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ABSTRACT
We present algorithmic and hardness results for network design
problems with degree or order constraints. We first consider the
SURVIVABLE NETWORK DESIGNproblem with degree constraints
on vertices: the objective is to find a minimum cost subgraph sat-
isfying certain connectivity requirements as well as degree upper
bounds on the vertices. A well known special case is the MIN-
IMUM BOUNDED DEGREE SPANNING TREE problem which has
attracted much attention recently. Denote byBv the degree con-
straint of vertexv. We present a(2, 2Bv + 3)-approximation algo-
rithm for the element-connectivity SURVIVABLE NETWORK DE-
SIGN problem with degree constraints on terminals, i.e., the cost
of the solution is at most twice the optimum solution (satisfying
the degree bounds), and the degree of each terminal vertexv is
at most2Bv + 3. This extends the most general network design
model which admits a 2-approximation algorithm (with no degree
constraints), and implies the first constant factor (bicriteria) ap-
proximation algorithms for many network design problems with
degree constraints, including the MINIMUM BOUNDED DEGREE

STEINER TREE problem. In the edge connectivity SURVIVABLE
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NETWORK DESIGN problem, the algorithm has an interesting fea-
ture that theaveragedegree of the returned solution is only violated
by an additive constant of 2. Our results also extend to directed
graphs and we provide the first constant factor (bicriteria) approx-
imation algorithms for, e.g., the MINIMUM BOUNDED DEGREE

ARBORESCENCEproblem and the MINIMUM BOUNDED DEGREE

STRONGLY k-EDGE-CONNECTED SUBGRAPH problem. A strik-
ing aspect of our method is its simplicity. It is based on a natural
extension of Jain’s iterative rounding method. This provides an
elegant and unifying algorithmic framework for a broad range of
network design problems with degree constraints. In contrast, we
show that the vertex-connectivity SURVIVABLE NETWORK DE-
SIGN problem with degree constraints is very hard to approximate,
even if the costs of all edges are zero.

We also study the problem of finding a minimum costλ-edge-
connected subgraph with at leastk vertices, which we call the
(k, λ)-subgraph problem. This generalizes some well-studied clas-
sical problems such as thek-MST and the minimum costλ-edge-
connected subgraph problems. We give a poly-logarithmic approx-
imation for the(k, 2)-subgraph problem. However, by relating it
to the DENSESTk-SUBGRAPH problem, we give evidence that the
(k, λ)-subgraph problem might be hard to approximate for arbi-
traryλ.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non
Numerical Algorithms and Problems—Computations on discrete
structures; G.2.2 [Discrete Mathematics]: Graph Theory—Net-
work Problems.

General Terms
Algorithms, Performance.

Keywords
Approximation algorithms for NP-hard problems, Network design,
Bounded degree, Iterative rounding.

1. INTRODUCTION



Network design is a central topic in combinatorial optimization,
approximation algorithms, and operations research. The basic set-
ting of network design problems is to find a minimum cost sub-
graph satisfying connectivity requirements between vertices. This
captures a wide variety of classical problems such as MINIMUM

COST FLOW, M INIMUM STEINER TREE, HAMILTONIAN CYCLE,
etc. Furthermore, research results in this area provide algorithmic
tools and insights (e.g., hardness results) for the design of practical
networks such as telecommunication networks. Notable successes
along this line of research are Jain’s 2-approximation algorithm for
the edge-connectivity SURVIVABLE NETWORK DESIGN problem
[18], and its generalization to element-connectivity [7, 5].

A recent research trend is to study a more general class of net-
work design problems where there are natural budget constraints.
This is motivated by the need for more sophisticated and realistic
models for the design of practical networks. The first type of con-
straints we study isdegree constraintson vertices. The objective
is to find a minimum cost subgraph satisfying connectivity require-
ments as well as degree bounds (e.g. workloads) on the vertices. A
well-known example is the MINIMUM BOUNDED DEGREESPAN-
NING TREE problem, which includes the TRAVELING SALESMAN

problem as a special case. Very recently, Goemans [14] obtained
an approximation algorithm for this problem, with only an additive
error of two on the degrees, following a long line of research. We
note that the basis underlying the breakthrough results of Goemans
[14] and Jain [18] is theuncrossing techniquein combinatorial op-
timization.

We study a common generalization of the above two problems.
Our main result is a generalization of the 2-approximation algo-
rithm for the element-connectivity SURVIVABLE NETWORK DE-
SIGN problem (which is the most general network design problem
admitting a 2-approximation algorithm), providing near-optimal bounds
on the degrees. This yields the first constant factor (bicriteria) ap-
proximation algorithms for many network design problems with
degree constraints, including MINIMUM BOUNDED DEGREESTEINER

NETWORK, M INIMUM BOUNDED DEGREE STEINER TREE, etc.
Our results extend to directed graphs and we provide the first con-
stant factor (bicriteria) approximation algorithms for MINIMUM

BOUNDED DEGREEARBORESCENCE, M INIMUM BOUNDED DE-
GREESTRONGLY k-EDGE-CONNECTEDSUBGRAPH, etc. A strik-
ing aspect of our method is itssimplicity. Our approach is based on
a natural extension of Jain’siterative roundingmethod. This pro-
vides an elegant and unifying algorithmic framework for a broad
range of network design problems with degree constraints. In fact,
very recently, the techniques used in this paper have been extended
to give an(1, Bv + 1)-approximation algorithm for the MINIMUM

BOUNDED DEGREESPANNING TREE problem [33], settling a 15-
year-old conjecture affirmatively. In contrast, we present hardness
results for the vertex-connectivity SURVIVABLE NETWORK DE-
SIGN problem with degree constraints, even if all edges have zero
cost.

The second type of constraints we study isorder constraints.
Specifically, we study the problem of finding a minimum costλ-
edge-connected subgraph with at leastk vertices, which we call
the (k, λ)-subgraph problem. This generalizes some classical and
well-studied problems such as thek-MST problem (which is the
(k, 1)-subgraph problem) and the minimum costλ-edge-connected
subgraph problem (which is the(n, λ)-subgraph problem withn
being the number of vertices). We give a poly-logarithmic approxi-
mation algorithm for the(k, 2)-subgraph problem. However, by re-
lating it to the DENSESTk-SUBGRAPH problem, we give evidence
that the(k, λ)-subgraph problem might be hard to approximate for
arbitraryλ.

1.1 Previous Work
Network design problems have a very rich literature. For classi-

cal network design problems, we shall just highlight a few results
and refer the reader to [24] for a survey. In the SURVIVABLE NET-
WORK DESIGN problem, we are given a connectivity requirement
ruv for each pair of vertices, and the goal is to find a minimum
cost subgraph satisfying the connectivity requirements. This is a
very general problem which captures many interesting problems as
special cases (e.g., minimum Steiner tree, minimum Steiner for-
est, minimumk-edge-connected subgraph) and has many applica-
tions. Jain [18] gave a 2-approximation algorithm for the edge-
connectivity SURVIVABLE NETWORK DESIGN problem by using
an elegant iterative rounding approach. Later, Fleischer, Jain, and
Williamson [7] have generalized this result to element-connectivity
SURVIVABLE NETWORK DESIGN problem (another solution was
proposed in [5]). On the other hand, the vertex-connectivity SUR-
VIVABLE NETWORK DESIGN problem is shown to be very hard to
approximate [23].

