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ABSTRACT

We present algorithmic and hardness results for network design
problems with degree or order constraints. We first consider the

SURVIVABLE NETWORK DESIGN problem with degree constraints
on vertices: the objective is to find a minimum cost subgraph sat-

isfying certain connectivity requirements as well as degree upper

bounds on the vertices. A well known special case is the-M
IMUM BOUNDED DEGREE SPANNING TREE problem which has
attracted much attention recently. Denote By the degree con-
straint of vertexo. We present 2, 2B, + 3)-approximation algo-
rithm for the element-connectivity RvIVABLE NETWORK DE-
SIGN problem with degree constraints on terminals, i.e., the cost
of the solution is at most twice the optimum solution (satisfying
the degree bounds), and the degree of each terminal veriex

at most2B,, + 3. This extends the most general network design
model which admits a 2-approximation algorithm (with no degree
constraints), and implies the first constant factor (bicriteria) ap-
proximation algorithms for many network design problems with
degree constraints, including theiMmum BOUNDED DEGREE
STEINER TREE problem. In the edge connectivityU8VvIVABLE
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NETWORK DESIGN problem, the algorithm has an interesting fea-
ture that theaveragedegree of the returned solution is only violated
by an additive constant of 2. Our results also extend to directed
graphs and we provide the first constant factor (bicriteria) approx-
imation algorithms for, e.g., the Mimum BOUNDED DEGREE
ARBORESCENCHroblem and the MiiMuM BOUNDED DEGREE
STRONGLY k-EDGE-CONNECTED SUBGRAPH problem. A strik-

ing aspect of our method is its simplicity. It is based on a natural
extension of Jain’s iterative rounding method. This provides an
elegant and unifying algorithmic framework for a broad range of
network design problems with degree constraints. In contrast, we
show that the vertex-connectivityURvVIVABLE NETWORK DE-
SIGN problem with degree constraints is very hard to approximate,
even if the costs of all edges are zero.

We also study the problem of finding a minimum caséedge-
connected subgraph with at ledstvertices, which we call the
(k, A)-subgraph problem. This generalizes some well-studied clas-
sical problems such as tlkeMST and the minimum cost-edge-
connected subgraph problems. We give a poly-logarithmic approx-
imation for the(k, 2)-subgraph problem. However, by relating it
to the DENSESTEk-SUBGRAPH problem, we give evidence that the
(k, A)-subgraph problem might be hard to approximate for arbi-
trary \.

Categories and Subject Descriptors

F.2.2 JAnalysis of Algorithms and Problem Complexity]: Non
Numerical Algorithms and ProblemsSemputations on discrete
structures G.2.2 Discrete Mathematic§: Graph Theory—Net-
work Problems.

General Terms
Algorithms, Performance.
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Approximation algorithms for NP-hard problems, Network design,
Bounded degree, Iterative rounding.

1. INTRODUCTION



Network design is a central topic in combinatorial optimization, 1.1 Previous Work

approximation algorithms, and operations research. The basic set-  Network design problems have a very rich literature. For classi-
ting of network design problems is to find a minimum cost sub- ¢4| network design problems, we shall just highlight a few results
graph satisfying connectivity requirements between vertices. This gnd refer the reader to [24] for a survey. In theRSIVABLE NET-
captures a wide variety of classical problems such asium WORK DESIGN problem, we are given a connectivity requirement
CosTFLOW, MINIMUM STEINER TREE, HAMILTONIAN CYCLE, ruv for each pair of vertices, and the goal is to find a minimum
etc. Furthermore, research results in this area provide algorithmic ¢ogt subgraph satisfying the connectivity requirements. This is a
tools and insights (e.g., hardness results) for the design of practicalyery general problem which captures many interesting problems as
networks such as telecommunication networks. Notable successegpecial cases (e.g., minimum Steiner tree, minimum Steiner for-
along this line of research are Jain’s 2-approximation algorithm for egt. minimumk-edge-connected subgraph) and has many applica-
the edge-connectivity BRvIVABLE NETWORK DESIGN problem tions. Jain [18] gave a 2-approximation algorithm for the edge-
[18], and its generalization to element-connectivity [7, 5]. connectivity SJRVIVABLE NETWORK DESIGN problem by using

