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Abstract—We present a spectral analysis of a continuous
scaling algorithm for matrix scaling and operator scaling. The
main result is that if the input matrix or operator has a
spectral gap, then a natural gradient flow has linear convergence.
This implies that a simple gradient descent algorithm also has
linear convergence under the same assumption. The spectral gap
condition for operator scaling is closely related to the notion of
quantum expander studied in quantum information theory.

The spectral analysis also provides bounds on some important
quantities of the scaling problems, such as the condition number
of the scaling solution and the capacity of the matrix and
operator. These results can be used in various applications of
scaling problems, including matrix scaling on expander graphs,
permanent lower bounds on random matrices, the Paulsen
problem on random frames, and Brascamp-Lieb constants on
random operators. In some applications, the inputs of interest
satisfy the spectral condition and we prove significantly stronger
bounds than the worst case bounds.

Index Terms—Operator Scaling, Matrix scaling, Spectral anal-
ysis, Frame theory, Quantum expanders

I. INTRODUCTION

In the matrix scaling problem, we are given a non-negative
matrix B ∈ Rn×n, and the goal is to find a left diagonal
scaling matrix L ∈ Rn×n and a right diagonal scaling matrix
R ∈ Rn×n such that LBR is doubly stochastic (every row
sum and every column sum is one), or report that such scaling
matrices do not exist. This problem has been extensively
studied in different communities; see [39] for a detailed survey.

The operator scaling problem is a significant generalization
of the matrix scaling problem. Given a tuple of m × n real
matrices A = (A1, . . . , Ak) ⊂ Rm×n, a linear operator ΦA :
Rn×n → Rm×m is defined as

ΦA(X) =

k∑
i=1

AiXA
∗
i ,

where A∗i denotes the conjugate transpose of Ai, We will
simply refer to A as an operator. The size of an operator A
is s(A) :=

∑k
i=1 ‖Ai‖

2
F , where ‖·‖F denotes the Frobenius

norm of a matrix. An operator A is called ε-nearly doubly
balanced if

(1− ε)s(A)

m
Im �

k∑
i=1

AiA
∗
i � (1 + ε)

s(A)

m
Im

(1− ε)s(A)

n
In �

k∑
i=1

A∗iAi � (1 + ε)
s(A)

n
In,

and is called doubly balanced when ε = 0. The operator
scaling problem is defined by Gurvits [29]. The objective is
to scale the input operator so that it becomes doubly balanced
with size one.

Definition I.1 (Operator Scaling Problem).
Input: An operator A = (A1, . . . , Ak) ⊂ Rm×n.
Output: A left and right scaling matrix L ∈ Rm×m,
R ∈ Rn×n such that for {Bi := LAiR}ki=1

k∑
i=1

BiB
∗
i =

Im
m

and

k∑
i=1

B∗iBi =
In
n

or report that such scaling matrices L,R do not exist.

There is a simple reduction from the matrix scaling problem
to the operator scaling problem, by having one matrix Aij ∈
Rn×n for each entry Bij with the (i, j)-entry of Aij being√
Bij and all other entries zero; see Section IV-A for details.
The operator scaling problem generalizes matrix scaling and

frame scaling and has many applications; see Section I-D and
Section IV. Much work has been done in analyzing algorithms
for these scaling problems and in understanding the scaling
solutions and related quantities.

A. Previous Algorithms

For matrix scaling, the most well-known algorithm is
Sinkhorn’s algorithm [54], which is a simple iterative al-
gorithm that alternatively rescale the rows and rescale the
columns. This algorithm is analyzed in [18] and it is shown
that the alternating algorithm finds an η-nearly doubly stochas-
tic scaling in time polynomial in n and 1/η.

The alternating scaling algorithm is generalized in [29] for
the operator scaling problem. In this algorithm, we repeatedly
find a left scaling matrix L = (

∑
iAiA

∗
i )
−1/2 and set

Ai ← LAi so that the first condition of doubly balanced is
satisfied, and a right scaling matrix R = (

∑
iA
∗
iAi)

−1/2 and
set Ai ← AiR so that the second condition of doubly balanced
is satisfied. This alternating algorithm is partially analyzed
in [29] and is fully analyzed in [19], [20].



Theorem I.2 ( [18]–[20], [54]). The alternating scaling al-
gorithm returns an η-nearly doubly balanced scaling in
O(poly(n,m, k, 1/η)) iterations if such a scaling exists.

This theorem is used in [19], [20] to give the first polyno-
mial time algorithm for computing the non-commutative rank
of a symbolic matrix, as it is sufficient to set η to be inverse
polynomial in n to solve that problem exactly. For further
applications, faster convergence of η is required.

For matrix scaling, there are several algorithms with depen-
dency on η being log(1/η), including the ellipsoid method
in [40], the interior point method in [51], and a strongly
polynomial time combinatorial algorithm in [47]. The depen-
dency on n in these algorithms is at least Ω(n7/2) even for
sparse matrices. Recently, two independent groups [2], [13]
developed a fast second order method for matrix scaling, and
this method is extended to geodesic convex optimization in [1]
for the operator scaling problem.

Theorem I.3 ( [1], [2], [13]). There is a second order
method to return an η-nearly doubly balanced scaling in
time O(poly(n,m, k, log(1/η))) for operator scaling, and in
time O(‖B‖0 log κ log2(1/η)) for matrix scaling where ‖B‖0
denotes the number of nonzero entries in B and κ denotes the
condition number of the scaling solution.

For matrix scaling, this theorem can be used to obtain a fast
deterministic e−n approximation algorithm for the permanent
of a matrix [47]. For operator scaling, this theorem is used to
obtain a polynomial time algorithm for an orbit intersection
problem in invariant theory [1].

B. Gradient Flow

An important quantity in [1], [20], [29] to measure the
progress of the algorithms is the `2-error of the current solu-
tion. Given an operator A = (A1, . . . , Ak) where Ai ∈ Rm×n
for 1 ≤ i ≤ k, define

∆(A) =
1

m

∥∥∥∥∥s(A) · Im −m
k∑
i=1

AiA
∗
i

∥∥∥∥∥
2

F

+
1

n

∥∥∥∥∥s(A) · In − n
k∑
i=1

A∗iAi

∥∥∥∥∥
2

F

Note that ∆(A) = 0 if and only if A is doubly balanced. In
the matrix scaling problem for general m × n matrix where
the objective is to scale the input matrix B such that every
row sum is the same and every column sum is the same, this
definition simplifies to

∆(B) =
1

m

m∑
i=1

(s−mri)2 +
1

n

n∑
j=1

(s− ncj)2,

where ri and cj are the i-th row sum and the j-th column sum
of the matrix B, and s =

∑m
i=1

∑n
j=1Bij is the size of the

matrix B.
A continuous version of the alternating algorithm for oper-

ator scaling is studied in [45], where both operations are done

simultaneously and continuously. The following differential
equation describes how A changes over time:

d

dt
Ai :=

s(A) · Im −m
k∑
j=1

AjA
∗
j

Ai

+ Ai

s(A) · In − n
k∑
j=1

A∗jAj


In the matrix case, this continuous scaling simplifies to

d

dt
Bij = 2

(
(s−mri) + (s− ncj)

)
·Bij .

The continuous operator scaling algorithm is developed to
bound the “total movement” of the operator in order to solve
the Paulsen problem in [45]. Its convergence rate is shown
to be similar to that of the alternating scaling algorithm, with
dependency on η being 1/η.

The continuous operator scaling algorithm can be under-
stood as a natural first order method for operator scaling. It
can be shown (see full version) that the dynamical system in
continuous operator scaling is equivalent to the gradient flow
of ∆(A) at each time. This shows a close connection between
gradient descent and the alternating algorithm.

This gradient flow was studied in much greater generality in
symplectic geometry and algebraic geometry (see [27], [41]).
After a long line of work [3], [25], [26], [42], [43], Kirwan
proved that the image of the moment map of a group action
on a symplectic manifold is a convex polytope. To prove this,
Kirwan uses the norm-square of the moment map (which in
our setting is exactly ∆(A)), and studies critical points of this
function in order to understand the image of the moment map
(where a point is critical for ∆(A) exactly when it is a fixed
point of the gradient flow). The current result as well as the
result in [45] can be seen as quantitative convergence analyses
in the neighborhoods of fixed points of this natural gradient
flow in the operator scaling setting.

C. Contributions

In this paper, we analyze this gradient flow for the operator
scaling problem. We identify a natural spectral condition under
which the gradient flow converges in time t = O(log(1/η))
(corresponding to the number of iterations in the alternating
algorithm) where η is the output accuracy. The spectral con-
dition is closely related to the notion of “quantum expander”
and is satisfied in many random instances. A key feature of
our approach is that it also provides bounds on some important
mathematical quantities such as the condition number of the
scaling solution and the capacity of the matrix and operator.
These bounds can be used in various applications of the
operator scaling problem to show significantly stronger results
for inputs that satisfy the spectral condition such as random
matrices and random frames. We emphasize that the new
results in various applications cannot be obtained through
previous work (e.g. the fast algorithm for operator scaling
in [1]), as the analyses of previous algorithms do not provide



mathematical bounds for the condition number of the scaling
solution and the operator capacity.

Spectral Condition: We first state the spectral condition in
the general operator setting.

Definition I.4 (Spectral Gap Condition). Given an operator
A = (A1, . . . , Ak) where Ai ∈ Rm×n for 1 ≤ i ≤ k, define
the m2 × n2 matrix

MA :=

k∑
i=1

Ai ⊗Ai,

where ⊗ denotes the tensor product. The operator A is said
to have a λ-spectral gap if

σ2(MA) ≤ (1− λ)
s(A)√
mn

,

where σ2(MA) is the second largest singular value of MA.

Note that the spectral condition can be checked in polyno-
mial time through standard eigenvalue computation.

The matrix MA associated with A is studied in the quantum
information theory literature (e.g. [61]), as the natural ma-
trix representation of the completely positive map Φ(X) :=∑
iAiXA

∗
i defined by A. It can be shown that the largest

singular value of MA satisfies

s(A)√
mn
≤ σ1(MA) ≤ (1 + ε)

s(A)√
mn

,

when A is ε-nearly doubly balanced (Lemma III.5). The
spectral gap condition is also studied under the name of “quan-
tum expander” in [7], [35]. We will discuss more about this
spectral gap condition in Section II-A after some background
on quantum information theory is reviewed.

For matrix scaling, given the input matrix B ∈ Rm×n, the
spectral gap condition is simply

σ2(B) ≤ (1− λ)
s(B)√
mn

.

If we interpret the input matrix B as a weighted undirected
bipartite graph, then the spectral gap condition is closely
related to the expansion/conductance of the graph. We will
explain more about these in Section I-D1 and in Section IV-A.

Linear Convergence: The main technical result is that the
gradient flow has linear convergence when the input satisfies
the spectral gap condition.

Theorem I.5 (Linear Convergence). Given an operator A =
(A1, . . . , Ak) where each Ai ∈ Rm×n with m ≤ n, if A
is ε-nearly doubly balanced and A satisfies the λ-spectral
gap condition in Definition I.4 with λ2 ≥ Cε logm for a
sufficiently large constant C, then in the gradient flow,

∆(t) ≤ ∆(0)e−λs
(0)t for any t ≥ 0.

In particular, the gradient flow converges to a η-nearly doubly
balanced scaling in time t = O

(
1
λ log(mη )

)
, and such a

scaling always exists under our assumptions.

By discretizing the gradient flow with step size Θ((m +
n)−2), it follows that a natural gradient descent algorithm
returns an η-nearly doubly stochastic scaling in polynomial
time in the input size and logarithmic in 1/η, when the input
satisfies the spectral gap condition.

Corollary I.6 (Gradient Descent). Under the assumptions in
Theorem I.5, there is a gradient descent algorithm to return an
η-nearly doubly balanced scaling in O

(
(n+m)2

λ log(m+n
η )

)
iterations.

It is an interesting open question whether the alternating
algorithm also has the same convergence rate as the gradient
flow under the same assumptions. We believe that the answer
is positive but we could not prove it at the moment.

Condition Number: The condition number of the scaling
solutions L,R are defined as κ(L) := σmax(L)/σmin(L)
where σmax(L) and σmin(L) denote the largest and smallest
singular values of L respectively. For matrix scaling, κ(L) is
simply the ratio between the largest entry and the smallest
entry in the diagonal matrix L.