Network design problems with degree constraints have been stud-
ied extensively in the last 15 years . A simpler setting is minimizing
the maximum degree subgraph (without considering the cost) sat-
isfying certain connectivity requirements. A well-known example
is the MINIMUM DEGREE SPANNING TREE (MDST) problem,
where the objective is to find a spanning tree of smallest maxi-
mum degree. This problem is already NP-hard as it generalizes the
HAMILTONIAN PATH problem. F̈urer and Raghavachari [8, 9] gave
an elegant approximation algorithm returning a solution with maxi-
mum degree at most one off the optimal solution. (The result holds
for the Steiner version of the problem as well.) Ravi, Raghavachari,
and Klein [30, 19] considered the MINIMUM DEGREE k-EDGE-
CONNECTEDSUBGRAPH problem, and gave an approximation al-
gorithm with performance ratioO(nδ) for any fixedδ > 0 in poly-
nomial time, andO(log n/ log log n) in sub-exponential time. Re-
cently, Feder, Motwani, and Zhu [6] obtained a polynomial time
O(k log n)-approximation algorithm for this problem, for anyfixed
k, thus answering an open question in [30]. Our main result implies
the first constant factor approximation algorithm even for the most
general edge-connectivity requirements.

For the more general problem of finding a minimum cost sub-
graph with given connectivity requirements and degree boundsBv

on every vertexv, the most-studied case is the MINIMUM BOUNDED

DEGREE SPANNING TREE (MBDST) problem. LetOPT be the
cost of an optimal solution to the MBDST problem. We say an al-
gorithm is an(α, f(Bv))-approximation algorithm if the returned
solution has cost at mostα · OPT (with OPT being the cost of the
optimum solution satisfying the degree bounds) and the degree at
each vertexv is at mostf(Bv). The first approximation was an
(O(log n), O(log n · Bv))-algorithm by [27, 29]. This was subse-
quently improved in a series of papers [21, 22, 3, 4, 31]. Very re-
cently, Goemans [14] made a breakthrough on this problem by giv-
ing a(1, Bv +2)-approximation algorithm. Remarkably, the proof
of the result of Goemans is considerably simpler than that of the
previous results. Very little is known for more general connectiv-
ity requirements. For the MINIMUM BOUNDED DEGREESTEINER

TREEproblem, there is an(O(log n), O(Bv log n))-approximation
algorithm [29]. This bound was improved to(O(1), O(Bv+log n))-
approximation by [20], but the algorithm runs in quasi polynomial
time. Our main result implies the first polynomial time(2, 2Bv +
3)-approximation even for the most general model of edge-connectivity
requirements.

For network design problem with order constraints, the most
well-studied problem is thek-MST problem, where the objective
is to find a minimum cost tree spanning at leastk vertices. The



approximation factor for this problem was improved from
√

k and
O(log2 k) in [28, 1] down to constant in [2, 12] and very recently
to 2 [13]. For the case of metric costs on the edges, thek-TSP
problem, which asks to find a minimum cost TSP tour visiting at
leastk vertices, can also be approximated within factor 2 [13].

1.2 New results
Suppose that we are given an undirected graph with connectivity

requirementsruv on pairs of verticesu andv, and degree bounds
Bv on each vertexv. The edge-connectivity SURVIVABLE NET-
WORK DESIGN problem with degree constraints asks for a mini-
mum cost subgraph such that there are at leastruv edge disjoint
paths between verticesu andv and the degree of each vertex is at
mostBv. We obtain the following result.

THEOREM 1.1. There is a polynomial time(2, 2Bv + 3)- ap-
proximation algorithm for the edge-connectivitySURVIVABLE NET-
WORK DESIGNproblem. Moreover, on average, the degree bounds
are violated by at most 2.

This gives the first constant factor bicriteria approximation algo-
rithms for a broad range of network design problems with degree
constraints such as the MINIMUM STEINER TREE problem, the
M INIMUM STEINER FOREST problem, the MINIMUM k-EDGE-
CONNECTED SUBGRAPH problem, etc. It also implies the first
constant factor approximation algorithm for minimizing the maxi-
mum degree version of many problems (by settingBv = B for all
v).

We then consider the more general element-connectivity SUR-
VIVABLE NETWORK DESIGNproblem with degree constraints. Given
an undirected graphG, the set of vertices is partitioned into termi-
nals and non-terminals. The edges and the non-terminals are called
elements. Suppose that we are given a connectivity requirement
ruv for each pair of terminal verticesu andv, and a degree bound
Bv on each terminal vertexv. The objective is to find a minimum
cost subgraph such that there are at leastruv element-disjoint paths
between terminal verticesu andv and the degree of each terminal
vertexv is at mostBv. We obtain the following result.

THEOREM 1.2. There is a polynomial time(2, 2Bv + 3)- ap-
proximation algorithm for the element-connectivitySURVIVABLE

NETWORK DESIGN problem with degree constraints on terminals.

We remark that both Theorems 1.1 and 1.2 hold for (1) connec-
tivity requirements that areweakly supermodular(technical def-
inition is deferred to later); and (2) the case where there are both
lower and upper degree bounds. In fact, the lower bounds will never
be violated. For directed graphs, we study the problem of find-
ing a minimum cost subgraph which satisfies connectivity require-
ments that areintersecting supermodularor crossing supermodu-
lar (technical definition is deferred to later) and indegree and out-
degree constraints. This includes the MINIMUM BOUNDED DE-
GREE ARBORESCENCEproblem, MINIMUM BOUNDED DEGREE

STRONGLY k-EDGE-CONNECTED SUBGRAPH problem, etc. We
obtain the following result.

THEOREM 1.3. There is a polynomial time(4, 4Bin
v + 6,

4Bout
v + 6)-approximation algorithm to find a minimum cost sub-

graph satisfying intersecting supermodular connectivity require-
ments, together with indegree and outdegree constraints in directed
graphs. For crossing supermodular connectivity requirements, there
is a polynomial time(8, 8Bin

v + 12, 8Bout
v + 12)-approximation

algorithm.

We have not tried to optimize the constants in Theorem 1.3;
in fact we believe they can be improved (we leave the details for
the journal version). We state it here just to illustrate the gener-
ality of the technique and the scope it can be applied to. In con-
trast to the above theorems, we present a hardness result for the
vertex-connectivity version of the SURVIVABLE NETWORK DE-
SIGN problem with degree constraints, even if the cost of the sub-
graph is not considered.

THEOREM 1.4. For any ε > 0, there is no polynomial time

(∞, 2log1−ε nBv)-approximation algorithm for the vertex connec-
tivity SURVIVABLE NETWORK DESIGN problem unless
NP ⊆ DTIME(npolylog(n)).

Next, we turn our attention to network design problems with or-
der constraints. We study the(k, λ)-subgraph problem, i.e. the
problem of finding a minimum costλ-edge-connected subgraph
with at leastk vertices. This problem generalizes the classicalk-
MST problem to higher connectivity requirements. However, it
seems that this line of generalization might be difficult as shown by
the following result.

THEOREM 1.5. An α-approximation algorithm for the(k, λ)-
subgraph problem (even for the unweighted case) for arbitraryλ,
implies an(α log2 k)-approximation algorithm for theDENSEST

k-SUBGRAPH problem.