A recent research trend is to study a more general class of net-an elegant iterative rounding approach. Later, Fleischer, Jain, and
work design problems where there are natural budget constraints.\jjliamson [7] have generalized this result to element-connectivity
This is motivated by the need for more sophisticated and realistic gyryivaBLE NETWORK DESIGN problem (another solution was
models for the design of practical networks. The first type of con- proposed in [5]). On the other hand, the vertex-connectivitg-S
straints we study islegree constrainten vertices. The objective  yyagLE NETWORK DESIGN problem is shown to be very hard to
is to find a minimum cost subgraph satisfying connectivity require- approximate [23].
ments as well as degree bounds (e.g. workloads) on the vertices. A~ Network design problems with degree constraints have been stud-
well-known example is the MiiMum BOUNDED DEGREE SPAN- ied extensively in the last 15 years . A simpler setting is minimizing
NING TREE problem, which includes theRIAVELING SALESMAN  the maximum degree subgraph (without considering the cost) sat-
problem as a special case. Very recently, Goemans [14] obtainedisfying certain connectivity requirements. A well-known example
an approximation algorithm for this problem, with only an additive 5 the MINIMUM DEGREE SPANNING TREE (MDST) problem,
error of two on the degrees, following a long line of research. We ynere the objective is to find a spanning tree of smallest maxi-
note that the basis underlying the breakthrough results of Goemansyym degree. This problem is already NP-hard as it generalizes the
[14] and Jain [18] is theincrossing techniquia combinatorial op-  HamiLTONIAN PATH problem. Firer and Raghavachari [8, 9] gave
timization. o an elegant approximation algorithm returning a solution with maxi-

We study a common generalization of the above two problems. mum degree at most one off the optimal solution. (The result holds
Our main result is a generalization of the 2-approximation algo- for the Steiner version of the problem as well.) Ravi, Raghavachari,
rithm for the element-connectivity RvIVABLE NETWORK DE- and Klein [30, 19] considered the IMiMUM DEGREE k-EDGE-
SIGN problem (which is the most general network design problem conNECTED SUBGRAPH problem, and gave an approximation al-
admitting a 2-approximation algorithm), providing near-optimal boungémhm with performance rati®(n®) for any fixeds > 0 in poly-
on the degrees. This yields the first constant factor (bicriteria) ap- nomial time, and) (log n/ log log n) in sub-exponential time. Re-
proximation algorithms for many network design problems with cently, Feder, Motwani, and Zhu [6] obtained a polynomial time
degree constraints, includingiMiMum BOUNDED DEGREESTEINER O(k log n)-approximation algorithm for this problem, for afiyed

NETWORK, MINIMUM BOUNDED DEGREE STEINER TREE, etc. k, thus answering an open question in [30]. Our main result implies
Our results extend to directed graphs and we provide the first con-tne first constant factor approximation algorithm even for the most
stant factor (bicriteria) approximation algorithms foritiMum general edge-connectivity requirements.

BOUNDED DEGREEARBORESCENCEMINIMUM BOUNDED DE- For the more general problem of finding a minimum cost sub-
GREESTRONGLY k-EDGE-CONNECTEDSUBGRAPH, etc. A strik- graph with given connectivity requirements and degree boihds
ing aspect of our method is issmplicity. Our approach is based on  on every vertex, the most-studied case is thatMMumM BOUNDED

a natural extension of Jainierative roundingmethod. This pro- DEGREE SPANNING TREE (MBDST) problem. LetopT be the

vides an elegant and unifying algorithmic framework for a broad cost of an optimal solution to the MBDST problem. We say an al-
range of network design problems with degree constraints. In fact, gorithm is an(«, f(B.))-approximation algorithm if the returned
very recently, the techniques used in this paper have been extendedo|ution has cost at most - oPT (with oPT being the cost of the

to give an(1, B, + 1)-approximation algorithm for the Mimum optimum solution satisfying the degree bounds) and the degree at
BOUNDED DEGREESPANNING TREEproblem [33], settling 215 each vertex is at mostf(B,). The first approximation was an
year-old conjecture affirmatively. In contrast, we present hardness (0 (log n), O(logn - B,))-algorithm by [27, 29]. This was subse-
results for the vertex-connectivityU®vIVABLE NETWORK DE- quently improved in a series of papers [21, 22, 3, 4, 31]. Very re-
SIGN problem with degree constraints, even if all edges have zero cently, Goemans [14] made a breakthrough on this problem by giv-
cost. _ ) ) ing a(1, B, + 2)-approximation algorithm. Remarkably, the proof
The second type of constraints we studyosler constraints of the result of Goemans is considerably simpler than that of the
Specifically, we study the problem of finding a minimum cast  nyrevious results. Very little is known for more general connectiv-
edge-connected subgraph with at lelstertices, which we call ity requirements. For the MiMuM BOUNDED DEGREESTEINER

the (k, A)-subgraph problem. This generalizes some classical and Tregproblem, there is atO(logn), O(B, log n))-approximation
well-studied problems such as thd\ﬂST problem (which is the algorithm [29]. This bound was improved(® (1), O(B,+logn))-

(k, 1)-subgraph problem) and the minimum casedge-connected  approximation by [20], but the algorithm runs in quasi polynomial
subgraph problem (which is th, A)-subgraph problem with.  time. Our main result implies the first polynomial tirf@ 23, +

being the number of vertices). We give a poly-logarithmic approxi- - 3)_approximation even for the most general model of edge-connectivity
mation algorithm for thék, 2)-subgraph problem. However, by re- requirements.

lating it to the DENSESTk-SUBGRAPH problem, we give evidence For network design problem with order constraints, the most
that the(k, A)-subgraph problem might be hard to approximate for yell-studied problem is thé-MST problem, where the objective
arbitrary A. is to find a minimum cost tree spanning at leastertices. The



approximation factor for this problem was improved frafit and
O(log? k) in [28, 1] down to constant in [2, 12] and very recently
to 2 [13]. For the case of metric costs on the edges cHT&SP
problem, which asks to find a minimum cost TSP tour visiting at
leastk vertices, can also be approximated within factor 2 [13].

