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A SPECTRAL APPROACH TO NETWORK DESIGN\ast 

LAP CHI LAU\dagger AND HONG ZHOU\ddagger 

Abstract. We present a spectral approach to design approximation algorithms for network
design problems. We observe that the underlying mathematical questions are the spectral rounding
problems, which were studied in spectral sparsification and in discrepancy theory. We extend these
results to incorporate additional nonnegative linear constraints, and show that they can be used to
significantly extend the scope of network design problems that can be solved. Our algorithm for
spectral rounding is an iterative randomized rounding algorithm based on the regret minimization
framework. In some settings, this provides an alternative spectral algorithm to achieve constant
factor approximation for the classical survivable network design problem, and partially answers a
question of Bansal about survivable network design with concentration property. We also show
many other applications of the spectral rounding results, including weighted experimental design
and spectral network design.

Key words. network design, spectral rounding, regret minimization

MSC codes. 05C50, 05C85, 68W25

DOI. 10.1137/20M1330762

1. Introduction. Network design is a central topic in combinatorial optimiza-
tion, approximation algorithms, and operations research. The general setting of net-
work design is to find a minimum cost subgraph satisfying certain requirements. The
most well-studied problem is the survivable network design problem [40, 1, 41, 35],
where the requirement is to have at least a specified number fu,v of edge-disjoint paths
between every pair of vertices u, v. A seminal work of Jain [43] introduced the itera-
tive rounding method for linear programming to design a 2-approximation algorithm
for the survivable network design problem, and this method has been extended to
various more general settings [30, 34, 23, 46, 47, 28, 32, 49, 10]. There are also other
linear programming based algorithms such as randomized rounding [70, 36, 19, 9, 42]
to obtain important algorithmic results for network design. It is widely recognized
that linear programming is the most general and powerful approach in designing ap-
proximation algorithms for network design problems.

In the past decade, spectral techniques have been developed to make significant
progress in designing graph algorithms [68, 24, 15, 3, 6, 64]. One striking example is
the spectral sparsification problem introduced by Spielman and Teng [69], where the
objective is to find a sparse edge-weighted graph H to approximate the input graph
G so that (1 - \epsilon )LG \preccurlyeq LH \preccurlyeq (1 + \epsilon )LG where LG and LH are the Laplacian matrices
of the graph G and H. The spectral condition (1  - \epsilon )LG \preccurlyeq LH \preccurlyeq (1 + \epsilon )LG implies
that H is also a cut sparsifier of G such that the total weight on each cut in H is
approximately the same as that in G. Batson, Spielman, and Srivastava [15] proved
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A SPECTRAL APPROACH TO NETWORK DESIGN 1019

that every graph G has a spectral sparsifierH with only O(n/\epsilon 2) edges. This improves
upon the influential result of Bencz\'ur and Karger [16] that every graph G has a cut
sparsifier H with O(n log n/\epsilon 2) edges, which has many applications in designing fast
algorithms for graph problems. From a technical perspective, the spectral approach
introduces linear algebraic concepts and continuous optimization techniques in solving
graph problems, and the results in spectral sparsification [15, 3, 6] show that it is
algorithmically more convenient to control the spectral properties of the graph in
order to control its combinatorial properties.

Inspired by these developments, we are motivated to study whether there is a
spectral approach to design approximation algorithms for network design problems.
The general way to designing approximation algorithms is to solve a convex program
to obtain a fractional solution x in polynomial time, and then to round x into an
integral solution z that well approximates x (with respect to the constraints and the
objective function) as an approximate solution. We observe that the following spectral
rounding question, where the objective is to approximate the spectral properties of x,
underlies a large class of problems including the survivable network design problem.

Question 1.1 (spectral rounding). For each edge e in a graph, let Le be the
Laplacian matrix of e and ce be its cost. Given xe \in \BbbR + for each edge e, characterize
when we can find ze \in \BbbZ + for each e such that\sum 

e

xeLe \approx 
\sum 
e

zeLe and
\sum 
e

cexe \approx 
\sum 
e

ceze.

When spectral rounding is possible, we notice that the integral solution z approx-
imately preserves not only the cost and the pairwise edge connectivity properties of x
as required by the survivable network design problem, but also many other properties
of x including pairwise effective resistances, the graph expansion, and degree con-
straints. This would significantly extend the scope of useful properties that a network
designer could control simultaneously to design better networks.

1.1. General survivable network design. The main conceptual contribution
of this paper is to show that the techniques in spectral graph theory and discrepancy
theory can be used to significantly extend the scope of network design problems that
can be solved.

In network design, we are given a graph G = (V,E) where each edge has a
cost ce, and the objective is to find a minimum cost subgraph that satisfies certain
requirements. In survivable network design [40, 43], the requirements are pairwise
edge-connectivities, that every pair of vertices u, v should have at least fuv edge-
disjoint paths for u, v \in V . This captures several classical problems as special cases,
including minimum Steiner tree [19], minimum Steiner forest [1, 41], and minimum
k-edge-connected subgraph [35]. Jain introduced the iterative rounding method for
linear programming to design a 2-approximation algorithm for the survivable network
design problem [43]. His proof exploits the nice structures of the connectivity con-
straints to show that there is always a variable xe with value at least 1

2 in any extreme
point solution to the linear program. His work leads to many subsequent develop-
ments in network design [30, 23, 34, 35, 22], and the iterative rounding algorithm
is still the only known constant factor approximation algorithm for the survivable
network design problem.

Motivated by the need for more realistic models for the design of practical net-
works, researchers study generalizations of survivable network design problems where
we can incorporate additional useful constraints. One well-studied problem is the
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1020 LAP CHI LAU AND HONG ZHOU

degree-constrained survivable network design problem, where there is a degree upper
bound dv on each vertex v to control its workload. There is a long line of work on
this problem [62, 63, 39, 46, 28, 32, 49] and the iterative rounding method has been
extended to incorporate degree constraints into survivable network design success-
fully. In the general setting [46, 53, 49], there is a polynomial time algorithm to find a
subgraph that violates the cost and the degree constraints by a multiplicative factor
of at most 2. For interesting special cases such as finding a spanning tree [39, 66] or
a Steiner tree [48, 49], there is a polynomial time algorithm that returns a solution
that violates the degree constraint by an additive constant.

More generally, one can consider to add linear packing constraints and linear
covering constraints into survivable network design [17, 13, 60, 52], but not as much is
known about how to approximately satisfy these constraints simultaneously, especially
when the linear constraints are unstructured.

Another natural constraint is to control the shortest path distance between pairs
of vertices, but unfortunately this is proved to be computationally hard [27] to incor-
porate into network design.

In [20], together with Chan, Schild, and Wong, we propose to incorporate the
effective resistance metric into network design, as an interpolation of shortest path
distance and edge-connectivity between vertices. Incorporating effective resistances
can also allow one to control some natural quantities about random walks on the
resulting subgraph, such as the commute time between vertices [21] and the cover
time [58, 26]. We note that effective resistances have interesting connections to many
other graph problems, including spectral sparsification [68], maximum flow computa-
tion [24], the asymmetric traveling salesman problem [6], and random spanning tree
generation [55, 64]. We believe that it is a useful property to be incorporated into
network design.

There are many other natural constraints that could help in designing better
networks, including total effective resistances [38], algebraic connectivity (and graph
expansion) [37], and the mixing time of random walks [18]. These constraints are also
well-motivated and were studied individually before (without taking other constraints
together into consideration, e.g., connectivity requirements), but not much is known
about approximation algorithms with nontrivial approximation guarantees for these
constraints (see section 5.3).

It would be ideal if a network designer could control all of these properties si-
multaneously to design a good network that suits their need. We can write a convex
programming relaxation for this general network design problem incorporating all
these constraints.

\sansc \sansp := min
x

\langle c, x\rangle 

x(\delta (S)) \geq f(S) \forall S \subseteq V (connectivity constraints)

x(\delta (v)) \leq dv \forall v \in V (degree constraints)

Ax \leq a A \in \BbbR p\times m
+ , a \in \BbbR p

+ (linear packing constraints)

Bx \geq b B \in \BbbR q\times m
+ , b \in \BbbR q

+ (linear covering constraints)

Reffx(u, v) \leq ruv \forall u, v \in V (effective resistance constraints)

Lx \succcurlyeq M M \succcurlyeq 0 (spectral constraints)

\lambda 2(Lx) \geq \lambda (algebraic connectivity constraint)

0 \leq xe \leq 1 \forall e \in E (capacity constraints)

(CP)
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A SPECTRAL APPROACH TO NETWORK DESIGN 1021

The connectivity constraints are specified by a function f on vertex subsets,
e.g., in survivable network design f(S) := maxu,v\{ fu,v | u \in S, v /\in S\} . The ma-
trix Lx is the Laplacian matrix of the fractional solution x. More explanations about
this convex program can be found in section 5.1.1.

Our first result for network design is the following approximation algorithm for
this general problem. We remark that the degree constraints are not handled in the
following result.

Theorem 1.2 (informal). Suppose we are given an optimal solution x to the
convex program (CP). There is a polynomial time randomized algorithm to return an
integral solution z to (CP) that simultaneously satisfies all the connectivity constraints,
the effective resistance constraints, the spectral constraints, the algebraic connectivity
constraint, and the capacity constraints exactly with high probability. The objective
value of the integral solution z is

\langle c, z\rangle \leq (1 +O(\epsilon )) \cdot \sansc \sansp +O
\Bigl( nc\infty 

\epsilon 

\Bigr) 
with high probability, where n is the number of vertices in the graph and c\infty := \| c\| \infty 
is the maximum cost of an edge. Furthermore, the linear packing constraints and
the linear covering constraints are satisfied approximately with high probability (see
Theorems 1.8 and 5.2 for the approximation guarantees for these constraints).

Note that this provides a (1 + O(\epsilon ))-approximation algorithm if \sansc \sansp \gtrsim nc\infty /\epsilon 2,
and a constant factor approximation algorithm if \sansc \sansp \gtrsim nc\infty . We remark that, for
survivable network design, the (1 +O(\epsilon ))-approximation algorithm does not improve
on the 2-approximation algorithm of Jain's result, as Jain's algorithm always returns
a solution with cost at most \sansc \sansp + 2nc\infty .

The main advantage of the spectral approach is that it significantly extends the
scope of useful properties that can be incorporated into network design, while previ-
ously there were no known nontrivial approximation algorithms even for some indi-
vidual constraints. We demonstrate the use of Theorem 1.2 with one concrete setting.

Example 1.3. Suppose the connectivity requirement satisfies fu,v \geq k for all u, v \in 
V (e.g., to find a k-edge-connected subgraph). Assume the cost ce of each edge e
satisfies 1 \leq ce \leq O(k). Then Theorem 1.2 provides a constant factor approximation
algorithm for this survivable network design problem. To our knowledge, the only
known constant factor approximation algorithm even restricted to this special case
is Jain's iterative rounding algorithm. The algorithm in Theorem 1.2 provides a
completely different spectral algorithm to achieve constant factor approximation in
this special case.

Furthermore, the constant factor approximation algorithm can be achieved while
incorporating additional effective resistance constraints (e.g., to upper bound com-
mute times between pairs of vertices), spectral constraints (e.g., to dominate another
graph/topology in terms of the number of edges in cuts), or the algebraic connectivity
constraint (e.g., to lower bound graph expansion). Also, additional linear packing and
covering constraints can be satisfied approximately, even when they are unstructured.
See section 5.1 for a more in-depth discussion.

Recently, Bansal [10] designed a rounding technique that achieves the guarantees
by iterative rounding and randomized rounding simultaneously, and he showed various
interesting applications of his techniques. However, he left it as an open question
whether there is an O(1)-approximation algorithm for survivable network design while
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1022 LAP CHI LAU AND HONG ZHOU

satisfying some concentration property of the output. Theorem 1.2 provides some
progress toward his question (e.g., in the setting in Example 1.3), as the guarantees on
the linear packing and linear covering constraints satisfy some concentration property
as shown in Theorem 5.2. We defer to section 5.1.5 for details.

Our second result for network design is a strong upper bound on the integrality
gap of the convex program that incorporates degree constraints as well, assuming the
fractional solution x satisfies some additional properties.

Theorem 1.4 (informal). Suppose we are given a solution x to the convex pro-
gram (CP). Assume that Reffx(u, v) \leq \epsilon 2 for every uv \in E and c\infty \leq \epsilon 2\langle c, x\rangle for
some \epsilon \in [0, 1]. Then, there exists an integral solution z that approximately satisfies
all the connectivity constraints, degree constraints, effective resistance constraints,
spectral constraints, algebraic connectivity constraints, and capacity constraints with
\langle c, z\rangle \leq (1 +O(\epsilon ))\langle c, x\rangle .

We remark that Theorem 1.4 does not provide a polynomial time algorithm to
find such an integral solution, as it is proved using the nonconstructive results in
discrepancy theory. Also, we note that Theorem 1.4 does not handle linear covering
and packing constraints. The assumption Reffx(u, v) \leq \epsilon 2 for every uv \in E may
not be satisfied in applications, and we will explain in section 5.1.4 when it will be
satisfied and show that it is not too restrictive.

1.2. Previous work on spectral rounding. The most relevant works for spec-
tral rounding are from spectral sparsification and discrepancy theory. There are two
previous theorems that imply nontrivial results for spectral rounding.

1.2.1. Spectral sparsification. There are various algorithms for spectral spar-
sifications, by random sampling [68], by barrier functions [15], by regret minimiza-
tion [3, 65], and by some combinations of these ideas [51, 50]. Most of these algorithms
need to work with arbitrary weights and cannot guarantee that the output subgraph
has only integral weights. There are some algorithms which guarantee that the out-
put has only integral weights, but they only achieve considerably weaker spectral
approximation [7, 3, 14].

Allen-Zhu et al. [5] formulated and proved the following spectral rounding the-
orem, using the framework of regret minimization developed for spectral sparsifica-
tion [3].

Theorem 1.5 (see [5]). Let v1, v2, . . . , vm \in \BbbR n, x \in [0, 1]m, and k =
\sum m

i=1 xi.
Suppose

\sum m
i=1 xiviv

T
i = In and k \geq 5n/\epsilon 2 for some \epsilon \in (0, 1

3 ]. Then there is a
polynomial time algorithm to return a subset S \subseteq [m] with

| S| \leq k and
\sum 
i\in S

viv
T
i \succcurlyeq (1 - 3\epsilon )In.

Theorem 1.5 can be understood as a one-sided spectral rounding result, where the
fractional solution x is rounded to a zero-one solution while the budget constraint is
satisfied and the spectral lower bound is approximately satisfied. Through a general
reduction, this theorem implies near-optimal approximation algorithms for a large
class of experimental design problems [5].

We remark that Theorem 1.5 can be modified to prove similar but more restric-
tive results for network design as in Theorem 1.2, when the objective function c is
the all-one vector and there are no linear covering and packing constraints. This
already extends the scope of unweighted network design significantly, but this con-
nection was not made before. For network design, it is desirable to have different
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A SPECTRAL APPROACH TO NETWORK DESIGN 1023

costs on edges, and these weighted problems are usually more difficult to solve than
the unweighted problems (e.g., minimum k-edge-connected subgraphs [35] versus [43],
minimum bounded degree spanning trees [33] versus [39], etc.).

1.2.2. Discrepancy theory. The techniques in spectral sparsification have been
extended greatly to prove discrepancy theorems in spectral settings [57, 6, 45], most
notably in the solution to Weaver's conjecture that resolves the Kadison--Singer prob-
lem [56, 57] and its extension and surprising application to the asymmetric traveling
salesman problem [6]. The following recent result by Kyng, Luh, and Song [45] pro-
vides the most refined formulation in the discrepancy setting, using the method of
interlacing polynomials and the barrier arguments developed in [57, 6].

Theorem 1.6 (see [45]). Let v1, . . . , vm \in \BbbR n, and let \xi 1, . . . , \xi m be indepen-
dent random scalar variables with finite support. There exists a choice of outcomes
\epsilon 1, . . . , \epsilon m in the support of \xi 1, . . . , \xi m such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

m\sum 
i=1

\BbbE [\xi i]vivTi  - 
m\sum 
i=1

\epsilon iviv
T
i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
op

\leq 4

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
m\sum 
i=1

Var[\xi i](viv
T
i )

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1/2

op

.

We note that Theorem 1.6 implies the following two-sided spectral rounding result,
which is very similar to Corollary 1.7 in [45] but with a weaker assumption, where we
only need

\bigm\| \bigm\| \sum m
i=1 xiviv

T
i

\bigm\| \bigm\| 
op

\leq 1 instead of
\bigm\| \bigm\| \sum m

i=1 viv
T
i

\bigm\| \bigm\| 
op

\leq 1 as in [45]. The proof

will be presented in section 4 in a more general setting.

Corollary 1.7. Let v1, . . . , vm \in \BbbR n and x \in [0, 1]m. Suppose
\sum m

i=1 xiviv
T
i =

In and \| vi\| \leq \epsilon for all i \in [m]. Then there exists a subset S \subseteq [m] satisfying

(1 - O(\epsilon ))In \preccurlyeq 
\sum 
i\in S

viv
T
i \preccurlyeq (1 +O(\epsilon ))In.

Comparing to Theorem 1.5, the advantage of Corollary 1.7 is that it provides
a two-sided spectral approximation. On the other hand, Corollary 1.7 requires the
assumption that all vectors are short, and it has no guarantee on the size of S. Also, it
is important to point out that the proof of Corollary 1.7 does not provide a polynomial
time algorithm to find such a subset.

1.3. Our technical contributions. We extend the previous results on spectral
rounding to incorporate nonnegative linear constraints and to satisfy the requirements
for network design problems. These results have interesting applications in many other
problems besides network design; see sections 1.4 and 5.

Our main technical result considers one-sided spectral rounding.

Theorem 1.8. Suppose we are given v1, . . . , vm \in \BbbR n and x \in [0, 1]m such that\sum m
i=1 xiviv

T
i = In. For any \epsilon \in (0, 1

4 ), there is a polynomial time randomized algo-
rithm that returns a solution z \in \{ 0, 1\} m such that

m\sum 
i=1

ziviv
T
i \succcurlyeq In

with probability at least 1 - exp ( - \Omega (n)). Furthermore, for any c \in \BbbR m
+ , the solution

z satisfies the upper bound

\langle c, z\rangle \leq (1 + 6\epsilon )\langle c, x\rangle + 15nc\infty 
\epsilon 
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1024 LAP CHI LAU AND HONG ZHOU

with probability at least 1 - exp( - \Omega (n)), and the solution z satisfies the lower bound

\langle c, z\rangle \geq \langle c, x\rangle  - \delta nc\infty 

with probability at least 1 - exp
\bigl( 
 - \Omega 

\bigl( 
min\{ \epsilon \delta , \epsilon \delta 2\} \cdot n

\bigr) \bigr) 
for \delta > 0.

The main advantage of Theorem 1.8 over Theorem 1.5 is that we can prove that
\langle c, z\rangle is not too far from \langle c, x\rangle for an arbitrary vector c \in \BbbR m

+ with high probability.
This allows us to bound the cost of the returned solution to network design prob-
lems, and when nc\infty \lesssim \langle c, x\rangle we can conclude that z is a constant factor approximate
solution. Note that the guarantee on linear constraints can be applied to up to ex-
ponentially many constraints. This allows us to incorporate additional linear packing
and covering constraints into network design and have some nontrivial guarantees.
Another advantage is that we construct a solution that satisfies the spectral lower
bound exactly, by allowing the solution to choose more than k =

\sum m
i=1 xi vectors.

This is important in network design problems where we would like to construct a
solution that satisfies all the constraints (instead of approximately satisfying all the
constraints), by allowing the cost of the solution to be higher than the cost of the
optimal solutions.

Using the proof techniques in Theorem 1.8, we can strengthen a recent deter-
ministic algorithm by Bansal, Svensson, and Trevisan [14] to construct unweighted
spectral sparsifiers, to ensure that there will be no parallel edges in the sparsifier.
Since this is not the main focus of this paper, we refer interested readers to [72] for
details.

For two-sided spectral rounding, we show that Corollary 1.7 can be extended to
incorporate one given nonnegative linear constraint (see section 4).