Notice that the best known approximation algorithm for the DENS-
EST k-SUBGRAPH problem has ratioO(n

1
3−ε) for some constant

ε > 0. Finally, for the(k, 2)-subgraph problem, we are able to
obtain the following.

THEOREM 1.6. There is anO(log3 k)-approximation algorithm
for the(k, 2)-subgraph problem.

1.3 Techniques and Overview
Iterative rounding for the edge connectivity SURVIVABLE NET-

WORK DESIGN problem (without degree constraints) works as fol-
lows. Formulate the SURVIVABLE NETWORK DESIGNproblem as
an integer program, and then solve the linear programming relax-
ation of the problem to find a basic optimum solutionx. Pick an
edgee∗ with highest value (i.e.xe∗ ≥ xe for all e ∈ E) and add
it to the solution subgraphH (initially H is empty). Then con-
sider the residual problem, where the edges inH are pre-selected,
and repeat the above procedure (find a basic optimum solution, add
an edge with highest value toH, and construct the residual prob-
lem) until all the connectivity requirements are satisfied. Jain [18]
proved that the edge picked in each iteration has value at least 1/2
(i.e. xe∗ ≥ 1/2), implying a 2-approximation algorithm for the
problem.

We return to our problem. The starting point is that degree con-
straints are defined only on single vertices, and so the uncrossing
technique as in [18, 14] can be applied to show that a basic opti-
mal solution is characterized by a laminar family of tight sets. This
immediately implies that, in the first iteration, there exists an edge
having value at least 1/2. Now comes the key difference. Since
degree constraints arepackingconstraints, we must allow fornon-
integral degree constraints in the residual problem, otherwise the
residual problem may be infeasible, or its cost may significantly
increase. By doing so, however, it is not necessarily true anymore
that the picked edges in later iterations have value at least 1/2. We
are indeed going to decrease the degree constraints by fractional
values≥ 1/2. However, to overcome the latter difficulty the “prob-
lematic” degree constraints are identified, deleted from the residual



problem, and a basic solution is computed again. This incurs an
extra additive constant 3 in the approximation ratio. Once “prob-
lematic” degree constraints are deleted, we can show that the picked
edges in the residual problems always have value at least 1/2 (even
though there can be non-integral degree constraints). This implies
a (2, 2Bv + 3)-approximation algorithm for the problem.

The above technique is also adapted to prove the claimed guar-
antees for the element connectivity SURVIVABLE NETWORK DE-
SIGN problem (Theorem 1.2) and for the directed graph result (The-
orem 1.3). In fact, the technique developed is so general and power-
ful that it can be extended to settle the conjecture on the MINIMUM

BOUNDED DEGREESPANNING TREE problem [33] affirmatively,
i.e. to give a(1, Bv + 1)-approximation algorithm for the MBDST
problem.

2. SURVIVABLE NETWORK DESIGN
WITH DEGREE CONSTRAINTS

For ease of exposition, we start with Theorem 1.1. Theorem 1.2
is deferred to the full version of this paper.

2.1 Edge-Connectivity SNDP with Degree
Constraints

This section addresses a generalization of the EC-SNDP with
non-uniform upper and lower bounds on vertex degrees, and presents
a bicriteria approximation algorithm which will imply Theorem 1.1.
More specifically, assume we are given a complete graphG =
(V, E) and nonnegative costsc : E → R+ for the edges, an integer
valued connectivity requirements functionri,j on pairs of vertices
i, j, and a degree upper boundBi and lower boundLi for each
vertexi. We also have an upper-boundUe ≥ 1 on the multiplic-
ity of edgee in the solution (which would be 1 if each edge can
be picked only once). The goal is to find a subset of edgesF of
minimum cost such that the subgraphH = (V, F ) satisfies the
connectivity requirements and the degree bounds, that is,H has
ri,j edge disjoint paths between verticesi, j, for each pairi, j, and
each vertexi hasLi ≤ degH(i) ≤ Bi and each edgee appears at
mostUe times inH.

Our method is a simple extension of Jain’s iterative rounding
method for solving EC-SNDP (above problem without degree con-
straints). Jain’s method consists of solving an LP (linear program-
ming) relaxation, finding an optimal basic solutionx∗, rounding an
edgee with x∗e ≥ 1

2
to 1, and then repeating with a new LP re-

laxation for the residual problem (the problem obtained from the
original one by adding edgee to the solution subgraph). The key
point in Jain’s method and proof is that every basic solution has an
edge with value≥ 1

2
. We show that with some extra care, the same

property holds in our more general setting. Thus our method finds
a subgraph that satisfies all of the edge connectivity requirements,
such that the degree of every vertexi is at leastLi and at most
2Bi + 3 and has cost within a factor of 2 of the LP optimal cost1.

An integer function on sets of verticesf : 2V → Z+ that has
f(V ) = 0 is calledweakly supermodularif one of the two inequal-
ities: f(A)+f(B) ≤ f(A∩B)+f(A∪B) or f(A)+f(B) ≤
f(A − B) + f(B − A), holds for every pair of setsA, B ⊆ V
with A ∩ B 6= ∅. An important point in Jain’s method is that the
connectivity requirements are specified via a weakly supermodular
functionf on the sets of vertices; it is well known that a connectiv-

1Here and elsewhere, we assume that the LP relaxation has an opti-
mal solution, that is, it has a solution of minimum cost that satisfies
all of the constraints; of course, if the LP has no feasible solution,
then the problem has no feasible solution, and so the issue of ap-
proximation is pointless.

1. InitializationF ← ∅, f ′ ← f , and∀i ∈ V : B′
i = Bi;

2. While f ′ 6= ∅ do

(a) Find a basic feasible solutionx with cut requirementf ′

and remove every edgee with xe = 0.

(b) If there are anyB′
i’s where vertexi has at most 4 non-

zero incident edges delete those constraints and goto
the next iteration.

(c) For each edgee = (u, v) with xe ≥ 1/2 add dxee
copies ofxe to F and decrease the bounds forB′

u and
B′

v by xe.

(d) For everyS ⊆ V : f ′(S)← f(S)− |δF (S)|.

3. returnH = (V, F ).

Figure 1: Bounded Degree EC-SND Algorithm

ity requirement functionri,j (i.e.,r : V ×V → Z+) is captured by
a weakly supermodular functionf . When we update the LP from
one iteration to the next one (to account for one or more edges be-
ing added to the solution subgraph), it is easy to update the function
f and to verify that the new function stays weakly supermodular.
We denotex(U) :=

P
e∈U xe, andδ(S) for a setS ⊂ V denotes

the set of edges with exactly one end-point inS. Here is the LP
relaxation for EC-SNDP with degree bounds:

(LP) minimize zLP =
X
e∈E

ce xe

subject to x(δ(S)) ≥ f(S), ∀S ⊆ V

x(δ(i)) ≥ Lv, ∀ v ∈ V

x(δ(i)) ≤ Bv, ∀ v ∈ V

0 ≤ xe ≤ Ue ∀ e ∈ E

Clearly the first part of Theorem 1.1 follows from the following.