1.2 New results

We have not tried to optimize the constants in Theorem 1.3;
in fact we believe they can be improved (we leave the details for
the journal version). We state it here just to illustrate the gener-
ality of the technique and the scope it can be applied to. In con-
trast to the above theorems, we present a hardness result for the
vertex-connectivity version of theU®vIvVABLE NETWORK DE-

SIGN problem with degree constraints, even if the cost of the sub-

Suppose that we are given an undirected graph with connectivity graph is not considered.

requirements-,,, on pairs of vertices andv, and degree bounds
B, on each vertex. The edge-connectivity 8RVIVABLE NET-
WORK DESIGN problem with degree constraints asks for a mini-
mum cost subgraph such that there are at leastedge disjoint
paths between verticesandv and the degree of each vertex is at
mostB,. We obtain the following result.

THEOREM 1.1. There is a polynomial timé2, 2B, + 3)- ap-
proximation algorithm for the edge-connectivByRVIVABLE NET-
WORK DESIGN problem. Moreover, on average, the degree bounds
are violated by at most 2.

This gives the first constant factor bicriteria approximation algo-
rithms for a broad range of network design problems with degree
constraints such as the INNIMUM STEINER TREE problem, the
MINIMUM STEINER FOREST problem, the MNIMUM k-EDGE-
CONNECTED SUBGRAPH problem, etc. It also implies the first
constant factor approximation algorithm for minimizing the maxi-
mum degree version of many problems (by settihg= B for all
).

We then consider the more general element-connectivity-S

THEOREM 1.4. For any e > 0, there is no polynomial time

(o0, glos’ " B, )-approximation algorithm for the vertex connec-
tivity SURVIVABLE NETWORK DESIGN problem unless
NP C DTIM E(nPoYe9m)),

Next, we turn our attention to network design problems with or-
der constraints. We study th&, )\)-subgraph problem, i.e. the
problem of finding a minimum cosk-edge-connected subgraph
with at leastk vertices. This problem generalizes the classical
MST problem to higher connectivity requirements. However, it
seems that this line of generalization might be difficult as shown by
the following result.

THEOREM 1.5. An a-approximation algorithm for thék, \)-
subgraph problem (even for the unweighted case) for arbitpary
implies an(alog? k)-approximation algorithm for théENSEST
k-SUBGRAPH problem.

Notice that the best known approximation algorithm for thenis-

EST k-SUBGRAPH problem has ratiai)(n%*) for some constant
e > 0. Finally, for the (k, 2)-subgraph problem, we are able to

VIVABLE NETWORK DESIGNproblem with degree constraints. Given gptain the following.

an undirected grapy, the set of vertices is partitioned into termi-

nals and non-terminals. The edges and the non-terminals are called THEOREM 1.6. Thereis arO(log® k)-approximation algorithm

elements Suppose that we are given a connectivity requirement
ruv fOr each pair of terminal verticas andv, and a degree bound
B, on each terminal vertex. The objective is to find a minimum
cost subgraph such that there are at legselementdisjoint paths
between terminal vertices andv and the degree of each terminal
vertexv is at mostB,,. We obtain the following result.

THEOREM 1.2. There is a polynomial timé2, 2B, + 3)- ap-
proximation algorithm for the element-connectivByRVvIVABLE
NETWORK DESIGN problem with degree constraints on terminals.

We remark that both Theorems 1.1 and 1.2 hold for (1) connec-
tivity requirements that areveakly supermodulaftechnical def-

for the (k, 2)-subgraph problem.

1.3 Techniques and Overview

Iterative rounding for the edge connectivity ®vIVABLE NET-
WORK DESIGN problem (without degree constraints) works as fol-
lows. Formulate the $RvIVABLE NETWORK DESIGN problem as
an integer program, and then solve the linear programming relax-
ation of the problem to find a basic optimum solution Pick an
edgee™ with highest value (i.exz.~ > z. for all e € E) and add
it to the solution subgrapl/ (initially H is empty). Then con-
sider the residual problem, where the edge#/iare pre-selected,
and repeat the above procedure (find a basic optimum solution, add
an edge with highest value #, and construct the residual prob-

inition is deferred to later); and (2) the case where there are both lem) until all the connectivity requirements are satisfied. Jain [18]
lower and upper degree bounds. Infact, the lower bounds will never proved that the edge picked in each iteration has value at least 1/2

be violated. For directed graphs, we study the problem of find-
ing a minimum cost subgraph which satisfies connectivity require-
ments that aréntersecting supermodulaor crossing supermodu-
lar (technical definition is deferred to later) and indegree and out-
degree constraints. This includes theNvMum BOUNDED DE-
GREE ARBORESCENCHiroblem, MNIMUM BOUNDED DEGREE
STRONGLY k-EDGE-CONNECTED SUBGRAPH problem, etc. We
obtain the following result.