Theorem 1.9. Let v1, . . . , vm \in \BbbR n, x \in [0, 1]m, and c \in \BbbR m
+ . Suppose that\sum m

i=1 xiviv
T
i = In, \| vi\| \leq \epsilon < 1

8 for all i \in [m] and c\infty \leq \epsilon 2\langle c, x\rangle . Then there exists
z \subseteq \{ 0, 1\} m such that

(1 - 8\epsilon )In \preccurlyeq 
m\sum 
i=1

ziviv
T
i \preccurlyeq (1 + 8\epsilon )In and (1 - 8\epsilon )\langle c, x\rangle \leq \langle c, z\rangle \leq (1 + 8\epsilon )\langle c, x\rangle .

Note that the linear constraint c in Theorem 1.9 is required to be given as part of
the input, while it is not required so in Theorem 1.8. Theorem 1.9 is useful in bounding
the integrality gap for convex programs for network design problems, showing strong
approximation results when the assumptions are satisfied (see section 5.1.4). Also, it
can be used in the study of additive unweighted spectral sparsification [14], proving
an optimal existential result (see [72] for details).

1.3.1. Techniques. The main technical contribution is an iterative randomized
rounding algorithm for Theorem 1.8. Our algorithm is based on the regret minimiza-
tion framework developed in [3, 5] for spectral sparsification and one-sided spectral
rounding. Let us first review the previous work. To prove Theorem 1.5, Allen-Zhu
et al. [5] analyzed a local search algorithm where they start from an arbitrary subset
S0 of k vectors, and in each iteration t \geq 1 they find a pair of vectors i \in St - 1 and
j /\in St - 1 so that roughly speaking \lambda min(

\sum 
l\in St - 1 - i+j vlv

T
l ) > \lambda min(

\sum 
l\in St - 1

vlv
T
l ),

and then they set St = St - 1  - it + jt. Using the framework of regret minimization,
with the l1/2-regularizer introduced in [3], they proved that the task of finding a pair
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A SPECTRAL APPROACH TO NETWORK DESIGN 1025

to improve the minimum eigenvalue can be reduced to finding a pair it \in St - 1 and
jt /\in St - 1 so that

(1.1)
\langle vjtvTjt , At\rangle 

1 + 2\alpha \langle vjtvTjt , A
1/2
t \rangle 

 - 
\langle vitvTit , At\rangle 

1 - 2\alpha \langle vitvTit , A
1/2
t \rangle 

\geq \Delta > 0,

where At is the matrix defined in (2.1) based on the current solution St - 1. Us-
ing a delicate argument, they proved that if it \in St - 1 (subject to the restriction

that 2\alpha \langle vivTi , A
1/2
t \rangle < 1) is chosen to minimize \langle vivTi , At\rangle /

\bigl( 
1  - 2\alpha \langle vivTi , A

1/2
t \rangle 

\bigr) 
and

jt /\in St - 1 is chosen to maximize \langle vjvTj , At\rangle /
\bigl( 
1 + 2\alpha \langle vjvTj , A

1/2
t \rangle 

\bigr) 
, then this pair it, jt

satisfies the above inequality with \Delta = \epsilon /k as long as \lambda min(
\sum 

l\in St - 1
vlv

T
l ) \leq 1  - 3\epsilon .

This implies, by the regret minimization framework, that the local search algorithm
will succeed in finding a solution S\tau with \lambda min(

\sum 
l\in S\tau 

vlv
T
l ) \geq 1 - 3\epsilon within \tau \leq k/\epsilon 

iterations. We will review more about the regret minimization framework in sec-
tion 2.3.

To incorporate nonnegative linear constraints, our idea is to turn the determin-
istic local search algorithm into an iterative randomized rounding algorithm. In this
randomized rounding algorithm, we first construct an initial solution S0 by adding
each i into S0 with probability xi independently. This will ensure that c(S0) \approx \langle c, x\rangle 
with high probability. In each iteration t \geq 1, based on the current solution St - 1, we
construct a probability distribution to sample a vector vit to be removed from St - 1,
and a probability distribution to sample a vector vjt to be added to St - 1. To maintain
c(St) \approx \langle c, x\rangle , the basic idea is to remove a vector vi with probability proportional
to 1  - xi and add a vector vj with probability proportional to xj , but doing so will
not satisfy the spectral lower bound with high probability. Instead, we prove that if
we update the sampling probability so that a vector vi is removed with probability

proportional to (1 - xi)(1 - 2\alpha \langle vivTi , A
1/2
t \rangle ) and a vector vj is added with probability

proportional to xj(1 + 2\alpha \langle vivTi , A
1/2
t \rangle ), then (1.1) is satisfied with expected progress

\BbbE [\Delta ] \geq \epsilon /k as long as \lambda min(
\sum 

l\in St - 1
vlv

T
l ) \leq 1  - 2\epsilon . Informally, a vector pointing to

a direction that is not well covered by the current solution is more likely to be added
and less likely to be removed, to ensure that the spectral lower bound will be satisfied.
However, this changes the expectation on the linear constraint, but we can bound the
error by the additive term O(nc\infty /\epsilon ). Note that there are examples showing that this
additive error is unavoidable if our goal is to satisfy the spectral lower bound exactly
(see section 3.2). Compared to the deterministic approach in [5], this randomized
approach uses the fractional solution x more crucially in the rounding procedure, and
we note that it can be used to give a simpler proof of the deterministic local search
algorithm in [5] (see Remark 3.6).

The advantage of the randomized approach is that we can prove that the random
variables are concentrated around their expected values, so that we can handle mul-
tiple nonnegative linear constraints simultaneously. Since the sampling probabilities
change over time based on the previous samples, the random variables that we con-
sider are not a sum of independent random variables and thus Chernoff type bounds
cannot be applied. For the spectral lower bound, we will define a martingale and
use Freedman's inequality to prove that the total progress we make in (1.1) is con-
centrated around its expected value. For the nonnegative linear constraints, we show
that they satisfy an interesting ``self-adjusting"" property, such that if c(St) - \langle c, x\rangle is
(more) positive, then \BbbE [c(St+1)] - c(St) is (more) negative and vice versa, so intuitively
c(St) \approx \langle c, x\rangle with high probability for any t. This sequence of random variables is
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1026 LAP CHI LAU AND HONG ZHOU

not a martingale and so Freedman's inequality cannot be applied. Instead, we prove
a new concentration inequality for this self-adjusting process that provides a quan-
titative bound similar to that in Freedman's inequality. We note that the iterative
randomized rounding algorithm does not even need to know the linear constraint c in
advance in order to return a solution S with c(S) \approx \langle c, x\rangle . This property is quite simi-
lar to that of a recent rounding algorithm by Bansal [10] combining iterative rounding
and randomized rounding as we will discuss in section 5.1.5.

We remark that our approach to turning a deterministic algorithm into a random-
ized algorithm is inspired by the fast algorithm for spectral sparsification by Lee and
Sun [51], where they turned the deterministic algorithm by Batson, Spielman, and
Srivastava [15] into a randomized algorithm that updates the sampling probabilities
in different phases. In their algorithm, the advantage of the randomized algorithm is
to sample many vectors in parallel instead of carefully choosing one vector at a time
as in [15]. In our algorithm, the advantage of the randomized algorithm is to ap-
proximately preserve many linear constraints simultaneously using arguments about
expectation and concentration, while it is not clear how to modify the proofs in the
deterministic local search algorithm in [5] to prove that there is always a pair of
vectors vi, vj which makes enough progress in (1.1) and at the same time cj  - ci is
small, even if there is only one constraint c and it is given in advance. We believe
that this probabilistic approach will be useful in designing algorithms using the regret
minimization framework.

1.4. Other applications. The spectral rounding results are quite general and
have many other applications besides network design. We mention some of these
results and defer the details to section 5.

1.4.1. Weighted experimental design. Experimental design is an important
class of problems in statistics and has found new applications in machine learn-
ing [8, 61]. The one-sided spectral rounding result of Allen-Zhu et al. [5] was used to
give near-optimal approximation algorithms for many well-known experimental de-
sign problems. We will explain these previous works in section 5.2 and show that
our results can be used to design approximation algorithms for the more general set-
ting where different experiments may have different costs while incorporating some
additional linear constraints; see Theorem 5.11 and the discussions afterward.

Theorem 1.10 (informal). We are given m design points that are represented
by n-dimensional vectors v1, . . . , vm \in \BbbR n, a cost vector c \in \BbbR m

+ , and a cost budget
C \in \BbbR +. For any \epsilon \in (0, 1

2 ], if C \geq 15nc\infty /\epsilon 2, there is a randomized polynomial time
algorithm that returns a subset of vectors with total cost at most C so that the objective
value of A/D/E/V/G-design is at most (1+O(\epsilon )) times that of the optimal solution.

1.4.2. Spectral network design. There are several previous works on network
design problems with spectral requirements, including maximizing algebraic connec-
tivity [37, 44], minimizing total effective resistances [38], and network design for s-t
effective resistances [20]. In section 5.3, we will see that these problems are special
cases of the general network design problem and the weighted experimental design
problem in sections 5.1 and 5.2, and our results provide improved approximation al-
gorithms for these problems and also generalize these problems to incorporate many
additional constraints.

We provide the first nontrivial approximation algorithm for the problem of max-
imizing algebraic connectivity subject to a knapsack constraint, proposed by Ghosh
and Boyd [37].
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Theorem 1.11. Let G = (V,E) be a graph where each edge has cost ce and C be a
given cost budget. Suppose C \geq 15| V | c\infty /\epsilon 2 for some \epsilon \leq 1/2. There is a randomized
polynomial time algorithm which returns a subgraph H of G with\sum 

e\in H

ce \leq C and \lambda 2(LH) \geq (1 - O(\epsilon ))\lambda \sanso \sansp \sanst ,

where \lambda \sanso \sansp \sanst is the maximum \lambda 2 that can be achieved by a solution with cost at most C.

We also provide a similar result for the problem of minimizing total effective
resistance, proposed by Ghosh, Boyd, and Saberi [38].

Theorem 1.12. Let G = (V,E) be a graph where each edge has cost ce and C be a
given cost budget. Suppose C \geq 15| V | c\infty /\epsilon 2 for some \epsilon \leq 1/2. There is a randomized
polynomial time algorithm which returns a subgraph H of G with\sum 

e\in H

ce \leq C and
\sum 
u,v

ReffH(u, v) \leq (1 +O(\epsilon ))\sanso \sansp \sanst ,

where \sanso \sansp \sanst is the minimum total effective resistance that can be achieved by a solution
with cost at most C.

These results can be extended to incorporate additional constraints (e.g., con-
nectivity constraints). See section 5.3 for details about these results, including the
related work [44, 59].

2. Preliminaries. We review some basic linear algebra and spectral graph the-
ory in sections 2.1 and 2.2. Then we review the regret minimization framework for
one-sided spectral rounding in section 2.3 and state some concentration inequalities
for the analysis of our randomized algorithm in section 2.4.

2.1. Linear algebra. We write \BbbR and \BbbR + as the sets of real numbers and non-
negative real numbers, and \BbbZ and \BbbZ + as the sets of integers and nonnegative integers.
Let \BbbR n denote the n-dimensional Euclidean space. We write \vec{}1n as the n-dimensional
all-one vector. Given a vector x, we write \| x\| as its \ell 2-norm, \| x\| 1 as its \ell 1-norm,
and \| x\| \infty as its \ell \infty -norm. Given two vectors x, y \in \BbbR n, the inner product is defined
as \langle x, y\rangle :=

\sum n
i=1 xiyi.

We write In as the n\times n identity matrix and Jn as the n\times n all-one matrix. All
matrices considered in this paper are real symmetric matrices. We write \lambda max(M)
and \lambda min(M) as the maximum and the minimum eigenvalue of a matrix M . The trace
of a matrix M , denoted by tr(M), is defined as the sum of the diagonal entries of M .

Let M \succcurlyeq 0 denote that matrix M is a positive semidefinite (PSD) matrix. We
write \BbbS n+ as the set of all n-dimensional PSD matrices. Let M \succcurlyeq 0 be a PSD matrix
with eigendecomposition M =

\sum 
i \lambda iviv

T
i , where \lambda i \geq 0 is the ith eigenvalue and vi

is the corresponding eigenvector. The square root of M is M1/2 :=
\sum 

i

\surd 
\lambda iviv

T
i .

Given two matrices A and B of the same size, the Frobenius inner product of
A,B is denoted as \langle A,B\rangle :=

\sum 
i,j AijBij = tr(ATB).

We write \| M\| op := max\| x\| =1 \| Mx\| as the operator norm of a matrix M . For
symmetric matrices, the operator norm is just the largest absolute value of its eigen-
values. For PSD matrices, the operator norm is just its largest eigenvalue.

2.2. Graphs and Laplacian matrices. Let G = (V,E) be an undirected graph
with edge weight xe \geq 0 on each edge e \in E. The number of vertices and the number
of edges are denoted by n := | V | and m := | E| . For a subset of edges F \subseteq E, the
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1028 LAP CHI LAU AND HONG ZHOU

total weight of edges in F is x(F ) :=
\sum 

e\in F xe. For a subset of vertices S \subseteq V , the
set of edges with one endpoint in S and one endpoint in V  - S is denoted by \delta (S).
For a vertex v, the set of edges incident on a vertex v is \delta (v) := \delta (\{ v\} ), and the
weighted degree of v is deg(v) := x(\delta (v)). The expansion of a set \phi (S) := | \delta (S)| /| S| 
is defined as the ratio of the number of edges on the boundary of S to the size of S.
The expansion of a graph G is defined as \phi (G) := min0\leq | S| \leq n

2
\phi (S).

The Laplacian matrix L \in \BbbR n\times n of the graph is defined as L = D  - A where
D \in \BbbR n\times n is the diagonal degree matrix with Du,u = deg(u) for all u \in V , and
A is the (weighted) adjacency matrix of the graph. For each edge e = uv \in E,
let be := \chi u  - \chi v where \chi u \in \BbbR n is the vector with one in the uth entry and zero
otherwise. The Laplacian matrix with respect to weights x can be written as

Lx :=
\sum 
e\in E

xebeb
T
e .

Let \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n be the eigenvalues of Lx. \lambda 2 is known as the algebraic
connectivity of graph G. The following fact is useful for eigenvalue maximization.

Fact 2.1 (see [37]). \lambda 2(Lx) is a concave function with respect to x for x \geq 0.

The pseudoinverse of the Laplacian matrix L of a connected graph is defined as

L\dagger =

n\sum 
i=2

1

\lambda i
viv

T
i .

The effective resistance between two vertices s and t on a graph G with weight x is
defined as

Reffx(s, t) := bTstL
\dagger 
xbst.

We will use the following fact for the formulation of the convex programming relax-
ation in (CP).

Fact 2.2 (see [38]). Reffx(s, t) is a convex function with respect to the weights
x for x \geq 0.

2.3. Regret minimization and spectral rounding. We use the regret mini-
mization framework developed by Allen-Zhu, Liao, and Orecchia for spectral sparsi-
fication [3] and present the results in [3, 5]. This is an online optimization setting.
In each iteration t, the player chooses an action matrix At from the set of density
matrices \Delta n = \{ A \in \BbbR n\times n | A \succcurlyeq 0, tr(A) = 1\} . We can intrepret the player action
as choosing a probability distribution over the set of unit vectors. The player then
observes a feedback matrix Ft and incurs a loss of \langle At, Ft\rangle . After \tau iterations, the
regret of the player is defined as

R\tau :=

\tau \sum 
t=1

\langle At, Ft\rangle  - inf
B\in \Delta n

\tau \sum 
t=1

\langle B,Ft\rangle =
\tau \sum 

t=1

\langle At, Ft\rangle  - \lambda min

\Biggl( 
\tau \sum 

t=1

Ft

\Biggr) 
,

which is the difference between the loss of the player actions and the loss of the best
fixed action B, that can be assumed to be a rank one matrix vvT . The objective of
the player is to minimize the regret. A well-known algorithm for regret minimization
is follow-the-regularized-leader, which plays the action

At = argminA\in \Delta n

\Biggl\{ 
w(A) + \alpha \cdot 

t - 1\sum 
l=0

\langle A,Fl\rangle 

\Biggr\} 
,
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where w(A) is a regularization term and \alpha is a parameter called the learning rate
that balances the loss and the regularization. Note that F0 is an initial feedback
which is given before the game starts. A different choice of regularization gives a
different algorithm for regret minimization. One choice is the entropy regularizer
w(A) = \langle A, logA  - I\rangle and this gives the well-known matrix multiplicative update
algorithm. The choice that we will use is the \ell 1/2-regularizer w(A) =  - 2 tr(A1/2)
introduced in [3], which plays the action

(2.1) At =

\Biggl( 
ltI + \alpha 

t - 1\sum 
l=0

Fl

\Biggr)  - 2

,

where lt is the unique constant that ensures At \in \Delta n. Allen-Zhu, Liao, and Orec-
chia [3] prove upper bounds on the regret of this algorithm for positive or negative
semidefinite feedback matrices.

Theorem 2.3 (Theorems 3.2 and 3.3 in [3]). Suppose F0 = 0 and each feed-
back matrix Ft \in \BbbR n\times n is either a positive or a negative semidefinite matrix with

\alpha A
1/4
t FtA

1/4
t \succcurlyeq  - 1

4I for all t \geq 1, and the action matrix At \in \BbbR n\times n is of the form
in (2.1) for some \alpha > 0. Then

R\tau \leq O(\alpha )

\tau \sum 
t=1

\langle At, | Ft| \rangle \cdot 
\bigm\| \bigm\| \bigm\| A1/4

t FtA
1/4
t

\bigm\| \bigm\| \bigm\| 
op

+
2
\surd 
n

\alpha 
.

When each feedback matrix Ft is of the form utu
T
t for some ut \in \BbbR n for all t \geq 1, it

holds that

(2.2) \lambda min

\Biggl( 
\tau \sum 

t=1

utu
T
t

\Biggr) 
\geq 

\tau \sum 
t=1

\langle utu
T
t , At\rangle 

1 + \alpha \langle utuT
t , A

1/2
t \rangle 

 - 2
\surd 
n

\alpha 
.

For one-sided spectral rounding, the goal is to choose a subset S of vectors to
maximize \lambda min(

\sum 
i\in S viv

T
i ). Using this regret minimization framework, the second

part of Theorem 2.3 reduces this problem to the simpler task of finding a vec-

tor ut that maximizes \langle utu
T
t , At\rangle /(1 + \alpha \langle utu

T
t , A

1/2
t \rangle ). Using the condition that\sum m

i=1 xiviv
T
i = In and

\sum m
i=1 xi = k, it can be shown [4] that there is always a

vector vj with \langle vjvTj , At\rangle /(1 + \alpha \langle vjvTj , A
1/2
t \rangle ) \geq 1/(k+ \alpha 

\surd 
n). Setting \alpha =

\surd 
n/\epsilon and

\tau = k and using the assumption that k \geq n/\epsilon 2, this gives \lambda min(
\sum k

t=1 utu
T
t ) \geq 1 - 3\epsilon 

and proves Theorem 1.5 in the easier setting when a vector can be chosen more than
once (i.e., the with repetition setting in experimental design). This greedy algorithm
can be extended to the more difficult setting when every vector can be chosen at most
once, but only achieving a \Theta (1)-approximation [4].

To prove Theorem 1.5 when the output must be a zero-one solution, Allen-Zhu
et al. [5] derived the following regret minimization bound for rank two feedback
matrices.

