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ABSTRACT
We present a spectral approach to design approximation algorithms

for network design problems. We observe that the underlying math-

ematical questions are the spectral rounding problems, which were

studied in spectral sparsification and in discrepancy theory. We

extend these results to incorporate additional linear constraints,

and show that they can be used to significantly extend the scope

of network design problems that can be solved. Our algorithm for

spectral rounding is an iterative randomized rounding algorithm

based on the regret minimization framework. In some settings, this

provides an alternative spectral algorithm to achieve constant factor

approximation for survivable network design, and partially answers

a question of Bansal about survivable network design with concen-

tration property. We also show that the spectral rounding results

have many other applications, including weighted experimental

design and additive spectral sparsification.
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1 INTRODUCTION
Network design is a central topic in combinatorial optimization,

approximation algorithms and operations research. The general

setting of network design is to find a minimum cost subgraph sat-

isfying certain requirements. The most well-studied problem is

the survivable network design problem [1, 31, 36, 37], where the
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requirement is to have at least a specified number 𝑓𝑢,𝑣 of edge-

disjoint paths between every pair of vertices 𝑢, 𝑣 . A seminal work

of Jain [39] introduced the iterative rounding method for linear

programming to design a 2-approximation algorithm for the surviv-

able network design problem, and this method has been extended

to various more general settings [10, 21, 25, 26, 28, 30, 42, 43, 45].

There are also other linear programming based algorithms such

as randomized rounding [9, 17, 32, 38, 64] to obtain important al-

gorithmic results for network design. It is widely recognized that

linear programming is the most general and powerful approach in

designing approximation algorithms for network design problems.

In the past decade, spectral techniques have been developed to

make significant progress in designing graph algorithms [3, 6, 13,

22, 59, 62]. One striking example is the spectral sparsification prob-

lem introduced by Spielman and Teng [63], where the objective is

to find a sparse edge-weighted graph 𝐻 to approximate the input

graph𝐺 so that (1− 𝜖)𝐿𝐺 ≼ 𝐿𝐻 ≼ (1 + 𝜖)𝐿𝐺 where 𝐿𝐺 and 𝐿𝐻 are

the Laplacian matrices of the graph𝐺 and𝐻 . The spectral condition

(1 − 𝜖)𝐿𝐺 ≼ 𝐿𝐻 ≼ (1 + 𝜖)𝐿𝐺 implies that 𝐻 is also a cut sparsifier

of 𝐺 such that the total weight on every cut in 𝐻 is approximately

the same as that in𝐺 . Batson, Spielman, Srivastava [13] proved that

every graph𝐺 has a spectral sparsifier 𝐻 with only 𝑂 (𝑛/𝜖2) edges.
This improves upon the important result of Benczúr and Karger [14]

that every graph𝐺 has a cut sparsifier 𝐻 with 𝑂 (𝑛 log𝑛/𝜖2) edges,
which has many applications in designing fast algorithms for graph

problems. From a technical perspective, the spectral approach in-

troduces linear algebraic concepts and continuous optimization

techniques in solving graph problems, and the results in spectral

sparsification [3, 6, 13] show that it is algorithmically more con-

venient to control the spectral properties of the graph in order to

control its combinatorial properties.

Inspired by these developments, we aremotivated to studywhether

there is a spectral approach to design approximation algorithms for

network design problems. The general way to designing approxima-

tion algorithms is to solve a convex program to obtain a fractional

solution 𝑥 in polynomial time, and then to round 𝑥 into an integral

solution 𝑧 that well approximates 𝑥 (with respect to the constraints

and the objective function) as an approximate solution. We observe

that the following spectral rounding question, where the objective

is to approximate the spectral properties of 𝑥 , underlies a large class

of problems including the survivable network design problem.

Question 1.1 (Spectral Rounding). For each 𝑒 in a graph, let 𝐿𝑒 be
the Laplacian matrix of 𝑒 and 𝑐𝑒 be its cost. Given 𝑥𝑒 ∈ R+ for each
edge 𝑒 , characterize when we can find 𝑧𝑒 ∈ Z+ for each 𝑒 such that∑

𝑒

𝑥𝑒𝐿𝑒 ≈
∑
𝑒

𝑧𝑒𝐿𝑒 and

∑
𝑒

𝑐𝑒𝑥𝑒 ≈
∑
𝑒

𝑐𝑒𝑧𝑒 .

When spectral rounding is possible, we notice that the integral

solution 𝑧 not only approximately preserves the cost and the pair-

wise edge connectivity properties of 𝑥 as required by the survivable
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network design problem, but also many other properties of 𝑥 includ-

ing pairwise effective resistances, the graph expansion, and degree

constraints. This would significantly extend the scope of useful

properties that a network designer could control simultaneously to

design better networks.

1.1 General Survivable Network Design
The main conceptual contribution of this paper is to show that the

techniques in spectral graph theory and discrepancy theory can be

used to significantly extend the scope of network design problems

that can be solved.

In network design, we are given a graph 𝐺 = (𝑉 , 𝐸) where
each edge has a cost 𝑐𝑒 , and the objective is to find a minimum

cost subgraph that satisfies certain requirements. In the survivable

network design problem [36, 39], the requirements are pairwise

edge-connectivities, that every pair of vertices 𝑢, 𝑣 should have at

least 𝑓𝑢𝑣 edge-disjoint paths for 𝑢, 𝑣 ∈ 𝑉 . This captures several clas-

sical problems as special cases, including minimum Steiner tree [17],

minimum Steiner forest [1, 37], and minimum 𝑘-edge-connected

subgraph [31]. Jain introduced the iterative rounding method for

linear programming to design a 2-approximation algorithm for the

survivable network design problem [39]. His proof exploits the

nice structures of the connectivity constraints to show that there

is always a variable 𝑥𝑒 with value at least
1

2
in any extreme point

solution to the linear program. His work leads to many subsequent

developments in network design [20, 21, 26, 30, 31], and the iter-

ative rounding algorithm is still the only known constant factor

approximation algorithm for survivable network design.

Motivated by the need of more realistic models for the design of

practical networks, researchers study generalizations of survivable

network design problems where we can incorporate additional use-

ful constraints. One well-studied problem is the degree-constrained

survivable network design problem, where there is a degree upper

bound 𝑑𝑣 on each vertex 𝑣 to control its workload. There is a long

line of work on this problem [25, 28, 35, 42, 45, 57, 58] and the

iterative rounding method has been extended to incorporate degree

constraints into survivable network design successfully. For the

general problem [42, 45, 49], there is a polynomial time algorithm

to find a subgraph that violates the cost and the degree constraints

by a multiplicative factor of at most 2. For interesting special cases

such as finding a spanning tree [35, 61] or a Steiner tree [44, 45],

there is a polynomial time algorithm that returns a solution that

violates the degree constraint by an additive constant.

More generally, one can consider to add linear packing con-

straints and linear covering constraints into survivable network

design [11, 15, 48, 55], but not as much is known about how to

approximately satisfy these constraints simultaneously especially

when the linear constraints are unstructured.

Another natural constraint is to control the shortest path distance

between pairs of vertices, but unfortunately this is shown to be

computationally hard [24] to incorporate into network design.

In [18], together with Chan, Schild, and Wong, we propose to

incorporate effective resistances into network design, as an inter-

polation of shortest path distance and edge-connectivity between

vertices. Incorporating effective resistances can also allow one to

control some natural quantities about random walks on the result-

ing subgraph, such as the commute time between vertices [19] and

the cover time [23, 53]. We note that effective resistances have

interesting connections to many other graph problems, including

spectral sparsification [62], maximum flow computation [22], asym-

metric traveling salesman problem [6], and random spanning tree

generation [50, 59]. We believe that it is a useful property to be

incorporated into network design.

There are many other natural constraints that could help in de-

signing better networks, including total effective resistances [34],

algebraic connectivity (and graph expansion) [33], and the mix-

ing time of random walks [16]. These constraints are also well-

motivated and were studied individually before (without taking

other constraints together into consideration, e.g. connectivity re-

quirements), but not much is known about approximation algo-

rithms with nontrivial approximation guarantees for these con-

straints.

It would be ideal if a network designer can control all of these

properties simultaneously to design a good network that suits their

need. We can write a convex programming relaxation for this gen-

eral network design problem incorporating all these constraints.

cp := min

𝑥
⟨𝑐, 𝑥 ⟩

s.t.



𝑥 (𝛿 (𝑆)) ≥ 𝑓 (𝑆) ∀𝑆 ⊆ 𝑉 (connectivity constraints)

𝑥 (𝛿 (𝑣)) ≤ 𝑑𝑣 ∀𝑣 ∈ 𝑉 (degree constraints)

𝐴𝑥 ≤ 𝑎 𝐴 ∈ R𝑝×𝑚+ , 𝑎 ∈ R𝑝+ (linear packing constraints)

𝐵𝑥 ≥ 𝑏 𝐵 ∈ R𝑞×𝑚+ , 𝑏 ∈ R𝑞+ (linear covering constraints)

Reff𝑥 (𝑢, 𝑣) ≤ 𝑟𝑢𝑣 ∀𝑢, 𝑣 ∈ 𝑉 (effective resistance constraints)

𝐿𝑥 ≽ 𝑀 𝑀 ≽ 0 (spectral constraints)

𝜆2 (𝐿𝑥 ) ≥ 𝜆 (algebraic connectivity constraint)

0 ≤ 𝑥𝑒 ≤ 1 ∀𝑒 ∈ 𝐸 (capacity constraints)

(CP)

The connectivity constraints are specified by a function 𝑓 on ver-

tex subsets, e.g. in survivable network design 𝑓 (𝑆) := max𝑢,𝑣{𝑓𝑢,𝑣 |
𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆}. The matrix 𝐿𝑥 is the Laplacian matrix of the fractional

solution 𝑥 . We defer to Section 4.1.1 for more explanations about

this convex program.

Our main result for network design is the following approxima-

tion algorithm for this general problem. We note that the degree

constraints are not handled in the following result.

Theorem 1.2 (Informal). Suppose we are given an optimal so-
lution 𝑥 to the convex program (CP). There is a polynomial time
randomized algorithm to return an integral solution 𝑧 to (CP) that
satisfies all the connectivity constraints, the effective resistance con-
straints, the spectral constraints, the algebraic connectivity constraint
and the capacity constraints simultaneously with high probability.
The objective value of the integral solution 𝑧 is

⟨𝑐, 𝑧⟩ ≤ 𝑂 (cp + 𝑛𝑐∞)

with high probability, where 𝑛 is the number of vertices in the graph
and 𝑐∞ := ∥𝑐 ∥∞ is the maximum cost of an edge. Furthermore, the
linear packing constraints and the linear covering constraints are
satisfied approximately with high probability (see Theorem 4.3 for
the approximation guarantees for these constraints)1.

1
Theorem 1.2 has been improved in a new version, see arXiv:2003.07810v2.
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This provides a constant factor approximation algorithm when-

ever 𝑛𝑐∞ ≲ cp (note that this requires the solution subgraph has

Ω(𝑛) edges). The main advantage of the spectral approach is that

it significantly extends the scope of useful properties that can be

incorporated into network design, while previously there are no

known non-trivial approximation algorithms even for some indi-

vidual constraints. We demonstrate the use of Theorem 1.2 with

one concrete setting.

Example 1.3. Suppose the connectivity requirement satisfies 𝑓𝑢,𝑣 ≥
𝑘 for all 𝑢, 𝑣 ∈ 𝑉 (e.g. to find a 𝑘-edge-connected subgraph). Assume
the cost 𝑐𝑒 of each edge 𝑒 satisfies 1 ≤ 𝑐𝑒 ≤ 𝑂 (𝑘).

Then Theorem 1.2 provides a constant factor approximation algo-
rithm for this survivable network design problem. To our knowledge,
the only known constant factor approximation algorithm even re-
stricted to this special case is Jain’s iterative rounding algorithm. The
algorithm in Theorem 1.2 provides a completely different spectral
algorithm to achieve constant factor approximation in this special
case.

Furthermore, the constant factor approximation approximation al-
gorithm can be achieved while incorporating additional effective resis-
tance constraints (e.g. to upper bound commute times between pairs of
vertices), spectral constraints (e.g. to dominate another graph/topology
in terms of the number of edges in cuts), algebraic connectivity con-
straint (e.g. to lower bound graph expansion). Also, additional linear
packing and covering constraints can be satisfied approximately, even
when they are unstructured. See Section 4.1 for an in-depth discussion.

Recently, Bansal [10] designed a rounding technique that achieves

the guarantees by iterative rounding and randomized rounding si-

multaneously, and he showed various interesting applications of

his techniques. However, he left it as an open question whether

there is an 𝑂 (1)-approximation algorithm for survivable network

design while satisfying some concentration property of the output.

Theorem 1.2 provides some progress towards his question, as the

guarantees on the linear packing and linear covering constraints

satisfy some concentration property as shown in Theorem 4.3.

With some additional assumptions about the fractional solution

𝑥 , we prove the following strong integrality gap result about the

convex program that incorporate degree constraints as well.