THEOREM 1.3. There is a polynomial timéd, 4B + 6,
4BS* + 6)-approximation algorithm to find a minimum cost sub-

(i.e. ze~ > 1/2), implying a 2-approximation algorithm for the
problem.

We return to our problem. The starting point is that degree con-
straints are defined only on single vertices, and so the uncrossing
technique as in [18, 14] can be applied to show that a basic opti-
mal solution is characterized by a laminar family of tight sets. This
immediately implies that, in the first iteration, there exists an edge
having value at least 1/2. Now comes the key difference. Since
degree constraints apackingconstraints, we must allow faron-
integral degree constraints in the residual problem, otherwise the
residual problem may be infeasible, or its cost may significantly

graph satisfying intersecting supermodular connectivity require- increase. By doing so, however, it is not necessarily true anymore
ments, together with indegree and outdegree constraints in directed that the picked edges in later iterations have value at least 1/2. We
graphs. For crossing supermodular connectivity requirements, thereare indeed going to decrease the degree constraints by fractional
is a polynomial timg(8, 8B:™ + 12,8B5%" + 12)-approximation values> 1/2. However, to overcome the latter difficulty the “prob-

algorithm. lematic” degree constraints are identified, deleted from the residual



problem, and a basic solution is computed again. This incurs an
extra additive constant 3 in the approximation ratio. Once “prob- 1. Initialization F — @, f' — f,andVi € V: B; = B;;
lematic” degree constraints are deleted, we can show that the picked S
edges in the residual problems always have value at least 1/2 (ever 2. While f* # 0 do
though there can be non-integral degree constraints). This implies (a) Find a basic feasible solutianwith cut requiremeny’
a(2,2B, + 3)-approximation algorithm for the problem. and remove every edgewith z. = 0.

The above technique is also adapted to prove the claimed guar
antees for the element connectivity®/IVABLE NETWORK DE-
SIGN problem (Theorem 1.2) and for the directed graph result (The-
orem 1.3). In fact, the technique developed is so general and power-

(b) If there are anyB;’s where vertex has at most 4 nonr
zero incident edges delete those constraints and goto
the next iteration.

ful that it can be extended to settle the conjecture on tieiium (c) For each edge = (u,v) with z. > 1/2 add [z.]
BOUNDED DEGREESPANNING TREE problem [33] affirmatively, copies ofz. to F' and decrease the bounds 8f, and
i.e. to give a1, B, + 1)-approximation algorithm for the MBDST B, by z..
problem. (d) ForeveryS C V: f/(S) — f(S) — |6#(S)].
2. SURVIVABLE NETWORK DESIGN 3. rewmH = (V. F).
WITH DEGREE CONSTRAINTS

For ease of exposition, we start with Theorem 1.1. Theorem 1.2 Figure 1: Bounded Degree EC-SND Algorithm
is deferred to the full version of this paper.
2.1 Edge-Connectivity SNDP with Degree ity requirement functiom; ; (i.e.,r : V x V — Z%) is captured by

Constraints a weakly supermodular functioh When we update the LP from

This section addresses a generalization of the EC-SNDP with ON€ iteration to the next one (to account for one or more edges be-
non-uniform upper and lower bounds on vertex degrees, and presen{29 2dded to the solution subgraph), itis easy to update the function

a bicriteria approximation algorithm which will imply Theorem 1.1, /. and to verify that the new function stays weakly supermodular.
More specifically, assume we are given a complete gi@phk- We denoter(U) := _ZEGU‘”E’ andg(S) forgsetS < V denotes
(V, E) and nonnegative costs £ — R* for the edges, an integer the set_ of edges with exagtly one end-pointSn Here is the LP
valued connectivity requirements functien; on pairs of vertices ~ 'el@xation for EC-SNDP with degree bounds:

i,7, and a degree upper bourg} and lower bound.; for each (LP)
vertexi. We also have an upper-boubd > 1 on the multiplic-

ity of edgee in the solution (which would be 1 if each edge can

minimize zLp = g Ce Te
ecE

be picked only once). The goal is to find a subset of edgex subjectto  z(3(5)) = f(9), vsScv
minimum cost such that the subgraph = (V, F) satisfies the x(0(i)) > Lo, VoeV
connectivity requirements and the degree bounds, thaf ibas z(8(i)) < B, YoeV
r;,; edge disjoint paths between vertidgeg, for each pai, j, and 0 < 2 < U VecE

each vertex hasL; < degy (i) < B; and each edge appears at

mostU. times inH. Clearly the first part of Theorem 1.1 follows from the following.
Our method is a simple extension of Jain’s iterative rounding

method for solving EC-SNDP (above problem without degree con- ~ THEOREM 2.1. If the LP has an optimal solution of cost p,

straints). Jain’s method consists of solving an LP (linear program- then there exists an integral solutigrof cost< 2z;, p that satisfies

ming) relaxation, finding an optimal basic solutieh, rounding an all of the constraints orf and L; < ZeE&(i) Te <2B; +3,Vi €

edgee with =7 > 5 to 1, and then repeating with a new LP re- /. Moreover,i can be computed in polynomial time.