Theorem 2.4 (Lemmas 2.5 and 2.9 in [5]). Suppose the action matrix At \in \BbbR n\times n

is of the form in (2.1) for some \alpha > 0. Suppose the initial feedback matrix F0 \in \BbbS n
is a symmetric matrix, and for all t \geq 1 each feedback matrix Ft is of the form

vjtv
T
jt
 - vitv

T
it

for some vjt , vit \in \BbbR n such that \alpha \langle vitvTit , A
1/2
t \rangle < 1

2 ; then

\lambda min

\Biggl( 
\tau \sum 

t=0

Ft

\Biggr) 
\geq 

\tau \sum 
t=1

\Biggl( 
\langle vjtvTjt , At\rangle 

1 + 2\alpha \langle vjtvTjt , A
1/2
t \rangle 

 - 
\langle vitvTit , At\rangle 

1 - 2\alpha \langle vitvTit , A
1/2
t \rangle 

\Biggr) 
 - 2

\surd 
n

\alpha 
.
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1030 LAP CHI LAU AND HONG ZHOU

With Theorem 2.4, they analyzed a deterministic local search algorithm where
they start from an arbitrary solution S0 of k vectors, and in each iteration t \geq 1

they find a jt /\in St - 1 that maximizes \langle vjvTj , At\rangle /
\bigl( 
1 + 2\alpha \langle vjvTj , A

1/2
t \rangle 

\bigr) 
and an it \in 

St - 1 that minimizes \langle vivTi , At\rangle /
\bigl( 
1  - 2\alpha \langle vivTi , A

1/2
t \rangle 

\bigr) 
subject to the restriction that

2\alpha \langle vivTi , A
1/2
t \rangle < 1, and define St := St - 1  - it + jt as the new solution. Using a

delicate argument, they proved that so long as \lambda min(
\sum 

l\in St - 1
vlv

T
l ) \leq 1 - 3\epsilon , the pair

it, jt always satisfies

\langle vjtvTjt , At\rangle 

1 + 2\alpha \langle vjtvTjt , A
1/2
t \rangle 

 - 
\langle vitvTit , At\rangle 

1 - 2\alpha \langle vitvTit , A
1/2
t \rangle 

\geq \epsilon 

k
.

This implies by Theorem 2.4 that the local search algorithm will succeed in finding a
solution St with \lambda min(

\sum 
l\in St

vlv
T
l ) \geq 1 - 3\epsilon within k/\epsilon iterations.

One technical point used in [4, 5] is that the partial solution Zt - 1 :=
\sum t - 1

l=0 Fl at
time t and the action matrix At at time t have the same eigenbasis due to (2.1). This

allows one to bound \langle Zt - 1, At\rangle and \langle Zt - 1, A
1/2
t \rangle as follows.

Lemma 2.5 (Claim 2.14 in [5]). Let Z \succcurlyeq 0 be an n \times n PSD matrix and A =
(\alpha Z + lI) - 2 for some \alpha > 0 where l is the unique constant such that A is a density
matrix. Then, it holds that

\langle Z,A\rangle \leq 
\surd 
n

\alpha 
+ \lambda min(Z) and \alpha \langle Z,A1/2\rangle \leq n+ \alpha 

\surd 
n \cdot \lambda min(Z).

This lemma will be used in constructing a zero-one solution for Theorem 1.8.

2.4. Martingale and concentration inequalities. A sequence of random
variables Y1, . . . , Y\tau (starting with Y0 = 0) is a martingale with respect to a sequence
of random variables Z1, . . . , Z\tau if for all t > 0, it holds that

1. Yt is a function of Z1, . . . , Zt - 1;
2. \BbbE [| Yt| ] < \infty ;
3. \BbbE [Yt+1| Z1, . . . , Zt] = Yt.

We will use the following theorem by Freedman to bound the probability that Y\tau 

is large.

Theorem 2.6 (see [31, 71]). Let \{ Yt\} t be a real-valued martingale with respect
to \{ Zt\} t, and let \{ Xt = Yt  - Yt - 1\} t be the difference sequence. Assume that Xt \leq R
deterministically for 1 \leq t \leq \tau . Let Wt :=

\sum t
j=1 \BbbE [X2

j | Z1, . . . , Zj - 1] for 1 \leq t \leq \tau .

Then, for all \delta \geq 0 and \sigma 2 > 0,

Pr
\bigl( 
\exists t \in [\tau ] : Yt \geq \delta and Wt \leq \sigma 2

\bigr) 
\leq exp

\biggl( 
 - \delta 2/2

\sigma 2 +R\delta /3

\biggr) 
.

Recently, some variants of Freedman's inequality for martingales have been used
to obtain algorithmic discrepancy results [12, 11]. In this paper, we will prove another
variant for nonmartingales with a ``self-adjusting"" property (see Theorem 3.9).

3. One-sided spectral rounding. We will first present the iterative random-
ized rounding algorithm for one-sided spectral rounding in section 3.1. Then we will
present some examples showing the tightness of our results in section 3.2.
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3.1. Iterative randomized rounding for one-sided spectral rounding.
We modify the deterministic local search algorithm in [5] to an iterative randomized
rounding algorithm so as to approximately satisfy arbitrary nonnegative linear con-
straints. In this randomized algorithm, we first construct an initial solution S0 by
adding each vector vi into S0 with probability xi independently. In each iteration
t \geq 1, based on the current solution St - 1, we construct a probability distribution to
sample a vector vit to be removed from St - 1, and a probability distribution to sample
a vector vjt to be added to St - 1. The basic idea is that a vector vi is removed with
probability proportional to 1  - xi and a vector vj is added with probability propor-
tional to xj , but the probability is also adjusted based on the vector's contribution to
the minimum eigenvalue of the current solution. We remark that it is possible that
no vector is removed and/or no vector is added in an iteration. The algorithm stops
when the minimum eigenvalue of the current solution is at least 1 - 2\epsilon . The following
is the formal description of the algorithm.

Iterative randomized swapping algorithm
Input: v1, . . . , vm \in \BbbR n and x \in [0, 1]m with

\sum m
i=1 xiviv

T
i = In, and an error

parameter \epsilon \in (0, 1
2 ).

Output: a subset S \subseteq [m] such that
\sum 

i\in S viv
T
i \succcurlyeq (1 - 2\epsilon )In and c(S) \approx \langle c, x\rangle for

any c \in \BbbR m
+ with high probability.

1. Initialization: t := 1, S0 := \emptyset , \alpha :=
\surd 
n/\epsilon , k := m+ 2n/\epsilon .

2. Add i into S0 independently with probability xi for each i \in [m]. Let
Z0 :=

\sum 
i\in S0

viv
T
i .

3. While \lambda min(Zt - 1) < 1 - 2\epsilon do
(a) Compute the action matrix At := (\alpha Zt - 1  - ltIn)

 - 2, where lt \in \BbbR is
the unique value such that At \succ 0 and tr(At) = 1.

(b) Define S\prime 
t - 1 := \{ i \in St - 1 : 2\alpha \langle vivTi , A

1/2
t \rangle < 1

2\} .
(c) Sample it and jt from the following probability distributions:

Pr (it = i) =
1

k
(1 - xi)(1 - 2\alpha \langle vivTi , A

1/2
t \rangle ) for i \in S\prime 

t - 1,

Pr (jt = j) =
xj

k
(1 + 2\alpha \langle vjvTj , A

1/2
t \rangle ) for j \in [m]\setminus St - 1.

(d) Set St := St - 1 \cup \{ jt\} \setminus \{ it\} , Zt :=
\sum 

i\in St
viv

T
i and t := t+ 1.

4. Return S = St - 1 as the solution.

Before we state the main result of this algorithm, we first check that the algorithm
is well-defined.

Claim 3.1. The probability distributions in each iteration of the iterative random-
ized swapping algorithm are well-defined.

Proof. To verify that the probability distribution for sampling it is well-defined,
we need to show that Pr(it = i) \geq 0 for i \in S\prime 

t - 1 and
\sum 

i\in S\prime 
t - 1

Pr(it = i) \leq 1. Since

At \succ 0, xi \in [0, 1], and 2\alpha \langle vivTi , A
1/2
t \rangle \leq 1

2 for i \in S\prime 
t - 1, it follows that for i \in S\prime 

t - 1

we have

0 \leq Pr(it = i) =
1

k
(1 - xi)(1 - 2\alpha \langle vivTi , A

1/2
t \rangle ) \leq 1

k
,

and this implies that
\sum 

i\in S\prime 
t - 1

Pr(it = i) \leq | S\prime 
t - 1| /k \leq m/k < 1 by the definition of k.
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1032 LAP CHI LAU AND HONG ZHOU

Next we verify that the probability distribution for sampling jt is well-defined. It
is clear that Pr(jt = j) \geq 0 as At \succ 0 and xj \in [0, 1]. We claim that\sum 

j\in [m]\setminus St - 1

Pr(jt = j) \leq 
\sum 
j\in [m]

Pr(jt = j) \leq 1

as

\sum 
j\in [m]

Pr(jt = j) =
1

k

m\sum 
j=1

xj(1 + 2\alpha \langle vjvTj , A
1/2
t \rangle ) = 1

k

\left(  m\sum 
j=1

xj + 2\alpha tr(A
1/2
t )

\right)  
\leq 1

k

\biggl( 
m+

2n

\epsilon 

\biggr) 
= 1,

where the second equality is by the assumption that
\sum m

j=1 xjvjv
T
j = In, the last

equality is by the definition of k (this motivates us to set k = m + 2n/\epsilon in the
algorithm), and the inequality uses that xj \in [0, 1], \alpha =

\surd 
n/\epsilon and the bound that

tr(A
1/2
t ) \leq 

\surd 
n. To see that tr(A

1/2
t ) \leq 

\surd 
n, let \lambda 1, . . . , \lambda n be the eigenvalues of At,

then

(3.1) tr(A
1/2
t ) =

n\sum 
i=1

\sqrt{} 
\lambda i \leq 

\surd 
n

n\sum 
i=1

\lambda i =
\surd 
n tr(At) =

\surd 
n,

where the inequality is by Cauchy--Schwarz and the last equality is by the definition
of At.

Remark 3.2. The reader may wonder why we do not define the probability dis-
tribution for sampling it by

Pr (it = i) =
(1 - xi)(1 - 2\alpha \langle vivTi , A

1/2
t \rangle )\sum 

j\in S\prime 
t - 1

(1 - xj)(1 - 2\alpha \langle vjvTj , A
1/2
t \rangle )

for i \in S\prime 
t - 1,

so that
\sum 

i\in S\prime 
t - 1

Pr(it = i) = 1 and likewise for sampling jt, so that we always remove

a vector from St - 1 and add another vector to St - 1 in each iteration. This is our
initial approach and we believe that this should also work, but it turns out that the
calculations for the linear constraints are simplified considerably by having a common
denominator k for these two probability distributions.

The following is the main technical result for one-sided spectral rounding.

Theorem 3.3. Suppose we are given v1, . . . , vm \in \BbbR n, x \in [0, 1]m such that\sum m
i=1 xiviv

T
i = In. For any \epsilon \in (0, 1

2 ) and integer q \geq 2, the iterative randomized
swapping algorithm returns a subset S \subseteq [m] satisfying\sum 

i\in S

viv
T
i \succcurlyeq (1 - 2\epsilon )In

within qk/\epsilon iterations with probability at least 1  - exp ( - \Omega (q
\surd 
n)). Furthermore, for

any c \in \BbbR m
+ and any \delta 1 \in [0, 1], \delta 2 \in [0, 1], and \delta 3 > 0, the probability that the

returned solution S satisfies the cost upper bound is

Pr

\biggl[ 
c(S) \leq (1 + \delta 1)\langle c, x\rangle +

15nc\infty 
\epsilon 

\biggr] 
\geq 1 - exp

\biggl[ 
 - \Omega 

\biggl( 
\delta 1n

\epsilon 

\biggr) \biggr] 
,
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and the probability that the returned solution S satisfies the cost lower bound is

Pr
\Bigl[ 
c(S) \geq (1 - \delta 2)\langle c, x\rangle  - \delta 3nc\infty 

\Bigr] 
\geq 1 - exp

\Bigl[ 
 - \Omega 

\bigl( 
min\{ \delta 2\delta 3, \epsilon \delta 23\} \cdot n

\bigr) \Bigr] 
.

Remark 3.4. If we set \delta 1 = \delta 2 = \epsilon and \delta 3 = 1/\epsilon , then Theorem 3.3 states that
the returned solution S satisfies

(1 - \epsilon )\langle c, x\rangle  - nc\infty 
\epsilon 

\leq c(S) \leq (1 + \epsilon )\langle c, x\rangle + 15nc\infty 
\epsilon 

with probability at least 1  - exp( - \Omega (n)) for any c \in \BbbR m
+ . We introduce \delta 1, \delta 2, \delta 3 to

have a more refined control of the failure probability of the lower bound, and this will
be relevant in showing that linear covering constraints can be almost satisfied.

Organization. The remainder of this subsection is organized as follows. We will
first prove that the spectral lower bound will be approximately satisified with high
probability within polynomial time in section 3.1.1, and then prove the guarantees
on the linear constraints in section 3.1.2, where we crucially use a new concentration
inequality for a ``self-adjusting"" random process (see Theorem 3.9 for a formal state-
ment). Then, we will use Theorem 3.3 to prove the exact one-sided spectral rounding
result in Theorem 1.8 in section 3.1.3. Finally, we provide a proof of the concentration
inequality in Theorem 3.9 in section 3.1.4.

3.1.1. Bounding the minimum eigenvalue. The goal in this subsection is
to prove that the probability that the algorithm does not terminate within \tau \geq qk/\epsilon 
iterations is at most exp( - \Omega (q

\surd 
n)) for q \geq 2.

We will bound the minimum eigenvalue of the solution using the regret minimiza-
tion framework developed in [3, 5]. The initial feedback matrix is F0 = Z0, which is
constructed randomly using x. In each iteration t \geq 1, after computing the action
matrix At, the algorithm responds with the feedback matrix Ft = vjtv

T
jt
 - vitv

T
it
. Note

that Z\tau =
\sum \tau 

t=0 Ft. Define

\Delta +
t :=

\langle vjtvTjt , At\rangle 

1 + 2\alpha \langle vjtvTjt , A
1/2
t \rangle 

, \Delta  - 
t :=

\langle vitvTit , At\rangle 
1 - 2\alpha \langle vitvTit , A

1/2
t \rangle 

, and \Delta t := \Delta +
t  - \Delta  - 

t .

Note that 2\alpha \langle vitvTit , A
1/2
t \rangle < 1

2 < 1 for 1 \leq t \leq \tau by the definition of S\prime 
t - 1, and so \Delta  - 

t

is well-defined for 1 \leq t \leq \tau . The regret minimization Theorem 2.4 proves that

(3.2) \lambda min (Z\tau ) = \lambda min

\Bigl( \tau \sum 
t=0

Ft

\Bigr) 
\geq 

\tau \sum 
t=1

\Delta t  - 
2
\surd 
n

\alpha 
=

\tau \sum 
t=1

\Delta t  - 2\epsilon .

To lower bound the minimum eigenvalue, we will prove that
\sum \tau 

t=1 \Delta t \geq 1 with high
probability. In the following, we bound the expected value of

\sum \tau 
t=1 \Delta t, and then

use Freeman's martingale inequality to bound the probability that
\sum \tau 

t=1 \Delta t deviates
significantly from its expected value.

Lemma 3.5. Let \lambda := max0\leq t\leq \tau \lambda min(Zt). Then

\tau \sum 
t=1

\BbbE [\Delta t | St - 1] \geq 
\tau \sum 

t=1

1

k
(1 - \epsilon  - \lambda min(Zt - 1)) \geq 

\tau 

k
(1 - \epsilon  - \lambda ).D
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1034 LAP CHI LAU AND HONG ZHOU

Proof. We first consider the expected gain of adding the vector jt. By the defini-
tion of the probability distribution of jt,

(3.3)

\BbbE 
\bigl[ 
\Delta +

t | St - 1

\bigr] 
=

1

k

\sum 
j\in [m]\setminus St - 1

xj(1 + 2\alpha \langle vjvTj , A
1/2
t \rangle ) \cdot 

\langle vjvTj , At\rangle 

1 + 2\alpha \langle vjvTj , A
1/2
t \rangle 

=
1

k

\sum 
j\in [m]\setminus St - 1

xj\langle vjvTj , At\rangle 

=
1

k

\Bigl( 
1 - 

\sum 
j\in St - 1

xj\langle vjvTj , At\rangle 
\Bigr) 
,

where the last equality is by
\sum m

j=1 xjvjv
T
j = In and tr(At) = 1 by the definition of

At.
Then we consider the expected loss of removing the vector it. By the definition

of the probability distribution of it,

(3.4)

\BbbE 
\bigl[ 
\Delta  - 

t | St - 1

\bigr] 
=

\sum 
i\in S\prime 

t - 1

1

k
(1 - xi)(1 - 2\alpha \langle vivTi , A

1/2
t \rangle ) \cdot \langle vivTi , At\rangle 

1 - 2\alpha \langle vivTi , A
1/2
t \rangle 

=
1

k

\sum 
i\in S\prime 

t - 1

(1 - xi)\langle vivTi , At\rangle 

\leq 1

k

\sum 
i\in St - 1

(1 - xi)\langle vivTi , At\rangle 

\leq 1

k

\Bigl( 
\lambda min(Zt - 1) + \epsilon  - 

\sum 
i\in St - 1

xi\langle vivTi , At\rangle 
\Bigr) 
,

where the first inequality is because xi \in [0, 1] and \langle vivTi , At\rangle \geq 0 as At \succ 0, and
the last inequality follows from Lemma 2.5 that \langle Zt - 1, At\rangle \leq 

\surd 
n/\alpha +\lambda min(Zt - 1) and

\alpha =
\surd 
n/\epsilon .

The lemma follows by combining (3.3) and (3.4) and summing over t and using
\lambda = maxt \lambda min(Zt).

Remark 3.6. If we use the probability distributions stated in Remark 3.2, then
we can start with a solution with l :=

\sum m
i=1 xi + O(n/\epsilon ) vectors and guarantee that

the solution at each iteration still has exactly l vectors. A similar statement about
the expected progress as in Lemma 3.5 can be proved. This implies that there exists
a good pair it \in St - 1 and jt \in St - 1, which gives a solution set of size l satisfying
the spectral lower bound approximately. Together with a preprocessing step as in
section 3.1.3, this gives a simpler proof of the deterministic algorithm of [5].

Lemma 3.7. Let \lambda := max0\leq t\leq \tau \lambda min(Zt). Then, for any \eta > 0,

Pr

\Biggl[ 
\tau \sum 

t=1

\Delta t \leq 

\Biggl( 
\tau \sum 

t=1

\BbbE [\Delta t | St - 1]

\Biggr) 
 - \eta 

\Biggr] 
\leq exp

\biggl( 
 - \eta 2k

\surd 
n/2

\tau \epsilon (1 + \lambda + \epsilon ) + \eta k\epsilon /3

\biggr) 
.

Proof. We define the following sequences of random variables where

Xt := \BbbE [\Delta t | St - 1] - \Delta t and Yt :=

t\sum 
l=1

Xl.
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Observe that \{ Yt\} t is a martingale with respect to \{ St\} t. We use Freedman's inequal-
ity to bound Pr(Y\tau \geq \eta ). To apply Freedman's inequality, we need to upper bound
Xt and E[X2

t | St - 1]. Note that

0 \leq \Delta +
t =

\langle vjtvTjt , At\rangle 

1 + 2\alpha \langle vjtvTjt , A
1/2
t \rangle 

\leq 
\langle vjtvTjt , At\rangle 

2\alpha \langle vjtvTjt , A
1/2
t \rangle 

\leq 1

2\alpha 
,

where the last inequality holds as 0 \prec At \preccurlyeq I. Also,

0 \leq \Delta  - 
t =

\langle vitvTit , At\rangle 
1 - 2\alpha \langle vitvTit , A

1/2
t \rangle 

\leq 
\langle vitvTit , A

1/2
t \rangle 

1 - 2\alpha \langle vitvTit , A
1/2
t \rangle 

\leq 1

2\alpha 
,

where the second to last inequality is by 0 \prec At \preccurlyeq I, and the first and last inequalities

are because it is chosen from the set S\prime 
t - 1 := \{ i | 4\alpha \langle vivTi , A

1/2
t \rangle < 1\} . (We remark

that this upper bound on \Delta  - 
t is exactly the reason for the definition of S\prime 

t - 1.) As
these lower and upper bounds on \Delta +

t and \Delta  - 
t hold with probability one, we have the

deterministic upper bound Xt \leq R := \epsilon /
\surd 
n as

Xt = \BbbE [\Delta t | St - 1] - \Delta t \leq \BbbE [\Delta +
t | St - 1] + \Delta  - 

t \leq 1

\alpha 
=

\epsilon \surd 
n
= R.

Next, we upper bound

\BbbE [X2
t | St - 1] \leq R \cdot \BbbE [| Xt| | St - 1] \leq 

\epsilon \surd 
n

\Bigl( 
\BbbE [\Delta +

t | St - 1] + \BbbE [\Delta  - 
t | St - 1]

\Bigr) 
\leq \epsilon 

k
\surd 
n
(1 + \lambda + \epsilon ),

where the last inequality follows from (3.3) and (3.4) that \BbbE [\Delta +
t | St - 1] \leq 1/k and

\BbbE [\Delta  - 
t | St - 1] \leq (\lambda +\epsilon )/k. Therefore, W\tau :=

\sum \tau 
t=1 \BbbE [X2

t | St - 1] \leq \tau \epsilon (1+\lambda +\epsilon )/(k
\surd 
n).