In general, the condition numbers could be exponential
in the input size. It is of interest to identify instances with
small condition numbers as these are closely related to the
performance of matrix/operator scaling algorithms (e.g. The-
orem I.3), but not much is known even in the simpler matrix
scaling setting. Kalantari and Khachiyan [40] proved a bound
for strictly positive matrices in terms of the ratio of the sum of
the entries and the minimum entry. We show that the condition
numbers are bounded by a small constant when the input
satisfies the spectral gap condition (not necessarily strictly
positive).

Theorem I.7 (Condition Number). Under the assumptions in
Theorem I.5, the condition number of the scaling solutions
L ∈ Rm×m and R ∈ Rn×n satisfy

κ(L) ≤ 1+O

(
ε logm

λ

)
and κ(R) ≤ 1+O

(
ε logm

λ

)
.

The condition number of the scaling solutions is used in
bounding the time complexity of the scaling algorithms using
the second order method [1], [13], in analyzing an approxima-
tion algorithm for permanent [53], and in bounding the optimal
transport cost [14], [52]. We will discuss the implications of
Theorem I.7 to these applications in Section IV.

Operator Capacity: The capacity of an operator A is
defined by Gurvits [29] as

cap(A) := inf
X�0

m det
(∑k

i=1AiXA
∗
i

)1/m

det(X)1/n
.

The capacity of a matrix B ∈ Rm×n has a simpler form
(Section IV-A6) where

cap(B) := inf
x∈Rn:x>0

m
(∏m

i=1(Bx)i

)1/m

(∏n
j=1 xj

)1/n
.



Optimization problems of this form are also studied in func-
tional analysis [5] and in approximation algorithms [50].

In general, when A is ε-nearly doubly balanced [20], [29],
[45], it is proved that

s(A) ≥ cap(A) ≥ (1−mnε)s(A).

Using a connection between the convergence rate of the
gradient flow and the operator capacity developed in [45], we
show a much stronger bound for operators that also satisfy the
spectral gap condition.

Theorem I.8 (Capacity). Under the assumptions in Theo-
rem I.5,

s(A) ≥ cap(A) ≥
(

1− 4ε2

λ

)
s(A).

The capacity of an operator is used in bounding the per-
manent of a matrix [47], the Brascamp-Lieb constant of an
operator [21], and the total movement to a nearby doubly
balanced operator [45]. We will discuss the implications of
Theorem I.8 to these applications in Section I-D.

D. Applications

The matrix scaling and the operator scaling problem has
many applications and we will discuss some implications of
our results in this section.

1) Matrix Scaling: In the matrix scaling problem, we are
given a non-negative matrix B ∈ Rm×n, and the goal is to
find a left diagonal scaling matrix L ∈ Rm×m and a right
diagonal scaling matrix R ∈ Rn×n such that LBR is doubly
balanced (i.e. every row sum is the same and every column
sum is the same; see Section IV-A for definition), or report
that such scaling matrices do not exist.

The matrix scaling problem is a special case of the operator
scaling problem (Section IV-A1) and so the spectral analysis
also applies. In the case of matrix scaling, the spectral condi-
tion in Definition I.4 is simply σ2(B) ≤ (1 − λ)s(B)/

√
mn

(Section IV-A2). Using Cheeger’s inequality, we show that this
spectral gap condition is closely related to the conductance of
the weighted bipartite graph associated to B (Section IV-A3).
These imply that many random matrices will satisfy the
condition in Theorem I.5 (Section IV-A4).

Our results has implications for the matrix scaling prob-
lem, e.g. to obtain stronger results for random matrices. For
bipartite matching, we show that the gradient flow converges
quickly to a fractional perfect matching in an almost regular
bipartite expander graph (Section IV-A5).

Corollary I.9. Suppose G = (X,Y ;E) is a bipartite graph
with |X| = |Y | where each vertex v satisfies (1−ε)|E|/|X| ≤
deg(v) ≤ (1+ε)|E|/|X| for some ε. If the graph conductance
φ(G) satisfies φ(G)4 ≥ Cε log |X| for some sufficiently large
constant C, then the gradient flow converges to an η-nearly
perfect fractional matching in time t = O

(
1

φ2(G) log
(
|X|
η

))
.

For permanent, the Van der Waerden’s conjecture states that
the permanent of a doubly stochastic n× n matrix is at least
n!/nn ≥ e−n, which is proven in [15], [16], [28]. The capacity

lower bound in Theorem I.8 can be used to prove a Van der
Waerden’s type lower bound on the permanent of matrices
satisfying the spectral gap condition (not necessarily doubly
stochastic).

Corollary I.10. If a non-negative matrix B ∈ Rn×n is ε-
nearly doubly balanced with s(B) = n, and σ2(B) ≤ 1 − λ
with λ2 ≥ Cε log n for some sufficiently large constant C,
then

per(B) ≥ exp

(
−n
(

1 + Θ

(
ε2

λ

)))
.

For example, consider a random matrix A with each entry an
independent random variable Aij = g2

ij where gij is sampled
from the Gaussian distribution N(0, 1

n ). The corollary implies
that per(A) ≥ e−n/ poly(n) with high probability. This
implies a sub-exponential approximation of the permanent for
this class of matrices [6]. See Section IV-A6 for details.

For optimal transportation distance, we can use the condi-
tion number result in Theorem IV-A7 to bound the Sinkhorn
distance [14], [52], which is receiving increasing attention in
computer vision and machine learning (Section IV-A7).

The condition number result in Theorem IV-A7 can also
be used to show that the second-order method for matrix
scaling [2], [13] as stated in Theorem I.3 is near linear time
in the instances satisfying the spectral gap assumption.

2) Frame Scaling: In the frame scaling problem, we are
given n vectors u1, . . . , un ∈ Rd, and the goal is to find a
matrix (a linear transformation) M ∈ Rd×d such that if we
set vi = Mui/ ‖Mui‖2 then

∑n
i=1 viv

∗
i = Id. This prob-

lem was studied in communication complexity [17], machine
learning [33], and in frame theory [32], [45].

The frame scaling problem is a special case of the operator
scaling problem (Section IV-B1) and so the spectral analysis
also applies. In the case of frame scaling, the spectral condition
in Definition I.4 has a nice form (Section IV-B2): Let G ∈
Rn×n be the squared Gram matrix where Gij = 〈ui, uj〉2.
Then the spectral condition is equivalent to λ2(G) ≤ (1 −
λ)2s2/(dn) where λ2(G) is the second largest eigenvalue of
G and s :=

∑n
i=1 ‖ui‖

2. We show in the full version that this
condition is satisfied for random frames with high probability.

Theorem I.11. If we generate n random unit vectors
u1, . . . , un ∈ Rd with n = Ω(d4/3), then the resulting frame
is ε-nearly doubly balanced for ε� 1/ log d and satisfies the
spectral gap condition with constant λ with high probability.

For intuition, suppose each ui is a random unit vector, then
the expected value of Gij = 〈ui, uj〉2 for i 6= j is 1/d and so
the expected matrix G is Jn/d+ (d− 1)In/d where Jn is the
n-by-n all-one matrix. The matrix Jn has the largest spectral
gap, and we expect that a random frame will have its squared
Gram matrix G close to Jn/d+ (d− 1)In/d and thus a large
spectral gap. The proof is by a low moment analysis of the
trace method commonly used in random matrix theory.

One significant implication of our result is the Paulsen
problem on random frames. Given a frame U = (u1, . . . , un)



where each ui ∈ Rd satisfying

(1− ε)Id �
n∑
i=1

uiu
∗
i � (1 + ε)Id and

‖ui‖22 ∈ (1± ε) d
n

for 1 ≤ i ≤ n,

the Paulsen problem asks whether there always exists a frame
V = (v1, . . . , vn) where each vi ∈ Rd satisfying

∑n
i=1 viv

∗
i =

Id, ‖vi‖22 = d/n for 1 ≤ i ≤ n, and dist2(U, V ) :=∑n
i=1 ‖ui − vi‖

2
2 small. It was an open problem whether

dist2(U, V ) can be bounded by a function independent of the
number of vectors n. Recently, this question was answered
positively in [45], showing that dist2(U, V ) ≤ O(d13/2ε). This
bound is improved to O(d2ε) by Hamilton and Moitra [32]
with a much simpler proof. There are examples showing that
dist2(U, V ) ≥ Ω(dε), so the upper bound and the lower bound
almost match in the worst case.

The Paulsen problem was asked [36] because it is difficult
to generate V that satisfies the conditions exactly but easier to
generate U that almost satisfies the conditions. But actually not
many ways are known to generate U that almost satisfies the
conditions with small ε, and almost all known constructions
are random frames [36], [59]. Even for the few constructions
that are deterministic (such as equiangular lines), it is likely
that they satisfy the spectral gap assumption. So, for the
Paulsen problem, the inputs of interest satisfy the spectral gap
assumption, and we can prove a much stronger bound O(dε2)
that goes beyond the worst case lower bound.

Theorem I.12. Let U = (u1, . . . , un) be a random frame with
n = Ω(d4/3), where each ui ∈ Rd is an independent random
vector with ‖ui‖22 = d/n. Suppose (1− ε)Id �

∑n
i=1 uiu

∗
i �

(1 + ε)Id. Then, with probability at least 0.99, there exists a
frame V = (v1, . . . , vn) with

∑n
i=1 viv

∗
i = Id, ‖vi‖22 = d/n

for 1 ≤ i ≤ n, and dist2(U, V ) ≤ O(dε2).

We also demonstrate how the results in spectral analysis
can be used to construct V with the additional property that
|〈vi, vj〉| is small for 1 ≤ i 6= j ≤ n, which is an original
motivation for the Paulsen problem (Section IV-B4).

Theorem I.13. For n = d2, there exists a doubly balanced
frame V = (v1, . . . , vn) where each vi ∈ Rd with ‖vi‖ = 1,

max
i 6=j
〈vi, vj〉2 ≤ O

(
log3 d

d

)
.

3) Operator Scaling: The operator scaling problem was
used to compute the Brascamp-Lieb constant [21]. A
Brascamp-Lieb datum is specified by an m-tuple B = {Bj :
Rn → Rnj | 1 ≤ j ≤ m} of linear transformations and an
m-tuple of exponents p = {p1, . . . , pm}. The Brascamp-Lieb
constant BL(B,p) of this datum is defined as the smallest C
such that for every m-tuple {fj : Rnj → R≥0 | 1 ≤ j ≤ m}
of non-negative functions which are integrable, we have∫
x∈Rn

m∏
j=1

(
fj(Bjx)

)pj
dx ≤ C

m∏
j=1

(∫
xj∈Rnj

fj(xj)dxj

)pj
.

This is a common generalization of many useful inequalities;
see [8], [21]. It turns out that the functions fi for which the
inequality is tight are density functions of Gaussians [46],
and this implies the Brascamp-Lieb constant can be written
in a form very similar to the capacity of an operator (see
Section IV-C1). This is used in [21] to compute the Brascamp-
Lieb constant through operator scaling.

Using this connection, we can derive upper bounds on the
Brascamp-Lieb constant using the capacity lower bound in
Theorem I.8.

Corollary I.14. Given a datum (B,p) with Bj : Rn → Rnj

for 1 ≤ j ≤ m and
∑m
j=1 pjnj = n, if (B,p) is ε-

nearly geometric and satisfies the λ-spectral gap condition
with λ2 ≥ Cε log n for some sufficiently large constant C and∑m
j=1 pj ‖Bj‖

2
F = n, then

1 ≤ BL(B,p) ≤
(

1− 4ε2

λ

)−n/2
≤ exp

(
Θ

(
nε2

λ

))
.

An interesting special case of the Brascamp-Lieb inequality
is the rank one case Bj = u∗j where uj ∈ Rd and nj = 1
and pj = d/m for 1 ≤ j ≤ m which was studied in [5]. In
this case, the capacity of the operator A from the reduction
(Section IV-C1) is

cap(A) = sup
x∈Rn:x>0

d
(

det
(∑m

j=1 xjuju
∗
j

))1/d

(∏m
j=1 xj

)1/m
,

which is a form that is also studied in approximation algo-
rithms [50]. Using the results in Section V and the above
corollary, we can show that if each ui is an independent
random unit vector and m ≥ Ω(d4/3), then m ≥ cap(A) ≥
m (1− 4d log d/m) and 1 ≤ BL(B,p) ≤ dΘ(d); see Ex-
ample IV.26. Note that this is independent of the number of
vectors.

The operator scaling algorithm is used in [19], [20] to
compute the non-commutative rank of a symbolic matrix. We
show in Section IV-C2 that an operator satisfying the spectral
gap condition has full non-commutative rank.

In solving the orbit intersection problem [1], the result of a
generalization of the Paulsen problem to the operator setting
in [45] was used. As in Theorem I.12, we prove a much
stronger bound in Section IV-C3 on the squared distance when
the operator satisfies the spectral gap condition.