Theorem 1.4 (Informal). Suppose we are given a solution 𝑥 to
the convex program (CP). Assume that Reff𝑥 (𝑢, 𝑣) ≤ 𝜖2 for every
𝑢𝑣 ∈ 𝐸 and 𝑐∞ ≤ 𝜖2⟨𝑐, 𝑥⟩ for some 𝜖 ∈ [0, 1]. Then, there exists
an integral solution 𝑧 that approximately satisfies all the connec-
tivity constraints, degree constraints, effective resistance constraints,
spectral constraints, algebraic connectivity constraints, and capacity
constraints with ⟨𝑐, 𝑧⟩ ≤ (1 +𝑂 (𝜖))⟨𝑐, 𝑥⟩.

We remark that Theorem 1.4 does not provide a polynomial

time algorithm to find such an integral solution, as it is proved

using the non-constructive results in discrepancy theory. Also, we

note that Theorem 1.4 does not handle linear covering and packing

constraints. The assumption Reff𝑥 (𝑢, 𝑣) ≤ 𝜖2 for every 𝑢𝑣 ∈ 𝐸 may

not be satisfied in applications, and we will explain in Section 4.1.4

when it will be satisfied and show that it is not too restrictive.

1.2 Previous Work on Spectral Rounding
The most relevant works for spectral rounding are from spectral

sparsification and discrepancy theory. There are two previous the-

orems that imply non-trivial results for spectral rounding.

1.2.1 Spectral Sparsification. There are various algorithms for

spectral sparsifications, by random sampling [62], by barrier func-

tions [13], by regret minimization [3, 60], or by some combinations

of these ideas [46, 47]. Most of these algorithms need to work with

arbitrary weights and cannot guarantee that the output subgraph

has only integral weights. There are some algorithms which guaran-

tee that the output has only integral weights, but they only achieve

considerably weaker spectral approximation [3, 7, 12].

Allen-Zhu, Li, Singh, and Wang [5] formulated and proved the

following spectral rounding theorem, using the framework of regret

minimization developed for spectral sparsification [3].

Theorem 1.5 ([5]). Let 𝑣1, 𝑣2, . . . , 𝑣𝑚 ∈ R𝑛 , 𝑥 ∈ [0, 1]𝑚 and
𝑘 =

∑𝑚
𝑖=1 𝑥𝑖 . Suppose

∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖

= 𝐼𝑛 and 𝑘 ≥ 5𝑛/𝜖2 for some
𝜖 ∈ (0, 1

3
]. Then there is a polynomial time algorithm to return a

subset 𝑆 ⊆ [𝑚] with
|𝑆 | ≤ 𝑘 and

∑
𝑖∈𝑆

𝑣𝑖𝑣
𝑇
𝑖 ≽ (1 − 3𝜖)𝐼𝑛 .

Theorem 1.5 can be understood as a one-sided spectral rounding

result, where the fractional solution 𝑥 is rounded to a zero-one solu-

tion while the budget constraint is satisfied and the spectral lower

bound is approximately satisfied. Through a general reduction, this

theorem implies near-optimal approximation algorithms for a large

class of experimental design problems [5].

We remark that Theorem 1.5 can be modified to prove similar

but more restrictive results as in Theorem 1.2, when the objective

function 𝑐 is the all-one vector and there are no linear covering

and packing constraints. This already extends the scope of un-

weighted network design significantly, but this connection was

not made before. For network design, it is desirable to have differ-

ent costs on edges, and these weighted problems are usually more

difficult to solve than the unweighted problems (e.g. minimum 𝑘-

edge-connected subgraphs [31] vs [39], minimum bounded degree

spanning trees [29] vs [35], etc).

1.2.2 Discrepancy Theory. The techniques in spectral sparsifica-

tion have been extended greatly to prove discrepancy theorems in

spectral settings [6, 41, 52], most notably in the solution toWeaver’s

conjecture that resolves the Kadison-Singer problem [51, 52] and

its extension and surprising application to the asymmetric trav-

eling salesman problem [6]. The following recent result by Kyng,

Luh, and Song [41] provides the most refined formulation in the

discrepancy setting, using the method of interlacing polynomials

and the barrier arguments developed in [6, 52].

Theorem 1.6 ([41]). Let 𝑣1, ..., 𝑣𝑚 ∈ R𝑛 , and 𝜉1, ..., 𝜉𝑚 be inde-
pendent random scalar variables with finite support. There exists a
choice of outcomes 𝜖1, ..., 𝜖𝑚 in the support of 𝜉1, ..., 𝜉𝑚 such that




 𝑚∑

𝑖=1

E[𝜉𝑖 ]𝑣𝑖𝑣𝑇𝑖 −
𝑚∑
𝑖=1

𝜖𝑖𝑣𝑖𝑣
𝑇
𝑖







op

≤ 4






 𝑚∑
𝑖=1

Var[𝜉𝑖 ] (𝑣𝑖𝑣𝑇𝑖 )
2






1/2
op

.

We note that Theorem 1.6 implies the following two-sided spec-

tral rounding result, which is very similar to Corollary 1.7 in [41] but
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with a weaker assumption, where we only need



∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖




op

≤
1 instead of



∑𝑚
𝑖=1 𝑣𝑖𝑣

𝑇
𝑖




op

≤ 1 as in [41]. The proof will be pre-

sented in Section 3.2 in a more general setting.

Corollary 1.7. Let 𝑣1, ..., 𝑣𝑚 ∈ R𝑛 and 𝑥 ∈ [0, 1]𝑚 . Suppose ∥𝑣𝑖 ∥ ≤
𝜖 for all 𝑖 ∈ [𝑚] and ∑𝑚

𝑖=1 𝑥𝑖𝑣𝑖𝑣
𝑇
𝑖

= 𝐼𝑛 . Then there exists a subset
𝑆 ⊆ [𝑚] satisfying

(1 −𝑂 (𝜖))𝐼𝑛 ≼
∑
𝑖∈𝑆

𝑣𝑖𝑣
𝑇
𝑖 ≼ (1 +𝑂 (𝜖))𝐼𝑛 .

Comparing to Theorem 1.5, the advantage of Corollary 1.7 is that

it provides a two-sided spectral approximation. On the other hand,

Corollary 1.7 requires the assumption that all vectors are short, and

it has no guarantee on the size of 𝑆 . Also, it is important to point

out that the proof of Corollary 1.7 does not provide a polynomial

time algorithm to find such a subset.

1.3 Our Technical Contributions
We extend the previous results on spectral rounding to incorporate

linear constraints and to satisfy the requirements for network de-

sign problems. These results have interesting applications in many

other problems besides network design; see Section 1.4.

Our first result considers one-sided spectral rounding in the

setting when the returned solution is an integral solution, in which

a vector can be chosen more than once.

Theorem 1.8. Let 𝑣1, 𝑣2, . . . , 𝑣𝑚 ∈ R𝑛 , 𝑥 ∈ R𝑚+ and 𝑘 = ∥𝑥 ∥
1
.

Suppose
∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖

= 𝐼𝑛 . For any 𝜖 ∈ (0, 1], there is a random-
ized polynomial time algorithm to return a solution 𝑧 ∈ Z𝑚+ with∑𝑚
𝑖=1 𝑧𝑖𝑣𝑖𝑣

𝑇
𝑖
≽ 𝐼𝑛 and

(1 + 2𝜖)⟨𝑐, 𝑥⟩ − 𝜖𝑛𝑐∞ ≤ ⟨𝑐, 𝑧⟩ ≤ (1 + 5𝜖)
(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)
for an arbitrary 𝑐 ∈ R𝑚+ where 𝑐∞ := ∥𝑐 ∥∞. The probability to
satisfy the spectral lower bound is at least 1 − exp(−Ω(𝜖

√
𝑛)), and

the probability to satisfy the guarantee on the linear constraint 𝑐
is at least 1 − exp(−Ω(𝜖3𝑛)). (Note that we can achieve ⟨𝑐, 𝑧⟩ ≤
⟨𝑐, 𝑥⟩ +𝑂 (

√
⟨𝑐, 𝑥⟩ · 𝑛𝑐∞ + 𝑛𝑐∞) by setting 𝜖 =

√
𝑛𝑐∞/⟨𝑐, 𝑥⟩ when 𝜖

is in an appropriate range.)

The next result considers one-sided spectral rounding in the

more difficult setting when the returned solution must be a zero-

one solution, for which we obtain weaker bounds on the linear

constraints
2
. This result is used in network design problems when

each edge can be chosen at most once to satisfy capacity constraints.

Theorem 1.9. Let 𝑣1, 𝑣2, . . . , 𝑣𝑚 ∈ R𝑛 and 𝑥 ∈ [0, 1]𝑚 . Suppose∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖
= 𝐼𝑛 . There is a randomized polynomial time algorithm

to return a solution 𝑧 ∈ {0, 1}𝑚 with
𝑚∑
𝑖=1

𝑧𝑖𝑣𝑖𝑣
𝑇
𝑖 ≽ 𝐼𝑛 and ⟨𝑐, 𝑥⟩ − 𝜖𝑛𝑐∞ ≤ ⟨𝑐, 𝑧⟩ ≤ 16(⟨𝑐, 𝑥⟩ + 𝑛𝑐∞)

for an arbitrary 𝑐 ∈ R𝑚+ and 𝜖 ∈ (0, 1). The probability to satisfy the
spectral lower bound is at least 1−exp(−Ω(

√
𝑛)), and the probability

to satisfy the guarantee on the linear constraint 𝑐 is at least 1 −
exp(−Ω(𝜖2𝑛)).
2
Theorem 1.9 can be improved tomatch the guarantees in Theorem 1.8 by a randomized

swapping algorithm. See arXiv:2003.07810v2 for more details.

The main advantage of Theorem 1.8 and Theorem 1.9 over Theo-

rem 1.5 is that we can prove that ⟨𝑐, 𝑧⟩ is not too far from ⟨𝑐, 𝑥⟩ for
an arbitrary vector 𝑐 ∈ R𝑚+ with high probability. This allows us to

bound the cost of the returned solution to network design problems,

and when 𝑛𝑐∞ ≲ ⟨𝑐, 𝑥⟩ we can conclude that 𝑧 is a constant factor

approximate solution. Note that the guarantee on linear constraints

can be applied to up to exponentially many constraints. This allows

us to incorporate additional linear packing and covering constraints

into network design and have some non-trivial guarantees. Another

advantage is that we construct a solution that satisfies the spectral

lower bound exactly, by allowing the solution to choose more than

𝑘 vectors. This is important in network design problems where we

would like to construct a solution that satisfies all the constraints

(instead of approximately satisfying all the constraints), by allowing

the cost of the solution to be higher than the cost of the optimal

solutions.

We remark that there are examples showing that the additive

𝑛𝑐∞ error term is unavoidable for one-sided spectral rounding and

Theorem 1.8 is essentially tight (see full version for more details).

Using the proof techniques in Theorem 1.9, we can strengthen

a recent deterministic algorithm by Bansal, Svensson and Tre-

visan [12] to construct unweighted spectral sparsifiers, to ensure

that there will be no parallel edges in the sparsifier. See full version

of our paper for details.

For two-sided spectral rounding, we show that Corollary 1.7 can

be extended to incorporate one given linear constraint.

Theorem 1.10. Let 𝑣1, ..., 𝑣𝑚 ∈ R𝑛 , 𝑥 ∈ [0, 1]𝑚 and 𝑐 ∈ R𝑚+ .
Suppose

∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖
= 𝐼𝑛 , ∥𝑣𝑖 ∥ ≤ 𝜖 for all 𝑖 ∈ [𝑚] and 𝑐∞ ≤ 𝜖2⟨𝑐, 𝑥⟩.

Then there exists 𝑧 ⊆ {0, 1}𝑚 such that

(1 − 8𝜖)𝐼𝑛 ≼
𝑚∑
𝑖∈1

𝑧𝑖𝑣𝑖𝑣
𝑇
𝑖 ≼ (1 + 8𝜖)𝐼𝑛 and

(1 − 8𝜖)⟨𝑐, 𝑥⟩ ≤ ⟨𝑐, 𝑧⟩ ≤ (1 + 8𝜖)⟨𝑐, 𝑥⟩.

Note that the linear constraint 𝑐 in Theorem 1.10 is required to be

given as part of the input, while it is not required so in Theorem 1.8

and Theorem 1.9. Theorem 1.10 is useful in bounding the integrality

gap for convex programs for network design problems, showing

strong approximation results when the assumptions are satisfied

(see Section 4.1.4). Also, it can be used in the study of additive un-

weighted spectral sparsification [12], proving an optimal existential

result.

1.3.1 Techniques. The main technical contribution is an iterative

randomized rounding algorithm for Theorem 1.8 and Theorem 1.9.

Our algorithm is based on the regret minimization framework de-

veloped in [3–5] for spectral sparsification and one-sided spectral

rounding. Let us first review the previous approach. In this frame-

work, with the 𝑙
1/2-regularizer introduced in [3], the problem of

one-sided spectral rounding is reduced to adding a vector 𝑣𝑖 to

the partial solution that maximizes 𝑣𝑇
𝑖
𝐴𝑡𝑣𝑖/(1 + 𝛼𝑣𝑇𝑖 𝐴

1/2
𝑡 𝑣𝑖 ), where

𝐴𝑡 is the matrix defined in (2.1) based on the current partial so-

lution. Using the conditions that

∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖
= 𝐼𝑛 and

∑𝑚
𝑖=1 𝑥𝑖 =

𝑘 , it can be shown [4] that there always exists a vector 𝑣 𝑗 with

𝑣𝑇
𝑗
𝐴𝑡𝑣 𝑗/(1 + 𝛼𝑣𝑇

𝑗
𝐴
1/2
𝑡 𝑣 𝑗 ) ≳ 1/𝑘 . This naturally leads to a deter-

ministic greedy algorithm in [4] that proves Theorem 1.5 in the

simpler setting where a vector can be chosen more than once. See
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Section 2.3 for more details about the previous work on the regret

minimization framework and its application to spectral rounding.