laxation for the residual problem (the problem obtained from the

original one by adding edgeto the solution subgraph). The key ~ The proof of this theorem follows from an extension of Jain’s

point m_Jam’s metlhod and proof is that every basic solution has an method [18] explained below. First note that any degree lower

edge with value> 5. We show that with some extra care, the same hound constraint can be considered as a connectivity constraint

property holds in our more general setting. Thus our method finds (with f({v}) = L, for the cutS = {v}). By doing so, the new

a subgraph that satisfies all of the edge connectivity requirements,function f obtained from the connectivity constraints and degree

such that the degree of every verteis at leastZ; and at most  |ower bounds remains weakly supermodular. Therefore, if we sat-
2B; + 3 and has cost within a factor of 2 of the LP optimal ¢ost  isfy all the connectivity constraints then we have satisfied the de-
An integer function on sets of verticgs: 2" — Z7 that has gree lower bounds too. So from now on, we assume that aside
f(V) = 0is calledweakly supermoduldf one of the two inequal-  from connectivity constraints we only have degree upper bounds.
ities: f(A)+ f(B) < f(ANB)+ f(AUB) or f(A)+f(B) < We simply refer to them as degree constraints. Since the algorithm
f(A = B) + f(B — A), holds for every pair of setd, B C V' may change the degree bounfss to fractional values, we may

with AN B # (. An important point in Jain’s method is that the  assume thaB,’s are all fractional.

connectivity requirements are specified via a weakly supermodular e say that a pair of set$, B intersect properlyf all of the sets
function f on the sets of vertices; it is well known that a connectiv-  AnB, A— B, B— A are nonempty, and we say that a family of sets

. L ={A1, As, ..., As} islaminarif no two of its sets are properly
1 ) ) )

Here and elsewhere, we assume that the LP relaxation has an opti: ; e

mal solution, that is, it has a solution of minimum cost that satisfies Intersecting. Forany set C V, letX 4 denote the incidence vector

all of the constraints; of course, if the LP has no feasible solution, ©f the set of edges(A); note that in the constraints matrix of the
then the problem has no feasible solution, and so the issue of ap-LP, X4 is the row for the setl (the constraint ford may be either
proximation is pointless. a connectivity constraint or a degree bound). Consider any solution




z of the LP. We call a set of verticed tight (w.r.t. ) if either

A = {v} andz satisfies the degree constraint fowith equality,
z(0(v)) = By, orz satisfies the connectivity constraint fdrwith
equality,z(d6(A)) = f(A) (in the latter cased may be a singleton

or not). The following lemma characterizes the tight constraints
(i.e. constraints satisfied as equalities) of a basic feasible solution.

LEMMA 2.2. Let the requirement functiofi of (LP) be weakly
supermodular, and let x be a basic solution of (LP) such that
z. < 1 for all edgese € E. Then, there exists a laminar family
L of tight sets such that partitions into a set of singletong’ for
the degree constraints, and the remaining sts= £ — £’ for the
connectivity constraints, such that:

(i) Every setd = {v} € £ hasB, > 0 and every sel € £” has
F(A) > 1.

(i) |£] = |E].

(iii) The vectorsx 4, A € L, are linearly independent.

(iv) x is the unique solution to:

{z(6(v)) = B, V{v} € £'} U {2(6(4)) = f(A),YA € L"}.

PrROOF The proof follows from the uncrossing method, see Lem-
mas 4.1-4.3 of [18], or Chapter 52.4 of [32]. The main point is that
if two tight setsA, B are properly intersecting then neither can be
a singleton set, so the connectivity constraints AorB must be
holding with equality (the degree constraints are irrelevant); then
eitherAN B, AU B are tight andX 4 + Xp = Xanp + Xaug Of
A—B,B— AaretightandX4 + Xp =Xa_p + Xp_a. [

The algorithm is now given in Figure 1. The following lemma is
similar to the key lemma in [18].

LEMMA 2.3. Let £ be a laminar family of tight sets satisfying
conditions (i)—(iv) in Lemma 2.2. Moreover, suppose that: 1) each
f(A) is an integer, forA C V, and 2) each vertex that has a
degree constraint has at least five incident edges with non-zero val-
ues. Then, in the unique solutiarto the system, there is an edge
e* such thatre > 1.