E. Techniques

We are not aware of previous work on spectral analysis
of matrix scaling and operator scaling. The closest work we
are aware of is a recent work by Rudelson, Samorodnitsky
and Zeitouni [53], who analyze the condition number of the
matrix scaling solution when the matrix satisfies some strong
(vertex) expansion property using a combinatorial argument.

In the following, we discuss the previous techniques used in
analyzing the continuous operator scaling algorithm, and then
discuss the techniques used in this paper.



1) Comparisons with Previous Techniques: The operator
capacity defined by Gurvits [29] was used crucially as a
potential function to analyze the discrete operator scaling
algorithms in [20], [29] as well as the continuous operator
scaling algorithm in [45].

A smoothed analysis of matrix scaling was presented in [45]
for solving the Paulsen problem. It was shown that if most
of the entries of an m × n matrix with m ≤ n is at least
σ2 for a large enough σ, then the continuous matrix scaling
algorithm has linear convergence with rate at least σ2n. This
combinatorial assumption is restrictive and only applies in the
matrix scaling setting. Note that the combinatorial assumption
implies the spectral gap assumption in Definition I.4 with
λ ≥ Ω(σ2) but not vice versa. Through a reduction from
operator capacity to matrix capacity, the smoothed analysis
can be extended to the frame setting but the proof was
complicated, and it was not known whether the smoothed
analysis can be extended to the general operator setting. The
main difficulty is that there is no analogous combinatorial
condition in the frame setting and in the operator setting to
guarantee the linear convergence. This is an illustration of the
difference between the matrix case and the noncommutative
operator case, in which there is no natural basis to consider.
In this paper, we have found a natural spectral condition to
guarantee linear convergence directly in the general operator
setting. As a consequence, we do not need to go through
the operator capacity to analyze the convergence rate of the
operator scaling algorithm, which is different from previous
analyses. Nonetheless, we can use the linear convergence to
prove a lower bound on the operator capacity as was done
in [45].

2) Outline of Spectral Analysis: We illustrate the main
ideas of the spectral analysis in the simpler matrix scaling
setting and mention how these ideas can be generalized to the
operator setting. For gradient descent, a common approach to
prove linear convergence is to show that the Hessian matrix has
small condition number. Instead, our approach is to directly
analyze the change of ∆. In the matrix scaling setting, it follow
from Lemma 4.2.9 in [45] that

−1

4

d

dt
∆ =

m∑
i=1

(s−mri)2ri +

n∑
j=1

(s− ncj)2cj

+ 2

m∑
i=1

n∑
j=1

(s−mri)(s− ncj)Bij ,

where B ∈ Rm×n is the current non-negative matrix, and
s, ri, cj are the size, the i-th row sum and the j-th column
sum of B respectively. We call the first two terms in the right
hand side the quadratic terms and the last term the cross term.
Our goal is to lower bound their sum by λs∆. To do so, we
will prove a lower bound on the sum of the quadratic terms,
and an upper bound on the absolute value of the cross term.

First, we prove a structural result that the maximum viola-
tion of a row and a column will not increase much throughout
the continuous matrix scaling algorithm, and then we use this
to show that the sum of the quadratic terms is at least (1−ε)s∆

for an ε-nearly doubly balanced matrix B. Then, we write the
cross term as a quadratic form of the matrix B as ~rB~c, where
~r ∈ Rm is the vector with the i-th entry being s −mri and
~c ∈ Rn is the vector with the j-th entry being s − ncj . The
observation is that ~r ⊥ ~1m and ~c ⊥ ~1n while ~1m, ~1n are close
to the first singular vectors of B, so the cross term would
be small if there is a spectral gap of the matrix B. By a
spectral argument, we can show that the absolute value of the
cross term is at most (1 + ε − λ)s∆. Combining these two
bounds, we can lower bound the convergence rate to be at
least 4(λ− 4ε)s∆ initially.

To prove that the convergence rate is at least λs∆ for
all time, we need to prove that the spectral gap condition
is maintained throughout the continuous matrix scaling algo-
rithm. To do so, we argue through the condition number of the
scaling solutions. We use the structural result and the linear
convergence to show that the condition number of the scaling
solution is small, and then we show that the singular values of
the matrix would not change much if we scale the matrix B by
diagonal matrices of small condition numbers. Finally, we use
an inductive argument to prove that the linear convergence is
maintained for all time. The results for condition numbers and
capacity follow from the arguments developed and the linear
convergence.

The proof for the general operator setting has the same
structure, with more involved technical details in some steps.
To prove the structural result that the operator norm of the error
matrices would not increase much throughout the continuous
operator scaling algorithm, we need to use the envelope
theorem to bound the maximum eigenvalue and the minimum
eigenvalue. To bound the condition number of the scaling
solutions, we need to use results from the theory of product
integration to analyze the scaling solutions.

F. Organization

We first review some background about completely positive
linear operators and the continuous operator scaling algorithm
in Section II. We then present the main technical results in
Section III and show various applications in Section IV. We
provide a proof sketch in Section V that a random frame
satisfies the spectral condition with high probability. Many
proofs are omitted but all details are present in the full version.

II. PRELIMINARIES

We first review in Section II-A some background in quan-
tum information theory about completely positive maps and
discuss the spectral gap condition stated in Definition I.4.
Then, we review the known results about the continuous
operator scaling algorithm in Section II-B

A. Positive Linear Maps, Quantum Expanders

First, we define completely positive linear maps and their
natural matrix representation in Section II-A1. Then, in Sec-
tion II-A2, we present the spectral gap condition in Defi-
nition I.4 using this language, and compare to the notion
of quantum expanders studied in the literature. Finally, we



introduce the Choi matrix in Section II-A3 and state some
facts about tensors and completely positive maps that we will
use in our proof.

1) Completely Positive Linear Map: Given A =
(A1, . . . , Ak) where Ai ∈ Rm×n for 1 ≤ i ≤ k, it can be
used to define a linear map Φ : Rn×n → Rm×m as

ΦA(Y ) =

k∑
i=1

AiY A
∗
i and Φ∗A(X) =

k∑
i=1

A∗iXAi,

(II.1)
where Φ∗ : Rm×m → Rn×n is the adjoint map so that
〈X,Φ(Y )〉 = 〈Φ∗(X), Y 〉 for any X ∈ Rm×m and Y ∈
Rn×n, where 〈P,Q〉 := tr(P ∗Q) =

∑
i,j P

∗
ijQij is the

Hilbert-Schmidt inner product.

Definition II.1 (Completely Positive Map). A linear map Φ
is positive if Φ(Y ) � 0 for every Y � 0, where Y � 0
denotes that Y is a positive semidefinite matrix. A linear map
Φ is completely positive if Φ⊗ Il is positive for every natural
number l ≥ 1 (see [61] for more details).

Theorem II.2 (Choi [12]). A linear map Φ is completely
positive if and only if it can be written as the form described
in (II.1).

The matrices A1, . . . , Ak are called the Kraus operators of
Φ. Note that the Kraus operators are not uniquely defined for
a linear map Φ.

Definition II.3 (Doubly Balanced Map). A linear map Φ is
called unital if Φ(In) = Im. A linear map Φ is called trace
preserving if Φ∗(Im) = In (which implies that tr(Φ(Y )) =
tr(Y ) for any Y ∈ Rn×n). A linear map Φ is called doubly
balanced if there exists c > 0 such that c

√
nΦ is unital and

c
√
mΦ is trace preserving.

Using this terminology, the operator scaling problem can
be rephrased as given the Kraus operators (A1, . . . , Ak) of a
completely positive map, find a left scaling matrix L and a
right scaling matrix R so that the completely positive map
defined by the Kraus operators (LA1R, . . . , LAkR) is non-
zero doubly balanced.

For each completely positive linear map Φ, we can associate
a matrix representation describing the same linear transforma-
tion.

Definition II.4 (Natural Matrix Representation). Given a lin-
ear map Φ : Rn×n → Rm×m, we can interpret it as a
matrix MΦ : Rn2 → Rm2

by vectorizing the input and output
matrices such that

MA · vec(Y ) = vec(Φ(Y )),

where vec : Rn×n → Rn2

is the linear map satisfying
vec(Ei,j) = ei ⊗ ej for all 1 ≤ i, j ≤ n, where Ei,j is the
n×n matrix with one in the (i, j)-th entry and zero otherwise
and ei ∈ Rn is the vector with one in the i-th entry and zero
otherwise.

There is a one-to-one correspondence between the ma-
trix representations and the linear maps. Given a matrix

M : Rn2 → Rm2

, we can also interpret it as a map
ΦM : Rn×n → Rm×m by matrixizing the input and output
vectors such that

ΦM (mat(y)) = mat(MA · y),

where mat : Rn2 → Rn×n is the linear map satisfying
mat(ei ⊗ ej) = Ei,j .

The matrix representation of a completely positive map has
a nice form in terms of its Kraus operators.

Fact II.5 (Proposition 2.20 in [61]). Given a completely pos-
itive map ΦA with Kraus operators A, the matrix representa-
tion MA can be written in the form described in Definition I.4
such that

MA =

k∑
i=1

Ai ⊗Ai.

2) Spectral Gap Condition and Quantum Expanders: Given
the correspondence between the completely positive linear
map ΦA and the natural matrix representation MA, the spectral
gap condition in Definition I.4 can be presented as follows.

Definition II.6 (Spectral Gap Condition of Φ). Given an
operator A = (A1, . . . , Ak) ⊂ Rm×n, let

σ1(ΦA) := max
Y ∈Rn×n

‖Φ(Y )‖F
‖Y ‖F

= max
y∈Rn2

‖MA · y‖2
‖y‖2

,

and Y1, y1 := vec(Y1) as maximizers to the above. Let

σ2(ΦA) := max
Y⊥Y1

‖Φ(Y )‖F
‖Y ‖F

= max
y⊥y1

‖MA · y‖2
‖y‖2

The spectral gap condition in Definition I.4 is equivalent to
σ2(ΦA) ≤ (1− λ)s(A)/

√
mn.

The concept of quantum expander was studied by Hast-
ings [35] and Ben-Aroya, Schwartz, and Ta-Shma [7], which
was stated using the above language with m = n.

Definition II.7 (Quantum Expander [7], [35]). An operator
A = (A1, . . . , Ak) where each Ai ∈ Rn×n is called a (1−λ)-
quantum expander if

1) The largest singular value is s(A)/n and the identity
matrix In is the largest left and right singular vector, i.e.

σ1(ΦA) =
‖Φ(In)‖F
‖In‖F

=
s(A)

n
.

2) For any Y orthogonal to In, it holds that

max
Y⊥In

‖Φ(Y )‖F
‖Y ‖F

= σ2(ΦA) ≤ (1− λ)s(A)

n
.

In [7], [35], the map Φ is defined as 1
k

∑k
i=1 UiY U

∗
i , where

Ui ∈ Rn×n is a unitary matrix. Then, the size of this operator
is equal to n, and the largest singular value is 1 achieved at
the identity matrix.

When the operator A is ε-nearly doubly balanced, we will
show in Lemma III.5 that σ1(ΦA) ≤ (1 + ε)s(A)/

√
mn and

In is an approximate optimizer. Therefore, in the case m = n,
the spectral gap condition in Definition I.4 is a more relaxed



version of the quantum expander definition in [7], where we
do not require In to be the optimizer (but only an approximate
optimizer).

From random matrix theory [58], almost all random non-
negative matrices (from reasonable distributions) have a con-
stant spectral gap, i.e. λ is a constant. For random operators,
Hastings [35] proved that the operator A has an almost
Ramanujan spectral gap with λ = 1 − 2

√
k − 1/k if each

Ai is a random unitary matrix. This result has been extended
recently by Gonźalez-Guilén, Junge and Nechita to more
general distributions [24]. It is reasonable to expect that most
random operators have a constant spectral gap. There are also
deterministic constructions of quantum expanders [7]. See [7],
[35] for some applications of quantum expanders.

3) Choi Matrix and Useful Facts: There is another matrix
representation that is useful in studying completely positive
linear maps.

Definition II.8 (Choi Matrix). Given a completely positive
linear map ΦA : Rn×n → Rm×m, the Choi matrix QA ∈
Rmn×mn is defined as

QA :=

n∑
i=1

n∑
j=1

ΦA(Ei,j)⊗ Ei,j .

