd vertex pairings in
finite graphs. Canadian Journal of Mathematics, 12:555-567, 1960.

Z. Szigeti. Edge-splittings preserving local edge-connectivity of graphs. Discrete
Applied Mathematics, 156(7):1011-1018, 2008.

C.K. Yung. Edge splitting-off and network design problems. Master thesis, The
Chinese University of Hong Kong, 2009.