THEOREM 2.1. If the LP has an optimal solution of costzLP ,
then there exists an integral solution̂x of cost≤ 2zLP that satisfies
all of the constraints onf andLi ≤

P
e∈δ(i) x̂e ≤ 2Bi + 3,∀i ∈

V . Moreover,x̂ can be computed in polynomial time.

The proof of this theorem follows from an extension of Jain’s
method [18] explained below. First note that any degree lower
bound constraint can be considered as a connectivity constraint
(with f({v}) = Lv for the cutS = {v}). By doing so, the new
function f obtained from the connectivity constraints and degree
lower bounds remains weakly supermodular. Therefore, if we sat-
isfy all the connectivity constraints then we have satisfied the de-
gree lower bounds too. So from now on, we assume that aside
from connectivity constraints we only have degree upper bounds.
We simply refer to them as degree constraints. Since the algorithm
may change the degree boundsBi’s to fractional values, we may
assume thatBi’s are all fractional.

We say that a pair of setsA, B intersect properlyif all of the sets
A∩B, A−B, B−A are nonempty, and we say that a family of sets
L = {A1, A2, . . . , A`} is laminar if no two of its sets are properly
intersecting. For any setA ⊆ V , letχA denote the incidence vector
of the set of edgesδ(A); note that in the constraints matrix of the
LP, χA is the row for the setA (the constraint forA may be either
a connectivity constraint or a degree bound). Consider any solution



x of the LP. We call a set of verticesA tight (w.r.t. x) if either
A = {v} andx satisfies the degree constraint forv with equality,
x(δ(v)) = Bv, or x satisfies the connectivity constraint forA with
equality,x(δ(A)) = f(A) (in the latter case,A may be a singleton
or not). The following lemma characterizes the tight constraints
(i.e. constraints satisfied as equalities) of a basic feasible solution.

LEMMA 2.2. Let the requirement functionf of (LP) be weakly
supermodular, and let x be a basic solution of (LP) such that0 <
xe < 1 for all edgese ∈ E. Then, there exists a laminar family
L of tight sets such thatL partitions into a set of singletonsL′ for
the degree constraints, and the remaining setsL′′ = L−L′ for the
connectivity constraints, such that:
(i) Every setA = {v} ∈ L′ hasBv > 0 and every setA ∈ L′′ has
f(A) ≥ 1.
(ii) |L| = |E|.
(iii) The vectorsχA, A ∈ L, are linearly independent.
(iv) x is the unique solution to:
{x(δ(v)) = Bv,∀{v} ∈ L′}

S
{x(δ(A)) = f(A),∀A ∈ L′′}.

PROOF. The proof follows from the uncrossing method, see Lem-
mas 4.1–4.3 of [18], or Chapter 52.4 of [32]. The main point is that
if two tight setsA, B are properly intersecting then neither can be
a singleton set, so the connectivity constraints forA, B must be
holding with equality (the degree constraints are irrelevant); then
eitherA ∩B, A ∪B are tight andχA + χB = χA∩B + χA∪B or
A−B, B −A are tight andχA + χB = χA−B + χB−A.

The algorithm is now given in Figure 1. The following lemma is
similar to the key lemma in [18].

LEMMA 2.3. LetL be a laminar family of tight sets satisfying
conditions (i)–(iv) in Lemma 2.2. Moreover, suppose that: 1) each
f(A) is an integer, forA ⊆ V , and 2) each vertexi that has a
degree constraint has at least five incident edges with non-zero val-
ues. Then, in the unique solutionx to the system, there is an edge
e∗ such thatxe∗ ≥ 1

2
.

Now we give the sketch of the proof of Lemma 2.3. This is
similar to the proof of key lemma in [18] as described in [34](The-
orem 23.6). LetL be the laminar family of tight sets obtained in
Lemma 2.2 when applied to the basic solution just before we ex-
ecute line 2c. The number of sets inL is equal to the number of
edges inG. We can viewL as a forest of rooted trees where each
vertex in the tree corresponds to a set inL and a root is a set not
contained in any other set. SetT is theparentof S if it is the small-
est set containingS. Following terminology of [34],S is said to
ownend-pointv of edgee = (u, v) if S is the smallest set contain-
ing v. A subtree ownse if one of the sets ofL corresponding to the
vertices in that subtree ownse. Note that there are a total of2m
end-points inG. The proof is established by showing that if every
edgee hasxe < 1/2 then we can assign end-points to the sets in
such a way that for every setS, S gets at least 3 end-points and
each of its descendants gets 2 endpoints. We get a contradiction
of having more than2m end-points, once this argument is applied
to the roots of the trees in the forest of laminar family. We need
one more definition from [34]. For every setS ∈ L we define the
corequirement ofS ascoreq(S) = 1

2
|δ(S)| − f(S). The counting

argument leading to a contradiction is done through the following
lemma which is essentially Lemma 23.21 of [34].

LEMMA 2.4. Let T be a subtree rooted atS and assume that
∀e, xe < 1/2. The endpoints owned byT can be redistributed in
such a way thatS gets at least 3 endpoints and each of its descen-
dants gets 2. Furthermore, ifcoreq(S) 6= 1/2, thenS gets at least

4 endpoints and ifS is a degree constraint then it gets at least 5
endpoints.

PROOF. First, note that the fractional-value tight sets are single-
tons coming from degree constraints. Each degree constraint is a
leaf in the forest and each owns at least 5 endpoints by the assump-
tion onx (line 2b). The same argument as in [34] shows that every
other leaf (which is not a degree constraint) satisfies the require-
ments of the lemma. We say a setS has a surplus ofp if p + 2
endpoints have been assigned to it. Consider a non-leaf setS.

(1) If S has two or more children, one of which is a degree con-
straint, then it can collect three endpoints from the surplus of its
degree constraint child, and one endpoint from the surplus of one if
its other children, for a total of at least 4.

(2) If S has only one child, sayS′, and it is a degree constraint,
then sinceδG(S) 6= δG(S′) (by linear independence),S owns at
least one endpoint. It can also collect 3 endpoints from the surplus
of S′, for a total of at least 4.

(3) If none of the children ofS are degree constraints, then the
same analysis as in [34] shows thatS satisfies the requirements of
the lemma.

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1: The results of Jain [18] and Grötschel et
al., [16, Theorem 6.4.9] show that a basic optimal solutionx∗ of
the initial LP (if it exists) can be found in polynomial time. It can
be seen that the updated functionf ′ stays weakly supermodular
(since we are subtracting a symmetric submodular function). It is
clear that the final edge setF (at termination) satisfies all of the
connectivity requirements.

We need to prove that the cost ofF is ≤ 2zLP , wherezLP

is the cost ofx∗ (the optimal solution of the initial LP) and that
degF (i) ≤ 2Bi + 3 for all verticesi. We prove the former by
induction on the number of iterations in which line 2c is executed.
The base case is clear since we round up edgese with xe ≥ 1/2.
The induction hypothesis is that the algorithm finds an edge setF ′

of cost≤ 2z′LP that satisfies the connectivity constraints where
z′LP is the solution to the current LP. Now,zLP ≥ z′LP + ce

2
, be-

causex∗ restricted to the edges inE−F satisfies all the constraints
of current LP (this needs detailed verification for the connectivity
constraints and for the degree bounds) and the cost ofx∗ restricted
to the edges inE − F is≤ zLP − ce

2
, hence,z′LP ≤ zLP − ce

2
.