Applying Theorem 2.6 with R = \epsilon /
\surd 
n and \sigma 2 = \tau \epsilon (1 + \lambda + \epsilon )/(k

\surd 
n), it follows that

Pr(Y\tau \geq \eta ) \leq exp

\biggl( 
 - \eta 2/2

\sigma 2 +R\eta /3

\biggr) 
= exp

\biggl( 
 - \eta 2k

\surd 
n/2

\tau \epsilon (1 + \lambda + \epsilon ) + \eta k\epsilon /3

\biggr) 
.

The lemma follows as Y\tau \geq \eta is equivalent to
\sum \tau 

t=1 \Delta t \leq (
\sum \tau 

t=1 \BbbE [\Delta t | St - 1]) - \eta .

We are ready to prove that the algorithm terminates in a polynomial number of
iterations with high probability.

Theorem 3.8. The probability that the iterative randomized swapping algorithm
does not terminate in qk/\epsilon iterations for q \geq 2 is at most exp( - \Omega (q

\surd 
n)).

Proof. Let \tau = qk/\epsilon . Suppose \lambda = max0\leq t\leq \tau \lambda min(Zt) < 1 - 2\epsilon . Then, Lemma 3.5
implies that

\tau \sum 
t=1

\BbbE [\Delta t | St - 1] \geq 
\tau 

k
(1 - \epsilon  - \lambda ) =

q

\epsilon 
(1 - \epsilon  - \lambda ) > q,

and the regret minimization bound in (3.2) implies that

1 - 2\epsilon > \lambda min(Z\tau ) \geq 

\Biggl( 
\tau \sum 

t=1

\Delta t

\Biggr) 
 - 2\epsilon =\Rightarrow 

\tau \sum 
t=1

\Delta t < 1.
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Therefore,

Pr

\Biggl[ 
\tau \bigcap 

t=0

\Bigl( 
\lambda min(Zt) < 1 - 2\epsilon 

\Bigr) \Biggr] 
\leq Pr

\Biggl[ 
\tau \sum 

t=1

\Delta t <

\Biggl( 
\tau \sum 

t=1

\BbbE [\Delta t | St - 1]

\Biggr) 
 - (q  - 1)

\Biggr] 

\leq exp

\biggl( 
 - (q  - 1)2k

\surd 
n/2

(qk/\epsilon )\epsilon (1 + (1 - 2\epsilon ) + \epsilon ) + (q  - 1)k\epsilon /3

\biggr) 
\leq exp( - \Omega (q

\surd 
n)),

where the second inequality is by Lemma 3.7 with \eta = q  - 1 and \tau = qk/\epsilon and the
last inequality is by the assumption that q \geq 2.

So, for example, the probability that the algorithm does not terminate in 2k/\epsilon 
iterations is at most exp( - \Omega (

\surd 
n)) and the probability that it does not terminate in

k
\surd 
n/\epsilon iterations is at most exp( - \Omega (n)).

3.1.2. Bounding the linear constraints. For an arbitrary nonnegative linear
constraint c \in \BbbR m

+ , the goal in this subsection is to prove that c(St) \approx \langle c, x\rangle with
high probability for any t, where we recall that c(St) :=

\sum 
i\in St

ci is the ``cost"" of the
solution at time t.

Note that the change of the cost through the iterations of the algorithm is not a
martingale, so we cannot control it using Freedman's inequality directly. Nevertheless,
we manage to prove another variant which applies to a nonmartingale random process
\{ Yt\} t with a ``self-adjusting"" property that if Yt is (more) positive, then E[Yt+1] - Yt

is (more) negative and vice versa. With this self-adjusting property, intuitively Yt

cannot be too far away from zero, and the following theorem provides a quantitative
bound that is similar to that in Freedman's inequality.

Theorem 3.9. Let \{ Yt\} t be a sequence of random variables, and Xt := Yt  - Yt - 1

be the difference sequence. Suppose that there exist R, \sigma > 0, \beta u, \beta l \geq 0, and \gamma 1 \in 
(0, 1

2 ), \gamma 2 > 0 with \gamma 1 \leq \gamma 2/R such that the following properties hold for all t \geq 1:
1. (Bounded difference) | Xt| \leq R with probability one.
2. (Self adjusting)  - \gamma 1Yt - 1  - \beta l \leq \BbbE [Xt | Y0, . . . , Yt - 1] \leq  - \gamma 1Yt - 1 + \beta u.
3. (Bounded variance) \BbbE [X2

t | Y0, . . . , Yt - 1] \leq \gamma 2Yt - 1 + \sigma .
4. (Initial concentration) For any a \in [ - 1

R , 1
R ], the random variable Y0 satisfies

\BbbE 
\bigl[ 
eaY0

\bigr] 
\leq ea

2\sigma /\gamma 1 .
Then, for any \eta > 0 and any t \geq 0, it holds that

Pr

\biggl[ 
Yt \geq 

\beta u

\gamma 1
+ \eta 

\biggr] 
\leq exp

\biggl[ 
 - \eta 2\gamma 1/\gamma 2
4(\sigma /\gamma 2 + \beta u/\gamma 1) + 2\eta 

\biggr] 
and

Pr

\biggl[ 
Yt \leq  - \beta l

\gamma 1
 - \eta 

\biggr] 
\leq exp

\biggl[ 
 - \eta 2\gamma 1/\gamma 2
4\sigma /\gamma 2 + \eta 

\biggr] 
.

The proof of Theorem 3.9 is deferred to section 3.1.4.
To apply Theorem 3.9 to show the concentration of the cost, we first bound the

expected change of the cost in an iteration.

Lemma 3.10. Suppose \lambda min(Zt - 1) < 1. Then

1

k

\Bigl( 
\langle c, x\rangle  - c(St - 1)

\Bigr) 
\leq \BbbE [cjt  - cit | St - 1] \leq 

1

k

\Bigl( 
\langle c, x\rangle  - c(St - 1) +

14nc\infty 
\epsilon 

\Bigr) 
.
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Proof. We first bound the conditional expectation of cjt . By the probability
distribution of jt,

\BbbE [cjt | St - 1] =
1

k

\sum 
j\in [m]\setminus St - 1

cjxj(1 + 2\alpha \langle vjvTj , A
1/2
t \rangle )

=
1

k

\biggl( 
\langle c, x\rangle  - 

\sum 
j\in St - 1

cjxj + 2\alpha 
\sum 

j\in [m]\setminus St - 1

cjxj\langle vjvTj , A
1/2
t \rangle 

\biggr) 
.

Note that

0 \leq 2\alpha 
\sum 

j\in [m]\setminus St - 1

cjxj\langle vjvTj , A
1/2
t \rangle \leq 2\alpha c\infty 

m\sum 
j=1

xj\langle vjvTj , A
1/2
t \rangle = 2\alpha c\infty tr(A

1/2
t )

\leq 2nc\infty 
\epsilon 

,

where the equality holds as
\sum m

j=1 xjvjv
T
j = In and the last inequality is by (3.1) and

\alpha =
\surd 
n/\epsilon . Therefore,

(3.5)
1

k

\Bigl( 
\langle c, x\rangle  - 

\sum 
i\in St - 1

cixi

\Bigr) 
\leq \BbbE [cjt | St - 1] \leq 

1

k

\Bigl( 
\langle c, x\rangle  - 

\sum 
i\in St - 1

cixi +
2nc\infty 
\epsilon 

\Bigr) 
.

Next we bound the expectation of cit . By the probability distribution of it,

\BbbE [cit | St - 1] =
1

k

\sum 
i\in S\prime 

t - 1

ci(1 - xi)(1 - 2\alpha \langle vivTi , A
1/2
t \rangle )

=
1

k

\Bigl( \sum 
i\in S\prime 

t - 1

ci(1 - xi) - 2\alpha 
\sum 

i\in S\prime 
t - 1

ci(1 - xi)\langle vivTi , A
1/2
t \rangle 

\Bigr) 
=

1

k

\Bigl( 
c(St - 1) - 

\sum 
i\in St - 1

cixi  - 
\sum 

i\in St - 1\setminus S\prime 
t - 1

ci(1 - xi)

 - 2\alpha 
\sum 

i\in S\prime 
t - 1

ci(1 - xi)\langle vivTi , A
1/2
t \rangle 

\Bigr) 
.

We would like to bound the last two terms of the right-hand side. Recall that S\prime 
t - 1 :=

\{ i \in St - 1 | 4\alpha \langle vivTi , A
1/2
t \rangle < 1\} . This implies that

| St - 1 \setminus S\prime 
t - 1| \leq 

\sum 
i\in St - 1\setminus S\prime 

t - 1

4\alpha \langle vivTi , A
1/2
t \rangle \leq 4\alpha 

\sum 
i\in St - 1

\langle vivTi , A
1/2
t \rangle 

\leq 4
\bigl( 
n+ \alpha 

\surd 
n \cdot \lambda min(Zt - 1)

\bigr) 
\leq 8n

\epsilon 
,

where the second to last inequality uses Lemma 2.5 and the last inequality is by
\alpha =

\surd 
n/\epsilon and the assumption that \lambda min(Zt - 1) \leq 1. Since x \in [0, 1]m and c \geq 0, it

follows that the second to last term is

0 \leq 
\sum 

i\in St - 1\setminus S\prime 
t - 1

ci(1 - xi) \leq c\infty \cdot | St - 1\setminus S\prime 
t - 1| \leq 

8nc\infty 
\epsilon 

.
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Similarly, for the last term,

0 \leq 2\alpha 
\sum 

i\in S\prime 
t - 1

ci(1 - xi)\langle vivTi , A
1/2
t \rangle \leq 2c\infty \cdot \alpha 

\sum 
i\in St - 1

\langle vivTi , A
1/2
t \rangle 

\leq 2c\infty (n+ \alpha 
\surd 
n \cdot \lambda min(Zt - 1))

\leq 4nc\infty 
\epsilon 

.

Plugging back these upper and lower bounds for the last two terms, we obtain

(3.6)
1

k

\Bigl( 
c(St - 1) - 

\sum 
i\in St - 1

cixi  - 
12nc\infty 

\epsilon 

\Bigr) 
\leq \BbbE [cit | St - 1] \leq 

1

k

\Bigl( 
c(St - 1) - 

\sum 
i\in St - 1

cixi

\Bigr) 
.

The lemma follows by combining the bounds for the expectations of cit and cjt in
(3.5) and (3.6).

To bound the difference between c(St) and \langle c, x\rangle , we consider the following se-
quences of random variables where

(3.7) Yt := c(St) - \langle c, x\rangle for t \geq 0 and Xt := Yt  - Yt - 1 = cjt  - cit for t \geq 1.

Note that Lemma 3.10 shows that the sequence \{ Yt\} t has the ``self-adjusting"" property
that if Yt is (more) positive, then E[Yt+1]  - Yt is (more) negative and vice versa,
so intuitively Yt cannot be too far away from zero. The sequence \{ Yt\} t is not a
martingale, and so we cannot apply Freedman's inequality to prove concentration.
Instead, we will use Theorem 3.9 to prove that the absolute value of Yt is small with
high probability. To apply Theorem 3.9, we need to bound the conditional second
moment of Xt and the moment generating function of the initial solution S0.

Lemma 3.11. Suppose \lambda min(Zt - 1) < 1. Then

\BbbE [(cjt  - cit)
2 | St - 1] \leq 

c\infty 
k

\cdot 
\Bigl( 
\langle c, x\rangle + c(St - 1) +

2nc\infty 
\epsilon 

\Bigr) 
.

Proof. Since ci \geq 0 for all 1 \leq i \leq m,

\BbbE [(cjt  - cit)
2 | St - 1] \leq max

it,jt
| cjt  - cit | \cdot \BbbE [| cjt  - cit | | St - 1]

\leq c\infty \cdot \BbbE [cjt + cit | St - 1]

\leq c\infty 
k

\Bigl( 
\langle c, x\rangle + c(St - 1) +

2nc\infty 
\epsilon 

\Bigr) 
,

where the last inequality is by (3.5) and (3.6).

We use the fact that the initial solution S0 is generated randomly to bound its
moment generating function.

Lemma 3.12. For a \in [ - 1/c\infty , 1/c\infty ],

\BbbE 
\bigl[ 
eaY0

\bigr] 
\leq ea

2c\infty \langle c,x\rangle .

Proof. Let \chi i be the indicator variable where \chi i = 1 if i \in S0 and \chi i = 0
otherwise. Since the algorithm constructs S0 by sampling each vector independently
with probability xi, it follows that

\BbbE 
\Bigl[ 
eac(S0)

\Bigr] 
= \BbbE 

\Bigl[ 
ea

\sum m
i=1 \chi ici

\Bigr] 
=

m\prod 
i=1

\BbbE [ea\chi ici ] =

m\prod 
i=1

(1 - xi + xie
aci) .
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Note that aci \leq 1 as a \in [ - 1/c\infty , 1/c\infty ] and ci \leq c\infty , and thus eaci \leq 1 + aci + a2c2i
as ep \leq 1 + p+ p2 for p \leq 1. Therefore,

\BbbE 
\Bigl[ 
eac(S0)

\Bigr] 
\leq 

m\prod 
i=1

\bigl( 
1 + acixi + a2c2ixi

\bigr) 
\leq exp

\Biggl( 
m\sum 
i=1

\biggl( 
acixi + a2c\infty cixi

\biggr) \Biggr) 
= exp

\bigl( 
(a+ a2c\infty )\langle c, x\rangle 

\bigr) 
,

where the second inequality uses 1 + p \leq ep for p \in \BbbR and ci \leq c\infty for 1 \leq i \leq m.
The claim follows as Y0 = c(S0) - \langle c, x\rangle .

We are ready to apply Theorem 3.9 to bound the cost.

Theorem 3.13. Suppose the iterative randomized swapping algorithm terminates
at the \tau th iteration. Let c \in \BbbR m

+ . For any \delta 1 \in [0, 1],

Pr

\biggl[ 
c(S\tau ) \leq (1 + \delta 1)\langle c, x\rangle +

15nc\infty 
\epsilon 

\biggr] 
\geq 1 - exp

\biggl[ 
 - \Omega 
\Bigl( \delta 1n

\epsilon 

\Bigr) \biggr] 
.

Also, for any \delta 2 \in [0, 1] and \delta 3 > 0,

Pr
\Bigl[ 
c(S\tau ) \geq (1 - \delta 2)\langle c, x\rangle  - \delta 3nc\infty 

\Bigr] 
\geq 1 - exp

\Bigl( 
 - \Omega 

\bigl( 
min\{ \delta 2\delta 3, \epsilon \delta 23\} \cdot n

\bigr) \Bigr) 
.

Proof. As the algorithm terminates the first time when the minimum eigenvalue
of the solution is at least 1  - 2\epsilon , we can assume that \lambda min(Zt) < 1  - 2\epsilon < 1 for
0 \leq t < \tau . We will apply Theorem 3.9 on the sequences \{ Xt\} t and \{ Yt\} t as defined
in (3.7). First, note that | Xt| \leq c\infty by definition for all t \geq 1. Second, as \BbbE [Xt | 
Y0, . . . , Yt - 1] = \BbbE [(cjt  - cit) | St - 1] and Yt - 1 = (c(St - 1) - \langle c, x\rangle ), Lemma 3.10 implies
that

\BbbE [Xt | Y0, . . . , Yt - 1] \leq 
1

k

\Bigl( 
\langle c, x\rangle  - c(St - 1) +

14nc\infty 
\epsilon 

\Bigr) 
=  - Yt - 1

k
+

14nc\infty 
k\epsilon 

and

\BbbE [Xt | Y0, . . . , Yt - 1] \geq 
1

k

\Bigl( 
\langle c, x\rangle  - c(St - 1)

\Bigr) 
=  - Yt - 1

k
.

Third, since \BbbE [X2
t | Y0, . . . , Yt - 1] = \BbbE [(cjt  - cit)

2 | St - 1], Lemma 3.11 implies that

\BbbE [X2
t | Y0, . . . , Yt - 1] \leq 

c\infty 
k

\Bigl( 
\langle c, x\rangle +c(St - 1)+

2nc\infty 
\epsilon 

\Bigr) 
=

c\infty 
k

Yt - 1+
2c\infty 
k

\Bigl( 
\langle c, x\rangle + nc\infty 

\epsilon 

\Bigr) 
.

Finally, Lemma 3.12 states that \BbbE [eaY0 ] \leq exp(a2c\infty \langle c, x\rangle ) for a \in [ - 1/c\infty , 1/c\infty ]. By
setting

R = c\infty , \gamma 1 =
1

k
, \gamma 2 =

c\infty 
k

, \beta u =
14nc\infty 
k\epsilon 

, \beta l = 0, \sigma =
2c\infty 
k

\Bigl( 
\langle c, x\rangle + nc\infty 

\epsilon 

\Bigr) 
,

we can check that all the conditions of Theorem 3.9 are satisfied, including the condi-
tions on the range of parameters (in particular, \gamma 1 \in (0, 1

2 ), \gamma 2 > 0, and \gamma 1 \leq \gamma 2/R).
Applying Theorem 3.9 with \eta = \delta 1\langle c, x\rangle + nc\infty /\epsilon for \delta 1 \in [0, 1],

Pr

\biggl[ 
c(St) \geq (1 + \delta 1)\langle c, x\rangle +

15nc\infty 
\epsilon 

\biggr] 
= Pr

\biggl[ 
Yt \geq 

\beta u

\gamma 1
+ \eta 

\biggr] 
\leq exp

\biggl[ 
 - \eta 2\gamma 1/\gamma 2
4(\sigma /\gamma 2 + \beta u/\gamma 1) + 2\eta 

\biggr] 
= exp

\biggl[ 
 - \eta 2/c\infty 
8\langle c, x\rangle + 64nc\infty /\epsilon + 2\eta 

\biggr] 
\leq exp

\biggl[ 
 - \Omega 
\Bigl( \delta 1n

\epsilon 

\Bigr) \biggr] 
,
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where the last inequality is because \eta = O(\langle c, x\rangle + nc\infty /\epsilon ) and thus the denomina-
tor is \Theta (\langle c, x\rangle + nc\infty /\epsilon ), and the numerator is \eta 2/c\infty = \eta (\delta 1\langle c, x\rangle + nc\infty /\epsilon )/c\infty \geq 
(n/\epsilon )\delta 1(\langle c, x\rangle + nc\infty /\epsilon ).

Similarly, for the cost lower bound, we apply Theorem 3.9 with \eta = \delta 2\langle c, x\rangle +
\delta 3nc\infty for \delta 2 \in [0, 1] and \delta 3 > 0 to obtain

Pr [c(St) \leq (1 - \delta 2)\langle c, x\rangle  - \delta 3nc\infty ] = Pr

\biggl[ 
Yt \leq  - \beta l

\gamma 1
 - \eta 

\biggr] 
\leq exp

\biggl[ 
 - \eta 2\gamma 1/\gamma 2
4\sigma /\gamma 2 + \eta 

\biggr] 
= exp

\biggl[ 
 - \eta 2/c\infty 
8(\langle c, x\rangle + nc\infty /\epsilon ) + \eta 

\biggr] 
\leq exp

\biggl[ 
 - \Omega 

\biggl( 
\delta 3n(\delta 2\langle c, x\rangle + \delta 3nc\infty )

\langle c, x\rangle + nc\infty /\epsilon + \delta 3nc\infty 

\biggr) \biggr] 
\leq exp

\bigl[ 
 - \Omega 

\bigl( 
min\{ \delta 2\delta 3, \epsilon \delta 23\} \cdot n

\bigr) \bigr] 
,

where the second to last inequality is by similar calculations as in the previous case.

3.1.3. Exact one-sided spectral rounding. Theorem 3.3 follows directly from
Theorems 3.8 and 3.13. This shows that the iterative randomized swapping algorithm
will return a solution S with

\sum 
i\in S viv

T
i \succcurlyeq (1 - 2\epsilon )In and c(S) \approx \langle c, x\rangle with high prob-

ability for any c \in \BbbR m
+ .