Now we give the sketch of the proof of Lemma 2.3. This is
similar to the proof of key lemma in [18] as described in [34](The-
orem 23.6). LetC be the laminar family of tight sets obtained in
Lemma 2.2 when applied to the basic solution just before we ex-
ecute line 2c. The number of sets fhis equal to the number of
edges inG. We can view( as a forest of rooted trees where each
vertex in the tree corresponds to a setlirand a root is a set not
contained in any other set. SEfis theparentof S if it is the small-
est set containing. Following terminology of [34],S is said to
ownend-pointv of edgee = (u, v) if S is the smallest set contain-
ing v. A subtree owns if one of the sets of corresponding to the
vertices in that subtree owrs Note that there are a total @in
end-points inG. The proof is established by showing that if every
edgee hasz. < 1/2 then we can assign end-points to the sets in
such a way that for every sét, S gets at least 3 end-points and

4 endpoints and if5 is a degree constraint then it gets at least 5
endpoints.

PROOF First, note that the fractional-value tight sets are single-
tons coming from degree constraints. Each degree constraint is a
leaf in the forest and each owns at least 5 endpoints by the assump-
tion onz (line 2b). The same argument as in [34] shows that every
other leaf (which is not a degree constraint) satisfies the require-
ments of the lemma. We say a sethas a surplus op if p + 2
endpoints have been assigned to it. Consider a non-le&f. set

(1) If S has two or more children, one of which is a degree con-
straint, then it can collect three endpoints from the surplus of its
degree constraint child, and one endpoint from the surplus of one if
its other children, for a total of at least 4.

(2) If S has only one child, sag’, and it is a degree constraint,
then sinceda(S) # §¢(S’) (by linear independencey, owns at
least one endpoint. It can also collect 3 endpoints from the surplus
of S/, for a total of at least 4.

(3) If none of the children of are degree constraints, then the
same analysis as in [34] shows ttasatisfies the requirements of
the lemma. [

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1: The results of Jain [18] and Gtschel et
al., [16, Theorem 6.4.9] show that a basic optimal solutiGrof
the initial LP (if it exists) can be found in polynomial time. It can
be seen that the updated functigh stays weakly supermodular
(since we are subtracting a symmetric submodular function). It is
clear that the final edge sét (at termination) satisfies all of the
connectivity requirements.
We need to prove that the cost éfis < 2zpp, wherezrp
is the cost ofz™ (the optimal solution of the initial LP) and that
degr (i) < 2B; + 3 for all verticesi. We prove the former by
induction on the number of iterations in which line 2c is executed.
The base case is clear since we round up edgeish z. > 1/2.
The induction hypothesis is that the algorithm finds an edgé set
of cost< 22} p that satisfies the connectivity constraints where
27 p is the solution to the current LP. Nowrp > 27 p + 5, be-
causer™ restricted to the edges ifi— F' satisfies all the constraints
of current LP (this needs detailed verification for the connectivity
constraints and for the degree bounds) and the cost oéstricted
to the edges if — Fis < zrp — <, hencezlp < zrp — <.
Hence, the costaF isc(F) = ¢(F') +ce < 221p +ce < 221p.
Finally we prove that for every vertexc V: degp (i) < 2B; +
3. Consider a degree constraint, say for verteand focus on the
last iteration in whichB; changes or the constraint gets deleted in
line 2b (soB; > 0 and we will not add any edge incident dn
future iterations). Suppose that we have addeeldges incident
to vertex: before this iteration. Since each edge added had value
>1/2: Bi > §+ B.. If in this iteration we add3 > 1 more
edges incident ta then the final degree af will be o + 8 (by
the assumption that this is the last such iteration); and we must

each of its descendants gets 2 endpoints. We get a contradictiorave hadB; > 3/2 (becauser. > 1/2, we haver. > [z.]/2);

of having more thar2m end-points, once this argument is applied
to the roots of the trees in the forest of laminar family. We need
one more definition from [34]. For every s6te £ we define the
corequirement of ascoreq(S) = 1(6(S)| — f(). The counting
argument leading to a contradiction is done through the following
lemma which is essentially Lemma 23.21 of [34].

LEMMA 2.4. LetT be a subtree rooted & and assume that
Ve, z. < 1/2. The endpoints owned Ky can be redistributed in
such a way that gets at least 3 endpoints and each of its descen-
dants gets 2. Furthermore,dbreq(S) # 1/2, thensS gets at least

therefore we haven + 8 < 2B;. If we delete this constraint

at this iteration (in line 2b) and solve the problem for this relaxed
version, in the worst case, the final solution contains all the (at
most) 4 remaining edges incident with vertexSo the degree of

will be o 4+ 4 whereasB; (the initial degree bound faj) is at least

£ + Bj, which implies thatx + 4 < 2B; + 4 — 2B, and since

a + 4is aninteger and?; > 0: a + 4 < 2B, + 3. ]

Remark 1: One may wonder whether the bicriteria approxima-
tion guarantee of this theorem is best possible. The following ex-
ample shows that the integrality gap of the LP is at least the min-



imum between(2,2B, + 1) and(2, B, + 2). That is, if the LP
is feasible and has an optimal solution with cesk, then in any
integral solution the cost is at lea&t;, p, and each vertex has
degree at lea®tB, + 1 or B, + 2 (note that it is well-known that if

we do not have degree bounds then the integrality gap is at least 2).non-zero values) is at mo2t — 1.