To incorporate linear constraints, our idea is to turn the deter-

ministic greedy algorithm into an iterative randomized rounding

algorithm. In each iteration, we would like to maintain a proba-

bility distribution on the vectors such that if we sample a random

vector 𝑣𝑖 from the distribution then 𝑣𝑇
𝑖
𝐴𝑡𝑣𝑖/(1 + 𝛼𝑣𝑇𝑖 𝐴

1/2
𝑡 𝑣𝑖 ) ≳ 1/𝑘

and 𝑐𝑖 ≲ ⟨𝑐, 𝑥⟩/𝑘 . Then we add the sampled vector to the cur-

rent partial solution and repeat this for 𝑘 iterations. Initially, the

distribution is simply proportional to the fractional solution 𝑥𝑖 ,

and sampling from this distribution will also satisfy the linear con-

straint in expectation. In the 𝑡-th iteration, we show that if we

recompute the sampling probability so that it is proportional to

𝑥𝑖 (1 + 𝛼𝑣𝑇
𝑖
𝐴
1/2
𝑡 𝑣𝑖 ) based on the current partial solution, then it

holds that 𝑣𝑇
𝑖
𝐴𝑡𝑣𝑖/(1 + 𝛼𝑣𝑇

𝑖
𝐴
1/2
𝑡 𝑣𝑖 ) ≳ 1/𝑘 . Informally, it gives a

higher probability to a vector pointing to a direction that is not well

covered by the current partial solution, to ensure that the spectral

lower bound will be satisfied. However, this changes the expecta-

tion on the linear constraint, but we can bound the error by the

additive term 𝑛𝑐∞. Note that there are simple examples showing

that this additive loss of 𝑛𝑐∞ is unavoidable if our goal is to satisfy

the spectral lower bound exactly (see full version for the examples),

so our analysis is tight up to a constant factor. The advantage of the

randomized approach is that we can prove that the random vari-

ables are concentrated around their expected values, so that we can

handle multiple linear constraints simultaneously. Since the sam-

pling probabilities change over time based on the previous samples,

the random varaibles that we consider are not a sum of indepen-

dent random variables and thus Chernoff bounds cannot be applied.

Instead, we will define martingales and use Freedman’s inequality

to prove that they are concentrated around the expected values.

We note that the iterative randomized rounding algorithm does not

even need to know the linear constraint 𝑐 in advance in order to

return an integral solution 𝑧 with ⟨𝑐, 𝑥⟩ ≈ ⟨𝑐, 𝑧⟩. This property is

quite similar to that of a recent rounding algorithm by Bansal [10]

combining iterative rounding and randomized rounding.

We remark that our approach to turn a deterministic algorithm

into a randomized algorithm is inspired by the fast algorithm for

spectral sparsification by Lee and Sun [47], where they turned the

deterministic algorithm by Batson, Spielman and Srivastava [13]

into a randomized algorithm that recomputes the sampling prob-

abilities in different phases. In their algorithm, the advantage of

the randomized algorithm is to sample many vectors in parallel

instead of carefully choosing one vector at a time as in [13]. In

our algorithm, the advantage of the randomized algorithm is to

approximately preserves many linear constraints simultaneously

using arguments about expectation and concentration, while it

is not clear how to modify the proofs in the deterministic algo-

rithm in [4] to prove that there is always a vector 𝑣𝑖 with large

𝑣𝑇
𝑖
𝐴𝑡𝑣𝑖/(1 + 𝛼𝑣𝑇

𝑖
𝐴
1/2
𝑡 𝑣𝑖 ) and small 𝑐𝑖 even if there is just have one

constraint 𝑐 and it is given in advance. We believe that this prob-

abilistic approach will be useful in designing algorithms with the

regret minimization framework.

1.4 Other Applications
The spectral rounding results are quite general and havemany other

applications besides network design. We briefly mention some of

these results and defer the details to the full version of the paper.

1.4.1 Weighted Experimental Design. Experimental design is an

important class of problems in statistics and has found new appli-

cations in machine learning [8, 56]. The one-sided spectral round-

ing result of Allen-Zhu, Li, Singh and Wang [5] was used to give

near-optimal approximation algorithms for many well-known ex-

perimental design problems. We show that our results can be used

to design approximation algorithms for the more general setting

where different experiments may have different costs while incor-

porating some additional linear constraints

Theorem 1.11 (Informal). We are given𝑚 design points that are
represented by 𝑛-dimensional vectors 𝑣1, ..., 𝑣𝑚 ∈ R𝑛 , a cost vector
𝑐 ∈ R𝑚+ and a cost budget 𝐶 ∈ R+.

(1) For any 𝜖 , if 𝐶 ≥ 𝑛𝑐∞/𝜖2, there is a randomized polynomial
time algorithm that returns a multi-set of vectors (i.e. the with-
repetition setting) with total cost 𝐶 so that the objective value
of A/D/E/V/G-design is at most (1 +𝑂 (𝜖)) times of that of the
optimal solution.

(2) If 𝐶 ≳ 𝑛𝑐∞, there is a randomized polynomial time algorithm
that returns a subset of vectors (i.e. the without-repetition set-
ting) with total cost𝐶 so that the objective value of A/D/E/V/G-
design is at most 𝑂 (1) times of that of the optimal solution.

1.4.2 Spectral Network Design. There are several previous work
on network design problems with spectral requirements, includ-

ing maximizing algebraic connectivity [33, 40], minimizing total

effective resistances [34], and network design for 𝑠-𝑡 effective resis-

tances [18]. These problems are special cases of the general network

design problem and the weighted experimental design problem ,

and our results provide improved approximation algorithms for

these problems and also generalize these problems to incorporate

many additional constraints. For example, we provide the first non-

trivial approximation algorithm for the problem of maximizing

algebraic connectivity subject to a knapsack constraint, proposed

by Ghosh and Boyd [33].

Theorem 1.12 (Informal). Let𝐺 = (𝑉 , 𝐸) be a graph where each
edge has cost 𝑐𝑒 . Let 𝐶 be a given cost budget. Suppose 𝐶 ≥ 32|𝑉 |𝑐∞.
There is a polynomial time algorithm which returns a subgraph 𝐻 of
𝐺 with ∑

𝑒∈𝐻
𝑐𝑒 ≤ 𝐶 and 𝜆2 (𝐿𝐻 ) ≥ Ω(𝜆opt),

where 𝜆opt is the maximum 𝜆2 that can be achieved by a solution
with cost at most 𝐶 .

We also provide a similar result for the problem of minimizing

total effective resistance, proposed by Ghosh, Boyd and Saberi [34].

Theorem 1.13 (Informal). Let𝐺 = (𝑉 , 𝐸) be a graph where each
edge has cost 𝑐𝑒 . Let 𝐶 be a given cost budget. Suppose 𝐶 ≥ 32|𝑉 |𝑐∞.
There is a polynomial time algorithm which returns a subgraph 𝐻 of
𝐺 with ∑

𝑒∈𝐻
𝑐𝑒 ≤ 𝐶 and

∑
𝑢,𝑣

Reff𝐻 (𝑢, 𝑣) ≤ 𝑂 (opt),
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where opt is theminimum total effective resistance that can be achieved
by a solution with cost at most 𝐶 .

These results can be extended to incorporate additional con-

straints (e.g. connectivity constraints). See [40, 54] for the related

work.

1.4.3 Additive Spectral Sparsification. Recently, Bansal, Svensson
and Trevisan [12] study whether there is a non-trivial notion of

unweighted spectral sparsification with which linear-sized spectral

sparsification is always possible. They provide randomized and de-

terministic algorithms to construct “additive” unweighted spectral

sparsifiers, a notion suggested by Oveis Gharan. Our spectral round-

ing results can be applied to this problem. Using Theorem 1.10, we

prove an optimal existential result for the problem.

Theorem 1.14. Suppose we are given a graph 𝐺 = (𝑉 , 𝐸) with
𝑛 vertices,𝑚 edges, and maximum degree 𝑑 . Let𝑚 = 𝑛/𝜖2. For any
𝜖 ∈ (0, 1], there exists a subset of edges 𝐹 ⊆ 𝐸 with |𝐹 | ≤ 8𝑛/𝜖2 such
that

−8
√
2𝜖𝑑𝐼𝑛 ≼ 𝐿𝐺 − 𝑚

𝑚

∑
𝑒∈𝐹

𝑏𝑒𝑏
𝑇
𝑒 ≼ 8

√
2𝜖𝑑𝐼𝑛 .

Using the proof techniques in Theorem 1.9, we provide an im-

proved deterministic algorithm to construct additive unweighted

spectral sparsifiers with no parallel edges (where the result in [12]

may produce parallel edges).

Theorem 1.15. Given a graph 𝐺 = (𝑉 , 𝐸) with 𝑛 vertices, 𝑚
edges, maximum degree 𝑑 , and 𝜖 ∈ (0, 1), there is a polynomial
time deterministic algorithm that finds a subset 𝐹 of edges with size
𝑚 = |𝐹 | = 𝑂 (𝑛/𝜖2) such that 𝐺 = (𝑉 , 𝐹 ) satisfies

2𝑚

𝑚
𝐷
𝐺
− 2𝐷𝐺 − 𝜖𝑑𝐼 ≼

𝑚

𝑚
𝐿
𝐺
− 𝐿𝐺 ≼ 𝜖𝑑𝐼,

where 𝐷𝐺 is the diagonal degree matrix of 𝐺 .

2 PRELIMINARIES
2.1 Linear Algebra
We write R and R+ as the sets of real numbers and non-negative

real numbers, and Z and Z+ as the sets of integers and non-negative

integers.

All the vectors in this paper only have real entries. Let R𝑛 denote

the 𝑛-dimensional Euclidean space. Given a vector 𝑥 , we write ∥𝑥 ∥
as its ℓ2-norm, ∥𝑥 ∥

1
as its ℓ1-norm, and ∥𝑥 ∥∞ as its ℓ∞-norm. A

vector 𝑣 ∈ R𝑛 is a column vector, and its transpose is denoted by

𝑣𝑇 . Given two vectors 𝑥,𝑦 ∈ R𝑛 , the inner product is defined as

⟨𝑥,𝑦⟩ := ∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 .

We write 𝐼𝑛 as the𝑛×𝑛 identity matrix, and 𝐽𝑛 as the𝑛×𝑛 all-one

matrix. All matrices considered in this paper are real symmetric

matrices. We write 𝜆max (𝑀) and 𝜆min (𝑀) as the maximum and the

minimum eigenvalue of a matrix𝑀 . The trace of a matrix𝑀 is de-

noted by tr(𝑀). A matrix𝑀 is a positive semidefinite (PSD) matrix,

denoted as 𝑀 ≽ 0, if 𝑀 is symmetric and all the eigenvalues are

nonnegative, or equivalently, the quadratic form 𝑥𝑇𝑀𝑥 ≥ 0 for any

vector 𝑥 . We use𝐴 ≽ 𝐵 to denote𝐴−𝐵 ≽ 0 for matrices𝐴 and 𝐵. Let

𝑀 ≽ 0 be a PSD matrix with eigendecomposition 𝑀 =
∑
𝑖 𝜆𝑖𝑣𝑖𝑣

𝑇
𝑖
,

where 𝜆𝑖 ≥ 0 is the 𝑖-th eigenvalue and 𝑣𝑖 is the corresponding

eigenvector. We define its square root as𝑀1/2
:=

∑
𝑖

√
𝜆𝑖𝑣𝑖𝑣

𝑇
𝑖
. Given

two matrices 𝐴 and 𝐵 of the same size, the Frobenius inner product

of 𝐴, 𝐵 is denoted as ⟨𝐴, 𝐵⟩ :=
∑
𝑖, 𝑗 𝐴𝑖 𝑗𝐵𝑖 𝑗 = tr(𝐴𝑇𝐵). We write

∥𝑀 ∥
op

:= max∥𝑥 ∥=1 ∥𝑀𝑥 ∥ as the operator norm of a matrix𝑀 .