To prove Theorem 1.8 where the goal is to return a solution S with
\sum 

i\in S viv
T
i \succcurlyeq 

In, our idea is to scale up the fractional solution x and then apply Theorem 3.3. The
following is the detailed description of the algorithm.

Exact one-sided spectral rounding
Input: v1, . . . , vm \in \BbbR n and x \in [0, 1]m with

\sum m
i=1 xiviv

T
i = In, and an error

parameter \epsilon \in (0, 1
4 ).

Output: a subset S \subseteq [m] such that
\sum 

i\in S viv
T
i \succcurlyeq In and c(S) \approx \langle c, x\rangle for any

c \in \BbbR m
+ with high probability.

1. Define yi := xi/(1  - 2\epsilon ) and ui :=
\surd 
1 - 2\epsilon \cdot vi for i \in [m]. Note that\sum m

i=1 yiuiu
T
i = In.

2. Let Sbig := \{ i \in [m] : yi > 1\} , Ssmall := \{ i \in [m] : 0 \leq yi \leq 1\} , and
Zbig =

\sum 
i\in Sbig

yiuiu
T
i .

3. Define wi := (In  - Zbig)
 - 1

2ui for each i \in Ssmall, so that\sum 
i\in Ssmall

yiwiw
T
i = In

1.
4. Apply the iterative randomized swapping algorithm with \{ wi | i \in Ssmall\} 

and \{ yi | i \in Ssmall\} as input to obtain a solution set S\prime 
small \subseteq Ssmall with\sum 

i\in S\prime 
small

wiw
T
i \succcurlyeq (1 - 2\epsilon )In.

5. Return S := Sbig \cup S\prime 
small as the solution.

1If In  - B is singular, we first project the vectors to the orthogonal complement of the nullspace
before applying the transformation. We can add dummy coordinates to keep the vectors to have the
same dimension n for simplicity of the analysis.

D
ow

nl
oa

de
d 

11
/0

2/
22

 to
 1

28
.9

5.
10

4.
10

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SPECTRAL APPROACH TO NETWORK DESIGN 1041

Proof of Theorem 1.8. We first analyze the spectral lower bound. By the defini-
tions of wi and ui,\sum 

i\in S\prime 
small

wiw
T
i \succcurlyeq (1 - 2\epsilon )In =\Rightarrow 

\sum 
i\in S\prime 

small

uiu
T
i \succcurlyeq (1 - 2\epsilon )(In  - Zbig)

=\Rightarrow 
\sum 

i\in S\prime 
small

viv
T
i \succcurlyeq In  - Zbig.

For the vectors in Sbig, as xi \in [0, 1],\sum 
i\in Sbig

viv
T
i \succcurlyeq 

\sum 
i\in Sbig

xiviv
T
i =

\sum 
i\in Sbig

yiuiu
T
i = Zbig.

Therefore, it follows that\sum 
i\in S

viv
T
i =

\sum 
i\in S\prime 

small

viv
T
i +

\sum 
i\in Sbig

viv
T
i \succcurlyeq (In  - Zbig) + Zbig = In.

Next, we prove that c(S) \approx \langle c, x\rangle with high probability for any vector c \in \BbbR m
+ .

Let \langle c, x\rangle small :=
\sum 

i\in Ssmall
cixi and \langle c, x\rangle big :=

\sum 
i\in Sbig

cixi. For the vectors in Sbig,

as yi > 1 for i \in Sbig and yi = xi/(1 - 2\epsilon ) for all i \in [m], it follows that

\langle c, x\rangle big \leq c(Sbig) \leq \langle c, y\rangle big =
\langle c, x\rangle big
1 - 2\epsilon 

.

For the vectors in Ssmall, applying Theorem 3.3 with \delta 1 = \epsilon , the returned set S\prime 
small

in step 4 satisfies the cost upper bound

c(S\prime 
small) \leq (1 + \epsilon )\langle c, y\rangle small +

15nc\infty 
\epsilon 

=
(1 + \epsilon )\langle c, x\rangle small

1 - 2\epsilon 
+

15nc\infty 
\epsilon 

with probability at least 1 - exp( - \Omega (n)), which implies that for \epsilon \in (0, 1
4 ),

c(S) = c(Sbig) + c(S\prime 
small) \leq 

1 + \epsilon 

1 - 2\epsilon 

\bigl( 
\langle c, x\rangle big + \langle c, x\rangle small

\bigr) 
+

15nc\infty 
\epsilon 

\leq (1 + 6\epsilon )\langle c, x\rangle + 15nc\infty 
\epsilon 

.

Similarly, by Theorem 3.3 with \delta 2 = \epsilon and \delta 3 = \delta for some \delta > 0, the returned set
S\prime 
small in step 4 satisfies the cost lower bound

c(S\prime 
small) \geq (1 - \epsilon )\langle c, y\rangle small  - \delta nc\infty =

1 - \epsilon 

1 - 2\epsilon 
\langle c, x\rangle small  - \delta nc\infty \geq \langle c, x\rangle small  - \delta nc\infty 

with probability at least 1 - exp( - \Omega (min\{ \epsilon \delta , \epsilon \delta 2\} \cdot n)), which implies that

c(S) = c(Sbig) + c(S\prime 
small) \geq \langle c, x\rangle big + \langle c, x\rangle small  - \delta nc\infty = \langle c, x\rangle  - \delta nc\infty .

3.1.4. Proof of the concentration inequality for self-adjusting process
(Theorem 3.9). The proof is by computing the moment generating function of Yt

and applying Markov's inequality, which is standard in concentration inequalities.
In the following, we write the conditional expectation as \BbbE t[\cdot ] := \BbbE [\cdot | Y0, . . . , Yt - 1] for
simplicity.
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Upper tail. We start with the proof for the upper tail. For any a \in [0, \gamma 1/\gamma 2],
the conditional moment generating function of Xt with any given Y0, . . . , Yt - 1 is

\BbbE t

\bigl[ 
eaXt

\bigr] 
= \BbbE t

\Biggl[ \infty \sum 
l=0

alX l
t

l!

\Biggr] 
\leq \BbbE t

\Biggl[ 
1 + aXt +

X2
t

R2

\infty \sum 
l=2

(aR)l

l!

\Biggr] 

= 1 + a\BbbE t[Xt] + \BbbE t[X
2
t ] \cdot 

eaR  - 1 - aR

R2

\leq 1 + a\BbbE t[Xt] + a2\BbbE t[X
2
t ]

\leq 1 - a\gamma 1Yt - 1 + a\beta u + a2\gamma 2Yt - 1 + a2\sigma 

\leq exp
\bigl( 
a2\sigma + a\beta u  - (\gamma 1  - a\gamma 2)aYt - 1

\bigr) 
,

where the first inequality is by the bounded difference property that | Xt| \leq R always,
the second inequality is by aR \leq 1 for a \in [0, \gamma 1/\gamma 2] because \gamma 1 \leq \gamma 2/R and the
inequality ep \leq 1 + p + p2 for p \leq 1, the third inequality is by the self-adjusting
property and the bounded variance property and a \geq 0, and the last inequality uses
1 + p \leq ep for p \in \BbbR . Then we can bound the moment generating function of
Yt as

\BbbE Y0,...,Yt

\bigl[ 
eaYt

\bigr] 
= \BbbE Y0,...,Yt - 1

\bigl[ 
eaYt - 1 \cdot \BbbE t

\bigl[ 
eaXt

\bigr] \bigr] 
\leq \BbbE Y0,...,Yt - 1

\bigl[ 
exp

\bigl( 
a2\sigma + a\beta u + (1 - (\gamma 1  - a\gamma 2))aYt - 1

\bigr) \bigr] 
\leq exp

\bigl( 
a2\sigma + a\beta u

\bigr) 
\cdot \BbbE Y0,...,Yt - 1 [exp (a (1 - (\gamma 1  - a\gamma 2))Yt - 1)]

= exp
\bigl( 
a2\sigma + a\beta u

\bigr) 
\cdot \BbbE Y0,...,Yt - 1 [exp (f(a) \cdot Yt - 1)] ,

where we define f(a) := a(1 - (\gamma 1 - a\gamma 2)). Note that \gamma 1 - a\gamma 2 \in [0, 1] for a \in [0, \gamma 1/\gamma 2],
which implies f(a) \in [0, a]. Define the sequence a(0) = a and a(i) = f(a(i - 1)) for i \geq 1.
Applying the same argument inductively, it follows that

\BbbE Y0,...,Yt

\bigl[ 
eaYt

\bigr] 
\leq exp

\Biggl[ 
t - 1\sum 
i=0

\Bigl( 
a2(i)\sigma + a(i)\beta u

\Bigr) \Biggr] 
\cdot \BbbE Y0

\bigl[ 
ea(t)Y0

\bigr] 
\leq exp

\Biggl[ 
t - 1\sum 
i=0

\Bigl( 
a2(i)\sigma + a(i)\beta u

\Bigr) 
+

a2(t)\sigma 

\gamma 1

\Biggr] 
,

where the last inequality follows from the initial concentration property of Y0 for
a(t) \leq \gamma 1/\gamma 2 \leq 1/R. To bound the moment generating function, we use the following
claim, whose proof follows from the definition of the sequence \{ a(i)\} i.

Claim 3.14. The sequence \{ a(i)\} i\geq 0 is decreasing and dominated by the geometric
sequence \{ ari\} i\geq 0 with common ratio r := 1 - (\gamma 1 - a\gamma 2). The sequence \{ a2(i)\} i is also
decreasing and dominated by the geometric sequence \{ a2r2i\} i\geq 0 with common ratio
r2. Furthermore, r2 < r < 1 when a \in [0, \gamma 1/\gamma 2).

Using Claim 3.14, when a \in [0, \gamma 1/\gamma 2), we can upper bound the moment gener-
ating function by

\BbbE Y0,...,Yt

\bigl[ 
eaYt

\bigr] 
\leq exp

\Biggl[ \bigl( 
a2\sigma + a\beta u

\bigr) t - 1\sum 
i=0

ri +
a2\sigma rt

\gamma 1

\Biggr] 

= exp

\biggl[ \bigl( 
a2\sigma + a\beta u

\bigr) 
\cdot 1 - rt

1 - r
+

a2\sigma rt

\gamma 1

\biggr] D
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= exp

\biggl[ 
a2\sigma + a\beta u

\gamma 1  - a\gamma 2
\cdot (1 - rt) +

a2\sigma rt

\gamma 1

\biggr] 
\leq exp

\biggl[ 
a2\sigma + a\beta u

\gamma 1  - a\gamma 2

\biggr] 
,

where the last inequality uses a \in [0, \gamma 1/\gamma 2). By the Markov inequality, for any
a \in [0, \gamma 1/\gamma 2) and any \eta > 0,

Pr

\biggl[ 
Yt \geq 

\beta u

\gamma 1
+ \eta 

\biggr] 
= Pr

\biggl[ 
eaYt \geq e

a
\Bigl( 

\beta u
\gamma 1

+\eta 
\Bigr) \biggr] 

\leq \BbbE Y0,...,Yt

\bigl[ 
eaYt

\bigr] 
/e

a
\Bigl( 

\beta u
\gamma 1

+\eta 
\Bigr) 

\leq exp

\biggl[ 
a2\sigma + a\beta u

\gamma 1  - a\gamma 2
 - a
\Bigl( \beta u

\gamma 1
+ \eta 
\Bigr) \biggr] 

= exp

\biggl[ 
a2(\sigma + \gamma 2\beta u/\gamma 1)

\gamma 1  - a\gamma 2
 - a\eta 

\biggr] 
= exp

\biggl[ 
a2(\sigma /\gamma 2 + \beta u/\gamma 1)

\gamma 1/\gamma 2  - a
 - a\eta 

\biggr] 
.

To prove the best upper bound, we optimize over a and set

a =
\gamma 1
\gamma 2

\cdot 

\Biggl( 
1 - 

\sqrt{} 
\sigma /\gamma 2 + \beta u/\gamma 1

(\sigma /\gamma 2 + \beta u/\gamma 1) + \eta 

\Biggr) 
=

\gamma 1
\gamma 2

\cdot 
\biggl( 
1 - 

\sqrt{} 
\nu 

\nu + \eta 

\biggr) 
,

where we use \nu := \sigma /\gamma 2+\beta u/\gamma 1 as shorthand. Notice that a \in [0, \gamma 1/\gamma 2) as \sigma , \gamma 2, \eta > 0
and \beta u \geq 0, so the above probability bound applies. Putting this choice of a back
into the exponent on the right-hand side, the exponent is

a2(\sigma /\gamma 2 + \beta u/\gamma 1)

\gamma 1/\gamma 2  - a
 - a\eta =

\gamma 1
\gamma 2

\cdot 

\Biggl( 
(1 - 

\sqrt{} 
\nu /(\nu + \eta ))2 \cdot \nu \sqrt{} 
\nu /(\nu + \eta )

 - 
\biggl( 
1 - 

\sqrt{} 
\nu 

\nu + \eta 

\biggr) 
\cdot \eta 

\Biggr) 
\underbrace{}  \underbrace{}  

(\ast )

.

Simplifying the second term on the right-hand side,

(\ast ) =
\biggl( 
1 +

\nu 

\nu + \eta 
 - 2

\sqrt{} 
\nu 

\nu + \eta 

\biggr) 
\cdot 
\sqrt{} 

\nu (\nu + \eta ) - 
\biggl( 
1 - 

\sqrt{} 
\nu 

\nu + \eta 

\biggr) 
\cdot \eta 

=
\sqrt{} 
\nu (\nu + \eta ) + \nu 

\sqrt{} 
\nu 

\nu + \eta 
 - 2\nu  - \eta + \eta 

\sqrt{} 
\nu 

\nu + \eta 

=  - (2\nu + \eta ) + 2
\sqrt{} 
\nu (\nu + \eta )

=  - (2\nu + \eta ) +
\sqrt{} 
(2\nu + \eta )2  - \eta 2

=  - (2\nu + \eta ) + (2\nu + \eta )

\sqrt{} 
1 - \eta 2

(2\nu + \eta )2

\leq  - \eta 2/2

2\nu + \eta 
,
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where we used
\surd 
1 - p \leq 1  - p/2 for p \in [0, 1] in the last inequality. Therefore, we

conclude that

Pr(Yt \geq \eta ) \leq exp

\biggl( 
a2(\sigma /\gamma 2 + \beta u/\gamma 1)

\gamma 1/\gamma 2  - a
 - a\eta 

\biggr) 
\leq exp

\biggl( 
 - \eta 2\gamma 1/\gamma 2
4(\sigma /\gamma 2 + \beta u/\gamma 1) + 2\eta 

\biggr) 
,

which completes the proof for the upper tail.
Lower tail. The proof for the lower tail is quite similar to that for the upper tail.

The main difference is that we work with the moment generating function \BbbE [e - aYt ],
instead of \BbbE [eaYt ]. For any a \in [0, \gamma 1/\gamma 2], the conditional moment generating function
of  - Xt is

\BbbE t

\bigl[ 
e - aXt

\bigr] 
= \BbbE t

\Biggl[ \infty \sum 
l=0

( - a)lX l
t

l!

\Biggr] 
\leq \BbbE t

\Biggl[ 
1 - aXt +

X2
t

R2

\infty \sum 
l=2

(aR)l

l!

\Biggr] 

= 1 - a\BbbE t[Xt] + \BbbE t[X
2
t ] \cdot 

eaR  - 1 - aR

R2

\leq 1 - a\BbbE t[Xt] + a2\BbbE t[X
2
t ]

\leq 1 + a\gamma 1Yt - 1 + a\beta l + a2\gamma 2Yt - 1 + a2\sigma 

\leq exp
\bigl( 
a2\sigma + a\beta l + (\gamma 1 + a\gamma 2)aYt - 1

\bigr) 
,

where the first inequality is by the bounded difference property | Xt| \leq R and a \geq 0,
the second inequality is by aR \leq 1 for a \in [0, \gamma 1/\gamma 2] because \gamma 1 \leq \gamma 2/R and the
inequality ep \leq 1 + p + p2 for p \leq 1, the third inequality is by the self-adjusting
property and the bounded variance property and a \geq 0, and the last inequality is by
1 + p \leq ep for p \in \BbbR . Then we can bound the moment generating function of Yt as

\BbbE Y0,...,Yt

\bigl[ 
e - aYt

\bigr] 
= \BbbE Y0,...,Yt - 1

\bigl[ 
e - aYt - 1 \cdot \BbbE t

\bigl[ 
e - aXt

\bigr] \bigr] 
\leq \BbbE Y0,...,Yt - 1

\bigl[ 
exp

\bigl( 
a2\sigma + a\beta l  - a(1 - (\gamma 1 + a\gamma 2))Yt - 1

\bigr) \bigr] 
\leq exp

\bigl( 
a2\sigma + a\beta l

\bigr) 
\cdot \BbbE Y0,...,Yt - 1 [exp ( - a (1 - (\gamma 1 + a\gamma 2))Yt - 1)]

= exp
\bigl( 
a2\sigma + a\beta l

\bigr) 
\cdot \BbbE Y0,...,Yt - 1

[exp ( - g(a) \cdot Yt - 1)] ,

where we define g(a) := a(1 - (\gamma 1+a\gamma 2)). By the given condition \gamma 1 \in (0, 1
2 ), it holds

that \gamma 1 + a\gamma 2 \in [0, 1] for a \in [0, \gamma 1/\gamma 2] which implies g(a) \in [0, a].
Define the sequence a(0) = a and a(i) = g(a(i - 1)) for i \geq 1. Applying the same

argument inductively, it follows that

\BbbE Y0,...,Yt

\bigl[ 
e - aYt

\bigr] 
\leq exp

\Biggl[ 
t - 1\sum 
i=0

\Bigl( 
a2(i)\sigma + a(i)\beta l

\Bigr) \Biggr] 
\cdot \BbbE Y0

\bigl[ 
e - a(t)Y0

\bigr] 
\leq exp

\Biggl[ 
t - 1\sum 
i=0

\Bigl( 
a2(i)\sigma + a(i)\beta l

\Bigr) 
+

a2(t)\sigma 

\gamma 1

\Biggr] 
,

where the last inequality follows from the initial concentration property of Y0 for
a(t) \leq \gamma 1/\gamma 2 \leq 1/R. To bound the moment generating function, we use the following
claim, whose proof follows from the definition of the sequence \{ a(i)\} i.

Claim 3.15. The sequence \{ a(i)\} i\geq 0 is decreasing and dominated by the geometric
sequence \{ ari\} i\geq 0 with common ratio r := 1 - (\gamma 1+a\gamma 2). The sequence \{ a2(i)\} i is also
decreasing and dominated by the geometric sequence \{ a2r2i\} i\geq 0 with common ratio
r2. Furthermore, r \in (0, 1) for a \in [0, \gamma 1/\gamma 2] with \gamma 1 \in (0, 1

2 ) and \gamma 2 > 0.
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Using Claim 3.15, when a \in [0, \gamma 1/\gamma 2], we can upper bound the moment generat-
ing function by

\BbbE Y0,...,Yt

\bigl[ 
e - aYt

\bigr] 
\leq exp

\Biggl[ \bigl( 
a2\sigma + a\beta l

\bigr) t - 1\sum 
i=0

ri +
a2\sigma rt

\gamma 1

\Biggr] 

= exp

\biggl[ \bigl( 
a2\sigma + a\beta l

\bigr) 
\cdot 1 - rt

1 - r
+

a2\sigma rt

\gamma 1

\biggr] 
= exp

\biggl[ 
a2\sigma + a\beta l

\gamma 1 + a\gamma 2
\cdot (1 - rt) +

a2\sigma rt

\gamma 1

\biggr] 
\leq exp

\biggl[ 
a2\sigma + a\beta l

\gamma 1
\cdot (1 - rt) +

a2\sigma rt

\gamma 1

\biggr] 
\leq exp

\biggl[ 
a2\sigma + a\beta l

\gamma 1

\biggr] 
,

where we used a\gamma 2 \geq 0 and r \in (0, 1) in the second to last inequality.
By the Markov inequality, for any a \in [0, \gamma 1/\gamma 2] and any \eta > 0,

Pr

\biggl[ 
Yt \leq  - \beta l

\gamma 1
 - \eta 

\biggr] 
= Pr

\biggl[ 
e - aYt \geq e

a
\Bigl( 

\beta l
\gamma 1

+\eta 
\Bigr) \biggr] 

\leq \BbbE Y0,...,Yt

\bigl[ 
e - aYt

\bigr] 
/e

a
\Bigl( 

\beta l
\gamma 1

+\eta 
\Bigr) 

\leq exp

\biggl[ 
a2\sigma + a\beta l

\gamma 1
 - a
\Bigl( \beta l

\gamma 1
+ \eta 
\Bigr) \biggr] 

= exp

\biggl[ 
a2\sigma 

\gamma 1
 - a\eta 

\biggr] 
.