Take a3-regular3-edge connected gragh with no Hamiltonian
path? Letr;; = 1 for every pair of vertices iy and for alli € V,
let B; = 1. Assigningz. = 1/3 to every edge gives a feasible
solution with cos§V (G)|/2 and degree bounds satisfied. It's not

hard to see that this is also an optimal solution. On the other hand,

any feasible integer solution with degree bounds at most 2 (which
is2B; = B; + 1) needs to be a Hamiltonian pathdh
Remark 2: Our iterative rounding method applies also to the set-

PROOF By Lemma 2.2, the number of sets dhis equal to the
number of edges (remaining) in the graph. Also, since the ground
set has vertices, an easy induction shows that the number of sets
in £ is at most2n — 1. Therefore the number of edgesGh(with
O

Each time we select an edg&vith z. > 1/2, we increase the to-
tal degree by two (as it has two end-points), whereas the LP would
increase the total degree by at least 1 (at l@@8tfor each end-
point). So we increase the total degrees by an extra (at most) 1 in
every iteration with respect to the LP solution. Since there are at
most2n — 1 iterations left (by the above claim), we increase the
total degrees by an extra amount of at nxst— 1 (compared to

ting of minimizing the maximum degree subject to edge-connectivity | P), which is an average of at mdsper vertex.

constraints. We start with the above LP and introduce a new vari-
ableA, and replacing the degree constrainté(:)) < B;,Vi € V
byz(4(i)) < A,Vi € V. The objective function is to minimizA.

Let (LP-A) denote this linear program. The following theorem fol-
lows immediately from Theorem 2.1, which implies the first con-
stant factor approximation algorithm for many smallest maximum
degree subgraph (satisfying connectivity requirements) problems.

THEOREM 2.5. If (LP-A) has an optimal solution with objec-
tive valueA™, then there exists an integral solutidgnof maximum
degree< 2[A*]+ 3 that satisfies all of the constraints gh More-
over,& can be computed in polynomial time.

Remark 3: For the average degree claim, notice that the number
of edges in the support is at mast — 1, since a basic feasible
solution is characterized by a laminar family which has at most
2n — 1 members. A naive argument (even if we take all the edges

2.2 Directed Graphs

Our iterated rounding technique extends to directed graphs with
some restricted types of connectivity requirements and degree bounds,
via the results of Melkonian and Tardos [26].

For a set of vertices, §°**(S) denotes the set of arésj € F |
i€ 8,5 ¢S} ands™(S) denotes the setofardsj € E | i ¢
S,j € S}. Aninteger function on sets of verticgs: 2" — ZT is
calledcrossing supermodulaf the inequality

f(A) +f(B) < f(ANB) + f(AU B)

holds for every pair of setd, B C V such thatA N B # () and

AU B # V. The connectivity requirement ok“edge-connected
spanning subgraph” can be formulated via the crossing supermod-
ular function f(S) = k, V@ # S C V, but the connectivity
requirement of “directed Steiner tree” cannot be so formulated. An

in the support) shows that the average degree bound is violated byinteger function on sets of verticgs: 2" — Z7 is calledinter-

an additive constant 4; this can be improved to 2 by a more careful
argument, as follows. _

Let’'s assume thaB is the average degree upper bound (Be=
% > icv Bi)- Then the arguments in the proof of Theorem 2.1 can

secting supermoduldf the inequality

f(A) + f(B) < f(ANB) + f(AU B)

also be used to show that in the final solution, the average degreeholds for every pair of setd, B C V' such thatd N B # (). This

of the vertices is at modB + 2; in other words, the degree of each
vertexw in the final solution, on average, is at mds + 2 (i.e.

the second part of Theorem 1.1). To prove this, we modify each
iteration of the algorithm by adding the following line after line 2a
and before line 2b:

(@) If there are any edges= (u,v) with z. > 1 then add a copy
of e to F'; decreasé/. and the bounds foB., and B,, by 1
and go to Step 2d.

It is easy to check that the same analysis shows that with this
reformulation the cost of the solution is still at m@st. p.

Consider the first iteration in which we have a totally fractional
solution, i.e.xz. < 1 for all edgese. For each vertex let o, > 0
be the number of edges incident with vertegelected so far; thus
B! = B, — a, because all the edgeselected so far had. > 1,
and the degree bounds were decremented by 1.

CLAIM 2.6. From now until the end of the algorithm, we select
a total of at mos2n — 1 other edges.

2Such graphs exist. The following construction was brought to our
attention by Jim Geelen and Jacques Verstraete PL@énote the
Petersen graph anfd— v be the graph obtained from it by deleting
one vertexv, and let us call the neighbors ofin P aswi, wa,
andws (so these 3 vertices have degree 2An- v). Now, take

3 copies of P — v, and 3 new vertices, vz, andvs, and attach
them as follows: add edges from to each of the 3 copies af;

(1 < j < 3). It's not hard to argue that this graph on 30 vertices
does not have any Hamiltonian path.

is a stronger requirement than crossing supermodularity; for exam-
ple the connectivity requirements of a stronghedge-connected
subgraph cannot be formulated as an intersecting connectivity re-
quirement function. An example of an intersecting supermodular
function is the connectivity requirement of an arborescence. Given
a directed graplz = (V, E') and a specific vertex € V called

the root, a subgrapH = (V, E’) of G is called anr-arborescence

if there is exactly one directed path fromto every other vertex.