2.2 Graphs and Laplacian Matrices
Let 𝐺 = (𝑉 , 𝐸) be an undirected graph with edge weight 𝑥𝑒 ≥ 0

on each edge 𝑒 ∈ 𝐸. The number of vertices and the number of

edges are denoted by 𝑛 := |𝑉 | and𝑚 := |𝐸 |. For a subset of edges
𝐹 ⊆ 𝐸, the total weight of edges in 𝐹 is 𝑥 (𝐹 ) :=

∑
𝑒∈𝐹 𝑥𝑒 . For a

subset of vertices 𝑆 ⊆ 𝑉 , the set of edges with one endpoint in

𝑆 and one endpoint in 𝑉 − 𝑆 is denoted by 𝛿 (𝑆). For a vertex 𝑣 ,

the set of edges incident on a vertex 𝑣 is 𝛿 (𝑣) := 𝛿 ({𝑣}), and the

weighted degree of 𝑣 is deg(𝑣) := 𝑥 (𝛿 (𝑣)). The expansion of a set

𝜙 (𝑆) := |𝛿 (𝑆) |/|𝑆 | is defined as the ratio of the number of edges on

the boundary of 𝑆 to the size of 𝑆 . The expansion of a graph 𝐺 is

defined as 𝜙 (𝐺) := min
0≤ |𝑆 | ≤ 𝑛

2

𝜙 (𝑆).
The adjacency matrix𝐴 ∈ R𝑛×𝑛 of the graph is defined as𝐴𝑢,𝑣 =

𝑥𝑢,𝑣 for all 𝑢, 𝑣 ∈ 𝑉 . The Laplacian matrix 𝐿 ∈ R𝑛×𝑛 of the graph

is defined as 𝐿 = 𝐷 − 𝐴 where 𝐷 ∈ R𝑛×𝑛 is the diagonal degree

matrix with 𝐷𝑢,𝑢 = deg(𝑢) for all 𝑢 ∈ 𝑉 . For each edge 𝑒 = 𝑢𝑣 ∈ 𝐸,

let 𝑏𝑒 := 𝜒𝑢 − 𝜒𝑣 where 𝜒𝑢 ∈ R𝑛 is the vector with one in the 𝑢-th

entry and zero otherwise. The Laplacian matrix with respect to

weights 𝑥 can also be written as 𝐿𝑥 :=
∑
𝑒∈𝐸 𝑥𝑒𝑏𝑒𝑏

𝑇
𝑒 .

Let 𝜆1 ≤ 𝜆2 ≤ . . . ≤ 𝜆𝑛 be the eigenvalues of 𝐿 with correspond-

ing orthonormal eigenvectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 so that 𝐿 =
∑𝑛
𝑖=1 𝜆𝑖𝑣𝑖𝑣

𝑇
𝑖
.

It is well-known that the Laplacian matrix is positive semidefinite,

𝜆1 = 0 with 𝑣1 = ®1/
√
𝑛 as the corresponding eigenvector, and

𝜆2 > 0 if and only if𝐺 is connected. The following fact is useful for

eigenvalue maximization.

Fact 2.1 ([33]). 𝜆2 (𝐿𝑥 ) is a concave function with respect to 𝑥 for
𝑥 ≥ 0.

The pseudo-inverse of the Laplacian matrix 𝐿 of a connected

graph is defined as 𝐿† :=
∑𝑛
𝑖=2

1

𝜆𝑖
𝑣𝑖𝑣

𝑇
𝑖
, which maps every vector

𝑏 orthogonal to 𝑣1 to a vector 𝑦 such that 𝐿𝑦 = 𝑏. The effective

resistance between two vertices 𝑠 and 𝑡 on a graph𝐺 with weight 𝑥

is defined as Reff𝑥 (𝑠, 𝑡) := 𝑏𝑇𝑠𝑡𝐿
†
𝑥𝑏𝑠𝑡 . We will use the following fact

for effective resistance minimization.

Fact 2.2 ([34]). Reff𝑥 (𝑠, 𝑡) is a convex function with respect to the
weights 𝑥 for 𝑥 ≥ 0.

2.3 Regret Minimization & Spectral Rounding
We use the regret minimization framework developed by Allen-

Zhu, Liao and Orecchia for spectral sparsification [3] and follow

the presentations in [3, 5]. This is an online optimization setting. In

each iteration 𝑡 , the player chooses an action matrix𝐴𝑡 from the set

of density matrices Δ𝑛 = {𝐴 ∈ R𝑛×𝑛 | 𝐴 ≽ 0, tr(𝐴) = 1}. We can

intrepret the player action as choosing a probability distribution

over the set of unit vectors. The player then observes a feedback

matrix 𝐹𝑡 and incurs a loss of ⟨𝐴𝑡 , 𝐹𝑡 ⟩. After𝑇 iterations, the regret

of the player is defined as

𝑅𝑇 :=

𝑇∑
𝑡=1

⟨𝐴𝑡 , 𝐹𝑡 ⟩ − inf

𝐵∈Δ𝑛

𝑇∑
𝑡=1

⟨𝐵, 𝐹𝑡 ⟩ =
𝑇∑
𝑡=1

⟨𝐴𝑡 , 𝐹𝑡 ⟩ − 𝜆min

(
𝑇∑
𝑡=1

𝐹𝑡

)
,

which is the difference between the loss of the player actions and

the loss of the best fixed action 𝐵, that can be assumed to be a
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rank one matrix 𝑣𝑣𝑇 . The objective of the player is to minimize the

regret. A well-known algorithm for regret minimization is Follow-

The-Regularized-Leader which plays the action

𝐴𝑡 = argmin𝐴∈Δ𝑛

{
𝑤 (𝐴) + 𝛼 ·

𝑡−1∑
𝑙=1

⟨𝐴, 𝐹𝑡 ⟩
}
,

where𝑤 (𝐴) is a regularization term and 𝛼 is a parameter called the

learning rate that balances the loss and the regularization. Different

choice of regularization gives different algorithm for regret mini-

mization. One choice is the entropy regularizer𝑤 (𝐴) = ⟨𝐴, log𝐴−𝐼 ⟩
and this gives the well-known matrix multiplicative update algo-

rithm. The choice that we will use is the ℓ
1/2-regularizer 𝑤 (𝐴) =

−2 tr(𝐴1/2) introduced in [3], which plays the action

𝐴𝑡 =

(
𝑙𝑡 𝐼 + 𝛼

𝑡−1∑
𝑙=1

𝐹𝑙

)−2
, (2.1)

where 𝑙𝑡 is the unique constant that ensures 𝐴𝑡 ∈ Δ𝑛 . Allen-Zhu,
Liao and Orecchia [3] prove upper bounds on the regret of this

algorithm for general symmetric feedback matrices. The following

result is a special instantiation when the feedback matrices are rank

one positive semidefinite matrices.

Theorem 2.3. Suppose each feedback matrix 𝐹𝑡 ∈ R𝑛×𝑛 is of the
form𝑢𝑡𝑢

𝑇
𝑡 for some vector𝑢𝑡 ∈ R𝑛 , and the action matrix𝐴𝑡 ∈ R𝑛×𝑛

is of the form in (2.1). Then, for any 𝛼 > 0,

𝑅𝑇 ≤ 𝛼

𝑇∑
𝑡=1

⟨𝐹𝑡 , 𝐴𝑡 ⟩⟨𝐹𝑡 , 𝐴1/2
𝑡 ⟩

1 + 𝛼 ⟨𝐹𝑡 , 𝐴1/2
𝑡 ⟩

+ 2

√
𝑛

𝛼
,

which is equivalent to the following spectral lower bound

𝜆min

(
𝑇∑
𝑡=1

𝑢𝑡𝑢
𝑇
𝑡

)
≥

𝑇∑
𝑡=1

⟨𝑢𝑡𝑢𝑇𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑢𝑡𝑢𝑇𝑡 , 𝐴
1/2
𝑡 ⟩

− 2

√
𝑛

𝛼
. (2.2)

In one-sided spectral rounding, the goal is to choose a subset 𝑆

of vectors to maximize 𝜆min (
∑
𝑖∈𝑆 𝑣𝑖𝑣

𝑇
𝑖
). Using the framework of

regret minimization, Theorem 2.3 reduces this problem to the sim-

pler task of finding a vector 𝑢𝑡 that maximizes ⟨𝑢𝑡𝑢𝑇𝑡 , 𝐴𝑡 ⟩/(1 +
𝛼 ⟨𝑢𝑡𝑢𝑇𝑡 , 𝐴

1/2
𝑡 ⟩). Using the condition that

∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖

= 𝐼𝑛 and∑𝑚
𝑖=1 𝑥𝑖 = 𝑘 , it can be shown [4] that there is always a vector 𝑣 𝑗 with

⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴𝑡 ⟩/(1 + 𝛼 ⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴
1/2
𝑡 ⟩) ≥ 1/(𝑘 + 𝛼

√
𝑛). Setting 𝛼 =

√
𝑛/𝜖

and 𝑇 = 𝑘 and using the assumption that 𝑘 ≥ 𝑛/𝜖2, this gives
𝜆min (

∑𝑘
𝑡=1 𝑢𝑡𝑢

𝑇
𝑡 ) ≥ 1 − 3𝜖 and proves Theorem 1.5 in the easier

setting when a vector can be chosen more than once (i.e. the with

repetition setting in experimental design). This greedy algorithm

can be extended to the more difficult setting (i.e. the without repe-

tition setting) while achieving a Ω(1)-approximation [4].

To prove Theorem 1.5 when the output must be a zero-one so-

lution, Allen-Zhu, Li, Singh and Wang [5] analyzed a local search

algorithm where they start from an arbitrary subset 𝑆 of 𝑘 vec-

tors and iteratively finds a pair of vectors 𝑎 ∈ 𝑆 and 𝑏 ∉ 𝑆 so

that 𝜆min (
∑
𝑖∈𝑆−𝑎+𝑏 𝑣𝑖𝑣

𝑇
𝑖
) > 𝜆min (

∑
𝑖∈𝑆 𝑣𝑖𝑣

𝑇
𝑖
). Using the frame-

work of regret minimization with the rank two feedback matrix

𝐹𝑡 = 𝑣𝑎𝑣
𝑇
𝑎 − 𝑣𝑏𝑣

𝑇
𝑏
, they show that whenever the minimum eigen-

value of the current solution 𝑆 is less than 1−3𝜖 there always exists

a swap that improves the minimum eigenvalue by 𝜖/𝑘 . The two
main components of the proof are a new regret minimization bound

for rank two matrices and a more involved argument that shows

the existence of a good swap.

2.4 Martingale and Concentration Inequality
A sequence of random variables 𝑌1, . . . , 𝑌𝑇 is a martingale with

respect to a sequence of random variables 𝑍1, . . . , 𝑍𝑇 if for all 𝑡 ≥ 0,

it holds that

(1) 𝑌𝑡 is a function of 𝑍1, . . . , 𝑍𝑡 ;

(2) E[|𝑌𝑡 |] < ∞;

(3) E[𝑌𝑡+1 |𝑍1, . . . , 𝑍𝑡 ] = 𝑌𝑡 .

We will use the following theorem by Freedman to bound the

probability that 𝑌𝑇 is large.

Theorem 2.4 ([27, 65]). Let {𝑌𝑡 }𝑡 be a real-valuedmartingale with
respect to {𝑍𝑡 }𝑡 , and {𝑋𝑡 = 𝑌𝑡 − 𝑌𝑡−1}𝑡 be the difference sequence.
Assume that 𝑋𝑡 ≤ 𝑅 deterministically for 1 ≤ 𝑡 ≤ 𝑇 . Let𝑊𝑡 :=∑𝑡

𝑗=1 E[𝑋 2

𝑗
|𝑍1, ..., 𝑍 𝑗−1] for 1 ≤ 𝑡 ≤ 𝑇 . Then, for all 𝛿 ≥ 0 and

𝜎2 > 0,

Pr

(
∃𝑡 ≥ 1 : 𝑌𝑡 ≥ 𝛿 and𝑊𝑡 ≤ 𝜎2

)
≤ exp

(
−𝛿2/2

𝜎2 + 𝑅𝛿/3

)
.

3 SPECTRAL ROUNDING
We will first present the proof of Theorem 1.8 about one-sided

spectral rounding in Section 3.1. The proof of Theorem 1.9 is similar

to the one for Theorem 1.8, and we defer the more involved details

to the full version. Then we will present the proof of Theorem 1.10

in Section 3.2.

3.1 One-Sided Spectral Rounding with Integral
Solution

The following is the iterative randomized algorithm for constructing

an integral solution for one-sided spectral rounding.

Iterative Randomized Rounding with Integral Solution
Input: 𝑣1, ..., 𝑣𝑚 ∈ R𝑛 and 𝑥 ∈ R𝑚+ with

∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖

= 𝐼𝑛
and 𝜖 ∈ (0, 1].

Output: 𝑧 ∈ Z𝑚+ with

∑𝑚
𝑖=1 𝑧𝑖𝑣𝑖𝑣

𝑇
𝑖
≽ 𝐼𝑛 and

(1+2𝜖)⟨𝑐, 𝑥⟩−𝜖𝑛𝑐∞ ≤ ⟨𝑐, 𝑧⟩ ≤ (1+5𝜖) (⟨𝑐, 𝑥⟩+𝑛𝑐∞/𝜖) for 𝑐 ∈ R𝑚+ .

(1) Initialization: 𝛼 :=
√
𝑛/𝜖 , 𝑧 := 0, and 𝑘 :=

∑𝑚
𝑖=1 𝑥𝑖 .

(2) Preprocessing
3
: if 𝑘 < 4𝑛/𝜖2, then add at most 4𝑛/𝜖2

dummy vectors of zero length and zero cost with frac-

tional value at most one to ensure that 𝑘 ≥ 4𝑛/𝜖2.
(3) For 𝑡 from 1 to 𝑇 := (1 + 4𝜖)𝑘
(a) Compute 𝐴𝑡 := (𝑙𝑡 𝐼 + 𝛼

∑𝑚
𝑖=1 𝑧𝑖𝑣𝑖𝑣

𝑇
𝑖
)−2 where 𝑙𝑡 ∈ R

is the unique value such that 𝐴𝑡 ≻ 0 and tr(𝐴𝑡 ) = 1.