Using the Choi matrix, we can rephrase the operator scaling
problem as finding left scaling matrix L ∈ Rm×m and right
scaling matrix R ∈ Rn×n so that the scaled Choi matrix P :=
(L⊗R)Q(L⊗R)∗ satisfies

trn(P ) =
s

m
Im and trm(P ) =

s

n
In,

where the partial trace operations trn and trm are linear
functions that satisfy trn(X ⊗ Y ) := tr(Y ) ·X and trm(X ⊗
Y ) = tr(X)·Y for X ∈ Rm×m and Y ∈ Rn×n. This phrasing
of the operator scaling problem is in line with the more general
quantum marginal problem [11].

The following facts will be useful in our proofs. All but (4)
are relatively straightforward.

Fact II.9. In the following, ΦA is the completely positive map
with Kraus operators A = (A1, . . . , Ak) where each Ai ∈
Rm×n.

1) For any matrices A,X ∈ Rm×m and B, Y ∈ Rn×n,

(A⊗B)(X ⊗ Y ) = AX ⊗BY and

〈A⊗B,X ⊗ Y 〉 = 〈A,X〉〈B, Y 〉.

2) ΦA(Y ) � 0 for any Y � 0.
3) For any X ∈ Rm×m and Y ∈ Rn×n,

〈QA, X ⊗ Y 〉 = 〈X,ΦA(Y )〉 = 〈Φ∗A(X), Y 〉.

4) Let L ∈ Rm×m and R ∈ Rn×n and define the scaled
operator LAR := {LA1R, . . . , LAkR}. Then,

ΦLAR(In) = L · ΦA(RR∗) · L∗

Φ∗LAR(Im) = R∗ · Φ∗A (L∗L) ·R.

B. Continuous Operator Scaling

The continuous operator scaling algorithm was studied
in [45]. We collect the definitions and the results that we will
use in this subsection. We start with some definitions about
operator scaling that we have already stated in the introduction.

1) Operator Scaling:

Definition II.10 (Operator). An operator A is defined by a
tuple of m×n matrices A = (A1, . . . , Ak) where Ai ∈ Rm×n
for 1 ≤ i ≤ k.

Definition II.11 (Size of an Operator). The size of an operator
A is defined as

s(A) =

k∑
i=1

‖Ai‖2F =

k∑
i=1

tr(AiA
∗
i ) = tr(ΦA(In)).

Definition II.12 (ε-nearly Doubly Balanced Operator). An
operator A is called ε-nearly doubly balanced if

(1− ε) s
m
Im �

k∑
i=1

AiA
∗
i = ΦA(In) � (1 + ε)

s

m
Im

(1− ε) s
n
In �

k∑
i=1

A∗iAi = Φ∗A(Im) � (1 + ε)
s

n
In.

A is called doubly balanced when ε = 0.

Definition II.13 (`2-error). Given an operator A, define

∆(A) =
1

m

∥∥∥∥∥sIm −m
k∑
i=1

AiA
∗
i

∥∥∥∥∥
2

F

+
1

n

∥∥∥∥∥sIn − n
k∑
i=1

A∗iAi

∥∥∥∥∥
2

F

Definition II.14 (Error Matrices). We define the error matrices
as

E := sIm −m
k∑
i=1

AiA
∗
i , F := sIn − n

k∑
i=1

A∗iAi.

Note that tr(E) = tr(F ) = 0, as

tr(E) = tr

(
sIm −m

k∑
i=1

AiA
∗
i

)
= sm−ms = 0,

where the last equality is by Definition II.11. Also, we write

∆E :=
1

m
‖E‖2F and ∆F :=

1

n
‖F‖2F

so that ∆ = ∆E + ∆F .

Lemma II.15 (Lemma 3.6.1 in [45]). For an ε-nearly doubly
balanced operator A,

∆(A) ≤ 2ε2s(A)2.



2) Dynamical System:

Definition II.16 (Dynamical System). The following dynami-
cal system describes how A changes over time in the contin-
uous operator scaling algorithm:

d

dt
Ai := EAi +AiF for 1 ≤ i ≤ k.

It can be shown (full version) that the dynamical system is
equivalent to the gradient flow with potential function ∆(A).

It is shown in [45] that the dynamical system will converge
to a solution A(∞) with ∆(A(∞)) = 0. The following lemmas
describe how the different quantities evolve in the dynamical
system. We use the superscript (t) to represent the quantity of
interest at time t in the dynamical system, and omit it when
the time t is clear from context.

Lemma II.17 (Lemma 3.4.2 in [45]). The change of the size
of the operator A(t) at time t is

d

dt
s(t) = −2∆(t).

The following lemma was proved directly in [45]. It can
also be seen as a consequence that the dynamical system is
the gradient flow on ∆.

Lemma II.18 (Lemma 3.4.3 in [45]). The change of ∆(t) at
time t is

d

dt
∆(t) = −4

(
k∑
i=1

∥∥∥∥ ddtA(t)
i

∥∥∥∥2

F

)
.

The following result was used in [45] for the smoothed
analysis when the dynamical system has linear convergence.

Lemma II.19 (Proposition 4.3.1 in [45]). Suppose there exists
µ > 0 such that for all 0 ≤ t ≤ T ,

− d

dt
∆(t) ≥ µ∆(t).

Then

∆(T ) ≤ ∆(0)e−µT and s(0) − s(T ) ≤ 2∆(0)

µ
.

3) Operator Capacity:

Definition II.20 (Capacity). The capacity of an operator A is
defined as

cap(A) := inf
X�0

mdet
(∑k

i=1AiXA
∗
i

)1/m

det(X)1/n
.

It was shown in [45] that the convergence rate of ∆ can be
used to derive a lower bound on operator capacity.

Proposition II.21 (Proposition 4.3.1 in [45]). Suppose there
exists µ > 0 such that for all t ≥ 0, it holds that

− d

dt
∆(t) ≥ µ∆(t).

Then, it follows that

cap(0) ≥ s(0) − 2∆(0)

µ
.

III. SPECTRAL ANALYSIS OF OPERATOR SCALING

We present the main technical results in this section.

A. Overview

The main goal is to show that the dynamical system in
Definition II.16 has linear convergence. Let A be an ε-nearly
doubly balanced operator with λ-spectral gap. Assuming λ2 ≥
Cε lnm for a sufficiently large constant C, we will prove that
for all time t ≥ 0,

− d

dt
∆(t) ≥ λs(0)∆(t).

We start by looking more closely at the expression for the
change of ∆.

Lemma III.1. The change of ∆ is

−1
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d

dt
∆ = 〈E2,Φ(In)〉+ 〈F 2,Φ∗(Im)〉+ 2〈Q,E ⊗ F 〉.

We call the terms 〈E2,Φ(Im)〉 and 〈F 2,Φ∗(In)〉 the
quadratic terms as they are always non-negative, and we call
the term 2〈Q,E⊗F 〉 the cross term. The proof outline is the
following:

1) In Section III-B, we prove a structural result that bounds
the operator norms of E(t) and F (t) throughout the dy-
namical system using the envelope theorem. This implies
a bound on the operator norm of Φ(t)(In) and Φ(t)∗(Im),
which is used to show that the sum of the quadratic terms
is at least (1− ε)s∆.

2) In Section III-C, we bound the largest singular value of
the matrix MA and show that I is an approximate largest
singular vector, and then we use a spectral argument to
upper bound the absolute value of the cross term to be
at most (1 + ε− λ)s∆.

3) These two parts combine to show that −∆′ ≥ λs∆
when the spectral gap condition holds. To prove the linear
convergence for all time t ≥ 0, we need to prove that
the spectral gap condition is maintained throughout the
dynamical system. To do this, we bound the condition
number of the scaling solutions in Section III-E, and use it
to conclude that the spectral gap condition and the linear
convergence hold throughout in Section III-F.

In Section III-G and Section III-H, we use the results to
prove Theorem I.7 and Theorem I.8 about condition number
and operator capacity respectively.

Finally, in Section III-I, we explain how to discretize
the gradient flow to obtain a discrete algorithm with linear
convergence under the spectral assumption.

B. Lower Bounding the Quadratic Terms

First, we prove a structural result bounding the operator
norm of the error matrices E(t) and F (t) for all t ≥ 0 in
Proposition III.2, which will also be useful in bounding the
condition number of the scaling solution in Section III-E. Then
we will use this proposition to lower bound the quadratic
terms.



Proposition III.2. If A(0) is ε-nearly doubly balanced, then
for any t ≥ 0,

max{‖E(t)‖op, ‖F (t)‖op} ≤ (1 + ε)s(0) − s(t).

Proof. The main idea is to show that the change of the
quadratic form d

dtu
∗E(t)u in the direction u achieving∥∥E(t)

∥∥
op

is at most 2∆(t), and then to use it to conclude

that
∥∥E(t)

∥∥
op
≤
∥∥E(0)

∥∥
op

+
∫ t

0
2∆(τ)dτ to complete the

proof using Lemma II.17. Note that the direction u achieving∥∥E(t)
∥∥

op
varies over time t. To turn this idea into a formal

proof, we use the generalized envelope theorem proven by
Milgrom and Segal [49].

We have the following corollary by rewriting the conclu-
sions of Proposition III.2 using the definitions that E(t) =
sIm −mΦ(t)(In) and F (t) = sIn − nΦ(t)∗(Im).

Proposition III.3. If A(0) is ε-nearly doubly balanced, then
for any t ≥ 0,

2s(t) − (1 + ε)s(0)

m
Im � Φ(t)(In) � (1 + ε)s(0)

m
Im

2s(t) − (1 + ε)s(0)

n
In � Φ(t)∗(Im) � (1 + ε)s(0)

n
In.

We can use Proposition III.3 to lower bound the quadratic
terms in Lemma III.1.

Lemma III.4. If A(0) is ε-nearly doubly balanced, then for
any t ≥ 0, the quadratic terms are at least(

2s(t) − (1 + ε)s(0)
)

∆(t)

C. Upper Bounding the Cross Term

We will first bound the largest singular value of the matrix
MA for any ε-nearly doubly balanced operator A. Then, we
will use a spectral argument to upper bound the absolute value
of the cross term in Lemma III.1.

Given a non-negative matrix, it is known that the square of
the largest singular value is bounded by the product of the
maximum row sum and the maximum column sum (see [38]).
The proof of this bound is generalized to prove the following.

John Watrous provided a different proof of Lemma III.5 by
generalizing the proof of Theorem 4.27 in his book [61]. We
include his proof in the Appendix of the full version.

Lemma III.5. If A is an ε-nearly doubly balanced operator,
then the largest singular value of its matrix representation MA
in Definition I.4 is

σ1(MA) ≤ (1 + ε)
s(A)√
mn

.

Lemma III.5 implies that vec(In) is an “approximate” first
singular vector of MA. By the spectral gap condition in
Definition I.4, it will follow that any vector perpendicular to
vec(In) has a “small” quadratic form of MA, and this can be
used to bound the cross term in Lemma III.1. The following

lemma summarizes the spectral argument, which will be used
to bound the cross term in the next lemma.

Lemma III.6. Let A ∈ Rm×n. Let p ∈ Rm and q ∈ Rn be
unit vectors. Suppose the following assumptions hold:

σ1(A)2 ≤ 1 + δ1 and σ2(A)2 ≤ 1− δ2 and p∗Aq = 1.

Then, for any unit vectors x ⊥ p and y ⊥ q, it holds that

|x∗Ay| ≤ 1 + δ1 − δ2.

We use Lemma III.6 to bound the cross term in Lemma III.1.

Lemma III.7. If A satisfies the spectral gap condition in
Definition I.4 with the additional assumption that σ1(MA) ≤
(1 + δ)s(A)/

√
mn for δ ≤ 1, then

2|〈QA, E ⊗ F 〉| ≤ (1 + 3δ − λ)s∆.

Proof Sketch. Note that the cross term

〈QA, E ⊗ F 〉 = 〈E,ΦA(F )〉 = vec(E) ·MA · vec(F ),

where the first equality is by Fact II.9(3) and the second
equality is by the definition of matrix representation in Defi-
nition II.4.

To prove the lemma, we apply Lemma III.6 with
√
mn
s MA,

p :=
1√
m

vec(Im) ∈ Rm
2

, q :=
1√
n

vec(In) ∈ Rn
2

,

and

x :=
1√
m∆E

vec(E) ∈ Rm
2

y :=
1√
n∆F

vec(F ) ∈ Rn
2

.

D. Lower Bounding the Convergence Rate

Putting the bounds in Lemma III.4 and Lemma III.7 into
Lemma III.1, we obtain the following lower bound on the
convergence rate of ∆ at any time t.