Hence, the cost ofF is c(F ) = c(F ′) + ce ≤ 2z′LP + ce ≤ 2zLP .
Finally we prove that for every vertexi ∈ V : degF (i) ≤ 2Bi +

3. Consider a degree constraint, say for vertexi, and focus on the
last iteration in whichB′

i changes or the constraint gets deleted in
line 2b (soB′

i > 0 and we will not add any edge incident toi in
future iterations). Suppose that we have addedα edges incident
to vertexi before this iteration. Since each edge added had value
≥ 1/2: Bi ≥ α

2
+ B′

i. If in this iteration we addβ ≥ 1 more
edges incident toi then the final degree ofi will be α + β (by
the assumption that this is the last such iteration); and we must
have hadB′

i ≥ β/2 (becausexe ≥ 1/2, we havexe ≥ dxee/2);
therefore we have:α + β ≤ 2Bi. If we delete this constraint
at this iteration (in line 2b) and solve the problem for this relaxed
version, in the worst case, the final solution contains all the (at
most) 4 remaining edges incident with vertexi. So the degree ofi
will be α + 4 whereasBi (the initial degree bound fori) is at least
α
2

+ B′
i, which implies thatα + 4 ≤ 2Bi + 4 − 2B′

i, and since
α + 4 is an integer andB′

i > 0: α + 4 ≤ 2Bi + 3. 2

Remark 1: One may wonder whether the bicriteria approxima-
tion guarantee of this theorem is best possible. The following ex-
ample shows that the integrality gap of the LP is at least the min-



imum between(2, 2Bv + 1) and(2, Bv + 2). That is, if the LP
is feasible and has an optimal solution with costzLP , then in any
integral solution the cost is at least2zLP , and each vertexv has
degree at least2Bv +1 or Bv +2 (note that it is well-known that if
we do not have degree bounds then the integrality gap is at least 2).
Take a3-regular3-edge connected graphG with no Hamiltonian
path.2 Let rij = 1 for every pair of vertices inG and for alli ∈ V ,
let Bi = 1. Assigningxe = 1/3 to every edge gives a feasible
solution with cost|V (G)|/2 and degree bounds satisfied. It’s not
hard to see that this is also an optimal solution. On the other hand,
any feasible integer solution with degree bounds at most 2 (which
is 2Bi = Bi + 1) needs to be a Hamiltonian path inG.

Remark 2: Our iterative rounding method applies also to the set-
ting of minimizing the maximum degree subject to edge-connectivity
constraints. We start with the above LP and introduce a new vari-
able∆, and replacing the degree constraintsx(δ(i)) ≤ Bi,∀i ∈ V
by x(δ(i)) ≤ ∆,∀i ∈ V . The objective function is to minimize∆.
Let (LP-∆) denote this linear program. The following theorem fol-
lows immediately from Theorem 2.1, which implies the first con-
stant factor approximation algorithm for many smallest maximum
degree subgraph (satisfying connectivity requirements) problems.

THEOREM 2.5. If (LP-∆) has an optimal solution with objec-
tive value∆∗, then there exists an integral solution̂x of maximum
degree≤ 2d∆∗e+3 that satisfies all of the constraints onf . More-
over,x̂ can be computed in polynomial time.

Remark 3: For the average degree claim, notice that the number
of edges in the support is at most2n − 1, since a basic feasible
solution is characterized by a laminar family which has at most
2n − 1 members. A naive argument (even if we take all the edges
in the support) shows that the average degree bound is violated by
an additive constant 4; this can be improved to 2 by a more careful
argument, as follows.

Let’s assume that̃B is the average degree upper bound (i.e.B̃ =
1
n

P
i∈V Bi). Then the arguments in the proof of Theorem 2.1 can

also be used to show that in the final solution, the average degree
of the vertices is at most̃B + 2; in other words, the degree of each
vertexv in the final solution, on average, is at mostBv + 2 (i.e.
the second part of Theorem 1.1). To prove this, we modify each
iteration of the algorithm by adding the following line after line 2a
and before line 2b:

(a’) If there are any edgese = (u, v) with xe ≥ 1 then add a copy
of e to F ; decreaseUe and the bounds forB′

u andB′
v by 1

and go to Step 2d.

It is easy to check that the same analysis shows that with this
reformulation the cost of the solution is still at most2zLP .

Consider the first iteration in which we have a totally fractional
solution, i.e.xe < 1 for all edgese. For each vertexv let αv ≥ 0
be the number of edges incident with vertexv selected so far; thus
B′

v = Bv − αv because all the edgese selected so far hadxe ≥ 1,
and the degree bounds were decremented by 1.

CLAIM 2.6. From now until the end of the algorithm, we select
a total of at most2n− 1 other edges.
2Such graphs exist. The following construction was brought to our
attention by Jim Geelen and Jacques Verstraete. LetP denote the
Petersen graph andP −v be the graph obtained from it by deleting
one vertexv, and let us call the neighbors ofv in P asw1, w2,
andw3 (so these 3 vertices have degree 2 inP − v). Now, take
3 copies ofP − v, and 3 new verticesv1, v2, andv3, and attach
them as follows: add edges fromvj to each of the 3 copies ofwj

(1 ≤ j ≤ 3). It’s not hard to argue that this graph on 30 vertices
does not have any Hamiltonian path.

PROOF. By Lemma 2.2, the number of sets inL is equal to the
number of edges (remaining) in the graph. Also, since the ground
set hasn vertices, an easy induction shows that the number of sets
in L is at most2n − 1. Therefore the number of edges inG (with
non-zero values) is at most2n− 1.

Each time we select an edgee with xe ≥ 1/2, we increase the to-
tal degree by two (as it has two end-points), whereas the LP would
increase the total degree by at least 1 (at least1/2 for each end-
point). So we increase the total degrees by an extra (at most) 1 in
every iteration with respect to the LP solution. Since there are at
most2n − 1 iterations left (by the above claim), we increase the
total degrees by an extra amount of at most2n − 1 (compared to
LP), which is an average of at most2 per vertex.

2.2 Directed Graphs
Our iterated rounding technique extends to directed graphs with

some restricted types of connectivity requirements and degree bounds,
via the results of Melkonian and Tardos [26].

For a set of verticesS, δout(S) denotes the set of arcs{ij ∈ E |
i ∈ S, j 6∈ S}, andδin(S) denotes the set of arcs{ij ∈ E | i 6∈
S, j ∈ S}. An integer function on sets of verticesf : 2V → Z+ is
calledcrossing supermodularif the inequality

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

holds for every pair of setsA, B ⊆ V such thatA ∩ B 6= ∅ and
A ∪ B 6= V . The connectivity requirement of “k-edge-connected
spanning subgraph” can be formulated via the crossing supermod-
ular functionf(S) = k, ∀∅ 6= S ( V , but the connectivity
requirement of “directed Steiner tree” cannot be so formulated. An
integer function on sets of verticesf : 2V → Z+ is calledinter-
secting supermodularif the inequality

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

holds for every pair of setsA, B ⊆ V such thatA ∩ B 6= ∅. This
is a stronger requirement than crossing supermodularity; for exam-
ple the connectivity requirements of a stronglyk-edge-connected
subgraph cannot be formulated as an intersecting connectivity re-
quirement function. An example of an intersecting supermodular
function is the connectivity requirement of an arborescence. Given
a directed graphG = (V, E) and a specific vertexr ∈ V called
the root, a subgraphH = (V, E′) of G is called anr-arborescence
if there is exactly one directed path fromr to every other vertex.
In other words, it is a spanning tree rooted atr. Another example
of an intersecting supermodular connectivity requirement function
comes from the rootedk-edge-connected subgraph problem.