When \eta \leq 2\sigma /\gamma 2, we set a = (\eta \gamma 1)/(2\sigma ) \in [0, \gamma 1/\gamma 2], so the above probability bound
applies and gives

Pr

\biggl[ 
Yt \leq  - \beta l

\gamma 1
 - \tau 

\biggr] 
\leq exp

\biggl[ 
 - \eta 2\gamma 1

4\sigma 

\biggr] 
\leq exp

\biggl[ 
 - \eta 2\gamma 1/\gamma 2
4\sigma /\gamma 2 + \eta 

\biggr] 
.

When \eta > 2\sigma /\gamma 2, we simply set a = \gamma 1/\gamma 2, and the above probability bound gives

Pr

\biggl[ 
Yt \leq  - \beta l

\gamma 1
 - \eta 

\biggr] 
\leq exp

\biggl[ 
\gamma 1
\gamma 2

\cdot 
\biggl( 

\sigma 

\gamma 2
 - \eta 

\biggr) \biggr] 
\leq exp

\biggl[ 
 - \eta 2\gamma 1/\gamma 2
4\sigma /\gamma 2 + \eta 

\biggr] 
,

where the last inequality holds by the assumption that \eta > 2\sigma /\gamma 2. This finishes the
proof for the lower tail and thus the proof of Theorem 3.9.

3.2. Some examples. We provide two examples suggesting why the additive
error term O(nc\infty /\epsilon ) may be needed in Theorem 1.8.

First, consider the following simple example, which shows the nc\infty additive error
term is necessary.

Example 3.16. There are m = 2n vectors v11, v12, . . . , vn1, vn2 \in \BbbR n, a vector
x \in [0, 1]m, a vector c \in \BbbR m

+ , and a parameter \epsilon . They are defined as follows:

xi1 = 1, vi1 =
\surd 
1 - \epsilon \cdot ei, ci1 = 0 and

xi2 = \epsilon , vi2 = ei, ci2 = c\infty \forall i \in \{ 1, . . . , n\} .

Note that \langle c, x\rangle = \epsilon nc\infty and
\sum n

i=1

\sum 
j=1,2 xijvijv

T
ij = In.
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1046 LAP CHI LAU AND HONG ZHOU

Claim 3.17. For any constant \alpha > 1, any z \in \{ 0, 1\} m satisfying the spectral
lower bound in Example 3.16 must have \langle c, z\rangle \geq \alpha \langle c, x\rangle +\Omega (nc\infty ).

Proof. Note that if a vector z \in \{ 0, 1\} m satisfies the spectral lower bound exactly,
then zi2 = 1 for all i's. Since ci1 = 0 for all i's, it holds that \langle c, z\rangle  - \alpha \langle c, x\rangle =
nc\infty  - \alpha \epsilon nc\infty = (1 - \alpha \epsilon )nc\infty . For any \alpha > 1, there exists \epsilon such that \langle c, z\rangle  - \alpha \langle c, x\rangle 
is at least, say, nc\infty /2.

Next, we modify an integrality gap example in [59] to show that, even if c = \vec{}1
and we are allowing an integral solution instead of a zero-one solution, the additive
error O(nc\infty /\epsilon ) in Theorem 1.8 is best possible.

Example 3.18. The example containsm =
\bigl( 
n
2

\bigr) 
vectors v1, . . . , vm \in \BbbR n - 1, a vector

x \in [0, 1]m and a vector c = \vec{}1m. Let \Pi \in \BbbR (n - 1)\times n be the orthogonal projection
onto the (n  - 1)-dimensional subspace orthogonal to the all-one vector. Given some
parameter k, we define

vij =

\sqrt{} 
n - 1

2k
\cdot \Pi (\chi i  - \chi j) and xij =

2k

n(n - 1)
\forall 1 \leq i < j \leq n.

Note that \langle c, x\rangle = k and
\sum 

i<j xijvijv
T
ij = In - 1 and x has the smallest \| x\| 1 among

all vectors satisfying
\sum 

xijvijv
T
ij \succcurlyeq In - 1.

We will use the following result from [59].

Theorem 3.19 (Theorem 7.2 in [59]). Let G = (V,E) be a graph with average
degree davg = 2m/n, and let LG be its unnormalized Laplacian matrix. Then, as long
as davg is large enough, and n is large enough with respect to davg,

\lambda 2(LG) \leq davg  - \rho 
\sqrt{} 
davg,

where \lambda 2(LG) is the second smallest eigenvalue of LG, and \rho > 0 is an absolute
constant. Furthermore, the upper bound for \lambda 2(LG) still holds for graphs with parallel
edges.

Using the above theorem, we can prove the following lemma.

Lemma 3.20. Let \{ vij\} , c, x be defined as in Example 3.18. For any z \in \BbbZ m
+ , if\sum 

1\leq i<j\leq n zijvijv
T
ij \succcurlyeq In - 1, then we have

\langle c, z\rangle \geq k +\Omega (
\surd 
kn+ n).

Proof. Given any z \in \BbbZ m
+ , let Gz be the multigraph corresponding to z with

Laplacian matrix

Lz =
\sum 

1\leq i<j\leq n

zij(\chi i  - \chi j)(\chi i  - \chi j)
T =

2k

n - 1
\Pi 

\left(  \sum 
1\leq i<j\leq n

zijv
T
ijv

T
ij

\right)  \Pi 

\succcurlyeq 
2k

n - 1

\biggl( 
In  - 1

n
Jn

\biggr) 
,

where the last inequality holds by the assumption on z. Therefore, \lambda 2(Lz) \geq 2k/
(n - 1).

On the other hand, since the average degree of Gz is davg = 2 \| z\| 1 /n, we apply
Theorem 3.19 with properly chosen n, and for some constant \rho we have

\lambda 2(Lz) \leq davg  - \rho 
\sqrt{} 
davg =\Rightarrow \lambda 2(Lz) \leq 

2\| z\| 1
n

 - \rho 

\sqrt{} 
2\| z\| 1
n

.
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Combining with \lambda 2(Lz) \geq 2k/(n - 1), we have

2k

n - 1
\leq 2\| z\| 1

n
 - \rho 

\sqrt{} 
2\| z\| 1
n

=\Rightarrow 2k \leq 2\| z\| 1  - \rho 
\sqrt{} 

2n\| z\| 1.

For the quadratic inequality 2y2  - \rho 
\surd 
2ny  - 2k \geq 0, we know that the nonnegative

solution for y should satisfy

y \geq \rho 
\surd 
2n+

\sqrt{} 
2\rho 2n+ 16k

4
.

Therefore, letting y =
\sqrt{} 
\| z\| 1, we have

\langle c, z\rangle = \| z\| 1 \geq (\rho 
\surd 
2n+

\sqrt{} 
2\rho 2n+ 16k)2/16

= \rho 2n/4 + k + \rho 
\sqrt{} 

4\rho 2n+ 32kn/8

\geq k + \rho 
\surd 
2kn/2 + \rho 2n/4

\geq k +\Omega (
\surd 
kn+ n).

Suppose we set the parameter k = qn for q > 16 in Example 3.18. If we apply
Theorem 1.8 to the vectors v1, . . . , vm \in \BbbR n - 1 and x \in [0, 1]m defined in Example 3.18
with \epsilon =

\sqrt{} 
n/k < 1/4, then there exists a z \in \{ 0, 1\} m such that\sum 

1\leq i<j\leq n

zijvijv
T
ij \succcurlyeq In - 1 and \langle c, z\rangle \leq (1 + 6\epsilon )\langle c, x\rangle + 15nc\infty 

\epsilon 
= k +O(

\surd 
kn),

where the last equality uses \langle c, x\rangle = k. Note that if the additive error term O(\epsilon \langle c, x\rangle +
nc\infty /\epsilon ) has a better dependency on \epsilon , then we can set \epsilon accordingly such that the
cost upper bound will contradict the lower bound in Lemma 3.20. For example, if
Theorem 1.8 were improved to \langle c, z\rangle \leq (1 + 6\epsilon )\langle c, x\rangle + 15nc\infty /

\surd 
\epsilon , then we could set

\epsilon = (n/k)2/3, which would imply that \langle c, z\rangle \leq k+O(k1/3n2/3), contradicting the lower
bound \langle c, z\rangle \geq k + \Omega (

\surd 
kn) when k is large enough. This shows the 1/\epsilon dependence

in the additive error term nc\infty /\epsilon is unavoidable.

4. Two-sided spectral rounding. In this section, we show that the two-sided
spectral rounding result in Theorem 1.6 can be extended to incorporate one non-
negative linear constraint that is given as part of the input.

There is a standard reduction used in [65] to construct spectral sparsifiers that
satisfy additional linear constraints. Suppose Corollary 1.7 were to work for rank two
matrices; then we can simply incorporate the linear constraint to the input matrices

as Ai := ( viv
T
i 0

0 ci/\langle c,x\rangle 
) so that

\sum m
i=1 xiAi = In+1, and any z \in \{ 0, 1\} m so that\sum m

i=1 ziAi \approx In+1 would have \langle c, z\rangle \approx \langle c, x\rangle . But the rank one assumption is crucial
in the proof of Theorem 1.6 and it is an open problem to generalize it to work with
higher rank matrices.

Our idea is to use the following signing trick, suggested to us by Akshay Ra-
machandran, to essentially carry out the same reduction using only rank one matrices.

Lemma 4.1. Let v1, . . . , vm \in \BbbR n, x \in [0, 1]m, and c \in \BbbR m
+ . Suppose that\bigm\| \bigm\| \sum m

i=1 xiviv
T
i

\bigm\| \bigm\| 
op

\leq \lambda and \| vi\| \leq l for 1\leq i\leq m. Then there exists a signing s1, . . .,

sm \in \{ \pm 1\} such that if we let ui:=(
vi

si
\surd 

ci\lambda /\langle c,x\rangle ) \in \BbbR n+1, then
\bigm\| \bigm\| \sum m

i=1 xiuiu
T
i

\bigm\| \bigm\| 
op

\leq \lambda + l
\surd 
\lambda .
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Proof. By the definition of ui,

m\sum 
i=1

xiuiu
T
i =

\left(    
\sum m

i=1 xiviv
T
i

\sum m
i=1 sixi

\sqrt{} 
ci\lambda 

\langle c, x\rangle 
vi\sum m

i=1 sixi

\sqrt{} 
ci\lambda 

\langle c, x\rangle 
vTi

\sum m
i=1

cixi\lambda 

\langle c, x\rangle 

\right)    

=

\biggl( \sum m
i=1 xiviv

T
i 0

0 \lambda 

\biggr) 
+

\left(    0
\sum m

i=1 sixi

\sqrt{} 
ci\lambda 

\langle c, x\rangle 
vi\sum m

i=1 sixi

\sqrt{} 
ci\lambda 

\langle c, x\rangle 
vTi 0

\right)    .

The operator norm of the second matrix is bounded by \| 
\sum m

i=1 sixi

\sqrt{} 
ci\lambda /\langle c, x\rangle vi\| . It

follows from triangle inequality that
\bigm\| \bigm\| \sum m

i=1 xiuiu
T
i

\bigm\| \bigm\| 
op

\leq \lambda +\| 
\sum m

i=1 sixi

\sqrt{} 
ci\lambda /\langle c, x\rangle vi\| .

We show that there is a signing s1, . . . , sm \in \{ \pm 1\} such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
m\sum 
i=1

sixi

\sqrt{} 
ci\lambda /\langle c, x\rangle vi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq l
\surd 
\lambda ,

and this will complete the proof. Take a uniform random signing and consider

\BbbE s\in \{ \pm 1\} m

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
m\sum 
i=1

sixi

\sqrt{} 
ci\lambda 

\langle c, x\rangle 
vi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

=

m\sum 
i=1

\BbbE s

\biggl[ 
s2ix

2
i \| vi\| 

2 \lambda ci
\langle c, x\rangle 

\biggr] 
+
\sum 
i \not =j

\BbbE s

\biggl[ 
sisjxixj\langle vi, vj\rangle 

\lambda 
\surd 
cicj

\langle c, x\rangle 

\biggr] 

=

m\sum 
i=1

x2
i \| vi\| 

2 \lambda ci
\langle c, x\rangle 

\leq l2
m\sum 
i=1

\lambda cixi

\langle c, x\rangle 
= l2\lambda ,

where the last line uses that s2i = 1, \BbbE [sisj ] = \BbbE [si] \cdot \BbbE [sj ] = 0, and xi \in [0, 1], \| vi\| \leq l
in the inequality. This implies that there exists such a signing.

We apply the signing in Lemma 4.1 to incorporate one nonnegative linear con-
straint into the two-sided spectral rounding result of Kyng, Luh, and Song [45].

Theorem 4.2. Let v1, . . . , vm \in \BbbR n, x \in [0, 1]m, and c \in \BbbR m
+ . Suppose that\bigm\| \bigm\| \sum m

i=1 xiviv
T
i

\bigm\| \bigm\| 
op

\leq \lambda and \| vi\| \leq l for 1 \leq i \leq m. Suppose further that c\infty \leq 
l2\langle c, x\rangle /\lambda and l \leq 

\surd 
\lambda . Then there exists z \in \{ 0, 1\} m such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

m\sum 
i=1

xiviv
T
i  - 

m\sum 
i=1

ziviv
T
i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
op

\leq 8l
\surd 
\lambda and | \langle c, x\rangle  - \langle c, z\rangle | \leq 8l\surd 

\lambda 
\langle c, x\rangle .

Proof. Let ui = (
vi

si
\surd 

ci\lambda /\langle c,x\rangle ) for 1 \leq i \leq m, where s1, . . . , sm is the signing

given in Lemma 4.1. By the assumption that c\infty \leq l2\langle c, x\rangle /\lambda , it follows that \| ui\| 2 =

\| vi\| 2+ci\lambda /\langle c, x\rangle \leq 2l2. Let \xi i be a zero-one random variable with probability xi being
one. Applying Theorem 1.6 on u1, . . . , um and \xi 1, . . . , \xi m, there exists z \in \{ 0, 1\} m
such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

m\sum 
i=1

xiuiu
T
i  - 

m\sum 
i=1

ziuiu
T
i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
op

\leq 4

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
m\sum 
i=1

Var[\xi i](uiu
T
i )

2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1/2

op

\leq 4

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
m\sum 
i=1

xi \| ui\| 2 uiu
T
i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1/2

op

\leq 4

\sqrt{} 
2l2(\lambda + l

\surd 
\lambda ),
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A SPECTRAL APPROACH TO NETWORK DESIGN 1049

where we use that Var[\xi i] = xi(1  - xi) \leq xi, \| ui\| 2 \leq 2l2, and
\bigm\| \bigm\| \sum m

i=1 xiuiu
T
i

\bigm\| \bigm\| 
op

\leq 
\lambda + l

\surd 
\lambda by Lemma 4.1. By looking at the top left n \times n block, this implies that\bigm\| \bigm\| \sum m

i=1 xiviv
T
i  - 

\sum m
i=1 ziviv

T
i

\bigm\| \bigm\| 
op

\leq 4
\sqrt{} 
2l2(\lambda + l

\surd 
\lambda ) \leq 8l

\surd 
\lambda , where we use the as-

sumption that l \leq 
\surd 
\lambda . By looking at the bottom right entry, we have\bigm| \bigm| \bigm| \bigm| \bigm| 

m\sum 
i=1

xici\lambda 

\langle c, x\rangle 
 - 

m\sum 
i=1

zici\lambda 

\langle c, x\rangle 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 4

\sqrt{} 
2l2(\lambda + l

\surd 
\lambda ) \leq 8l

\surd 
\lambda =\Rightarrow | \langle c, x\rangle  - \langle c, z\rangle | \leq 8l\surd 

\lambda 
\langle c, x\rangle .

This proves Theorem 1.9 that incorporates one nonnegative linear constraint into
Corollary 1.7, by plugging \lambda = 1 and l = \epsilon into Theorem 4.2.

5. Applications. In this section, we will show that the spectral rounding results
in section 3 have many applications including survivable network design (section 5.1),
experimental design (section 5.2), and network design with spectral properties (sec-
tion 5.3).

5.1. General survivable network design. We will show that the spectral
rounding results provide a new approach to design algorithms for the survivable net-
work design problem. The main advantage of this approach is that it significantly
extends the scope of useful properties that can be incorporated into survivable net-
work design.

The organization of this subsection is as follows. We begin by writing a large
convex program that incorporates many useful constraints into survivable network
design in section 5.1.1, and explain how the spectral rounding results can be used
to find a solution for this general survivable network design problem in section 5.1.2.
Then we will see the implications of Theorem 1.8 to network design in section 5.1.3
and of Theorem 1.9 to network design in section 5.1.4. Finally, we discuss how these
new results make some progress toward Bansal's question [10] of designing an ap-
proximation algorithm for survivable network design with concentration property in
section 5.1.5.

5.1.1. Convex programming relaxation. We can write a convex program-
ming relaxation for the general network design problem incorporating all these con-
straints as discussed in section 1.4. In the following, the input graph is G = (V,E)
with | V | = n and | E| = m. The fractional solution is x \in \BbbR m where the intended
solution is to set xe = 1 if we choose edge e and xe = 0 otherwise. We first present
the convex program and then explain the constraints below.

min
x

\langle c, x\rangle 

x(\delta (S)) \geq f(S) \forall S \subseteq V (connectivity constraints)

x(\delta (v)) \leq dv \forall v \in V (degree constraints)

Ax \leq a A \in \BbbR p\times m
+ , a \in \BbbR p

+ (linear packing constraints)

Bx \geq b B \in \BbbR q\times m
+ , b \in \BbbR q

+ (linear covering constraints)

Reffx(u, v) \leq ruv \forall u, v \in V (effective resistance constraints)

Lx \succcurlyeq M M \succcurlyeq 0 (spectral constraints)

\lambda 2(Lx) \geq \lambda (algebraic connectivity constraint)

0 \leq xe \leq 1 \forall e \in E (capacity constraints)

(CP)
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1050 LAP CHI LAU AND HONG ZHOU

Let us explain the constraints one by one. For the connectivity constraints, we have a
connectivity requirement fu,v that there are at least fu,v edge-disjoint paths between
every pair u, v of vertices. For each subset S \subseteq V , we let f(S) := maxu,v:u\in S,v/\in S fu,v
and write a constraint that at least f(S) edges in \delta (S) should be chosen, where
x(\delta (S)) denotes

\sum 
e\in \delta (S) xe. By Menger's theorem, if an integral solution satisfies all

these constraints, then all the connectivity requirements are satisfied. For the degree
constraints, each vertex has a degree upper bound dv and we write a constraint
that at most dv edges in \delta (v) can be chosen, where x(\delta (v)) :=

\sum 
e\in \delta (v) xe. For the

linear packing and covering constraints, all the entries in A,B, a, b are nonnegative,
and we assume that A,B have at most a polynomial number of rows in n,m. For
effective resistance constraints, we have an upper bound ru,v on the effective resistance
between every pair u, v \in V . As in section 2.2, we write Reffx(u, v) = bTstL

\dagger 
xbst as the

effective resistance between u and v in the fractional solution x where each edge e has
conductance xe. In the spectral and the algebraic connectivity constraints, we write
Lx :=

\sum 
e\in E xeLe as the Laplacian matrix of the fractional solution x where Le is

the Laplacian matrix of an edge as defined in section 2.2. In the spectral constraint,
we require that Lx \succcurlyeq M for a PSD matrix M . One could have polynomially many
constraints of this form (just as linear packing and covering constraints), but we
write only one for simplicity. In the algebraic connectivity constraint, we require the
second smallest eigenvalue of the Laplacian matrix of the solution is at least \lambda , which
is related to the graph expansion of the fractional solution as described in section 2.2.