Proposition III.8. If A(0) is ε-nearly doubly balanced and the
matrix representation MA(t) of A(t) satisfies

σ1(MA(t)) ≤ (1+δ(t))
s(t)

√
mn

, σ2(MA(t)) ≤ (1−λ(t))
s(t)

√
mn

,

then

−1

4

d

dt
∆(t) ≥

(
(1− 3δ(t) + λ(t))s(t) − (1 + ε)s(0)

)
∆(t).

Note that Proposition III.8 implies that the dynamical sys-
tem has linear convergence at time t = 0. To see this, note that
δ(0) ≤ ε by Lemma III.5, and λ(0) = λ from Definition I.4,
and therefore

− d

dt
∆(0) ≥ 4(λ− 4ε)s(0)∆(0).

Under our assumption that λ � ε, the dynamical system has
linear convergence at time t = 0 with rate λs(0).

To prove that the dynamical system has linear convergence
with rate λs(0) for all time t ≥ 0, we prove that the quantities



in Proposition III.8 do not change much, i.e. s(t) ≈ s(0), δ(t) ≈
δ(0), and λ(t) ≈ λ.

To bound the change of the singular values of MA(t) , we
bound the condition number of the scaling solutions in the
dynamical system in Section III-E, and then use these bounds
to argue about the change of the singular values and establish
Theorem I.5 in Section III-F.

E. Scaling Solutions and Condition Numbers

Using the theory of product integration as presented in
Slavik’s book [55], we can find a closed form solution to the
scaling given by the dynamical system and bound the condition
number of the scaling solutions.

Corollary III.9. For any T ≥ 0,∥∥∥L(T ) − I
∥∥∥

op
≤ exp

(∫ T

0

‖E(t)‖op dt

)
− 1.

This corollary will be used to bound the condition number
of L(T ) in Lemma III.10, which will then be used to bound
the condition number of R(T ) in Lemma III.12.

To bound the condition number, we use Corollary III.9 and
bound the integral in the exponent. To bound the integral, we
divide the time into two phases. In the first phase, we use
Proposition III.2 to argue that

∥∥E(t)
∥∥

op
≈
∥∥E(0)

∥∥
op

. In the
second phase, we use that ∆(t) is converging linearly to argue
that

∥∥E(t)
∥∥

op
≤
∥∥E(t)

∥∥
F
≤
√
m∆(t) is converging linearly.

In the following lemma, we should think of g as the spectral
gap parameter in Definition I.4.

Lemma III.10. Suppose there exists g > 0 such that for all
0 ≤ t ≤ T , it holds that

− d

dt
∆(t) ≥ gs(0)∆(t).

If A(0) is ε-nearly doubly balanced for ε ≤ g, then∥∥∥L(T ) − I
∥∥∥

op
≤ exp

(
O

(
ε lnm

g

))
− 1.

Remark III.11. We have some examples indicating that the
logm term in the condition number is necessary, but we do
not have a formal proof for this lower bound at this time.

We cannot use the same argument to bound
∥∥R(T ) − I

∥∥
op

,
as it will only give us a bound with dependency on n
(where we assumed m ≤ n). Instead, we use the bound on∥∥L(T ) − I

∥∥
op

to derive a similar bound on
∥∥R(T ) − I

∥∥
op

.

Lemma III.12. Suppose there exists g > 0 such that for all
0 ≤ t ≤ T , it holds that

− d

dt
∆(t) ≥ gs(0)∆(t).

If A(0) is ε-nearly doubly balanced for ε ≤ g, and ε, ` ≤ 1
2 :∥∥∥L(T ) − I

∥∥∥
op
≤ ` =⇒

∥∥∥R(T ) − I
∥∥∥

op
≤ O(`+ ε).

F. Invariance of Linear Convergence

We will first use Lemma III.10 and Lemma III.12 to bound
the change of the singular values of MA(t) . Then, we will
combine the previous results to prove Theorem I.5 that ∆(t)

is converging linearly for all t ≥ 0.
To bound the change of the singular values, we use the

following inequality.

Lemma III.13 (Theorem 3.3.16 in [37]). Let A and B be two
m× n matrices. For any 1 ≤ k ≤ m,

|σk(A)− σk(B)| ≤ σ1(A−B) = ‖A−B‖op .

The following lemma bounds the change of the singular
values after scaling the operator.

Lemma III.14. For any t ≥ 0, suppose
∥∥L(t) − Im

∥∥
op
≤ ζ

and
∥∥R(t) − In

∥∥
op
≤ ζ for some ζ ≤ 1, then

|σk(MA(t))− σk(MA(0))| ≤ O(ζ) · ‖MA(0)‖op .

We are ready to put together the results to prove the
following theorem which implies Theorem I.5.

Theorem III.15. If A(0) is ε-nearly doubly balanced and A(0)

satisfies the λ-spectral gap condition in Definition I.4 with
λ2 ≥ Cε lnm for a sufficiently large constant C, then for all
t ≥ 0 it holds that

− d

dt
∆(t) = λs(0)∆(t).

Proof. Recall from Proposition III.8 the definitions of δ(t) and
λ(t), and δ(0) ≤ ε by Lemma III.5 and λ(0) = λ from Defini-
tion I.4. Let T be the supremum such that s(t) ≥ (1− ε)s(0)

and λ(t) − 3δ(t) ≥ 1
2 (λ(0) − 3δ(0)). Our goal is to prove that

∆(t) is converging linearly for 0 ≤ t ≤ T and T is unbounded.
First, we show that ∆(t) is converging linearly for 0 ≤ t ≤

T . By Proposition III.8,

− d

dt
∆(t) ≥ 4

(
(1 + λ(t) − 3δ(t))s(t) − (1 + ε)s(0)

)
∆(t)

=
(

2(1− ε)(λ(0) − 3δ(0))− 8ε
)
s(0)∆(t),

where we used that s(t) ≥ (1 − ε)s(0) and λ(t) − 3δ(t) ≥
1
2 (λ(0) − 3δ(0)) for 0 ≤ t ≤ T . Note that our assumption
implies that λ(0) = λ ≥ Cε for a sufficiently large constant
C as λ ≤ 1. Since δ(0) ≤ ε from Lemma III.5, it follows that
for any 0 ≤ t ≤ T ,

− d

dt
∆(t) ≥ λs(0)∆(t).

Next, we argue that the size condition and the spectral gap
condition will still be maintained beyond time T . For the size
change, by Lemma II.19 with µ = λs(0),

s(0) − s(T ) ≤ 2∆(0)

λs(0)
≤ 4ε2s(0)

λ
� εs(0),

where the second inequality is by Lemma II.15 and the last
inequality is by λ ≥ Cε for a sufficiently large constant C.



For the change of the second largest singular value,

σ2(MA(T ))− σ2(MA(0)) ≥
s(0)

√
mn

(λ(0) − (1− ε)λ(T ) − ε).

On the other hand, we can upper bound σ2(MA(T )) −
σ2(MA(0)) using condition numbers. Using Lemma III.10 with
g = λ, our assumption implies that∥∥∥L(T ) − I

∥∥∥
op
≤ O

(
ε lnm

λ

)
≤ O

(
λ

C

)
� 1

where the implication is by the inequality ex − 1 ≤ O(x)
for x close to zero. Then, by Lemma III.12, we also have∥∥R(T ) − I

∥∥
op
≤ O (λ/C). Putting these bounds into ζ of

Lemma III.14, we obtain

σ2(MA(t))− σ2(MA(0)) ≤ O
(
λ

C

)
(1 + δ

(0)
1 )s(0)

√
mn

.

Combining the upper bound and lower bound and using δ(0)
1 ≤

ε from Lemma III.5, it follows that

λ(T ) ≥ λ− ε− (1 + ε) ·O (λ/C)

1− ε
≥ λ−O

(
λ

C

)
,

where the last inequality is by the assumption that λ ≥ Cε.
For the change of the largest singular value, by Proposi-

tion III.3,

(1− 3ε)s(T )

m
Im � Φ(T )(In) � (1 + 3ε)s(T )

m
Im,

where the first and last inequalities use that s(T ) ≥ (1−ε)s(0).
The same holds for Φ(T )∗ and these imply that A(T ) is 3ε-
nearly doubly balanced. By Lemma III.5, this implies that
δ(T ) ≤ 3ε. Therefore,

λ(T ) − 3δ(T ) ≥ λ−O
(
λ

C

)
� 1

2
(λ− 3δ(0)),

where the second last inequality uses that C is a sufficiently
large constant.

Since our dynamical system is continuous, we still have
both conditions satisfied at time T + η for some η > 0, which
contradicts that T is the supremum that both conditions are
satisifed. Therefore, T is unbounded and the linear conver-
gence of ∆ is maintained throughout the execution of the
dynamical system.

G. Condition Number

With the invariance of the linear convergence, we can
apply Lemma III.10 and Lemma III.12 to bound the condition
number of the scaling solutions and prove Theorem I.7

Theorem III.16. If A(0) is ε-nearly doubly balanced and A(0)

satisfies the λ-spectral gap condition in Definition I.4 with
λ2 ≥ Cε logm for a sufficiently large constant C, then for
any t ≥ 0,

max{κ
(
L(t)

)
, κ
(
R(t)

)
} ≤ 1 +O

(
ε logm

λ

)
.

In particular, these bounds hold for the final scaling solutions
L(∞) and R(∞).

H. Operator Capacity

Theorem I.8 follows easily from Theorem III.15.

Theorem III.17. If A(0) is ε-nearly doubly balanced and A(0)

satisfies the λ-spectral gap condition in Definition I.4 with
λ2 ≥ Cε lnm for a sufficiently large constant C, then

cap(0) ≥
(

1− 4ε2

λ

)
s(0).

Proof. By Theorem III.15, ∆(t) is linearly converging for all
time t with rate λs(0). Apply Proposition II.21 with µ = λs(0),

cap(0) ≥ s(0) − 2∆(0)

λs(0)
≥ s(0) − 4ε2s(0)

λ
=

(
1− 4ε2

λ

)
s(0),

where the second inequality is by Lemma II.15.

I. Discrete Gradient Flow

The gradient flow can be discretized to give a polynomial
time algorithm with linear convergence when the input has a
spectral gap. The analysis follows closely the continuous case,
so we will just provide a sketch.

Recall that the gradient flow is defined as

d

dt
Ai := EAi +AiF,

where E and F are the error matrices (Definition II.14) of the
current operator A.

In the discrete case, a natural update step is

Ãi ← Ai + α(EAi +AiF )

for some small step size α, but the problem of this update
step is that Ã may not be a scaling of A. So we modified the
discrete algorithm slightly as follows. In each step, we update

Ãi ← (Im + αE)Ai(In + αF ),

where α is the step size. This update is to maintain that the
current operator is a scaling of the original operator.

We assume that s = 1 and ∆ ≤ 1 initially. We will set the
step size to be α = O((m + n)−2) for the same analysis in
the continuous case to go through. With this choice of the step
size, we can show that

s(A)− s(Ã) ≤ 4α∆(A),

by expanding the change of the size s and use the small step
size α to argue that the higher order terms are negligible.
By a similar but more tedious calculation (since the degree is
higher), we can also show that∣∣∣∣∆(Ã)−

(
∆(A)− α d

dt
∆

)∣∣∣∣ ≤ O(αs2∆(A)),

where d
dt∆ is the change of ∆ in the continuous case. This is

also the step that we need α = O((m+ n)−2) to hold. Since
we know − d

dt∆ ≥ λs∆, this implies that

∆(Ã) ≤ (1− 1

2
αλs)∆(A),



that ∆ is decreasing geometrically with rate λs, when the
current operator A satisfies the spectral condition.

As in the continuous case, we use an inductive argument to
prove that the spectral gap condition is maintained to establish
that the convergence rate λs is maintained throughout the
algorithm. Again, we go through the condition number of the
error matrices, and use the arguments in Lemma III.14 to show
that the change of the singular value is

|σk(MÃ)− σk(MA)| ≤ O(αεs),

and it follows that the λ-spectral gap condition holds through-
out as

|λ(∞) − λ(0)| ≤ O
(
ε log(m+ n)

λ(0)

)
which is negligible when the spectral assumption (λ(0))2 �
ε log(m+ n) holds initially.

In the discrete algorithm, we will set the step size to be
α = Θ((m + n)−2). If the continuous algorithm converges
to an η-approximate solution in time T , the discrete algorithm
will converge to an η-approximate solution in T ·Θ((m+n)2)
number of iterations, and the dependency on η is log(1/η) by
Theorem I.5.

Remark III.18. The step size α = O((m+n)−2) is chosen for
the same analysis as in the continuous to hold. It is an inter-
esting open question whether the analysis can be extended to
constant step size, in particular whether Sinkhorn’s alternating
algorithm has the same convergence rate as the gradient flow.