First we address the problem of finding a minimum cost sub-
graph satisfying intersecting supermodular connectivity requirements
and non-uniform degree requirements (both in-degrees and out-
degrees). In the following the connectivity requirements are spec-
ified by an intersecting supermodular functionf . Furthermore, for
simplicity, we assume that the connectivity requirement function
comes from the rootedk-edge-connected subgraph problem. Fig-
ure 2 is the LP-relaxation for our problem (as beforeUe is the upper
bound on the multiplicity of edgee):

THEOREM 2.7. If the above LP (for directed graphs) has an
optimal solution of costzLP , then there exists an integral solution
x̂ of cost≤ 4zLP that satisfies all of the constraints onf if f
is intersecting supermodular andx(δout(i)) ≤ 4Bout

i + 6 and
x(δin(i)) ≤ 4Bin

i +6 for all i ∈ V . Moreover,̂x can be computed
in polynomial time.



(DLP) minimize zDLP =
X
e∈E

ce xe

subject to
X

e∈δin(S)

xe ≥ f(S), ∀S ⊆ V, r /∈ S

X
e∈δout(i)

xe ≤ Bout
i , ∀ i ∈ V

X
e∈δin(i)

xe ≤ Bin
i , ∀ i ∈ V, i 6= r

0 ≤ xe ≤ Ue, ∀ e ∈ E

Figure 2: LP for directed case

The proof of this theorem follows from an extension of the meth-
ods of Jain and of Melkonian & Tardos [18, 26], similar to our proof
of Theorem 2.1

We say that a pair of setsA, B are crossingif all of the sets
A∩B, A−B, B−A, V − (A∪B) are nonempty, and we say that
a family of setsL = {A1, A2, . . . , A`} is cross-freeif no two of its
sets are crossing. For any setA ⊆ V , let χA denote the incidence
vector of the set of arcsδout(A); note that in the constraints matrix
of the LP, we rewrite the out-degree constraintsx(δout(i)) ≤ Bout

i

asx(δin(V − {i})) ≤ Bout
i , and thatχA is the row for the setA

(the constraint forA may be either a connectivity constraint or a
degree bound). Consider any solutionx of the LP. We call a set of
verticesA tight (w.r.t. x) if either A = {i} or A = V − {i} and
x satisfies the degree constraint fori with equality,x(δout(i)) =
Bout

i or x(δin(i)) = Bin
i , orx satisfies the connectivity constraint

for A with equality, x(δout(A)) = f(A) (in the latter case,A
may be a singleton or not). The following lemma follows from
arguments similar to those of proof of Lemma 3 in [26].

LEMMA 2.8. Let the requirement functionf of (DLP) be inter-
secting supermodular, and let x be a basic solution of (LP) such
that0 < xe < 1 for all edgese ∈ E. Then there exists a cross-free
familyQ of tight sets such thatQ partitions into a set of singletons
or complements of singletonsQ′ for the degree constraints, and the
remaining setsQ′′ = Q−Q′ for the connectivity constraints form
a laminar family, such that:
(i) Every setA = {i} ∈ Q′ hasBin

i ≥ 1, every setA = V −{i} ∈
Q′ hasBout

i ≥ 1, and every setA ∈ Q′′ hasf(A) ≥ 1.
(ii) |Q| = |E|.
(iii) The vectorsχA, A ∈ Q, are linearly independent.
(iv) x is the unique solution to{x(δin(i)) = Bin

i ,∀{i} ∈ Q′}
S

{x(δout(i)) = Bout
i ,∀V−{i} ∈ Q′}

S
{x(δin(A)) = f(A),∀A ∈

Q′′}.

LEMMA 2.9. [26] LetQ be a cross-free family of tight sets sat-
isfying the conditions in Lemma 2.8. Moreover, suppose that: 1)
eachf(S) ≥ 1 is an integer, forS ∈ Q, and 2) each vertex that
has a in-degree constraint has at least eight in-going edges with
non-zero values and each vertex that has an out-degree constraint
has at least eight out-going edges with non-zero values. Then in
the unique solutionx to the system, there is an edgee∗ such that
xe∗ ≥ 1

4
.

This lemma is the same as the key lemma in [26]; Our rounding
algorithm is very similar to that of Theorems 2.1: The only dif-
ference is that we delete degree constraints (in-degree/out-degree)
for vertices with at most seven incident edges (in going/out-going
respectively). By the above lemmas, there is at least one edgee

with x∗e ≥ 1
4
. We add one such edgee to our solution edge set

and update the degree bounds and functionf accordingly. An easy
argument similar to that of Theorem 2.1 shows that the cost of the
solution is at most4zLP and that for each vertexv ∈ V the final
out-degree (in-degree) ofv is at most4Bout

v + 6 (4Bin
v + 6). We

leave the proof of Lemma 2.9 to the full version of the paper.
For the second claim of Theorem 1.3, we use a technique in [26]

(which in turn is inspired by Frank [11]) to decompose a crossing
supermodular connectivity requirement function into two intersect-
ing supermodular connectivity requirement functions (see [26]).
For example, the stronglyk-edge-connected subgraph problem can
be decomposed into two rootedk-edge-connected subgraph prob-
lems, and similarly for the bounded degree version. So, an(a, b, c)-
approximation algorithm for the latter problem immediately gives a
(2a, 2b, 2c)-approximation algorithm for the former problem. This
shows the second claim of Theorem 1.3 where the connectivity re-
quirement function comes from the stronglyk-edge-connected sub-
graph problem. In fact, we believe that the approximation ratios in
Theorem 1.3 can be improved (details to appear in the journal ver-
sion).

2.3 Hardness of Low Degree Subsetk-Vertex
Connected Subgraph

In this subsection, we show that unlike the degree bounded EC-
SNDP for which we presented a(2, 2Bv + 3)-bicriteria approx-
imation algorithm, the vertex-connectivity version, which we call
degree bounded VC-SNDP is very hard to approximate. In the VC-
SNDP we are given a weighted undirected graphG = (V, E) with
degree boundBv for everyv ∈ V , and a connectivity requirement
r : V × V → Z+. We want to find a minimum cost subgraphG′

satisfying the connectivity requirements and the degree bounds. As

we will see, it is hard to get an(∞, 2log1−ε n · Bv)-approximation
for this problem. In other words, even if all edge costs are zero and
we just have to approximate the degree bounds it is still hard. In
fact the same hardness holds for a more special case of the problem,
called degree-bounded subsetk-vertex connected subgraph (DkVC
for short) in whichruv = k for every pairu, v ∈ S for some set
S ⊆ V andruv = 0 otherwise. Anα-approximation for DkVC
will find a solutionG′ in which the degree of every vertexv is at
mostαBv and there areruv vertex-disjoint paths between every
pair u, v ∈ V . The following theorem immediately implies Theo-
rem 1.4.