(b) Sample an index 𝑖𝑡 from the following probability

distribution:

Pr (𝑖𝑡 = 𝑖) =
𝑥𝑖

(
1 + 𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴

1/2
𝑡 ⟩

)∑𝑚
𝑗=1 𝑥 𝑗

(
1 + 𝛼 ⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴

1/2
𝑡 ⟩

) .
(c) Update 𝑧 by incrementing 𝑧𝑖𝑡 by one.

3
This preprocessing is used to control the variance of the random process, which

simplifies our analysis.
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We will prove that the output satisfies the spectral lower bound,

and the upper/lower bound on any linear constraint 𝑐 as stated

in Theorem 1.8 with high probability. In the following lemma, we

first bound the expected value of the minimum eigenvalue of the

output.

Lemma 3.1. Let 𝑧 ∈ Z𝑚+ be the output of the algorithm. Then

E

[
𝜆min

(
𝑚∑
𝑖=1

𝑧𝑖𝑣𝑖𝑣
𝑇
𝑖

)]
≥ 1 + 𝜖.

Proof. Note that

∑𝑚
𝑖=1 𝑧𝑖𝑣𝑖𝑣

𝑇
𝑖
=

∑𝑇
𝑡=1 𝑣𝑖𝑡 𝑣

𝑇
𝑖𝑡
. Using Theorem 2.3

with the feedback matrix 𝐹𝑡 = 𝑣𝑖𝑡 𝑣
𝑇
𝑖𝑡
for 1 ≤ 𝑡 ≤ 𝑇 , the minimum

eigenvalue of

∑𝑚
𝑖=1 𝑧𝑖𝑣𝑖𝑣

𝑇
𝑖
is

𝜆min

(
𝑇∑
𝑡=1

𝑣𝑖𝑡 𝑣
𝑇
𝑖𝑡

)
≥ −2

√
𝑛

𝛼
+

𝑇∑
𝑡=1

⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

= −2𝜖 +
𝑇∑
𝑡=1

⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

.

(3.1)

So, to prove that E[𝜆min (
∑𝑇
𝑡=1 𝑧𝑖𝑣𝑖𝑣

𝑇
𝑖
)] ≥ 1 + 𝜖 , it is enough to

prove that the expected value of the right hand side of (3.1) is at

least 1+𝜖 . Consider the 𝑡-th iteration. The action matrix𝐴𝑡 = (𝑙𝑡 𝐼 +
𝛼

∑𝑡−1
𝑙=1

𝑣𝑖𝑙 𝑣
𝑇
𝑖𝑙
)−2 is determined by the choices 𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 made in

the previous iterations. For any fixed choices of 𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 , by

step 2(b) of the algorithm,

E𝑖𝑡


⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩


=

𝑚∑
𝑖=1

𝑥𝑖
(
1 + 𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴

1/2
𝑡 ⟩

)∑𝑚
𝑗=1 𝑥 𝑗

(
1 + 𝛼 ⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴

1/2
𝑡 ⟩

) ·
⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴
1/2
𝑡 ⟩

=

∑𝑚
𝑖=1⟨𝑥𝑖𝑣𝑖𝑣𝑇𝑖 , 𝐴𝑡 ⟩∑𝑚

𝑗=1 𝑥 𝑗 (1 + 𝛼 ⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴
1/2
𝑡 ⟩)

=
1

𝑘 + 𝛼 tr(𝐴1/2
𝑡 )

≥ 1

𝑘 + 𝑛/𝜖 ,

(3.2)

where the last equality is because

∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖
= 𝐼𝑛 , tr(𝐴𝑡 ) = 1 and∑𝑚

𝑗=1 𝑥 𝑗 = 𝑘 , and the last inequality is because 𝛼 =
√
𝑛/𝜖 and

tr(𝐴1/2
𝑡 ) =

𝑛∑
𝑖=1

√
𝜆𝑖 ≤

√
𝑛

𝑛∑
𝑖=1

𝜆𝑖 =
√
𝑛 tr(𝐴𝑡 ) =

√
𝑛 (3.3)

by Cauchy-Schwarz inequality where 𝜆1, . . . , 𝜆𝑛 are the eigenvalues

of 𝐴𝑡 . It follows from our choice 𝑇 = (1 + 4𝜖)𝑘 and the assumption

𝑘 ≥ 4𝑛/𝜖2 that

E


𝑇∑
𝑡=1

⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

 ≥ 𝑇

𝑘 + 𝑛/𝜖 ≥ 1 + 3𝜖

(3.1)
=⇒ E

[
𝜆min

(
𝑇∑
𝑡=1

𝑣𝑖𝑡 𝑣
𝑇
𝑖𝑡

)]
≥ 1 + 𝜖.

(3.4)

□

Next we consider the expected value of ⟨𝑐, 𝑧⟩.

Lemma 3.2. Let 𝑧 ∈ Z𝑚+ be the output of the algorithm. For any
𝑐 ∈ R𝑚+ ,

(1 + 3𝜖)⟨𝑐, 𝑥⟩ ≤ E [⟨𝑐, 𝑧⟩] ≤ (1 + 4𝜖)
(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)
.

Proof. Note that ⟨𝑐, 𝑧⟩ = E[∑𝑇
𝑡=1 𝑐𝑖𝑡 ]. Consider the 𝑡-th itera-

tion. The action matrix 𝐴𝑡 = (𝑙𝑡 𝐼 + 𝛼
∑𝑡−1
𝑙=1

𝑣𝑖𝑙 𝑣
𝑇
𝑖𝑙
)−2 is determined

by the choices 𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 made in the previous iterations. For any

fixed choices of 𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 , by step 2(b) of the algorithm,

E𝑖𝑡 [𝑐𝑖𝑡 ] =
𝑚∑
𝑖=1

𝑐𝑖 · 𝑥𝑖
(
1 + 𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴

1/2
𝑡 ⟩

)∑𝑚
𝑗=1 𝑥 𝑗

(
1 + 𝛼 ⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴

1/2
𝑡 ⟩

)
=

∑𝑚
𝑖=1 𝑐𝑖𝑥𝑖 (1 + 𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴

1/2
𝑡 ⟩)

𝑘 + 𝛼 tr(𝐴1/2
𝑡 )

≤
⟨𝑐, 𝑥⟩ + 𝛼𝑐∞ tr(𝐴1/2

𝑡 )
𝑘

,

(3.5)

where we used that

∑𝑚
𝑗=1 𝑥 𝑗 = 𝑘 and

∑𝑚
𝑗=1 𝑥 𝑗𝑣 𝑗𝑣

𝑇
𝑗
= 𝐼𝑛 and 𝑐𝑖 ≤ 𝑐∞

by definition. It follows from our choice of 𝑇 = (1 + 4𝜖)𝑘 that

E

[
𝑇∑
𝑡=1

𝑐𝑖𝑡

]
≤

𝑇∑
𝑡=1

⟨𝑐, 𝑥⟩ + 𝛼𝑐∞ tr(𝐴1/2
𝑡 )

𝑘
≤ 𝑇 (⟨𝑐, 𝑥⟩ + 𝑛𝑐∞/𝜖)

𝑘

= (1 + 4𝜖)
(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)
,

(3.6)

where the second inequality is by 𝛼 =
√
𝑛/𝜖 and tr(𝐴1/2) ≤

√
𝑛

in (3.3). On the other hand,

E𝑖𝑡 [𝑐𝑖𝑡 ] =
∑𝑚
𝑖=1 𝑐𝑖𝑥𝑖 (1 + 𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴

1/2
𝑡 ⟩)

𝑘 + 𝛼 tr(𝐴1/2
𝑡 )

≥ ⟨𝑐, 𝑥⟩
𝑘 + 𝑛/𝜖 ≥ ⟨𝑐, 𝑥⟩

(1 + 𝜖/4)𝑘 ,

(3.7)

where the first inequality uses that 𝑐𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑚, 𝛼 =
√
𝑛/𝜖 and tr(𝐴1/2

𝑡 ) ≤
√
𝑛 by (3.3), and the last inequality uses the

assumption 𝑘 ≥ 4𝑛/𝜖2. It follows from our choice of 𝑇 = (1 + 4𝜖)𝑘
that

E

[
𝑇∑
𝑡=1

𝑐𝑖𝑡

]
≥ 𝑇 ⟨𝑐, 𝑥⟩

(1 + 𝜖/4)𝑘 ≥ (1 + 3𝜖)⟨𝑐, 𝑥⟩. (3.8)

□

To prove that the output 𝑧 of the algorithm satisfies ⟨𝑐, 𝑧⟩ is
not too far from its expected value and 𝜆min (

∑𝑚
𝑖=1 𝑧𝑖𝑣𝑖𝑣

𝑇
𝑖
) ≥ 1

simultaneously with high probability, we will prove in the following

lemmas that these quantities are highly concentrated around their

expected values. Since the sampling probabilities in the iterative

randomized rounding algorithm change over time based on the

previous choices, the random variables that we consider are not a

sum of independent random variables and thus Chernoff bounds

cannot be applied. Instead, we will define martingales and use

Freedman’s inequality to prove that they are concentrated around

the expected values.

Lemma 3.3. Let 𝑧 ∈ Z𝑚+ be the output of the algorithm. It holds that

Pr

[
𝜆min

(
𝑚∑
𝑖=1

𝑧𝑖𝑣𝑖𝑣
𝑇
𝑖

)
≥ 1

]
≥ 1 − exp(−Ω(𝜖

√
𝑛)) .
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Proof. Recall from (3.1) that

𝜆min

(
𝑇∑
𝑡=1

𝑣𝑖𝑡 𝑣
𝑇
𝑖𝑡

)
≥ −2𝜖 +

𝑇∑
𝑡=1

⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

.

So, to prove the lemma, it is enough to prove that

Pr


𝑇∑
𝑡=1

⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

≥ 1 + 2𝜖

 ≥ 1 − exp(−Ω(𝜖
√
𝑛)).

Consider the following sequence of random variables:

𝑋𝑡 := E𝑖𝑡


⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

−
⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

and 𝑌𝑡 :=

𝑡∑
𝑙=1

𝑋𝑙 .

We verify that 𝑌1, . . . , 𝑌𝑇 is a martingale with respect to 𝑣𝑖1 , . . . , 𝑣𝑖𝑡 .

First, 𝑌𝑡 is a function of 𝑣𝑖1 , . . . , 𝑣𝑖𝑡 by definition. Second, as each

E[|𝑋𝑙 |] is finite, it follows that E[|𝑌𝑡 |] is finite for all 1 ≤ 𝑡 ≤ 𝑇 .

Finally, E[𝑌𝑡 |𝑣𝑖1 , ..., 𝑣𝑖𝑡−1 ] = 𝑌𝑡−1 + E[𝑋𝑡 |𝑣𝑖1 , ..., 𝑣𝑖𝑡−1 ] = 𝑌𝑡−1.
Therefore, we can use Freedman’s inequality to bound the prob-

ability that 𝑌𝑡 is large (i.e. to bound the probability that the random

variable is much smaller than its expected value). To do so, we

derive an upper bound on𝑊𝑙 :=
∑𝑙
𝑡=1 E[𝑋 2

𝑡 |𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 ]. For any
choices of 𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 ,

E[𝑋 2

𝑡 |𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 ] ≤ E𝑖𝑡
©­«

⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

ª®¬
2

=

𝑚∑
𝑖=1

𝑥𝑖 (1 + 𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴
1/2
𝑡 ⟩)∑𝑚

𝑗=1 𝑥 𝑗 (1 + 𝛼 ⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴
1/2
𝑡 ⟩)

·
(

⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴
1/2
𝑡 ⟩

)
2

=
1∑𝑚

𝑗=1 𝑥 𝑗 (1 + 𝛼 ⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴
1/2
𝑡 ⟩)

𝑚∑
𝑖=1

𝑥𝑖 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴𝑡 ⟩2

1 + 𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴
1/2
𝑡 ⟩

≤
∑𝑚
𝑖=1 𝑥𝑖 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴𝑡 ⟩

𝛼
∑𝑚

𝑗=1 𝑥 𝑗 (1 + 𝛼 ⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴
1/2
𝑡 ⟩)

≤ 1

𝛼𝑘
,

(3.9)

where the first line is because Var[𝑌 ] ≤ E[𝑌 2] for a random vari-

able 𝑌 , the second line is by the sampling probability in step 2(b) of

the algorithm, the fourth line is by the inequality 1+𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴
1/2
𝑡 ⟩ ≥

𝛼 ⟨𝑣𝑖𝑣𝑇𝑖 , 𝐴𝑡 ⟩ as 0 ≼ 𝐴𝑡 ≼ 𝐼𝑛 , and the last inequality is by
∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖
=

𝐼𝑛 , tr(𝐴𝑡 ) = 1,

∑𝑚
𝑗=1 𝑥 𝑗 = 𝑘 and ⟨𝑣 𝑗𝑣𝑇𝑗 , 𝐴

1/2
𝑡 ⟩ ≥ 0. Therefore, it al-

ways holds that

𝑊𝑇 :=

𝑇∑
𝑡=1

E[𝑋 2

𝑡 |𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 ] ≤
𝑇

𝛼𝑘
=

(1 + 4𝜖)𝑘
√
𝑛𝑘/𝜖

≤ 5𝜖
√
𝑛

where we use 𝑇 = (1 + 4𝜖)𝑘 , 𝛼 =
√
𝑛/𝜖 and 𝜖 ≤ 1. Also, we can

always upper bound 𝑋𝑡 by 𝑅 := 1/𝑘 , as

𝑋𝑡 =
1

𝑘 + 𝛼 tr(𝐴1/2
𝑡 )

−
⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

≤ 1

𝑘 + 𝛼 tr(𝐴1/2
𝑡 )

≤ 1

𝑘
,

where the equality is by (3.2). Applying Freedman’s inequality with

𝛿 = 𝜖 , 𝜎2 = 5𝜖/
√
𝑛 and 𝑅 = 1/𝑘 , it follows that

Pr(𝑌𝑇 ≥ 𝜖) ≤ exp

(
−𝜖2/2

5𝜖/
√
𝑛 + 𝜖/3𝑘

)
≤ exp(−Ω(𝜖

√
𝑛)),

where the last inequality uses the assumption that 𝑘 ≥ 4𝑛/𝜖2.
Therefore, with probability at least 1 − exp(−Ω(𝜖

√
𝑛)), we have

𝜖 ≥ 𝑌𝑇 =

𝑇∑
𝑡=1

©­«E𝑖𝑡


⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

 −
⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

ª®¬
≥ 1 + 3𝜖 −

𝑇∑
𝑡=1

⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

,

where the last inequality is by (3.4). This implies that, with proba-

bility at least 1 − exp(−Ω(𝜖
√
𝑛)),

𝑇∑
𝑡=1

⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴𝑡 ⟩

1 + 𝛼 ⟨𝑣𝑖𝑡 𝑣𝑇𝑖𝑡 , 𝐴
1/2
𝑡 ⟩

≥ 1 + 2𝜖
(3.1)
=⇒ 𝜆min

(
𝑇∑
𝑡=1

𝑣𝑖𝑡 𝑣
𝑇
𝑖𝑡

)
≥ 1.