IV. APPLICATIONS

In this section, we show some implications of our results in
various applications of the operator scaling problem.

A. Matrix Scaling

Given a non-negative matrix B ∈ Rm×n, let s(B) :=∑m
i=1

∑n
j=1Bi,j be the size of the matrix, ri(B) :=∑n

j=1Bi,j be the i-th row sum of B, and cj(B) :=
∑m
i=1Bi,j

be the j-th column sum of B. A non-negative matrix is called
ε-nearly doubly balanced if for every 1 ≤ i ≤ m and for every
1 ≤ j ≤ n,

(1− ε)s(B)

m
≤ ri(B) ≤ (1 + ε)

s(B)

m

(1− ε)s(B)

n
≤ cj(B) ≤ (1 + ε)

s(B)

n
,

and is called doubly balanced when ε = 0. A common setting
is when B is an n × n matrix when the average row sum is
equal to one, in which case s(B) = n and the matrix is called
“doubly stochastic” when every row sum and every column
sum are equal to one.

Definition IV.1 (Matrix Scaling Problem). We are given a non-
negative matrix B ∈ Rm×n, and the goal is to find a left
diagonal scaling matrix L ∈ Rm×m and a right diagonal
scaling matrix R ∈ Rn×n such that LBR is doubly balanced,
or report that such scaling matrices do not exist.

Outline: It can be shown that the matrix scaling problem
can be reduced to the operator scaling problem Then, we
will see that the spectral condition has a simple form in
Section IV-A2 , and there is a natural combinatorial condition
that implies the spectral condition in Section IV-A3. We then
argue that many random matrices will satisfy our condition
in Section IV-A4. Finally, we see the implications of our
results in several applications of matrix scaling, including
bipartite matching in Section IV-A5, permanent lower bound
in Section IV-A6, and optimal transportation in Section IV-A7.

1) Reduction to Operator Scaling: The matrix scaling
problem is a special case of the operator scaling problem.

Lemma IV.2. Given a non-negative matrix B ∈ Rm×n, let
A = (A11, . . . , Amn) be the operator where each Aij ∈
Rm×n for 1 ≤ i ≤ m and 1 ≤ j ≤ n is the matrix with
the (i, j)-th entry equal to

√
Bi,j and all other entries equal

to zero. Then, B is ε-nearly doubly balanced if and only if A
is ε-nearly doubly balanced. Furthermore, there is a solution
to the matrix scaling problem for B if and only if there is a
solution to the operator scaling problem for A.

2) Spectral Condition: The spectral condition for operator
scaling has a simple form for matrix scaling.

Lemma IV.3. Using the reduction from Lemma IV.2, the spec-
tral condition for operator scaling in Definition I.4 becomes

σ2(B) ≤ (1− λ)
s(B)√
mn

.

3) Combinatorial Condition: To better understand the spec-
tral gap condition in the matrix case, we present a natural
combinatorial condition that implies the spectral condition.

Definition IV.4 (Weighted Bipartite Graph, Conductance).
Given a non-negative matrix B ∈ Rm×n, we define its edge-
weighted bipartite graph GB as follows. In GB , there is one
vertex ui for each row i, one vertex vj for each column j, and
an edge ij with weight wij = Bij between ui and vj .

The conductance of an edge-weighted graph G = (V,E)
with w : E → R≥0 is defined as

φ(G) := min
S⊆V :vol(S)≤vol(V )/2

∑
i∈S
∑
j /∈S wij

vol(S)

where vol(S) :=
∑
i∈S
∑
j∈V wij .

Using Cheeger’s inequality from spectral graph theory, we
can show that B satisfies the spectral gap condition if its edge-
weighted bipartite graph has large conductance.

Lemma IV.5. If B ∈ Rm×n is ε-nearly doubly balanced for
ε ≤ 1/2, then

σ2(B) ≤ (1− 1

2
φ2(GB) + 3ε) · s(B)√

mn
.

where GB is the edge-weighted bipartite graph of B.



4) Random Matrices: One source of matrices satisfying
the spectral condition is random matrices. If we generate
B ∈ Rm×n≥0 as a random bipartite graph (e.g. each entry
is one with probability p independently), then the result-
ing graph has φ(GB) = Ω(1) with high probability by
standard probabilistic method. Also, B is ε-nearly doubly
balanced for small ε by standard concentration inequality
(e.g. ε = O(

√
logm/(pm)) in the above example). So, by

Lemma IV.5, the λ in Lemma IV.3 is Ω(1), which implies that
the assumption λ2 ≥ Cε lnm in Theorem I.5 is satisfied with
high probability. We can then apply our results to conclude
that for those matrices:

1) The continuous operator scaling algorithm converges
to a η-nearly doubly balanced solution in time t =
O(log(m/η)).

2) The condition number of the scaling solution is O(1)
from Theorem I.7.

3) The capacity of the matrix is close to s from Theorem I.8.
Indeed, the assumption λ2 ≥ Cε lnm in Theorem I.5 should

hold for a large class of random non-negative matrices where
each entry is an independent random variable with reasonable
distribution such as the chi-squared distribution [58], and even
for some limited dependent random matrices such as k-wise
independent random graphs. One can either verify the assump-
tion by using the combinatorial condition in Lemma IV.5, or
to bound the second largest singular value directly using the
trace method as in Section V.

5) Bipartite Matching: It is known that a matrix B ∈ Rn×n
can be scaled to arbitrarily close to doubly stochastic if
and only if the underlying bipartite graph has a perfect
matching [47], and so the decision version of the bipartite
perfect matching problem can be reduced to the matrix scaling
problem. Moreover, the doubly stochastic scaling solution
provides a fractional solution to the perfect matching problem,
which can be converted to an integral solution to the perfect
matching problem very efficiently using the random walks
technique in [23] (see also [48]).

Our results imply that the continuous operator scaling
algorithm can be used to find a fractional perfect matching
in an almost regular bipartite expander graph.

Corollary IV.6. Suppose G = (X,Y ;E) is a bipartite
graph with |X| = |Y | where each vertex v satisfies (1 −
ε)|E|/|X| ≤ deg(v) ≤ (1 + ε)|E|/|X| for some ε. If
φ(G)4 ≥ Cε ln |X| for some sufficiently large constant C, then
the gradient flow converges to an η-nearly doubly balanced
scaling (i.e. η-nearly perfect fractional matching) in time
t = O(log |X| log(1/η)/φ2(G)).

We remark that our results also imply that the second-
order methods for matrix scaling in [2], [13] are near linear
time algorithms for the instances in Corollary IV.6. This is
because the condition number κ of the scaling solution for
those instances is a constant by Theorem I.7 and the algorithms
in [2], [13] have time complexity Õ(|E| log κ). We also note
that classical combinatorial algorithms can also achieve a
similar running time in the instances in Corollary IV.6.

6) Permanent Lower Bound: Given a matrix A ∈ Rn×n,
the permanent is defined as

per(A) =
∑
π∈Sn

n∏
i=1

ai,π(i)

where Sn is the set of all permutations of n elements.
Linial, Samorodnitsky, and Wigderson [47] used the matrix
scaling algorithm to design a deterministic en-approximation
algorithm for computing the permanent of a non-negative n×n
matrix. The algorithm works by scaling the input matrix to a
doubly stochastic matrix and keeping track of the change of
the permanent, and then use the results in Van der Waerden’s
conjecture that any doubly stochastic matrix has permanent at
least n!/nn and at most one to conclude the en-approximation.

For matrices satisfying the spectral gap condition in
Lemma IV.3 (e.g. random matrices in Section IV-A4), we can
use the capacity lower bound in Theorem I.7 to argue that the
continuous operator scaling algorithm doesn’t do much, and
thus to establish a permanent lower bound for those matrices
similar to that of Van der Waerden’s.

To see the proof, we first define the capacity of a matrix.

Definition IV.7 (Matrix Capacity). Given a matrix B ∈ Rm×n,
define

cap(B) := inf
x∈Rn,x>0

m
(∏m

i=1

(
Bx
)
i

)1/m(∏n
j=1 xj

)1/n
The following lemma is probably known but it was not

stated in the literature.

Lemma IV.8. Following the reduction in Lemma IV.2 from
matrix scaling of B to operator scaling of A, we have
that cap(B) in Definition IV.7 is equivalent to cap(A) in
Definition II.20.

We are ready to prove the main result in this subsubsection.

Corollary IV.9. If a non-negative matrix B ∈ Rn×n is ε-
nearly doubly balanced with s(B) = n and it satisfies the
λ-spectral gap condition in Definition ?? with λ2 ≥ Cε log n
for some sufficiently large constant C, then

1 ≥ per(B) ≥ exp

(
−n
(

1 + Θ

(
ε2

λ

)))
.

Proof. Let B ∈ Rn×n be the input non-negative matrix with
s(B) = n. Find the scaling solution L,R such that LBR
is doubly stochastic (i.e. every row sum and every column
sum equal to one), which is guaranteed to exist under our
assumptions. Gurvits [29], [31] defined the (unnormalized)
capacity of B ∈ Rn×n as

cap(B) = inf
x∈Rn,x>0

∏n
i=1(Bx)i∏n
j=1 xj

.

Note that cap(LBR) = det(L) · det(R) · cap(B) and also
per(LBR) = det(L) · det(R) · per(B). Using the fact that
cap(A) = 1 for a doubly stochastic matrix A [20], [29],

cap(B) =
cap(B)

cap(LBR)
=

per(B)

per(LBR)
.



Note that cap(B) = (cap(B)/n)n, and so the results on Van
der Waerden’s conjecture imply that

per(B) =

(
cap(B)

n

)n
· per(LBR) ≥

(
cap(B)

n

)n
· e−n

If B is ε-nearly doubly balanced with s(B) = n and B satisfies
the spectral gap condition in Definition ??, then Theorem I.8
and Lemma IV.8 imply that

cap(B) = cap(A) ≥
(

1− 4ε2

λ

)
s(A) =

(
1− 4ε2

λ

)
n,

where A is the operator in the reduction from Lemma IV.2.
Therefore, we conclude that

per(B) ≥
(

1− 4ε2

λ

)n
· e−n = exp

(
−n
(

1 + Θ

(
ε2

λ

)))
.

Example IV.10. If B is a random matrix where each entry Bij
is an independent random variable g2

ij , where gij is sampled
from the normal distribution N(0, 1/n), then λ = Ω(1) and
ε =

√
log n/n with high probability. Hence, the conditions in

Corollary IV.9 are satisfied and it follows that

per(B) ≥ exp(−n−O(log n)) = e−n/poly(n).

So, the permanent of a random matrix from this distribution
has a Van der Waerden’s type lower bound even though it is
not doubly stochastic.

7) Optimal Transport Distance: Given two probability dis-
tributions and a cost function C, the optimal transport distance
is the earth mover distance to move from one distribution
to another distribution under the cost function. When the
two probability distributions are discrete, the cost function
can be represented as a cost matrix C, and the problem of
computing the optimal transport distance can be formulated as
the assignment problem (i.e. a generalization of the minimum
cost perfect matching). So the problem can be solved in
polynomial time and there is a linear programming formulation
for the problem. In large scale data analysis, however, the
polynomial time algorithms are not fast enough.

Using the maximum entropy principle, Cuturi [14] pro-
posed to add an entropic regularizer to the linear program,
and showed that the optimal solution is the matrix scaling
solution to a matrix K associated to C (more precisely
Ki,j = exp(−Ci,j/β) where β is a parameter in the reg-
ularizer). Cuturi showed that the Sinkhorn’s algorithm for
matrix scaling is very efficient in computing the optimal
solution to the regularized linear program, and he even men-
tioned that Sinkhorn’s algorithm exhibits linear convergence in
practice [14]. Since then the “Sinkhorn distance” becomes a
popular alternative/approximation to the earth mover distance
and is used in computer vision and machine learning research;
see the book [52] and the references therein. Theorem I.5 pro-
vides a condition to establish the linear convergence observed,
which is satisfied in many random matrices as discussed in
Section IV-A4.

Also, it is of interest to bound the Sinkhorn distance, which
is shown in [14], [52] to be at most

〈ef
∗/β , (K ◦ C) · eg

∗/β〉,

where f∗ and g∗ are the scaling solutions to K and β is
the regularizer parameter. This result states that the distance
is small if the condition number of the scaling solution is
small. Theorem I.7 provides a condition to bound the condition
number to bound the Sinkhorn distance.