THEOREM 2.10. Unless NP⊆ DTIME(npolylog(n)) there is no

2log1−ε n-approximation for DkVC for someε > 0.

We have a similar hardness result for the Low Degree Directed
Steiner Forest (LDSF) problem. In LDDSF, we are given a directed
graphG = (V, E), degree boundsBv for everyv ∈ V , and con-
nectivity requirementsr : V × V → {0, 1}. The goal is to find
smallestα ≥ 1 and a subgraphG′ satisfying the connectivity re-
quirements in which the degree of each vertexv is at mostαBv.
The proofs of Theorems 2.10 and 2.11 follow from the construc-
tion for the hardness of vertex-connectivity version of survivable
network design problem (SNDP) and subset connectivity [23]. De-
tails appear in the full version of the paper.

THEOREM 2.11. Unless NP⊆ DTIME(npolylog(n)) there is no

2log1−ε n-approximation for LDSF for someε > 0.

3. MINIMUM COST λ-CONNECTED
K-SUBGRAPHS



In this section we focus on the following class of problems.
Given are a (multi)graphG(V, E) with edge costsc : E → R+,
and positive integersk and connectivity requirementλ ≥ 1; the
(k, λ)-subgraph problem asks to find a minimum costλ-edge-connected
subgraph ofG with at leastk vertices. We should point out that
edge costs induce an arbitrary function. Furthermore, we are not al-
lowed to take more copies of an edge than are present in the graph.
Otherwise, a 2-approximate solution can be computed by taking a
2-approximatek-MST solutionT , and then takingλ copies ofT .

Note that the(k, λ)-subgraph problem contains, as special cases,
several classical problems. For instance, the minimum costλ-
edge-connected spanning subgraph problem is just the minimum
(n, λ)-subgraph, and the classicalk-MST problem is the(k, 1)-
edge-subgraph problem. Another related and well-studied prob-
lem is that ofk-TSP (finding a minimum cost traveling salesman
tour visiting at leastk vertices) for the metric cost functions. Al-
though there are approximation algorithms for each of these special
cases, we are not aware of any study of the more general problem
of (k, λ)-subgraph. As we will see below, it seems that this prob-
lem for arbitrary values ofλ (and even unweighted graphs) is very
difficult to approximate.

For this reason, we look into the approximability of the(k, 2)-
subgraph, which is the first generalization ofk-MST to higher con-
nectivity. We show that(k, 2)-subgraph has anO(log3 k)-approximation.
This algorithm is based on the results of [1, 17]. It works for the
rooted version of the problem where a particular vertexr ∈ V is
required to be in the solution. It is easy to see that given an algo-
rithm for the rooted version, we can try all possible vertices as the
root to obtain an algorithm for the unrooted version.

THEOREM 3.1. There is anO(log3 k)-approximation algorithm
for the rooted(k, 2)-subgraph problem.

As mentioned earlier, we show that for arbitrary values ofλ, the
(k, λ)-subgraph problem seems to be very difficult. As evidence,
we show a reduction from thek-dense-subgraph problem. In the
k-dense-subgraph problem we are given a graphG and integerk
and have to find a subgraph withk vertices with maximum number
of induced edges. Despite considerable effort, the best known ap-
proximation algorithm for thek-dense-subgraph problem has ratio
O(n

1
3−ε) for some constantε > 0 [10]. We can prove that:

THEOREM 3.2. If there is anα-approximation algorithm for
(k, λ)-subgraph for arbitraryλ, even for unweighted graphs, then
there is an(α · log2 k)-approximation for thek-dense subgraph
problem.

Therefore, obtaining any poly-logarithmic approximation for the
(k, λ)-subgraph problem would imply a poly-logarithmic approx-
imation for thek-dense subgraph problem. Proof of Theorem 3.2
appears in the full version of this paper.

3.1 Proof of Theorem 3.1
Recall that an instanceI to the rooted(k, 2)-subgraph has a

graphG = (V, E), parameterk, and a rootr ∈ V . Our algo-
rithm, which is based on [1, 17], has a key procedure, which we
call it Partial. This procedure tries to find a 2-edge-connected sub-
graph on at leastk

4
vertices that contains the root and whose cost

is at mostO(log2 k)-factor of the optimum solution to instanceI.
Then, by running this procedure at mostO(log k) rounds, we find a
(k, 2)-subgraph of cost at mostO(log3 k) of the optimum solution
to I.

Procedure Partial is a Kruskal-like algorithm. At any given time
during this procedure, we have a set of 2-edge-connected compo-
nents which we callclusters. We start with every vertex as a single

Procedure Partial

1. Let everyvi ∈ V be a single clusterCi with multiplicity one.

2. p← 0

3. For everyCi and everysi satisfyingsi ≤ |Ci| ≤ 2si do

(a) Let Si be the set of clusters (vertices) with multiplicity
betweensi and2si.

(b) Find a clusterCj ∈ Si with the smallest ratio of
d2(Ci, Cj)/si; p ← p + 1; Let Mp = {Ci, Cj} be
a candidate set, its edge setFp be the edges of the two
disjoint paths found to computed2(Ci, Cj), and its ra-
tio bed2(Ci, Cj)/si.

(c) Find a cycleD containing (vertex)ci with the smallest
ratio of

P
e∈D c(e)/(si · |D∩ (Si−Ci)|); p← p+1;

Let Mp be the set of clusters ofSi on cycleD (includ-
ing Ci), Fp be the set of edges of this cycle, andrp be
its ratio.

4. Among allp candidate sets, letMq (1 ≤ q ≤ p) be the one
with the smallest ratiorq.

5. Merge all the clusters inMq by adding the edges inFq. Con-
tract the new cluster into a single vertex and assign its mul-
tiplicity as the sum of the multiplicities of all the vertices
contracted.

6. Goto Step 3 unless there is a cluster of size (multiplicity) at
leastk

4
. Return the largest cluster.

Figure 3: The main subroutine used in the algorithm for(k, 2)-
subgraph problem

cluster and at each iteration we try to connect two or more clusters.
Once there is at least one cluster that contains at leastk

4
vertices

the procedure stops and returns that cluster. The main step of this
procedure is to find the set of clusters that have to be merged. We
always look for clusters that have about the same size (more specif-
ically, factor at most two apart) to find a group of size at least two
that are to be merged. To simplify the algorithm, at each iteration
we contract each clusterCi into a single vertex and useci to refer
to that (contracted) cluster. The multiplicity of that vertex is the
number of vertices contracted into that vertex.

For any two clustersCi andCj we defined2(Ci, Cj) as the min-
imum cost of two edge-disjoint paths that run between these two
clusters. To computed2(Ci, Cj) we use a min-cost flow algorithm
betweenci andcj [32]. Consider a fixed clusterCi and letSi be
the set of clusters of size (multiplicity) betweensi and2si where
si ≤ |Ci| ≤ 2si (we consider all possible values ofsi that satisfy
this inequality, and therefore the corresponding setSi, separately).
First, we consider all clustersCj ∈ Si and compute the minimum
ratior1 = d2(Ci, Cj)/si. So far{Ci, Cj} is one candidate for the
merge (using the two disjoint paths found between them). This set
has ratior1. Next we compute other sets of clusters as candidates
for merge withCi. To do so, we compute a minimum ratio cycle
containingci (again, we work with contracted clusters), where the
ratio of a cycle is equal to the cost of its edges divided bysi times
the number of vertices corresponding to the clusters fromSi − Ci

in that cycle. We later show how to compute a minimum ratio cy-
cle. Every such cycle defines a set of clusters fromSi (including
Ci) as a candidate whose ratio is the ratio of the cycle (as defined).