□

Lemma 3.4. Let 𝑧 ∈ Z𝑚+ be the output of the algorithm. For any
𝑐 ∈ R𝑚+ , it holds that

Pr

[
(1 + 2𝜖)⟨𝑐, 𝑥⟩ − 𝜖𝑛𝑐∞ ≤ ⟨𝑐, 𝑧⟩ ≤ (1 + 5𝜖)

(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)]
≥1 − exp(−Ω(𝜖3𝑛)).

Proof. Note that ⟨𝑐, 𝑧⟩ = ∑𝑇
𝑡=1 𝑐𝑖𝑡 . As in the proof of Lemma 3.3,

we will define martingales with respect to {𝑣𝑖𝑡 }𝑡 and apply Freed-

man’s inequality to bound the probability that ⟨𝑐, 𝑧⟩ is far away from
its expected value in Lemma 3.2. Consider the following sequence

of random variables:

𝑋𝑡 := 𝑐𝑖𝑡 − E𝑖𝑡 [𝑐𝑖𝑡 ] and 𝑌𝑡 :=

𝑡∑
𝑙=1

𝑋𝑙 .

As in the proof of Lemma 3.3, we can check that 𝑌1, . . . , 𝑌𝑇 is a

martingale with respect to 𝑣𝑖1 , . . . , 𝑣𝑖𝑇 . We will apply Freedman’s

inequality to bound that 𝑌𝑇 is large.

Consider 𝑊𝑙 :=
∑𝑙
𝑡=1 E[𝑋 2

𝑡 |𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 ]. For any choices of

𝑣𝑖1 , . . . , 𝑣𝑖𝑡 ,

E[𝑋 2

𝑡 |𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 ] ≤ E[𝑐2𝑖𝑡 |𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 ]

≤ 𝑐∞ · E[𝑐𝑖𝑡 |𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 ] ≤
𝑐∞ (⟨𝑐, 𝑥⟩ + 𝑛𝑐∞/𝜖)

𝑘
,

where the last inequality is by (3.5). Therefore, it follows from our

choice of 𝑇 = (1 + 4𝜖)𝑘 that

𝑊𝑇 =

𝑇∑
𝑡=1

E[𝑋 2

𝑡 |𝑣𝑖1 , . . . , 𝑣𝑖𝑡−1 ] ≤
𝑇𝑐∞
𝑘

(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)
= (1 + 4𝜖)𝑐∞

(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)
.

Also, it always hold that 𝑋𝑡 ≤ 𝑅 := 𝑐∞. Applying Freedman’s

inequality with 𝛿 = 𝜖2 (⟨𝑐, 𝑥⟩ + 𝑛𝑐∞/𝜖), and 𝜎2 equal to the upper

bound on𝑊𝑇 , and 𝑅 = 𝑐∞, it follows that

Pr

[
𝑌𝑇 ≥ 𝜖2

(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)]
≤ exp

(
−Ω

(
𝜖4 (⟨𝑐, 𝑥⟩ + 𝑛𝑐∞/𝜖)2

(1 + 4𝜖)𝑐∞ (⟨𝑐, 𝑥⟩ + 𝑛𝑐∞/𝜖) + 𝑐∞𝜖2 (⟨𝑐, 𝑥⟩ + 𝑛𝑐∞/𝜖)

))
= exp

(
−Ω

(
𝜖4 (⟨𝑐, 𝑥⟩ + 𝑛𝑐∞/𝜖)

𝑐∞

))
≤ exp

(
−Ω

(
𝜖3𝑛

))
.
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Therefore, with probability at least 1 − exp(−Ω(𝜖3𝑛)), it holds that

𝜖2
(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)
≥

𝑇∑
𝑡=1

(𝑐𝑖𝑡−E𝑖𝑡 [𝑐𝑖𝑡 ]) ≥
𝑇∑
𝑡=1

𝑐𝑖𝑡−(1+4𝜖)
(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)
,

where the last inequality uses (3.6). Rearranging the terms proves

the upper bound part of the lemma.

The lower bound part follows similarly. We let 𝑋 ′
𝑡 := −𝑋𝑡 and

𝑌 ′
𝑡 := −𝑌𝑡 . Then we can apply Freedman’s inequality the same way

to get Pr[𝑌 ′
𝑇
≥ 𝜖2 (⟨𝑐, 𝑥⟩ + 𝑛𝑐∞/𝜖)] ≤ exp(−Ω(𝜖3𝑛)). This implies

that, with probability at least 1 − exp(−Ω(𝜖3𝑛)), it holds that

𝜖2
(
⟨𝑐, 𝑥⟩ + 𝑛𝑐∞

𝜖

)
≥ 𝑌 ′

𝑇 =

𝑇∑
𝑡=1

(E𝑖𝑡 [𝑐𝑖𝑡 ]−𝑐𝑖𝑡 ) ≥ (1+3𝜖)⟨𝑐, 𝑥⟩−
𝑇∑
𝑡=1

𝑐𝑖𝑡 ,

where the last inequality uses (3.8). Rearranging the terms proves

the lower bound part of the lemma. □

Theorem 1.8 follows immediately fromLemma 3.3 and Lemma 3.4.

3.2 Two-Sided Spectral Rounding
In this section, we show that the two-sided spectral rounding re-

sult in Theorem 1.10 can be extended to incorporate one linear

constraint that is given as part of the input.

There is a standard reduction used in [60] to construct spectral

sparsifiers that satisfy additional linear constraints. Suppose Corol-

lary 1.7 were to work for rank two matrices, then we can simply

incorporate the linear constraint to the input matrices as 𝐴𝑖 :=(
𝑣𝑖𝑣

𝑇
𝑖

0

0 𝑐𝑖/⟨𝑐, 𝑥⟩

)
so that

∑𝑚
𝑖=1 𝑥𝑖𝐴𝑖 = 𝐼𝑛+1, and any 𝑧 ∈ {0, 1}𝑚 so

that

∑𝑚
𝑖=1 𝑧𝑖𝐴𝑖 ≈ 𝐼𝑛+1 would have ⟨𝑐, 𝑧⟩ ≈ ⟨𝑐, 𝑥⟩. But the rank one

assumption is crucial in the proof of Theorem 1.6 and it is an open

problem to generalize it to work with higher rank matrices.

Our idea is to use the following signing trick, suggested to us

by Akshay Ramachandran, to essentially carry out the same reduc-

tion using only rank one matrices. We state the results in a more

general form, where

∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖
is not necessarily equal to the

identity matrix, so that we can also apply them to additive spectral

sparsifiers.

Lemma 3.5. Let 𝑣1, . . . , 𝑣𝑚 ∈ R𝑛 , 𝑥 ∈ [0, 1]𝑚 , and 𝑐 ∈ R𝑚+ . Suppose

∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖




op

≤ 𝜆 and ∥𝑣𝑖 ∥ ≤ 𝑙 for 1 ≤ 𝑖 ≤ 𝑚. Then there exists a

signing 𝑠1, . . . , 𝑠𝑚 ∈ {±1} such that if we let 𝑢𝑖 :=
(

𝑣𝑖

𝑠𝑖
√
𝑐𝑖𝜆/⟨𝑐, 𝑥⟩

)
∈

R𝑛+1 then


∑𝑚

𝑖=1 𝑥𝑖𝑢𝑖𝑢
𝑇
𝑖




op

≤ 𝜆 + 𝑙
√
𝜆.

Proof. By the definition of 𝑢𝑖 ,

𝑚∑
𝑖=1

𝑥𝑖𝑢𝑖𝑢
𝑇
𝑖 =

©­­­«
∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖

∑𝑚
𝑖=1 𝑠𝑖𝑥𝑖

√
𝑐𝑖𝜆

⟨𝑐, 𝑥⟩ 𝑣𝑖∑𝑚
𝑖=1 𝑠𝑖𝑥𝑖

√
𝑐𝑖𝜆

⟨𝑐, 𝑥⟩ 𝑣
𝑇
𝑖

∑𝑚
𝑖=1

𝑐𝑖𝑥𝑖𝜆

⟨𝑐, 𝑥⟩

ª®®®¬
=

(∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖

0

0 𝜆

)
+

©­­­«
0

∑𝑚
𝑖=1 𝑠𝑖𝑥𝑖

√
𝑐𝑖𝜆

⟨𝑐, 𝑥⟩ 𝑣𝑖∑𝑚
𝑖=1 𝑠𝑖𝑥𝑖

√
𝑐𝑖𝜆

⟨𝑐, 𝑥⟩ 𝑣
𝑇
𝑖

0

ª®®®¬ .
It follows from triangle inequality that



∑𝑚
𝑖=1 𝑥𝑖𝑢𝑖𝑢

𝑇
𝐼




op

≤ 𝜆 +


∑𝑚
𝑖=1 𝑠𝑖𝑥𝑖

√
𝑐𝑖𝜆/⟨𝑐, 𝑥⟩𝑣𝑖





2

.We show that there is a signing 𝑠1, . . . , 𝑠𝑚 ∈

{±1} such that




∑𝑚
𝑖=1 𝑠𝑖𝑥𝑖

√
𝑐𝑖𝜆/⟨𝑐, 𝑥⟩𝑣𝑖





2

≤ 𝑙
√
𝜆 and this will com-

plete the proof. Take a uniform random signing and consider

E𝑠∈{±1}𝑚






 𝑚∑
𝑖=1

𝑠𝑖𝑥𝑖

√
𝑐𝑖𝜆

⟨𝑐, 𝑥⟩ 𝑣𝑖







2

2

=

𝑚∑
𝑖=1

E𝑠

[
𝑠2𝑖 𝑥

2

𝑖 ∥𝑣𝑖 ∥
2

𝜆𝑐𝑖

⟨𝑐, 𝑥⟩

]
+

∑
𝑖≠𝑗

E𝑠

[
𝑠𝑖𝑠 𝑗𝑥𝑖𝑥 𝑗 ⟨𝑣𝑖 , 𝑣 𝑗 ⟩

𝜆
√
𝑐𝑖𝑐 𝑗

⟨𝑐, 𝑥⟩

]
=

𝑚∑
𝑖=1

𝑥2𝑖 ∥𝑣𝑖 ∥
2

𝜆𝑐𝑖

⟨𝑐, 𝑥⟩ ≤ 𝑙2
𝑚∑
𝑖=1

𝜆𝑐𝑖𝑥𝑖

⟨𝑐, 𝑥⟩ = 𝑙2𝜆,

where the last line uses that 𝑠2
𝑖
= 1, E[𝑠𝑖𝑠 𝑗 ] = E[𝑠𝑖 ] · E[𝑠 𝑗 ] = 0, and

𝑥𝑖 ≤ 1, ∥𝑣𝑖 ∥ ≤ 𝑙 in the inequality. This implies that there exists

such a signing. □

We apply the signing in Lemma 3.5 to incorporate one linear

constraint into the two-sided spectral rounding result of Kyng, Luh

and Song [41].

Theorem 3.6. Let 𝑣1, . . . , 𝑣𝑚 ∈ R𝑛 , 𝑥 ∈ [0, 1]𝑚 , and 𝑐 ∈ R𝑚+ .
Suppose



∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖




op

≤ 𝜆 and ∥𝑣𝑖 ∥ ≤ 𝑙 for 1 ≤ 𝑖 ≤ 𝑚. Suppose

further that 𝑐∞ ≤ 𝑙2⟨𝑐, 𝑥⟩/𝜆 and 𝑙 ≤
√
𝜆. Then there exists 𝑧 ∈

{0, 1}𝑚 such that




 𝑚∑
𝑖=1

𝑥𝑖𝑣𝑖𝑣
𝑇
𝑖 −

𝑚∑
𝑖=1

𝑧𝑖𝑣𝑖𝑣
𝑇
𝑖







op

≤ 8𝑙
√
𝜆 and |⟨𝑐, 𝑥⟩−⟨𝑐, 𝑧⟩| ≤ 8𝑙

√
𝜆
⟨𝑐, 𝑥⟩.