This convex program can be solved by the ellipsoid method in polynomial time
in n and m. There are exponentially many connectivity constraints but we can use
a max-flow min-cut algorithm as a polynomial time separation oracle for these con-
straints (see, e.g., [43]). Other linear constraints can easily be checked efficiently, as
we assume there are only polynomially many of them. Next we consider the nonlinear
constraints. For the effective resistance constraints, it is known [38] that Reffx(u, v)
is a convex function in x. For the algebraic connectivity constraint, it is known [37]
that \lambda 2 is a concave function in x. For the spectral constraint, the feasible set is a
PSD cone and is convex in x. So the feasible set for these nonlinear constraints form
a convex set. Also, these nonlinear constraints can all be checked in polynomial time
using standard numerical computations. Therefore, we can use the ellipsoid algorithm
to find an \epsilon -approximate solution to this convex program in polynomial time in n and
m with dependency on \epsilon being log(1/\epsilon ).

5.1.2. Spectral rounding. Suppose we are given an optimal solution x to the
convex programming relaxation (CP). To design approximation algorithms, the task
is to round this fractional solution x into an integral solution z so that z satisfies all the
constraints and \langle c, z\rangle is close to \langle c, x\rangle . There are many different types of constraints
and it seems difficult to handle them simultaneously. In the spectral approach, the
main observation is that if we can find an integral solution z such that

\sum 
e\in E zeLe \approx \sum 

e\in E xeLe and \langle c, x\rangle \approx \langle c, z\rangle , then all the constraints can be (approximately) satisfied
simultaneously. We state this observation in the following lemma.

Lemma 5.1. Let x \in \BbbR m
+ be a feasible solution x to (CP). For \epsilon \in [0, 1

2 ], any
z \in \BbbZ m

+ satisfies

\sum 
e\in E

zeLe \succcurlyeq (1 - \epsilon )
\sum 
e\in E

xeLe =\Rightarrow 

\left\{         
z(\delta (S)) \geq (1 - \epsilon )f(S) \forall S \subseteq V,

Reffz(u, v) \leq (1 + 2\epsilon )ru,v \forall u, v \in V,

Lz \succcurlyeq (1 - \epsilon )M,

\lambda 2(Lz) \geq (1 - \epsilon )\lambda .
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A SPECTRAL APPROACH TO NETWORK DESIGN 1051

For \epsilon \in [0, 1], any z \in \BbbZ m
+ satisfies\sum 

e\in E

zeLe \preccurlyeq (1 + \epsilon )
\sum 
e\in E

xeLe =\Rightarrow z(\delta (v)) \leq (1 + \epsilon )dv \forall v \in V.

Proof. Let Lx :=
\sum 

e\in E xeLe and Lz :=
\sum 

e\in E zeLe. We start with the connec-
tivity constraints. For any S \subseteq V , let \chi S \in \BbbR n be the characteristic vector of S with
\chi S(i) = 1 if i \in S and zero otherwise. It is well-known that

\chi T
SLz\chi S = \chi T

S

\Biggl( \sum 
e\in E

zeLe

\Biggr) 
\chi S =

\sum 
e\in E

ze\chi 
T
SLe\chi S =

\sum 
e\in \delta (S)

ze = z(\delta (S))

and similarly \chi T
SLx\chi S = x(\delta (S)). So, if Lz \succcurlyeq (1 - \epsilon )Lx, then for all S \subseteq V we have

z(\delta (S)) = \chi T
SLz\chi S \geq (1 - \epsilon )\chi T

SLx\chi S = (1 - \epsilon )x(\delta (S)) \geq (1 - \epsilon )f(S).

For the effective resistance constraints, since Lz \succcurlyeq (1  - \epsilon )Lx, it implies that L\dagger 
z \preccurlyeq 

(1 - \epsilon ) - 1Lx \preccurlyeq (1 + 2\epsilon )Lx for \epsilon \in [0, 1
2 ], and thus

Reffz(u, v) = bTuvL
\dagger 
zbuv \leq (1 + 2\epsilon )bTuvL

\dagger 
xbuv = (1 + 2\epsilon )Reffx(u, v) \leq (1 + 2\epsilon )ru,v.

The statements about the spectral lower bound and the algebraic connectivity con-
straint follow directly from the assumption that Lz \succcurlyeq (1  - \epsilon )Lx. Finally, for the
degree constraints, suppose we are given Lz \preccurlyeq (1 + \epsilon )Lx; then it follows that

z(\delta (v)) = \chi T
v Lz\chi v \leq (1 + \epsilon )\chi T

v Lx\chi v = (1 + \epsilon )x(\delta (v)) \leq (1 + \epsilon )dv.

Lemma 5.1 says that if z satisfies the spectral lower bound Lz \succcurlyeq Lx, then the
solution z will simultaneously satisfy all connectivity constraints, effective resistance
constraints, spectral constraints, and the algebraic connectivity constraint exactly.
Moreover, if z also satisfies the spectral upper bound approximately, then the solution
z will approximately satisfy all degree constraints as well.

5.1.3. Applications of one-sided spectral rounding. We apply Theorem 1.8
to design approximation algorithms for network design problems that significantly
extend the scope of existing techniques.

\sansc \sansp := min
x

\langle c, x\rangle 

x(\delta (S)) \geq f(S) \forall S \subseteq V (connectivity constraints)

Ax \leq a A \in \BbbR p\times m
+ , a \in \BbbR p

+ (linear packing constraints)

Bx \geq b B \in \BbbR q\times m
+ , b \in \BbbR q

+ (linear covering constraints)

Reffx(u, v) \leq ruv \forall u, v \in V (effective resistance constraints)

Lx \succcurlyeq M M \succcurlyeq 0 (spectral constraint)

\lambda 2(Lx) \geq \lambda (algebraic connectivity constraint)

0 \leq xe \leq 1 \forall e \in E (capacity constraints)

(CP1)

In network design, a zero-one solution corresponds to a subset of edges where
each edge is used at most once (satisfying the capacity constraints). The following
theorem is a consequence of Theorem 1.8.
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Theorem 5.2. Suppose we are given an optimal solution x to the convex pro-
gram (CP1). For any \epsilon \in (0, 1

4 ), there is a polynomial time randomized algorithm to
return a zero-one solution z \in \{ 0, 1\} m to (CP1) satisfying all the constraints exactly
with probability at least 1 - exp( - \Omega (n)) except for the linear constraints. The solution
z has objective value

\langle c, z\rangle \leq (1 + 6\epsilon )\sansc \sansp +
15nc\infty 

\epsilon 

with probability at least 1 - exp( - \Omega (n)), and satisfies

\langle Ai, z\rangle \leq (1 + 6\epsilon )ai +
15n \| Ai\| \infty 

\epsilon 

where Ai is the ith row of A, with probability at least 1 - exp( - \Omega (n)) for each linear
packing constraint, and satisfies

\langle Bj , z\rangle \geq bj  - \delta n \| Bj\| \infty ,

where Bj is the jth row of B, with probability at least 1 - exp( - min\{ \epsilon \delta , \epsilon \delta 2\} \cdot \Omega (n))
for any \delta > 0 for each linear covering constraint.

Proof. We apply the following standard transformation to reduce to the one-sided
spectral rounding problem. We assume without loss of generality that the graph Gx

formed by the support of the fractional solution x is connected, and so Lx has rank
n  - 1. Let \Pi = In  - 1

nJn be the orthogonal projection onto the n  - 1 dimensional
subspace orthogonal to the all-one vector, where Jn is the n \times n all-one matrix. For

each edge e \in E, we define a vector ve := L
\dagger /2
Gx

\Pi be which is contained in the n  - 1
dimensional subspace orthogonal to the all-one vector. Then

\sum 
e\in E

xevev
T
e = L\dagger /2

x \Pi 

\Biggl( \sum 
e\in E

xebeb
T
e

\Biggr) 
\Pi L\dagger /2

x = L\dagger /2
x \Pi Lx\Pi L\dagger /2

x = In - 1.

For any \epsilon \in (0, 1
4 ), we apply Theorem 1.8 to x \in [0, 1]m, \{ ve\} e\in E to find a zero-

one solution z \in \{ 0, 1\} m such that
\sum 

e\in E zevev
T
e \succcurlyeq In - 1 with probability at least

1  - exp( - \Omega (n)), which implies
\sum 

e\in E zebeb
T
e \succcurlyeq LGx

, thus the zero-one solution z
satisfies all the constraints in (CP1) except for the linear constraints by Lemma 5.1.

Theorem 1.8 also guarantees that with probability at least 1  - exp( - \Omega (n)) the
objective value of z is at most

\langle c, z\rangle \leq (1 + 6\epsilon )\langle c, x\rangle + 15nc\infty 
\epsilon 

.

The guarantees for the linear packing constraints follow the same way as for the
objective function, and the guarantees for the linear covering constraints follow from
the lower bound part of Theorem 1.8.

We demonstrate the use of Theorem 5.2 in some concrete settings. The first
example shows that Theorem 5.2 provides a spectral alternative to Jain's iterative
rounding algorithm to achieve O(1)-approximation for a fairly general subclass of the
survivable network design problem.

Example 5.3. Theorem 5.2 is a constant factor approximation algorithm as long
as nc\infty = O(\sansc \sansp ). Suppose that in our network design problem the average weighted
degree of an optimal fractional solution to the convex program is at least davg and the
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costs on edges are positive integers with c\infty = O(davg) (e.g., in the minimum k-edge-
connected subgraph problem every vertex has degree at least k and 1 \leq ce \leq O(k) for
e \in E, or the solution requires a connected subgraph and 1 \leq ce \leq O(1) for e \in E,
etc). Then \sansc \sansp \geq \Omega (davgn) \geq \Omega (c\infty n) and Theorem 5.2 provides a constant factor
approximation algorithm.

The additive error term nc\infty is the reason that we could not achieve constant fac-
tor approximation in general, but this term is unavoidable in the one-sided spectral
rounding setting when we need to satisfy the spectral lower bound exactly. See sec-
tion 3.2 for examples showing the limitations. Heuristically, we can compute \sansc \sansp and
if nc\infty = O(\sansc \sansp ) then we know Theorem 5.2 will provide good approximate solutions.

The second example shows that Theorem 5.2 returns a good approximate solution
to survivable network design while incorporating many other constraints simultane-
ously.

Example 5.4. Suppose the connectivity requirement is to find a k-edge-connected
subgraph, or more generally fu,v \geq k for all u, v \in V . Assume the cost ce of each
edge e is at least one. Then \sansc \sansp \geq \Omega (kn).

When the cost function satisfies c\infty = O(k), then Theorem 5.2 implies that
there is a polynomial time randomized algorithm to return a simple k-edge-connected
subgraph satisfying all the constraints in (CP1) except for the linear constraints (with
some nontrivial guarantees), and the cost of the subgraph is at most a constant factor
of the optimal value.

When the cost function satisfies c\infty = O(1), then Theorem 5.2 implies that there
is a polynomial time randomized algorithm to return a k-edge-connected subgraph
satisfying all the constraints in (CP1) except for the linear constraints, and the cost
of the subgraph is at most 1 + O(1/

\surd 
k) factor of the optimal value by setting \epsilon =

\Theta (1/
\surd 
k).

The third example shows when the linear packing and covering constraints can
be satisfied up to a multiplicative constant factor. See also section 5.1.5 for a related
question asked by Bansal [10].

Example 5.5. For linear covering constraints, suppose that they are of the form\sum 
e\in F xe \geq bj for some subset F \subseteq E where bj \geq n; then the returned solution z

will almost satisfy this constraint as
\sum 

e\in F ze \geq bj  - \delta n \| Bj\| \infty \geq (1  - \delta )bj for some
\delta > 0. So, these unweighted covering constraints with large right-hand side can be
incorporated into survivable network design, even though they can be unstructured.
By a similar argument, any unweighted packing constraints with large right-hand side
will be only violated by at most a multiplicative constant factor with high probability.
It was not known that Jain's iterative rounding can be adapted to incorporate these
linear covering and packing constraints.

We will present more applications of Theorem 5.2 in section 5.3, where they can
be used to design approximation algorithms for network design problems with spectral
requirements. These problems were studied in the literature before but not much is
known about approximation algorithms with performance guarantees.

5.1.4. Applications of two-sided spectral rounding. If we can achieve two-
sided spectral rounding in network design, then we can also approximately satisfy the
degree constraints by Lemma 5.1. However, to apply Theorem 1.9, we need to satisfy
the assumption that the vector lengths are small. It is known that the vector lengths
in the spectral rounding setting correspond to the effective resistance of the edges
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in the fractional solution x. In the following, we describe when two-sided spectral
rounding can be applied and discuss the implications for network design.

\sansc \sansp := min
x

\langle c, x\rangle 

x(\delta (S)) \geq f(S) \forall S \subseteq V (connectivity constraints)

x(\delta (v)) \leq dv \forall v \in V (degree constraints)

Reffx(u, v) \leq ruv \forall u, v \in V (effective resistance constraints)

Lx \succcurlyeq M M \succcurlyeq 0 (spectral lower bound)

\lambda 2(Lx) \geq \lambda (algebraic connectivity constraint)

0 \leq xe \leq 1 \forall e \in E (capacity constraints)

(CP2)

Theorem 5.6. Suppose we are given an optimal solution x to the convex pro-
gram (CP2). For any \epsilon \in [0, 1], if Reffx(u, v) \leq \epsilon 2 for every uv \in E and c\infty \leq \epsilon 2\langle c, x\rangle ,
then there exists a zero-one solution z \in \{ 0, 1\} m

(1 - O(\epsilon ))Lx \preccurlyeq Lz \preccurlyeq (1 +O(\epsilon ))Lx and (1 - O(\epsilon ))\langle c, x\rangle \leq \langle c, z\rangle \leq (1 +O(\epsilon ))\langle c, x\rangle .

This implies that all the constraints of (CP2) will be approximately satisfied by z (e.g.,
z(\delta (S)) \geq (1  - O(\epsilon ))f(S) for all S \subseteq V and z(\delta (v)) \leq (1 + O(\epsilon ))dv for all v \in V )
and the objective value of z is at most (1 +O(\epsilon ))\sansc \sansp .

Proof. We apply the same standard transformation as in Theorem 5.2 to reduce to
the two-sided spectral rounding problem. Let \Pi = In - 1

nJn as defined in Theorem 5.2.

For each edge e, we define a vector ve := L
\dagger /2
x \Pi be which is contained in the n  - 1

dimensional subspace orthogonal to the all-one vector. Then
\sum 

e\in E xevev
T
e = In - 1 as

in Theorem 5.2. Using the assumption that Reffx(i, j) \leq \epsilon 2 for every edge ij \in E, it
follows that

\| vij\| 2 = bTijL
\dagger 
xbij = Reffx(i, j) \leq \epsilon 2 \forall ij \in E,

and thus the assumption in Theorem 1.9 is satisfied. We can then apply Theorem 1.9
on \{ ve\} e and c to conclude that there exists z \in \{ 0, 1\} m such that

(1 - O(\epsilon ))In - 1 \preccurlyeq 
\sum 
e\in E

zevev
T
e \preccurlyeq (1 +O(\epsilon ))In - 1 and \langle c, z\rangle \leq (1 +O(\epsilon ))\langle c, x\rangle .

By the definition of ve = L
\dagger /2
x \Pi be, this implies that

(1 - O(\epsilon ))Lx \preccurlyeq Lz =
\sum 
e\in E

zebeb
T
e \preccurlyeq (1 +O(\epsilon ))Lx.

By Lemma 5.1, the zero-one solution z satisfies all the constraints of (CP2) approxi-
mately.

In the following, we compare Theorem 5.6 to Theorem 5.2.
1. Approximation guarantees: When Theorem 5.6 applies, it can handle de-

gree constraints as well and basically preserves all properties of the fractional
solution (e.g., upper bound and lower bound on every cut). It also gives a
strong approximation guarantee for the objective value, getting arbitrarily
close to the optimal value. However, the constraints are only approximately
satisfied, while in Theorem 5.2 they are exactly satisfied. Theorem 5.6 can
handle only one linear constraint, which is used for the objective function,
while Theorem 5.2 can handle many linear constraints simultaneously with
an additive error term.
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2. Assumptions: Theorem 5.2 applies without any assumptions, but Theo-
rem 5.6 applies only when Reffx(u, v) \leq \epsilon 2 for all uv \in E and c\infty \leq \epsilon 2\langle c, x\rangle .
The assumption about the cost is moderate, as it only requires that the max-
imum cost of an edge is at most an \epsilon 2 fraction of the total cost of the solution,
which should be satisfied in many applications with small \epsilon . The main re-
striction is the first assumption about effective resistances, which may not be
satisfied in network design applications, and we would like to provide some
combinatorial characterizations under which the assumption will hold. Let
Reffdiam := maxu,v Reff(u, v) be the effective resistance diameter of a graph;
note that the maximum is taken over all pairs (not just for edges as required
in Theorem 5.6). For example, it is known that [21] a d-regular graph with
constant expansion has Reffdiam \leq O(1/d). So, if the fractional solution x is
close to a d-regular expander graph, then Theorem 5.6 can be applied with
\epsilon \geq 1/

\surd 
d. It is proved in [2] that a much milder expansion condition guar-

antees small effective resistance diameter. For example, in a d-regular graph
G, as long as for some 0 < \delta \leq 1/2,

| \delta (S)| \geq \Omega 
\Bigl( 
(d| S| ) 1

2+\delta 
\Bigr) 

\forall S \subseteq V =\Rightarrow Reffdiam \leq O

\biggl( 
1

d2\delta 

\biggr) 
.

Note that a d-regular graph with constant expansion satisfies the much stronger
assumption that | \delta (S)| \geq \Omega (d| S| ). Informally, the above result only requires
| \delta (S)| to be roughly the square root of d| S| to show that the graph has a
small effective resistance diameter (e.g., three-dimensional mesh). So, as long
as the fractional solution x is a mild expander as defined in [2], the assump-
tion in Theorem 5.6 will be satisfied with small \epsilon . As another example, if the
algebraic connectivity \lambda 2(Lx) of the fractional solution is at least, say, 1/2\epsilon 2,
then we have Reffdiam \leq \epsilon 2 so that Theorem 5.6 can be applied. Heuristically,
if one could add the constraints that Reffx(u, v) \leq \epsilon 2 for uv \in E so that the
convex program (CP2) is still feasible without increasing the objective value
too much, then one could then apply Theorem 5.6 to bound the integrality
gap of the convex program.

3. Algorithms: There are polynomial time algorithms to return the solu-
tions guaranteed in Theorem 5.2, while the proof of Theorem 5.6 is non-
constructive. In network design, Theorem 5.2 give us approximation al-
gorithms, while Theorem 5.6 only gives us integrality gap results for the
convex programming relaxation (that there exists a zero-one solution al-
most satisfying all the constraints with objective value close to the optimal
value).

5.1.5. Concentration property in survivable network design. Recently,
Bansal [10] designed a rounding technique that achieves the guarantees by iterative
rounding and randomized rounding simultaneously. Suppose there is an iterative
rounding algorithm for a problem satisfying some technical assumptions. Bansal's
algorithm will satisfy essentially the same guarantees of the iterative rounding algo-
rithm, and simultaneously the following concentration property with \beta = O(1) with
respect to linear constraints as if the algorithm does independent randomized round-
ing.

Definition 5.7 (\beta -concentration). Let \beta \geq 1. For a vector-valued random vari-
able X = (X1, . . . , Xm), where Xi are possible dependent zero-one random variables,
we say X is \beta -concentrated around the mean x = (x1, . . . , xm) where xi = \BbbE [Xi] if for
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1056 LAP CHI LAU AND HONG ZHOU

every a \in \BbbR n with M := maxi | ai| , \langle a,X\rangle is well-concentrated and satisfies Bernstein's
inequality up to a factor of \beta in the exponent, i.e.,

Pr (\langle a,X\rangle  - \langle a, x\rangle \geq t) \leq exp

\biggl( 
 - t2/\beta 

2(
\sum m

i=1 a
2
ixi(1 - xi) +Mt/3)

\biggr) 
.

Bansal showed various interesting application of his techniques, with x being the
fractional solution to the linear programming relaxation and X being the zero-one
solution output by the approximation algorithm. However, he left it as an open
question whether there is an O(1)-approximation algorithm for survivable network
design (the guarantee achieved by Jain's iterative rounding algorithm) with O(1)-
concentration property.