B. Frame Scaling

A frame is a collection of vectors U = (u1, . . . , un) where
each ui ∈ Rd for 1 ≤ i ≤ n. The size of a frame U is defined
as s(U) :=

∑n
i=1 ‖ui‖

2
2. A frame U is called ε-nearly doubly

balanced if

(1− ε)s(U)

d
Id �

n∑
i=1

uiu
∗
i � (1 + ε)

s(U)

d
Id

(1− ε)s(U)

n
In � diag

({
‖ui‖22

}n
i=1

)
� (1 + ε)

s(U)

n
In,

and is called doubly balanced when ε = 0.

Definition IV.11 (Frame Scaling Problem). Given a frame
U = (u1, . . . , un) where each ui ∈ Rd, the goal is to find
a matrix M ∈ Rd×d such that vi = Mui/ ‖Mui‖ satisfies∑n
i=1 viv

∗
i = Id.

Outline: It can be shown that the frame scaling problem can
be reduced to the operator scaling problem in Section IV-B1.
Then, we will see that the spectral condition has a nice
form in Section IV-B2, and explain that random frames will
satisfy our condition in Section IV-B3. Finally, we show a
significant implication of our results to the Paulsen problem
in Section IV-B4 and a construction of doubly stochastic frame
with small inner products in Section IV-B5.

1) Reduction to Operator Scaling: The frame scaling prob-
lem is a special case of the operator scaling problem.

Lemma IV.12. Given a frame U = (u1, . . . , un) where each
ui ∈ Rd, let A = (A1, . . . , An) where each Ai ∈ Rd×n
for 1 ≤ i ≤ n is the matrix with the i-th column being
ui and all other columns equal to zero. Then, U is ε-nearly
doubly stochastic if and only if A is ε-nearly doubly stochastic.
Furthermore, there is a solution to the frame scaling problem
for U if and only if there is a solution to the operator scaling
problem for A.

2) Spectral Condition: The spectral condition for operator
scaling is related to the following Hermitian matrix.

Definition IV.13 (Entrywise Squared Gram Matrix). Given a
frame U = (u1, . . . , un) where each ui ∈ Rd, the squared
Gram matrix G ∈ Rn×n is defined as Gi,j = 〈ui, uj〉2 for
1 ≤ i, j ≤ n.

Note that G is a positive semidefinite matrix. To see this,
let V be the d × n matrix with the i-th column being ui.
Then, we can write G = (V ∗V )◦ (V ∗V ) where ◦ denotes the
Hadamard (or entrywise) product of two matrices. As V ∗V



is a positive semidefinite matrix, G is a positive semidefinite
matrix by the Schur product theorem. The spectral condition
in Definition I.4 translates to the following spectral condition
for the squared Gram matrix in the frame scaling case.

Lemma IV.14. Using the reduction from Lemma IV.12, the
spectral condition becomes

λ2(G) ≤ (1− λ)2 · s(U)2

dn
,

where λ2(G) is the second largest eigenvalue of G.

3) Random Frames: In Section V, we will prove that if we
generate Ω(d4/3) random unit vectors, then the resulting frame
is ε-nearly doubly balanced for ε = O(1/ poly(d)) and the λ
in Lemma IV.14 satisfies λ = Ω(1) with high probability.
Hence, a random frame generated in this way will satisfy
the condition λ2 ≥ Cε ln d and our results apply to these
random frames. The proof is by a trace method. We believe
that the trace method can be improved to prove that generating
Ω(dpolylog d) random unit vectors will satisfy our condition.

4) The Paulsen Problem in Random Frames: Given an ε-
nearly doubly balanced frame U = (u1, . . . , un) with size
s(U) = d where each ui ∈ Rd, the Paulsen problem asks
to find a doubly balanced frame V = (v1, . . . , vn) that is
“close” to U . Given two frames U, V , the squared distance
between them is defined as dist2(U, V ) =

∑n
i=1 ‖ui − vi‖

2
2.

It was an open question whether for every ε-nearly doubly
balanced frame U with s(U) = d, there is always a doubly
balanced frame V with dist2(U, V ) bounded by a function
only dependent on d and ε but independent of n. Recently,
this question was answered affirmatively in [45], showing that
for any ε-nearly doubly balanced frame U with s(U) = d,
there is always a doubly balanced frame V with dist2(U, V ) =
O(d13/2ε). Very recently, Hamilton and Moitra [32] proved a
stronger bound O(d2ε) with a much simpler proof. On the
other hand, there are examples showing that the best bound is
at least Ω(dε), so the upper bound and the lower bound are
within a factor of d.

The Paulsen problem was asked because it is difficult to
generate doubly balanced frames and easier to generate nearly
doubly balanced frames, but actually not many ways are
known to even generate ε-nearly doubly balanced frames for
small ε. Most nearly doubly balanced frames that we know
are random frames (e.g. random Gaussian vectors, random
unit vectors), which can be shown to be ε-nearly doubly
balanced for small ε by matrix concentration inequalities (see
Section V-A). So, for the Paulsen problem, the inputs of
interest are random frames.

We will prove that for a random frame U with s(U) = d
that is ε-nearly doubly balanced, there is a doubly balanced
frame V with dist2(U, V ) = O(dε2) with high probability,
which is much smaller than the worst case Ω(dε) bound. We
will also show how this result can be used to generate a frame
in which every pair of vectors has small inner product in the
next subsubsection.

The proof has two steps. The first step is to show that if we
generate n = Ω(d4/3) random unit vectors, then the resulting

frame U is ε-nearly doubly balanced for ε ≤ O(1/ poly(d))
and also satisfies the spectral gap condition in Lemma IV.14
with λ = Ω(1). Therefore, the assumption in Theorem I.5
is satisfied and the continuous operator scaling algorithm has
linear convergence. The second step is to show that if the
continuous operator scaling algorithm has linear convergence,
then the “total movement” to a doubly balanced frame is
O(dε2).

The first step will be proved in Section V. We will prove
the second step here. The following lemma states the result
in [45] that we will use.

Lemma IV.15 ( [45]). The dynamical system in Defini-
tion II.16 will move the input operator A(0) to a doubly
balanced operator A(∞). For any time T ≥ 0,

dist2(A(T ),A(0)) ≤

∫ T

0

√√√√ k∑
i=1

∥∥∥∥ ddtA(t)
i

∥∥∥∥2

F

dt

2

=
1

4

(∫ T

0

√
− d

dt
∆(t)dt

)2

The second step actually holds in the more general operator
setting, not just in the frame setting.

Lemma IV.16. Given an operator A = (A1, . . . , Ak) where
Ai ∈ Rm×n with m ≤ n for 1 ≤ i ≤ k, if A is ε-nearly
doubly balanced and A satisfies the λ-spectral gap condition
in Definition I.4 with λ2 ≥ Cε lnm for a sufficiently large
constant C, then

dist2(A(0),A(∞)) ≤ s(0)ε2

λ
.

Combining the two steps gives the following theorem.

Theorem IV.17. Let U = (u1, . . . , un) be a random frame
with n = Ω(d4/3), where each ui ∈ Rd is an independent
random vector with ‖ui‖22 = d/n. Then, with probability
at least 0.99, there is a doubly balanced frame V with
dist2(U, V ) ≤ O(dε2) if U is ε-nearly doubly balanced.

Proof. By Theorem V.1, the random frame U satisfies the
spectral gap condition in Lemma IV.14 with constant λ and
ε � 1/ ln d with probability at least 0.99. Note that Theo-
rem V.1 is stated when each ‖ui‖22 = 1 but it is easy to see that
the nearly doubly balanced condition and the spectral gap con-
dition are unchanged upon scaling the vectors to ‖ui‖22 = d/n
for 1 ≤ i ≤ n. By the reduction in Lemma IV.12 and the
spectral gap condition in Lemma IV.14, this implies that the
condition λ2 ≥ Cε ln d for operator scaling is satisfied and
also s(U) = d. Therefore, by Lemma IV.16, the continuous
operator scaling algorithm will move U to a doubly balanced
frame V with dist2(U, V ) ≤ O(dε2).

5) Constructing Frames with Small Inner Products: The
original motivation for the Paulsen problem was to construct
doubly balanced frames with some additional structure.



Definition IV.18. A frame V = {v1, . . . , vn} is equiangular if
〈vi, vj〉2 is the same for all i 6= j.

For n = Θ(d2), finding a doubly balanced frame that is also
equiangular will have implications for certain informationally
complete quantum measurement operators. It is a major open
problem in frame theory for which pairs (n, d) such frames
exist [57]. The known examples are sporadic and based on
group/number-theoretic constructions. We consider a related
but more relaxed problem.

Definition IV.19. A doubly balanced frame is Grassmannian
if its angle

θ(V ) := max
i 6=j
〈vi, vj〉2

is minimized over all possible doubly balanced frames.

Doubly balanced frames with small angle are useful in
constructing erasure codes [36], [56]. The original motivation
of the Paulsen problem was to begin with some ε-nearly
doubly balanced frame U that has small θ(U), and see if it
could be “rounded” to a nearby doubly balanced frame V
still having small θ(V ). Bounding dist2(U, V ) is one way to
achieve this goal.

In this section, we use the results in the spectral analysis to
construct a doubly balanced frame with small angle. The idea
is to start with a random frame U which is ε-nearly doubly
balanced for small ε and has small θ(U) with high probability,
and then use the results in spectral analysis to show that we
can scale U to a doubly balanced frame V with θ(V ) ≈ θ(U).

Theorem IV.20. For any n ≥ Ω(d4/3), there exists a doubly
balanced frame V = (v1, . . . , vn) where each vi ∈ Rd with
‖vi‖ = 1 and

θ(V ) ≤ O
(

log n

d
+
d log3 d

n

)
.

Proof. First, we generate a random frame U = (u1, . . . , un)
where each ui ∈ Rd is an independent random unit vector
with ‖ui‖ = 1. By Lemma V.2 and Theorem V.1, U is ε-
nearly doubly balanced for ε ≤ O(

√
d log d/n) and satisfies

the λ-spectral gap condition with λ = Ω(1) with probability
at least 0.99. Next, we bound θ(U) using concentration:

P
[
θ(U) ≥ 12 log n

d

]
≤ O(n−1).

By Theorem III.15 and the reduction in Lemma IV.12, there
is a left scaling matrix L ∈ Rd×d and a right diagonal
scaling matrix R ∈ Rn×n such that if we set vi = LuiRii,
then the frame V = (v1, . . . , vn) is doubly balanced. By
Theorem III.16, the scaling solutions L,R satisfy

‖L− I‖op ≤ ζ and ‖R− I‖op ≤ ζ

for ζ ≤ O
(
ε log d
λ

)
≤ O

(√
d log3 d
n

)
Using the arguments as

in Lemma III.14, we have

|〈vi, vj〉 − 〈ui, uj〉| ≤ O (ζ) · ‖ui‖2 ‖uj‖2 = O(ζ).

Therefore, we conclude that

θ(V ) ≤ 2θ(U) +O(ζ2) ≤ O
(

log n

d
+
d log3 d

n

)
.

For examples, when n = Θ(d2) the above theorem gives
θ(V ) ≤ O(log3 d/d), and when n = Θ(d2 log2 d) then the
above theorem gives θ(V ) ≤ O(log d/d).

C. Operator Scaling

The operator scaling problem was used to the Brascamp-
Lieb constant [21] and to compute the non-commutative rank
of a symbolic matrix [20]. It is also used in [1] to solve the
orbit intersection problem for the left-right group action.

1) Brascamp-Lieb Constants: A Brascamp-Lieb datum is
specified by an m-tuple B = {Bj : Rn → Rnj | 1 ≤ j ≤ m}
of linear transformations and an m-tuple of exponents p =
{p1, . . . , pm}. The Brascamp-Lieb constant BL(B,p) of this
datum is defined as the smallest C such that for every m-tuple
{fj : Rnj → R≥0 | 1 ≤ j ≤ m} of non-negative integrable
functions, we have∫
x∈Rn

m∏
j=1

(
fj(Bjx)

)pj
dx ≤ C

m∏
j=1

(∫
xj∈Rnj

fj(xj)dxj

)pj
.

For this inequality to be scale invariant in {f1, . . . , fm}, we
must have

∑
j pjnj = n. This is a common generalization of

many useful inequalities; see [8], [21].
The important point we need is that the optimizers of

any non-degenerate Brascamp-Lieb datum (i.e. the functions
f1, . . . , fm for which the inequality is tight) is achieved by
density functions of appropriately centered Gaussians [46],
and this implies that the Brascamp-Lieb constant BL(B,p)
can be written as the following optimization problem:

BL(B,p) =

 sup
Xj�0

∏m
j=1

(
det(Xj)

)pj
det
(∑m

j=1 pjB
∗
jXjBj

)
1/2

,

which is closely related to the capacity of an operator.
An BL-datum is called geometric if we have:
m∑
j=1

pjB
∗
jBj = In and BjB

∗
j = Inj

for 1 ≤ j ≤ m.