Proof. Let 𝑢𝑖 =

(
𝑣𝑖

𝑠𝑖
√
𝑐𝑖𝜆/⟨𝑐, 𝑥⟩

)
for 1 ≤ 𝑖 ≤ 𝑚, where 𝑠1, . . . , 𝑠𝑚

is the signing given in Lemma 3.5. By the assumption that 𝑐∞ ≤
𝑙2⟨𝑐, 𝑥⟩/𝜆, it follows that ∥𝑢𝑖 ∥2 = ∥𝑣𝑖 ∥2 + 𝑐𝑖𝜆/⟨𝑐, 𝑥⟩ ≤ 2𝑙2. Let 𝜉𝑖 be

a zero-one random variable with probability 𝑥𝑖 being one. Applying

Theorem 1.6 on 𝑢1, . . . , 𝑢𝑚 and 𝜉1, . . . , 𝜉𝑚 , there exists 𝑧 ∈ {0, 1}𝑚
such that




 𝑚∑

𝑖=1

𝑥𝑖𝑢𝑖𝑢
𝑇
𝑖 −

𝑚∑
𝑖=1

𝑧𝑖𝑢𝑖𝑢
𝑇
𝑖







op

≤ 4






 𝑚∑
𝑖=1

Var[𝜉𝑖 ] (𝑢𝑖𝑢𝑇𝑖 )
2






1/2
op

≤4





 𝑚∑
𝑖=1

𝑥𝑖 ∥𝑢𝑖 ∥2 𝑢𝑖𝑢𝑇𝑖






1/2
op

≤ 4

√
2𝑙2 (𝜆 + 𝑙

√
𝜆),

where we use that Var[𝜉𝑖 ] = 𝑥𝑖 (1 − 𝑥𝑖 ) ≤ 𝑥𝑖 , ∥𝑢𝑖 ∥2 ≤ 2𝑙2 and

∑𝑚
𝑖=1 𝑥𝑖𝑢𝑖𝑢

𝑇
𝑖




op

≤ 𝜆 + 𝑙
√
𝜆 by Lemma 3.5. By looking at the top

left 𝑛 × 𝑛 block, this implies that



∑𝑚
𝑖=1 𝑥𝑖𝑣𝑖𝑣

𝑇
𝑖
− ∑𝑚

𝑖=1 𝑧𝑖𝑣𝑖𝑣
𝑇
𝑖




op

≤

4

√
2𝑙2 (𝜆 + 𝑙

√
𝜆) ≤ 8𝑙

√
𝜆 where we use the assumption that 𝑙 ≤

√
𝜆.

By looking at the bottom right entry, we have����� 𝑚∑
𝑖=1

𝑥𝑖𝑐𝑖𝜆

⟨𝑐, 𝑥⟩ −
𝑚∑
𝑖=1

𝑧𝑖𝑐𝑖𝜆

⟨𝑐, 𝑥⟩

����� ≤ 4

√
2𝑙2 (𝜆 + 𝑙

√
𝜆) ≤ 8𝑙

√
𝜆,

which implies |⟨𝑐, 𝑥⟩ − ⟨𝑐, 𝑧⟩| ≤ 8𝑙 ⟨𝑐, 𝑥⟩/
√
𝜆. □

This proves Theorem 1.10 that incorporates one linear constraint

into Corollary 1.7, by plugging 𝜆 = 1 and 𝑙 = 𝜖 into Theorem 3.6.

We will apply Theorem 1.10 to obtain interesting new applications

in network design, and we can also use Theorem 3.6 to show the

existence of good additive spectral sparsifiers.
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4 APPLICATIONS
In this section, we will show that the spectral rounding results

have many applications in survivable network design (Section 4.1),

where we omit all the proofs due to the space limit. As for the other

applications in experimental design, network design with spectral

properties and unweighted spectral sparsification, we defer the

details to the full version of the paper.

4.1 General Survivable Network Design
We show that the spectral rounding results provide a new approach

to design algorithms for the survivable network design problem.

The main advantage of this approach is that it significantly ex-

tends the scope of useful properties that can be incorporated into

survivable network design.

The organization of this subsection is as follows. We begin by

writing a large convex program that incorporates many useful

constraints into survivable network design in Section 4.1.1, and

explain how spectral rounding results can be used to find a solution

for this general survivable network design problem in Section 4.1.2.

Finally, we will see the implications of the one-sided rounding

results in Section 4.1.3 and the two-sided spectral rounding result

in Section 4.1.4.

4.1.1 Convex Programming Relaxation. We can write a convex

programming relaxation for the general network design problem

incorporating all these constraints as discussed in Section 1.4. In the

following, the input graph is𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛 and |𝐸 | =𝑚.

The fractional solution is 𝑥 ∈ R𝑚 where the intended solution is

to set 𝑥𝑒 = 1 if we choose edge 𝑒 and 𝑥𝑒 = 0 otherwise. We first

present the convex program and then explain the constraints below.

min

𝑥
⟨𝑐, 𝑥 ⟩

𝑥 (𝛿 (𝑆)) ≥ 𝑓 (𝑆) ∀𝑆 ⊆ 𝑉 (connectivity constraints)

𝑥 (𝛿 (𝑣)) ≤ 𝑑𝑣 ∀𝑣 ∈ 𝑉 (degree constraints)

𝐴𝑥 ≤ 𝑎 𝐴 ∈ R𝑝×𝑚+ , 𝑎 ∈ R𝑝+ (linear packing constraints)

𝐵𝑥 ≥ 𝑏 𝐵 ∈ R𝑞×𝑚+ , 𝑏 ∈ R𝑞+ (linear covering constraints)

Reff𝑥 (𝑢, 𝑣) ≤ 𝑟𝑢𝑣 ∀𝑢, 𝑣 ∈ 𝑉 (effective resistance constraints)

𝐿𝑥 ≽ 𝑀 𝑀 ≽ 0 (spectral constraints)

𝜆2 (𝐿𝑥 ) ≥ 𝜆 (algebraic connectivity constraint)

0 ≤ 𝑥𝑒 ≤ 1 ∀𝑒 ∈ 𝐸 (capacity constraints)

(CP)

Here we explain the constraints one by one. For the connectivity

constraints, we have a connectivity requirement 𝑓𝑢,𝑣 that there are

at least 𝑓𝑢,𝑣 edge-disjoint paths between every pair 𝑢, 𝑣 of vertices.

For each subset 𝑆 ⊆ 𝑉 , we let 𝑓 (𝑆) := max𝑢,𝑣:𝑢∈𝑆,𝑣∉𝑆 𝑓𝑢,𝑣 and write

a constraint that at least 𝑓 (𝑆) edges in 𝛿 (𝑆) should be chosen, where
𝑥 (𝛿 (𝑆)) denotes ∑

𝑒∈𝛿 (𝑆) 𝑥𝑒 . By Menger’s theorem, if an integral

solution satisfies all these constraints, then all the connectivity re-

quirements are satisfied. For the degree constraints, each vertex has

a degree upper bound 𝑑𝑣 and we write a constraint that at most 𝑑𝑣
edges in 𝛿 (𝑣) can be chosen, where 𝑥 (𝛿 (𝑣)) := ∑

𝑒∈𝛿 (𝑣) 𝑥𝑒 . For the
linear packing and covering constraints, all the entries in 𝐴, 𝐵, 𝑎, 𝑏

are nonnegative, and we assume that 𝐴, 𝐵 have at most a polyno-

mial number of rows in 𝑛,𝑚. For effective resistance constraints, we

have an upper bound 𝑟𝑢,𝑣 on the effective resistance between every

pair 𝑢, 𝑣 ∈ 𝑉 . As in Section 2.2, we write Reff𝑥 (𝑢, 𝑣) = 𝑏𝑇𝑠𝑡𝐿
†
𝑥𝑏𝑠𝑡 as

the effective resistance between 𝑢 and 𝑣 in the fractional solution

𝑥 where each edge 𝑒 has conductance 𝑥𝑒 . In the spectral and the

algebraic connectivity constraints, we write 𝐿𝑥 :=
∑
𝑒∈𝐸 𝑥𝑒𝐿𝑒 as

the Laplacian matrix of the fractional solution 𝑥 where 𝐿𝑒 is the

Laplacian matrix of an edge as defined in Section 2.2. In the spec-

tral constraint, we require that 𝐿𝑥 ≽ 𝑀 for a positive semidefinite

matrix𝑀 . One could have polynomially many constraints of this

form (just as linear packing and covering constraints), but we only

write one for simplicity. In the algebraic connectivity constraint,

we require the second smallest eigenvalue of the Laplacian matrix

of the solution is at least 𝜆, which is related to the graph expansion

of the fractional solution as described in Section 2.2.

This convex program can be solved by the ellipsoid method in

polynomial time in 𝑛,𝑚. There are exponentially many connec-

tivity constraints but we can use a max-flow min-cut algorithm

as a polynomial time separation oracle for these constraints (see

e.g. [39]). Other linear constraints can easily be checked efficiently,

as we assume there are only polynomially many of them. Next

we consider the non-linear constraints. For the effective resistance

constraints, it is known [34] that Reff𝑥 (𝑢, 𝑣) is a convex function
in 𝑥 . For the algebraic connectivity constraint, it is known [33]

that 𝜆2 is a concave function in 𝑥 . For the spectral constraint, the

feasible set is the positive semidefinite cone and is convex in 𝑥 . So

the feasible set for these non-linear constraints form a convex set.

Also, these non-linear constraints can all be checked in polynomial

time using standard numerical computations. Therefore, we can

use the ellipsoid method to find an 𝜖-approximate solution to this

convex program in polynomial time in 𝑛 and𝑚 with dependency

on 𝜖 being log(1/𝜖).

4.1.2 Spectral Rounding. Suppose we are given an optimal solution

𝑥 to the convex programming relaxation (CP). To design approx-

imation algorithms, the task is to round this fractional solution

𝑥 into an integral solution 𝑧 so that 𝑧 satisfies all the constraints

and ⟨𝑐, 𝑧⟩ is close to ⟨𝑐, 𝑥⟩. There are many different types of con-

straints and it seems difficult to handle them simultaneously. In the

spectral approach, the main observation is that if we can find an in-

tegral or zero-one solution 𝑧 such that

∑
𝑒∈𝐸 𝑧𝑒𝐿𝑒 ≈ ∑

𝑒∈𝐸 𝑥𝑒𝐿𝑒 and
⟨𝑐, 𝑥⟩ ≈ ⟨𝑐, 𝑧⟩, then all the constraints can be (approximately) satis-

fied simultaneously. We formalize this observation in the following

lemma.

Lemma 4.1. Let 𝑥 ∈ R𝑚+ be a feasible solution 𝑥 to (CP). For 𝜖 ∈
[0, 1

2
], any 𝑧 ∈ Z𝑚+ satsifies

∑
𝑒∈𝐸

𝑧𝑒𝐿𝑒 ≽ (1 − 𝜖)
∑
𝑒∈𝐸

𝑥𝑒𝐿𝑒 =⇒


𝑧 (𝛿 (𝑆)) ≥ (1 − 𝜖) 𝑓 (𝑆), ∀𝑆 ⊆ 𝑉

Reff𝑧 (𝑢, 𝑣) ≤ (1 + 2𝜖)𝑟𝑢,𝑣, ∀𝑢, 𝑣 ∈ 𝑉

𝐿𝑧 ≽ (1 − 𝜖)𝑀,

𝜆2 (𝐿𝑧 ) ≥ (1 − 𝜖)𝜆.

For 𝜖 ∈ [0, 1], any 𝑧 ∈ Z𝑚+ satifies∑
𝑒∈𝐸

𝑧𝑒𝐿𝑒 ≼ (1 + 𝜖)
∑
𝑒∈𝐸

𝑥𝑒𝐿𝑒 =⇒ 𝑧 (𝛿 (𝑣)) ≤ (1 + 𝜖)𝑑𝑣 for all 𝑣 ∈ 𝑉 .

Lemma 4.1 says that if 𝑧 satisfies the spectral lower bound

𝐿𝑧 ≽ 𝐿𝑥 , then the solution 𝑧 will satisfy all connectivity con-

straints, effective resistance constraints, spectral constraints, and

the algebraic connectivity constraint. Moreover, if 𝑧 also satisfies
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the spectral upper bound approximately, then the solution 𝑧 will

approximately satisfy all degree constraints as well.

4.1.3 Applications of One-Sided Spectral Rounding. We apply The-

orem 1.8 and Theorem 1.9 to design approximation algorithms for

network design problems that significantly extend the scope of

existing techniques.

cp := min

𝑥
⟨𝑐, 𝑥 ⟩

s.t.