Our iterative randomized swapping algorithms satisfy similar but weaker concen-
tration properties. Let x \in [0, 1]m be the fractional solution to the one-sided spectral
rounding problem. The algorithm in Theorem 1.8 will output a vector-valued random
variable X \in \{ 0, 1\} m such that for any a \in \BbbR n

+ with M := maxi ai,

\BbbE [\langle a,X\rangle ] \leq (1 +O(\epsilon ))\langle a, x\rangle +O
\Bigl( nM

\epsilon 

\Bigr) 
and

Pr(\langle a,X\rangle  - \BbbE [\langle a,X\rangle ] \geq \eta ) \leq exp

\biggl[ 
 - \Omega 

\biggl( 
\eta 2

\sigma 2 +M\eta 

\biggr) \biggr] 
,

where n is the dimension of the problem (i.e., the dimension of the vectors) and
\sigma 2 = O(M(\langle a, x\rangle +nM/\epsilon )) is a term related to the variance of the randomized swap-
ping process. In other words, the random variable \langle a,X\rangle is concentrated around
the expected value \BbbE [\langle a,X\rangle ], but the expected value \BbbE [\langle a,X\rangle ] could derivate from
\langle a, x\rangle by O(\epsilon \langle a, x\rangle + nM/\epsilon ) and the concentration property is weaker than the one
required in \beta -concentration, as the upper bound of \sigma 2 we can obtain is larger than the
term

\sum m
i=1 a

2
ixi(1 - xi) in the \beta -concentration definition. We note that both Bansal's

proof and our proof use Freedman's concentration inequality or its variant. Using
Theorem 5.2, we made some progress toward Bansal's question.

Corollary 5.8. Let x \in [0, 1]m be an optimal fractional solution to the sur-
vivable network design problem (i.e., (CP1) with only connectivity and capacity con-
straints). Suppose nc\infty = O(\langle c, x\rangle ). Then there is a randomized polynomial time
algorithm to return a solution z \in \{ 0, 1\} m to the survivable network design problem
so that \langle c, z\rangle \leq O(\langle c, x\rangle ) with probability at least 1  - exp( - \Omega (n)). Furthermore, for
any a \in \BbbR n

+ and \delta \in (0, 1) it holds that \langle a, x\rangle  - \delta n \| a\| \infty \leq \langle a, z\rangle \leq O(\langle a, x\rangle +n \| a\| \infty )
with probability at least 1 - O(exp( - \Omega (\delta 2n))).

We remark that one can add linear constraints a to the convex program in our
framework before we apply the rounding, so that we have some control over \langle a, x\rangle of
the fractional solution x and hence some control over \langle a, z\rangle of the zero-one solution z.
But it may not be possible to add linear constraints to the relaxation in Bansal's set-
ting, as adding constraints may make the underlying iterative rounding algorithm stop
working (e.g., we do not know of an iterative rounding algorithm for the survivable
network design problem with additional linear packing or covering constraints). See
Example 5.5 for a related discussion. Our results suggest that the spectral approach is
perhaps more suitable for achieving the concentration property for survivable network
design.

5.2. Experimental design. In this subsection, we will apply the one-sided
spectral rounding results to design approximation algorithms for weighted experi-
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mental design problems, extending the work in [4, 5] for (unweighted) experimental
design problems. The presentations will mostly follow those in [4, 5].

5.2.1. Previous work. Experimental design is classical in statistics and has
found new applications in machine learning [61, 8, 5]. In the general problem, we would
like to select k points from a large design pool \{ v1, . . . , vm\} \in \BbbR n to maximize the
statistical efficiency regressed on the selected k design points. This can be formulated
as a discrete optimization problem of choosing a subset S \subseteq [m] of at most k vectors,
so that its covariance matrix \Sigma S :=

\sum 
i\in S viv

T
i has the smallest function value f(\Sigma S)

for some objective function f . Some popular choices of f include

\bullet A(verage)-optimality: fA(\Sigma ) = tr(\Sigma  - 1)/n;
\bullet D(eterminant)-optimality: fD(\Sigma ) = (det\Sigma ) - 1/n;
\bullet E(igen)-optimality: fE(\Sigma ) = \lambda max(\Sigma 

 - 1);
\bullet V(ariance)-optimality: fV (\Sigma ) = tr(V \Sigma  - 1V T );
\bullet G-optimality: fG(\Sigma ) = maxdiag(V \Sigma  - 1V T ).

Many of these optimization problems are known to be NP-hard [25, 59], and we are
interested in designing approximation algorithms for these problems. There are two
settings in experimental design.

1. With repetition: A vector can be chosen multiple times. This is equivalent to
finding a vector z \in \BbbZ m

+ to minimize f(
\sum m

i=1 ziviv
T
i ) subject to the constraint

that
\sum m

i=1 zi \leq k. This is common in statistics literature, where multiple
measurements with respect to the same design point lead to different values
with statistically independent noise.

2. Without repetition: A vector can be chosen at most once. This is equiva-
lent to finding a vector z \in \{ 0, 1\} m to minimize f(

\sum m
i=1 ziviv

T
i ) subject to

the constraint that
\sum m

i=1 zi \leq k. This is more relevant in machine learning
applications, as same data points often give the same result.

To design approximation algorithms for these discrete optimization problems, the
approach in [4, 5] is to first solve a convex programming relaxation to obtain x \in [0, 1]m

that minimizes f(
\sum m

i=1 xiviv
T
i ) subject to the constraint that

\sum m
i=1 xi \leq k, and then

round it to z \in \{ 0, 1\} m with
\sum m

i=1 zi \leq k and f(
\sum m

i=1 ziviv
T
i ) \leq \gamma f(

\sum m
i=1 xiviv

T
i ) for

some small constant \gamma \geq 1. Under some mild assumptions on the objective function
f (which are satisfied for all the popular choices above), Allen-Zhu et al. [4, 5] showed
that designing a polynomial time \gamma -approximation algorithm for the experimental
design problem can be reduced to the following one-sided spectral rounding problem.

Problem 5.9. Given x \in [0, 1]m with
\sum m

i=1 xi \leq k and
\sum m

i=1 xiviv
T
i = In, find

z \in \{ 0, 1\} m with
\sum m

i=1 zi \leq k and
\sum m

i=1 xiviv
T
i \succcurlyeq 1

\gamma In in polynomial time.

Theorem 1.5 proves that this one-sided spectral rounding problem is always solv-
able with \gamma = 1+ \epsilon as long as k \geq \Omega (n/\epsilon 2), using the regret minimization framework.
This implies a (1+\epsilon )-approximation algorithm for a large class of experimental design
problem as long as k \geq \Omega (n/\epsilon 2), in both the with repetition and without repetition
settings. The assumption that k \geq \Omega (n/\epsilon 2) is shown to be necessary in achieving
a (1 + \epsilon )-approximation for E-optimal design [59]. For some other objective func-
tions, it is possible to relax the assumption k = \Omega (n/\epsilon 2): Singh and Xie [67] and
Madan et al. [54] gave (1 + \epsilon )-approximation algorithms for D-optimal design when
k = \Omega (n/\epsilon ), and Nikolov, Singh, and Tantipongpipat [59] gave a (1+\epsilon )-approximation
algorithm for A-optimal design when k = \Omega (n/\epsilon ).
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5.2.2. Weighted experimental design. We consider the generalization of the
experimental design problem where different design points may have different costs.
In this problem, we are given design points \{ v1, . . . , vm\} \in \BbbR n, and a cost vector
c \in \BbbR m

+ and a cost budget C; the objective is to choose a subset S \subseteq [m] that
minimizes f(

\sum 
i\in S viv

T
i ) subject to the constraint that

\sum 
i\in S ci \leq C. The problem in

the previous subsection is the special case when c is the all-one vector and C = k. We
believe that this more general problem will be useful in applications, as it is natural
that different experiments have different operation costs.

The approximate spectral rounding Theorem 3.3 implies the following one-sided
spectral rounding results that satisfy the more general cost constraint (which includes
the cardinality constraint as a special case).

Theorem 5.10. Let v1, . . . , vm \in \BbbR n and x \in [0, 1]m. Let c \in \BbbR m
+ and C =

\langle c, x\rangle . Suppose
\sum m

i=1 xiviv
T
i = In and C \geq 15nc\infty /\epsilon 2. For any \epsilon \in (0, 1

2 ], there is a
randomized polynomial time algorithm that returns an integral solution z \in \{ 0, 1\} m
such that \langle c, z\rangle \leq C and

\sum m
i=1 ziviv

T
i \succcurlyeq (1  - 4\epsilon )In with probability at least 1  - 

exp( - \Omega (n)).

Proof. The idea is to scale down x then apply Theorem 3.3. We let \alpha = 1  - 2\epsilon 
and set y := \alpha x and ui :=

vi\surd 
\alpha 
, which implies

\langle c, y\rangle = \alpha \langle c, x\rangle = \alpha C and

m\sum 
i=1

yiuiu
T
i =

m\sum 
i=1

xiviv
T
i = In.

We apply Theorem 3.3 on u1, . . . , um and y, c with \delta 1 = \epsilon , q =
\surd 
n to obtain z \in 

\{ 0, 1\} m so that

m\sum 
i=1

ziuiu
T
i \succcurlyeq (1 - 2\epsilon )In =\Rightarrow 

m\sum 
i=1

ziviv
T
i \succcurlyeq \alpha (1 - 2\epsilon )In \succcurlyeq (1 - 4\epsilon )In

and

\langle c, z\rangle \leq (1 + \epsilon )\langle c, y\rangle + 15nc\infty /\epsilon \leq (1 + \epsilon )(1 - 2\epsilon )C + \epsilon C < C,

where we use the assumptions that 15nc\infty /\epsilon 2 \leq C. The failure probability is at most
exp( - \Omega (n)).

Using the same reduction in [4, 5], Theorem 5.10 implies the following approxi-
mation algorithms for weighted experimental design, including the weighted version
of A/D/E/V/G-design.

Theorem 5.11. Suppose we are given m design points that are represented by
n-dimensional vectors v1, . . . , vm \in \BbbR n, a cost vector c \in \BbbR m

+ , and a cost budget
C \in \BbbR +. Assuming that the objective function f satisfies the monotonicity, reciprocal
sub-linearity, and polynomial time approximability conditions as described in [4, 5]
(which hold for A/D/E/V/G-design), we have the following approximation results for
weighted experimental design.

For any fixed \epsilon \leq 1
5 , if C \geq 15nc\infty /\epsilon 2, then there exists a polynomial time ran-

domized algorithm that returns an integral vector z \in \{ 0, 1\} m such that with probability
at least 1 - exp( - \Omega (n)) it holds that

f

\Biggl( 
m\sum 
i=1

ziviv
T
i

\Biggr) 
\leq (1 +O(\epsilon )) \cdot min

y\in [0,1]m:\langle c,y\rangle \leq C
f

\Biggl( 
m\sum 
i=1

yiviv
T
i

\Biggr) 
and \langle c, z\rangle \leq C.
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We note that the algorithms in Theorem 5.11 can incorporate some additional
linear packing and covering constraints, with the same guarantees as in Theorem 5.2.

Finally, we mention that the two-sided spectral rounding result can also be applied
to weighted experimental design. Assuming all the vectors have length at most \epsilon , it
shows that there is a zero-one solution which achieves (1 + O(\epsilon ))-approximation in
weighted experimental design, but it does not provide a polynomial time algorithm
to find such a zero-one solution.

5.3. Spectral network design. There are several previous works on network
design problems with spectral requirements. In this section, we will see that these
problems are special cases of the general network design problem and the weighted
experimental design problem in sections 5.1 and 5.2, and our results provide improved
approximation algorithms for these problems and also generalize these problems to
incorporate many additional constraints.

5.3.1. Maximizing algebraic connectivity. Ghosh and Boyd [37] study the
problem of choosing a subgraph that maximizes the algebraic connectivity (the second
smallest eigenvalue of its Laplacian matrix) subject to a cost constraint. The problem
can be formulated as follows:

(5.1)

\lambda opt := max
x\in \BbbR | E| 

\lambda 2

\Biggl( \sum 
e\in E

xebeb
T
e

\Biggr) 
subject to

\sum 
e\in E

cexe \leq C,

xe \in \{ 0, 1\} \forall e \in E,

where ce is the cost of edge e for e \in E and C is the given cost budget. As mentioned
in [37], the algebraic connectivity is a good measure on the well-connectedness of a
graph, as

\lambda 2(LG) \leq min
S\subseteq V

n| \delta (S)| 
| S| | \=S| 

\leq 2 min
0\leq | S| \leq n

2

| \delta (S)| 
| S| 

,

where the first inequality is proved in [29]. Thus, any graph with large \lambda \sanso \sansp \sanst has no
sparse cuts, which also implies that the mixing time of random walks is small.

Ghosh and Boyd show that if the constraint xe \in \{ 0, 1\} is relaxed to xe \in [0, 1],
then the relaxation is convex and can be written as a semidefinite program. They
proposed a greedy heuristic based on the Fiedler vector for the zero-one cost setting,
but they do not provide any approximation guarantee of their heuristic algorithm.

Kolla et al. [44] provide the first algorithm with non-trivial approximation guar-
antee in the zero-one cost setting. Using subgraph sparsification techniques, they give
an algorithm that returns a solution which violates the cost constraint by a factor
of at most 8 and having algebraic connectivity at least \Omega (\lambda 2

\sanso \sansp \sanst /\Delta ) where \Delta is the
maximum degree of the graph (the dependence on \Delta can be removed according to
the authors).

We observe that if we project the vectors be onto the rank n - 1 subspace orthog-
onal to the all-one vector, then the objective function of (5.1) is simply the reciprocal
of the objective function of the E-optimal design problem described in section 5.2.
This immediately implies that the result of Allen-Zhu et al. [5] can be applied to give
a (1 + \epsilon )-approximation algorithm for the unweighted problem as long as C \geq 5n/\epsilon 2,
although this connection was not made before. Theorem 5.11 implies the following
approximation result for the general nonnegative cost function.
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Theorem 5.12. Suppose C \geq 15nc\infty /\epsilon 2 for some \epsilon \in (0, 1
2 ]. There is a poly-

nomial time randomized algorithm which returns a zero-one solution z \in \{ 0, 1\} m for
(5.1) with with probability at least 1 - exp( - \Omega (n)) such that

\lambda 2

\Biggl( \sum 
e\in E

zebeb
T
e

\Biggr) 
\geq (1 - O(\epsilon ))\lambda \sanso \sansp \sanst and

\sum 
e\in E

ceze \leq C.

Remark 5.13. To be precise, the problem posed by Ghosh and Boyd [37] is using
k edges from a candidate edge set to augment a base graph so that the algebraic
connectivity is maximized (this is equivalent to having zero-one edge cost in our
setting). Due to the assumption C \gtrsim nc\infty /\epsilon 2 (or k \gtrsim n/\epsilon 2), Theorem 5.12 does
not provide a constant approximation when k = o(n). Thus, we are not solving the
general case of the original problem. We also remark that Kolla et al. [44] can achieve
a nontrivial approximation to find a solution with objective value \Omega (\lambda 2

\sanso \sansp \sanst ) when k < n,
with a constant factor violation in the cardinality constraint.

As shown in section 5.1, the constraint \lambda 2(
\sum 

e\in E xebeb
T
e ) \geq \lambda \sanso \sansp \sanst can be incorpo-

rated into network design, and so Theorem 5.2 implies the following result.

Theorem 5.14. There is a polynomial time randomized algorithm which returns
a zero-one solution z \in \{ 0, 1\} m with probability at least 1 - exp( - \Omega (n)) such that

\lambda 2

\Biggl( \sum 
e\in E

zebeb
T
e

\Biggr) 
\geq \lambda \sanso \sansp \sanst and

\sum 
e\in E

ceze \leq (1 +O(\epsilon ))C +O
\Bigl( nc\infty 

\epsilon 

\Bigr) 
.

Furthermore, this can be done while incorporating other constraints (e.g., connectivity
constraints) as described in Theorem 5.2.

5.3.2. Minimizing total effective resistance. Ghosh, Boyd, and Saberi [38]
study the problem of designing a network that minimizes the total effective resistance.
The problem is formulated as follows:

(5.2)

R\sanso \sansp \sanst := min
x\in \BbbR | E| 

1

2

\sum 
u,v\in V

Reffx(u, v)

subject to
\sum 
e\in E

xe \leq k,

xe \in \{ 0, 1\} \forall e \in E.

They showed that if the constraint xe \in \{ 0, 1\} is relaxed to xe \in [0, 1], then the
relaxation is convex and can be written as a semidefinite program. They did not
provide any result for the discrete optimization version in (5.2).

Ghosh, Boyd, and Saberi [38] also show that the total effective resistance is a
useful measure in different problems, e.g., average commute time, power dissipation in
a resistor network, Elmore delay in an RC circuit, total time constant of an averaging
network, and euclidean variance. Furthermore, they established a connection between
(5.2) and the A-design problem described in section 5.2. To see this, note that the
objective of (5.2) can be written as

1

2

\sum 
u,v\in V

Reffx(u, v) =
1

2

\sum 
u\not =v\in V

bTuvL
\dagger 
xbuv =

\Biggl\langle 
L\dagger 
x,

1

2

\sum 
u \not =v\in V

buvb
T
uv

\Biggr\rangle 
=
\bigl\langle 
L\dagger 
x, nIn  - 1n1

T
n

\bigr\rangle 
= n tr

\bigl( 
L\dagger 
x

\bigr) 
,
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where the last equality follows as L\dagger 
x is orthogonal to 1n. Hence, minimizing total

effective resistance is equivalent to minimizing tr(L\dagger 
Gx

) = tr(
\sum 

e\in E xebeb
T
e )

\dagger , which
is the same as the A-design objective function after we project the vectors onto the
subspace orthogonal to the all-one vector.

With this connection, all the recent algorithms for the A-optimal design can be
applied to solve (5.2). For instance, the regret minimization algorithm in [5] gives
a (1 + \epsilon )-approximation algorithm when k \geq \Omega (n/\epsilon 2), and the proportional volume
sampling in [59] achieves (1 + \epsilon )-approximation with weaker assumption k \geq \Omega (n/\epsilon ).

Theorem 5.11 implies the following approximation result for the more general
weighted setting, where every edge has a cost ce and we are given a cost budget C as
in (5.1).

Theorem 5.15. Suppose C \geq 15nc\infty /\epsilon 2. There is a polynomial time randomized
(1 +O(\epsilon ))-approximation algorithm for the weighted version of (5.2).

As shown in section 5.1, the effective resistance constraints can be incorporated
into network design, and so Theorem 5.2 implies the following result.

Theorem 5.16. There is a polynomial time randomized algorithm which returns
a zero-one solution z \in \{ 0, 1\} m with probability at least 1 - exp( - \Omega (n)) such that

1

2

\sum 
u,v\in V

Reffz(u, v) \leq R\sanso \sansp \sanst and
\sum 
e\in E

cexe \leq (1 +O(\epsilon ))C +O
\Bigl( nc\infty 

\epsilon 

\Bigr) 
.

Furthermore, this can be done while incorporating other constraints (e.g., connectivity
constraints) as described in Theorem 5.2.

5.3.3. Network design for effective resistances. In [20], together with Chan,
Schild, and Wong, we consider the following new problem about network design for
s-t effective resistance. Given a graph G = (V,E) and two vertices s, t \in V , find a
subgraph H with at most k edges to minimize the effective resistance between s and t.
The main result in [20] is a constant factor approximation algorithm for the problem.
This result motivates the current paper.

Using the results in section 5.2, we can generalize the problem by allowing the
edges to have costs and considering the sum of effective resistance of multiple pairs.
The approximation guarantee is similar to the one in Theorem 5.15. Using the results
in section 5.1, we can add the effective resistance constraints for multiple pairs with the
objective of minimizing the cost of the solution subgraph, while incorporating other
constraints as described in Theorem 5.2. The approximation guarantee is similar to
the one in Theorem 5.16. We remark that the constant factor approximation algorithm
in [20] is not subsumed by the result in this paper (in particular when k < n).

Concluding remarks. We propose a spectral approach to design approximation
algorithms for network design problems. We show that the techniques developed in
spectral graph theory and discrepancy theory can be used to significantly extend the
scope of network design problems that can be solved. We believe that this connec-
tion will bring new techniques and stronger results for network design and will also
introduce new formulations and interesting questions to spectral graph theory and
discrepancy theory. It also gives extra motivation to design a constructive algorithm
for the method of interlacing polynomials, as this will lead to very strong approxima-
tion algorithms for network design. We leave it as an open question to improve the
spectral approach to fully recover Jain's result.
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