It is proved in [4], [5] that the BL-constant is one when the
BL-datum is geometric. We will show that the BL-constant
is small when the BL-datum is nearly geometric and satisfies
a spectral condition, using the reduction in [21] from BL-
constant to operator capacity and our capacity lower bound in
Theorem I.8.

Reduction: We describe the reduction in [21] from comput-
ing the BL-constant of a datum to computing the capacity of
an operator. Let pj = cj/d be rational numbers where cj and d
are integers. Given a BL-datum (B,p), a completely positive
map ΦA : Rnd×nd → Rn×n is constructed as follows. For
intuition, think of the “intended” input matrix X to ΦA as a



block diagonal matrix, with cj blocks of Xj ∈ Rnj×nj for
1 ≤ j ≤ m, so that X is a square matrix with dimension∑m
j=1 cjnj = d

∑m
j=1 pjnj = dn. For each Bj ∈ Rnj×n in

B, we create cj matrices {Aj1, . . . , Ajcj} in A, where each
Aji ∈ Rn×dn has a copy of Bj/

√
d that acts only on the

(j, i)-th principle block of X (i.e. the i-th copy of Xj in X)
and all other entries of Aji are zero. The operator A is defined
by the Kraus operators ∪mj=1 ∪

cj
i=1 {Aji}, with the completely

positive map

ΦA(X) =

m∑
j=1

cj∑
i=1

A∗jiXAji =
1

d

m∑
j=1

cj∑
i=1

B∗jXjiBj

Φ∗A(Y ) =

m⊕
j=1

cj⊕
i=1

1

d
BjY B

∗
j ,

where Xji is the (j, i)-th principle block of X as described
above, and the notation ⊕ denotes the direct sum of the
matrices (i.e. putting each matrix in a diagonal block).

Theorem IV.21 ( [21]). It follows from the reduction that(
cap(A)

n

)n
=

(
1

BL(B,p)

)2

Using this connection, it is shown in [21] that the Brascamp-
Lieb constant BL(B,p) can be computed by an operator
scaling algorithm for A.

Bounding BL-constants: Using Theorem IV.21, we would
like to derive upper bounds on BL-constants using the capacity
lower bound in Theorem I.8, and show that for some random
instances the BL-constant is small. To apply Theorem I.8, we
translate the definitions of ε-nearly doubly balanced opera-
tor and the λ-spectral gap conditions to the Brascamp-Lieb
setting. Following the reduction from B,p to A, we have the
following definitions from the corresponding definitions of the
operator A.

Definition IV.22 (Size of a Datum). The size of a BL-datum
(B,p) is

s(B,p) := pj

m∑
j=1

‖Bj‖2F .

The datum (B,p) is ε-nearly geometric if and only if the
corresponding operator A is ε-nearly doubly balanced.

Definition IV.23 (Nearly Geometric Datum). A datum
BL(B,p) is ε-nearly geometric if

(1− ε) s
n
In �

m∑
j=1

pjB
∗
jBj � (1 + ε)

s

n
In

(1− ε) s
n
Inj
� BjB∗j � (1 + ε)

s

n
Inj

for 1 ≤ j ≤ m.

The datum (B,p) satisfies the λ-spectral gap condition
if and only if the corresponding operator A satisfies the λ-
spectral gap condition.

Definition IV.24 (Spectral Gap of Datum). Let n̄ =
∑m
j=1 nj

and B̄∗ ∈ Rn×n̄ be the matrix

B̄∗ := [B∗1 , B
∗
2 , . . . , B

∗
m].

Let B̄j ∈ Rn̄×n be B̄ with all but the j-th block zeroed
out, i.e. B̄∗j := [0, . . . , 0, B∗j , 0, . . . , 0]. The natural matrix
representation MB,p ∈ Rn̄2×n2

of the datum (B,p) is defined

MB,p :=

m∑
j=1

√
pj · B̄j ⊗ B̄j .

The datum (B,p) is said to have a λ-spectral gap if

σ2(MB,p) ≤ (1− λ)
s(B,p)

n
.

With these definitions, we can state the Brascamp-Lieb
constant upper bound that follows from the capacity lower
bound in Theorem I.8.

Corollary IV.25. Given a datum (B,p) with Bj : Rn → Rnj

for 1 ≤ j ≤ n and
∑m
j=1 pjnj = n, if (B,p) is ε-nearly

geometric and satisfies the λ-spectral gap condition with λ2 ≥
Cε log n for some sufficiently large constant C, then( s

n

)−n/2
≤ BL(B,p) ≤

(( s
n

)(
1− 4ε2

λ

))−n/2
.

Let’s consider a concrete example to demonstrate:

Example IV.26. An interesting special case of the Brascamp-
Lieb inequality is the rank one case Bj = u∗j where uj ∈ Rd
and nj = 1 and pj = d/m for 1 ≤ j ≤ m which was studied
in [5]. Consider a random rank-one datum where each ui is
an independent random unit vector of ‖ui‖ = 1. Following
the reduction,

cap(A) = sup
x∈Rn:x>0

d
(

det
(∑m

j=1 xjuju
∗
j

))1/d

(∏m
j=1 xj

)1/m
,

which is a form that is also studied in approximation al-
gorithms [50]. Note that this is exactly the capacity of a
frame U = (u1, . . . , um) through the reduction in IV.12. By
Theorem V.1, if m ≥ Ω(d4/3), then U is ε-nearly doubly
balanced for ε ≤ O(

√
d log d/m) and satisfies the λ-spectral

gap condition with λ = Ω(1) with high probability. Therefore,
we can apply Theorem I.8 to conclude that

cap(A) ≥
(

1− 4ε2

λ

)
s(U) ≥

(
1− 4d log d

m

)
m,

and from Corollary IV.25 the BL-constant for this datum is

1 ≤ BL(B,p) ≤
(

1− 4d log d

m

)−m/2
= exp(Θ(d log d))

This is independent on the number of vectors m and is much
smaller than the worst case bound.

As another example, Hastings’ result [35] implies that a
random operator where each Ai is a random unitary has small
Brascamp-Lieb constant with high probability.



2) Rank Non-Decreasing Operator: In [19], [20], [29],
a polynomial time algorithm for computing the non-
commutative rank of a symbolic matrix is designed using
operator scaling. Given A = (A1, . . . , Ak) where each Ai ∈
Rn×n, let ZA =

∑k
i=1 xiAi be the symbolic matrix defined

by A over non-commutative variables x1, . . . , xk, the non-
commutative rank nc-rank(Z) of Z is defined as the smallest
r such that Z = KM where K is of dimension n× r and M
is of dimension r× n with entries in the “free skew field” of
x (see [19], [20] for definitions). The algorithm in [19], [20],
[29] is based on the following equivalent characterizations.

Theorem IV.27 ( [19], [20], [29]). GivenA = (A1, . . . , Ak) ⊂
Rn×n, the following conditions are equivalent.

1) Symbolic matrix ZA is singular, i.e. ncrank(Z) < n.
2) A has a shrunk subspace, i.e. there exists subspaces U,W

with dim(W ) < dim(U) such that AiU ⊆ W for all
1 ≤ i ≤ k.

3) ΦA is rank decreasing, i.e. there exists P � 0 and
rank(ΦA(P )) < rank(P ).

The alternating scaling algorithm for operator scaling is
used to check whether ΦA is rank non-decreasing. It is shown
in [19], [20], [29] that ΦA is rank non-decreasing if and only
if A can be scaled to ε-nearly balanced for ε ≤ 1/ poly(n),
and so a polynomial time algorithm for operator scaling can
be used to compute the non-commutative rank of a symbolic
matrix over the reals.

The shrunk subspace condition is closely related to the
concept of Hall-blocker in matching theory. In the matrix
case, it is shown in Lemma IV.5 that a matrix B satisfying
the spectral condition is an almost regular bipartite expander
graph, so there is no Hall-blocker and it always has a perfect
matching as shown in Lemma IV.6. In the operator case,
intuitively, the spectral condition is closely related to the
notion of quantum expander (Section II-A), and so there
should be no Hall-blocker as well. Theorem I.5 implies that
it is the case.

Corollary IV.28. For A satisfying the conditions of Theorem
I.5, ΦA is rank-nondecreasing and the corresponding symbolic
matrix ZA is non-singular over reals.

This is a new sufficient condition for an operator to be
rank non-decreasing. We remark that the assumption can be
weakened to λ ≥ 6ε to get the same conclusion, but we omit
the proof here.

3) The Operator Paulsen Problem: Given an ε-nearly
doubly stochastic operator A = (A1, . . . , Ak) where each
Ai ∈ Rm×n, the operator Paulsen problem asks to find a
doubly stochastic operator B = (B1, . . . , Bk) where each
Bj ∈ Rm×n with dist2(A,B) :=

∑k
i=1 ‖Ai −Bi‖

2
F . In [45],

it was proved that dist2(A,B) ≤ O(mnsε), and this result
was used in [1] for the orbit intersection problem. For an
operator A that satisfies the spectral gap condition with
constant λ, Lemma IV.16 implies a much stronger bound that
dist2(A,B) ≤ O(sε2).

V. SPECTRAL GAP OF RANDOM FRAMES

In this section, we prove that a random frame is ε-nearly
doubly stochastic for ε� 1/ ln d and satisfies the spectral gap
condition for constant λ with high probability.

Theorem V.1. If we generate n random unit vectors v1, . . . , vn
in Rd with n = Ω(d4/3), then the resulting frame is ε-nearly
doubly stochastic for ε� 1/ ln d and satisfies the spectral gap
condition in Definition IV.14 with constant λ with probability
at least 0.99.

To generate a random unit vector v ∈ Rd, we set each
coordinate of v to be an independent random Gaussian variable
N(0, 1

d ) for 1 ≤ i ≤ d, and then we scale the vector to have
norm one. The size of the frame is s =

∑n
i=1 ‖vi‖

2
2 = n. By

construction, the frame V := (v1, . . . , vn) satisfies the equal
norm condition.

In Section V-A, we will prove that V is ε-nearly doubly
stochastic with high probability by using a standard matrix
concentration bound. Then, in Section ??, we will prove that
the squared Gram matrix G in Definition IV.13 satisfies the
spectral gap condition in Definition IV.14 with high probability
by using the trace method.

A. Nearly Doubly Balanced Condition by Concentration

By construction, each vector vi has ‖vi‖2 = 1 and
s =

∑n
i=1 ‖vi‖

2
2 = n. So, for the nearly doubly stochastic

condition, it remains to prove that V = (v1, . . . , vn) is ε-
nearly Parseval for ε � 1/ log d with high probability when
n = Ω(d4/3), i.e.

Lemma V.2. If we generate n random unit vectors v1, . . . , vn
in Rd with n = O(d log d/ε2), then

(1− ε)n
d
Id �

n∑
i=1

viv
∗
i � (1 + ε)

n

d
Id

with probability at least 1−O(1/ poly(d)).

We establish this by using the following matrix bound:

Theorem V.3 (Matrix Bernstein [60]). Let X1, . . . , Xn be
independent random matrices in Rd×d. Assume that

∀i : EXi = 0 and ‖Xi‖op ≤ L,

and

ν := max


∥∥∥∥∥
n∑
i=1

E(XiX
∗
i )

∥∥∥∥∥
op

,

∥∥∥∥∥
n∑
i=1

E(X∗i Xi)

∥∥∥∥∥
op

 .

Then, for all ` ≥ 0,

P

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
op

≥ `

 ≤ 2d exp

(
−`2/2
ν + L`/3

)
.

Proof Sketch. We apply the concentration inequality on ran-
dom matrix Xi := viv

∗
i − 1

dId for 1 ≤ i ≤ n.

For our condition λ2 � ε log d to be satisfied, it is sufficient
for λ = Ω(1) that we will show and ε � 1/ log d, and
Lemma V.2 gives the following bound for the latter condition.



Corollary V.4. If we generate n random unit vectors
v1, . . . , vn in Rd with n = O(d log3 d), then

(1− ε) s
d
Id �

n∑
i=1

viv
∗
i � (1 + ε)

s

d
Id

for ε� 1/ log d with probability at least 1−O(1/ poly(d)).

Theorem V.5. Using the trace method, for any constant λ, by
generating n� d4/3 random unit vectors, the probability that
λ2(G) > (1 − λ)2n/d can be made arbitrarily small as the
dominating term is d4/n3.

Remark V.6. We believe that the trace method can be im-
proved to prove the same conclusion with only O(dpolylog d)
random unit vectors.
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