𝑥 (𝛿 (𝑆)) ≥ 𝑓 (𝑆) ∀𝑆 ⊆ 𝑉 (connectivity constraints)

𝐴𝑥 ≤ 𝑎 𝐴 ∈ R𝑝×𝑚+ , 𝑎 ∈ R𝑝+ (linear packing constraints)

𝐵𝑥 ≥ 𝑏 𝐵 ∈ R𝑞×𝑚+ , 𝑏 ∈ R𝑞+ (linear covering constraints)

Reff𝑥 (𝑢, 𝑣) ≤ 𝑟𝑢𝑣 ∀𝑢, 𝑣 ∈ 𝑉 (effective resistance constraints)

𝐿𝑥 ≽ 𝑀 𝑀 ≽ 0 (spectral constraint)

𝜆2 (𝐿𝑥 ) ≥ 𝜆 (algebraic connectivity constraint)

0 ≤ 𝑥𝑒 ≤ 1 ∀𝑒 ∈ 𝐸 (capacity constraints)

(CP1)

In network design, an integral solution corresponds to a multi-

set of edges where each edge could be used more than once, and

a zero-one solution corresponds to a subset of edges where each

edge is used at most once (satisfying the capacity constraints). The

following theorem is a consequence of Theorem 1.8.

Theorem 4.2. Suppose we are given an optimal solution 𝑥 to the
convex program (CP1). For any 𝜖 ∈ (0, 1], there is a polynomial
time randomized algorithm to return an integral solution 𝑧 ∈ Z𝑚+ to
(CP1) satisfying all the constraints exactly with probability at least
1− exp(−Ω(𝜖3

√
𝑛)) except for the linear constraints and the capacity

constraints, with the objective value

(1 + 2𝜖)cp − 𝜖𝑛𝑐∞ ≤ ⟨𝑐, 𝑧⟩ ≤ (1 + 5𝜖)
(
cp + 𝑛𝑐∞

𝜖

)
and

⟨𝐴𝑖 , 𝑧⟩ ≤ (1+5𝜖)
(
𝑎𝑖 +

𝑛 ∥𝐴𝑖 ∥∞
𝜖

)
a𝑛𝑑 ⟨𝐵 𝑗 , 𝑧⟩ ≥ (1+2𝜖)𝑏 𝑗−𝜖𝑛



𝐵 𝑗




∞ ,

where 𝐴𝑖 is the 𝑖-th row of 𝐴 and 𝐵 𝑗 is the 𝑗-th row of 𝐵, with proba-
bility at least 1 − exp(−Ω(𝜖3𝑛)) for each linear constraint.

Applying Theorem 1.9, we can also satisfy the capacity con-

straints exactly, but with a worse guarantee on the objective value

and for the linear constraints.

Theorem 4.3. Suppose we are given an optimal solution 𝑥 to the
convex program (CP1). There is a polynomial time randomized algo-
rithm to return a zero-one solution 𝑧 ∈ {0, 1}𝑚 to (CP1) satisfying
all the constraints exactly with probability at least 1− exp(−Ω(

√
𝑛))

except for the linear constraints, with the objective value

⟨𝑐, 𝑧⟩ ≤ 𝑂 (cp + 𝑛𝑐∞) and

⟨𝐴𝑖 , 𝑧⟩ ≤ 16 (𝑎𝑖 + 𝑛 ∥𝐴𝑖 ∥∞) , a𝑛𝑑 ⟨𝐵 𝑗 , 𝑧⟩ ≥ 𝑏 𝑗 − 𝜖𝑛


𝐵 𝑗




∞ ,

where 𝐴𝑖 is the 𝑖-th row of 𝐴 and 𝐵 𝑗 is the 𝑗-th row of 𝐵, with prob-
ability at least 1 − exp(−Ω(𝜖2𝑛)) for each linear constraint for any
𝜖 ∈ (0, 1).

We demonstrate the use of Theorem 4.2 and Theorem 4.3 in

some concrete settings. The first example shows that Theorem 4.3

provides a spectral alternative to Jain’s iterative rounding algorithm

to achieve 𝑂 (1)-approximation for a fairly general subclass of the

survivable network design problem.

Example 4.4. Theorem 4.3 is a constant factor approximation algo-
rithm as long as 𝑛𝑐∞ = 𝑂 (cp). Suppose that in our network design
problem the average degree is at least 𝑑avg and the costs on edges are
positive integers with 𝑐∞ = 𝑂 (𝑑avg) (e.g. in the minimum 𝑘-edge-
connected subgraph problem every vertex has degree at least 𝑘 and
1 ≤ 𝑐𝑒 ≤ 𝑂 (𝑘) for 𝑒 ∈ 𝐸, or the solution requires a connected subgraph
and 1 ≤ 𝑐𝑒 ≤ 𝑂 (1) for 𝑒 ∈ 𝐸, etc). Then cp ≥ Ω(𝑑avg𝑛) ≥ Ω(𝑐∞𝑛)
and Theorem 4.3 provides a constant factor approximation algorithm.
To our knowledge, the only known constant factor approximation al-
gorithm even restricted to this special case is Jain’s iterative rounding
algorithm.

The additive error term 𝑛𝑐∞ is the reason that we could not

achieve constant factor approximation in general, but this term

is unavoidable in the one-sided spectral rounding setting when

we need to satisfy the spectral lower bound exactly. See the full

version for examples showing the limitations. Heuristically, we can

compute cp and if 𝑛𝑐∞ = 𝑂 (cp) then we know Theorem 4.2 and

Theorem 4.3 will provide good approximate solutions.

The second example shows that Theorem 4.3 and Theorem 4.2

returns good approximate solution to survivable network design

while incorporating many other constraints simultaneously.

Example 4.5. Suppose the connectivity requirement is to find a 𝑘-
edge-connected subgraph, or more generally 𝑓𝑢,𝑣 ≥ 𝑘 for all 𝑢, 𝑣 ∈ 𝑉 .
Assume the cost 𝑐𝑒 of each edge 𝑒 is at least one. Then cp ≥ Ω(𝑘𝑛).

When the cost function satisfies 𝑐∞ = 𝑂 (𝑘), then Theorem 4.3 im-
plies that there is a polynomial time randomized algorithm to return
a simple 𝑘-edge-connected subgraph satisfying all the constraints
in (CP1) except for the linear constraints (with some non-trivial guar-
antees), and the cost of the subgraph is at most a constant factor of
the optimal value.

When the cost function satisfies 𝑐∞ = 𝑂 (1), then Theorem 4.2
implies that there is a polynomial time randomized algorithm to re-
turn a 𝑘-edge-connected multi-subgraph satisfying all the constraints
in (CP1) except for the linear constraints and the capacity constraints,
and the cost of the subgraph is at most 1 + 𝑂 (1/

√
𝑘) factor of the

optimal value by setting 𝜖 = Θ(1/
√
𝑘).

The third example shows when the linear packing and covering

constraints can be satisfied up to a multiplicative constant factor.

Example 4.6. For linear covering constraints, suppose they are of
the form

∑
𝑒∈𝐹 𝑥𝑒 ≥ 𝑏 𝑗 for some subset 𝐹 ⊆ 𝐸 where 𝑏 𝑗 ≥ 𝑛, then the

returned solution 𝑧 will almost satisfy this constrint as
∑
𝑒∈𝐹 𝑧𝑒 ≥

𝑏 𝑗 −𝜖𝑛


𝐵 𝑗




∞ ≥ (1−𝜖)𝑏 𝑗 . So, these unweighted covering constraints

with large right hand side can be incorporated into survivable network
design, even though they can be unstructured. By a similar argument,
any unweighted packing constraints with large right hand side will
be only violated by at most a multiplicative constant factor with high
probability. It was not known that Jain’s iterative rounding can be
adapted to incorporate these linear covering and packing constraints.

4.1.4 Applications of Two-Sided Spectral Rounding. If we can achieve
two-sided spectral rounding in network design, then we can also ap-

proximately satisfy the degree constraints by Lemma 4.1. However,

to apply Theorem 1.10, we need to satisfy the assumption that the

vector lengths are small. It is known that the vector lengths in the

spectral rounding setting corresponds to the effective resistance of
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the edges in the fractional solution 𝑥 . In the following, we describe

when two-sided spectral rounding can be applied, and discuss what

are the implications for network design.

cp := min

𝑥
⟨𝑐, 𝑥 ⟩

s.t.



𝑥 (𝛿 (𝑆)) ≥ 𝑓 (𝑆) ∀𝑆 ⊆ 𝑉 (connectivity constraints)

𝑥 (𝛿 (𝑣)) ≤ 𝑑𝑣 ∀𝑣 ∈ 𝑉 (degree constraints)

Reff𝑥 (𝑢, 𝑣) ≤ 𝑟𝑢𝑣 ∀𝑢, 𝑣 ∈ 𝑉 (effective resistance constraints)

𝐿𝑥 ≽ 𝑀 𝑀 ≽ 0 (spectral lower bound)

𝜆2 (𝐿𝑥 ) ≥ 𝜆 (algebraic connectivity constraint)

0 ≤ 𝑥𝑒 ≤ 1 ∀𝑒 ∈ 𝐸 (capacity constraints)

(CP2)

Theorem 4.7. Suppose we are given an optimal solution 𝑥 to the
convex program (CP2). For any 𝜖 ∈ [0, 1], if Reff𝑥 (𝑢, 𝑣) ≤ 𝜖2 for
every 𝑢𝑣 ∈ 𝐸 and 𝑐∞ ≤ 𝜖2⟨𝑐, 𝑥⟩, then there exists a zero-one solution
𝑧 ∈ {0, 1}𝑚 such that (1 − 𝑂 (𝜖))𝐿𝑥 ≼ 𝐿𝑧 ≼ (1 + 𝑂 (𝜖))𝐿𝑥 and
(1 − 𝑂 (𝜖))⟨𝑐, 𝑥⟩ ≤ ⟨𝑐, 𝑧⟩ ≤ (1 + 𝑂 (𝜖))⟨𝑐, 𝑥⟩. This implies that all
the constraints of (CP2) will be approximately satisfied by 𝑧 (e.g.
𝑧 (𝛿 (𝑆)) ≥ (1−𝑂 (𝜖)) 𝑓 (𝑆) for all 𝑆 ⊆ 𝑉 and 𝑧 (𝛿 (𝑣)) ≤ (1+𝑂 (𝜖))𝑑𝑣
for all 𝑣 ∈ 𝑉 ) and the objective value of 𝑧 is at most (1 +𝑂 (𝜖))cp.

In the following, we make some remarks on the assumption of

Theorem 4.7. Note that Theorem 4.7 only applies when Reff𝑥 (𝑢, 𝑣) ≤
𝜖2 for all𝑢𝑣 ∈ 𝐸 and 𝑐∞ ≤ 𝜖2⟨𝑐, 𝑥⟩. The assumption about the cost is

moderate, as it only requires the maximum cost of an edge is at most

𝜖2 fraction of the total cost of the solution, which should be satisfied

in many applications with small 𝜖 . The main restriction is the first

assumption about effective resistances, which may not be satisfied

in network design applications, and we would like to provide some

combinatorial characterizations under which the assumption will

hold. Let Reff
diam

:= max𝑢,𝑣 Reff(𝑢, 𝑣) be the effective resistance
diameter of a graph; note that the maximum is taken over all pairs

(not just for edges as required in Theorem 4.7). For example, it is

known that [19] a 𝑑-regular graph with constant expansion has

Reff
diam

≤ 𝑂 (1/𝑑). So, if the fractional solution 𝑥 is close to a

𝑑-regular expander graph, then Theorem 4.7 can be applied with

𝜖 ≥ 1/
√
𝑑 . It is proved in [2] that a muchmilder expansion condition

guarantees small effective resistance diameter. For example, in a

𝑑-regular graph 𝐺 , as long as for some 0 < 𝛿 ≤ 1/2,

|𝛿 (𝑆) | ≥ Ω
(
(𝑑 |𝑆 |)

1

2
+𝛿

)
,∀𝑆 ⊆ 𝑉 =⇒ Reff

diam
≤ 𝑂

(
1

𝑑2𝛿

)
.

Note that a 𝑑-regular graph with constant expansion satisfies the

much stronger assumption that |𝛿 (𝑆) | ≥ Ω(𝑑 |𝑆 |). Informally, the

above result only requires |𝛿 (𝑆) | to be roughly the square root of

𝑑 |𝑆 | to show that the graph has a small effective resistance diameter

(e.g. 3-dimensional mesh). So, as long as the fractional solution 𝑥 is

a mild expander as defined in [2], the assumption in Theorem 4.7

will be satisfied with small 𝜖 . As another example, if the algebraic

connectivity 𝜆2 (𝐿𝑥 ) of the fractional solution is at least say 1/2𝜖2,
then we have Reff

diam
≤ 𝜖2 so that Theorem 4.7 can be applied.

Heuristically, if one could add the constraints that Reff𝑥 (𝑢, 𝑣) ≤ 𝜖2

for 𝑢𝑣 ∈ 𝐸 so that the convex program (CP2) is still feasible without

increasing the objective value too much, then one could then apply

Theorem 4.7 to bound the integrality gap of the convex program.

CONCLUDING REMARKS
We propose a spectral approach to design approximation algorithms

for network design problems. We show that the techniques devel-

oped in spectral graph theory and discrepancy theory can be used to

significantly extend the scope of network design problems that can

be solved.We believe that this connection will bring new techniques

and stronger results for network design, and will also introduce

new formulations and interesting questions to spectral graph the-

ory and discrepancy theory. It also gives extra motivation to design

a constructive algorithm for the method of interlacing polynomi-

als, as this will lead to very strong approximation algorithms for

network design. We leave it as an open question to improve the

spectral approach to fully recover Jain’s result.
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