The Main (k, 2)-subgraph Algorithm

1. Guess the value of optimum solution; let it beµ.

2. Delete all the verticesv with d2(v, r) > µ as they cannot
belong to OPT (r is the root).

3. While k > 0 do

(a) Run Partial with parameterk; let Ci be the largest clus-
ter found ands = |Ci| ≥ 2.

(b) ConnectCi to the root using two edge-disjoint paths
P1 andP2 with total cost at mostµ. Let p be the total
number of vertices inCi ∪ P1 ∪ P2.

(c) ContractCi and these two paths into the root and set
k = k − p + 1.

4. Uncontract all the clusters contracted in the root (and their
paths) and return it.

Figure 4: The algorithm for (k, 2)-subgraph problem

We do this for all values ofsi (that satisfysi ≤ |Ci| ≤ 2si) and
also for all clustersCi. Among all candidate sets found, take the
one with the smallest ratio and merge the clusters in that set. The
full description of procedure Partial is given in Figure 3

Here are more details for step 3c. First subdivide every edge
(temporarily) by adding a new vertex into it and replacing it by a
path of length 2. For every vertexcj corresponding to a cluster
Cj ∈ Si − Ci, let all edgese of that vertex havew(e) = 1. Every
other edgee, including the ones incident to vertexci (for cluster
Ci), havew(e) = 0. Then we compute a cycleD containing ver-
tex ci with minimum ratio

`P
e∈D c(e)

´
/(si

P
e∈D w(e)). This

can be done using the min-ratio cycle algorithms [25]. We prove
the following upper bound on the cost of the solution returned by
Partial. Let OPT be an optimum solution andµ be its cost.

LEMMA 3.3. The cost of the solution returned by Partial is at
mostO(µ log2 k).

First we show how using this lemma we obtain anO(log3 k)-
approximation for(k, 2)-subgraph. We guess the cost of the opti-
mum solution,µ (we can do binary search forµ, or as we explain
later do it inO(log k) iterations). The main algorithm is given in
Figure 4. The following lemma follows from the algorithm and
Lemma 3.3.

LEMMA 3.4. The cost of the solution returned by the Main Al-
gorithm is at mostO(µ log3 k).

To guess the valueµ, for every vertexv 6= r, first we compute
d2(r, v). Let L be thekth smallest value. Clearly,L ≤ µ ≤ kL.
So it is enough to start with estimateµ = L and then double the
estimate ofµ if the algorithm does not succeed; we have to do
this at mostO(log k) times. To prove Lemma 3.3 we need the
following two claims. These two claims are the heart of the proof
of correctness, specially Claim 3.6. We defer the proofs to the full
version of the paper.

CLAIM 3.5. If the largest ratio used by procedure Partial so
far is at mostr then every cluster withp vertices has cost at most
3rp log p.

CLAIM 3.6. Procedure partial never merges the clusters of a
candidate set with ratio larger than(24µ log k)/k.

PROOF. By way of contradiction, suppose that all the clusters
found so far have size smaller thank

4
and the smallest ratio that

the procedure finds is larger thanr = 24µ log k/k. We group
the clusters into at mostlog k buckets by placing clusters of size
betweenk/2i andk/2i+1 into bucketi, for i ≥ 2. Ignore all the
clusters that do not intersect the optimum solution. If we consider
buckets that have exactly one cluster inside, then the number of
vertices inside them is at mostk

4
+ k

8
+, . . . < k

2
. Thus, there are

at leastk
2

vertices of the optimum that are in the buckets with at
least two clusters each. So there is at least one such bucket, say
bucketj, that contains at least k

2 log k
vertices of the optimum and

all the clusters of this bucket have size betweens = k/2j+1 and
2s = k/2j . Thus, the optimum intersects at least` = k

4s log k
≥ 2

clusters in this bucket. Take the optimum solution and contract
each of these clusters into a single vertex and call this set of vertices
P = {p1, . . . , p`}. Now in the optimum solution, make a parallel
copy of every edge to obtain an Eulerian graph, call itG′. We call
two cycles that meet in exactly one vertex a bi-cycle. Our goal is to
obtain an edge-disjoint collectionT of cycles and bi-cycles ofG′

with the following properties: (i) each bi-cycle inT is marked to
exactly two and each cycle inT is marked to at least two vertices
of P such that eachD ∈ T contains the vertices ofP marked to
it, (ii) no vertex ofP is marked by more than one element ofT ,
and (iii) at least̀ /3 vertices ofP are marked by some element
of T . To constructT , we start withT = ∅ and every vertex of
P is unmarked. Take an Eulerian tour ofG′, starting from vertex
p1 ∈ P . Each time we visit a vertex put that vertex and the edge we
traversed on the stack. The first time we re-visit a vertexv, we look
at all the vertices and the edges on the stack until the most recent
copy ofv on the stack:

1. If there are no unmarked vertices ofP in this set then we pop
all the vertices and edges from the stack and discard them;
continue with the Euler tour.

2. If there are at least two unmarked vertices ofP in this set we
have found a cycle containing at least two unmarked vertices
of P . We place this cycle inT , mark those unmarked vertices
of P in the cycle, and pop all the edges and vertices until the
most recent copy ofv on the stack; continue with the Euler
tour.

3. If there is exactly one unmarked vertex fromP then we have
found a cycle with exactly one unmarked vertex ofP . We
continue with the tour until we either find another cycle con-
taining v and exactly one other unmarked vertex ofP (in
which case we place this bi-cycle inT , mark those two ver-
tices ofP with this bi-cycle, and pop all its edges and vertices
from the stack) or we find a cycle with at least two unmarked
vertices ofP ; in the latter case we ignore the first cycle found
with only one unmarked vertex ofP and continue.

Each time (except possibly the very last iteration) we ignore a cy-
cle containing exactly one unmarked vertex ofP (in step 3 above)
in the next round we mark at least two vertices fromP . So for ev-
ery vertex left unmarked inP there are at least 2 vertices marked.
It is easy to see that at the end there are at least two marked vertices
in P if ` ≤ 5 and at least2`/3 − 1 marked vertices inP if ` ≥ 6.
In either case we have at least`/3 marked vertices. Now by the as-
sumption, the ratio of each cycle and bi-cycle inT is larger thanr.
This implies for every cycleD ∈ T :

P
e∈D c(e)/(s · |D∩P |) > r

and for every bi-cycleB ∈ T :
P

e∈B c(e)/s > r. ThusP
cycle D∈T

P
e∈D c(e) +

P
bi−cycle B∈T

P
e∈B c(e)P

cycle D∈T (s · |D ∩ P |) +
P

bi−cycle B∈T s
> r.



By property (iii) for setT , the sum in the denominator is at least
s`/3. This implies:

2µ ≥
X

cycle D∈T

X
e∈D

c(e) +
X

bi−cycle B∈T

X
e∈B

c(e) > sr`/3

= s · 24µ log k

k
· k

12s log k

= 2µ,

which is a contradiction.
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