In other words, it is a spanning tree rooted-atAnother example

of an intersecting supermodular connectivity requirement function
comes from the rootekl-edge-connected subgraph problem.

First we address the problem of finding a minimum cost sub-
graph satisfying intersecting supermodular connectivity requirements
and non-uniform degree requirements (both in-degrees and out-
degrees). In the following the connectivity requirements are spec-
ified by an intersecting supermodular functipnFurthermore, for
simplicity, we assume that the connectivity requirement function
comes from the roote#l-edge-connected subgraph problem. Fig-
ure 2 is the LP-relaxation for our problem (as befbes the upper
bound on the multiplicity of edge):

THEOREM 2.7. If the above LP (for directed graphs) has an
optimal solution of costy, p, then there exists an integral solution
z of cost< 4z p that satisfies all of the constraints ghif f
is intersecting supermodular and(6°*(;)) < 4B¢** + 6 and
x(6"(i)) < 4B 46 forall i € V. Moreoverz can be computed
in polynomial time.



(DLP) minimize zprp

E Ce Te

eeE
subjectto >z > f(9), VSCV,r¢s
6657"”’(5)
>ooowe < B, VieV
e€sout (i)
> @ < B VieVitr
665””(@
0 < z. < U, Vee E

Figure 2: LP for directed case

The proof of this theorem follows from an extension of the meth-
ods of Jain and of Melkonian & Tardos [18, 26], similar to our proof
of Theorem 2.1

We say that a pair of setd, B are crossingif all of the sets
ANB,A—-B,B—- A,V — (AU B) are nonempty, and we say that
afamily of setsC = { A1, As, ..., A} iscross-fredf no two of its
sets are crossing. For any s€tC V/, let X 4 denote the incidence
vector of the set of ara¥™f( A); note that in the constraints matrix
of the LP, we rewrite the out-degree constrain{g°**(i)) < B!
asz(6™(V — {i})) < B¢**, and thatX 4 is the row for the setl
(the constraint forA may be either a connectivity constraint or a
degree bound). Consider any solutioof the LP. We call a set of
verticesA tight (w.r.t. z) if either A = {i} or A = V — {i} and
x satisfies the degree constraint fowith equality, z(5°"* (7))
B¢ orz(6"(i)) = Bi™, orz satisfies the connectivity constraint
for A with equality, z(5°**(A)) f(A) (in the latter caseA
may be a singleton or not). The following lemma follows from
arguments similar to those of proof of Lemma 3 in [26].

LEmMA 2.8. Let the requirement functiofi of (DLP) be inter-
secting supermodular, and let x be a basic solution of (LP) such
that0 < z. < 1for alledgese € E. Then there exists a cross-free
family Q of tight sets such tha® partitions into a set of singletons
or complements of singletoig¥ for the degree constraints, and the
remaining set®” = Q — Q' for the connectivity constraints form
a laminar family, such that:

(i) Everysetd = {i} € Q' hasB{" > 1,everysetl = V—{i} €
Q' hasB?“* > 1, and every sefl € Q" hasf(4) > 1.

(i) |Q| = |B].

(iii) The vectorsx 4, A € Q, are linearly independent.

(iv) x is the unique solution téz (6" (7)) = Bi™,v{i} € @'} U
{z(6°"(0)) = B, vV —{i} € Q'} U {z(8"(A)) = f(A),VA €
Q”}.

LEMMA 2.9. [26] Let Q be a cross-free family of tight sets sat-
isfying the conditions in Lemma 2.8. Moreover, suppose that: 1)
eachf(S) > 1is an integer, forS € Q, and 2) each vertex that

with z} > i We add one such edgeto our solution edge set
and update the degree bounds and funcfi@ecordingly. An easy
argument similar to that of Theorem 2.1 shows that the cost of the
solution is at mostz;, » and that for each vertex € V the final
out-degree (in-degree) ofis at mostB2“" + 6 (4B + 6). We
leave the proof of Lemma 2.9 to the full version of the paper.

For the second claim of Theorem 1.3, we use a technique in [26]
(which in turn is inspired by Frank [11]) to decompose a crossing
supermodular connectivity requirement function into two intersect-
ing supermodular connectivity requirement functions (see [26]).
For example, the strongl~edge-connected subgraph problem can
be decomposed into two rootédedge-connected subgraph prob-
lems, and similarly for the bounded degree version. Sdqah c)-
approximation algorithm for the latter problem immediately gives a
(2a, 2b, 2¢)-approximation algorithm for the former problem. This
shows the second claim of Theorem 1.3 where the connectivity re-
quirement function comes from the stronghedge-connected sub-
graph problem. In fact, we believe that the approximation ratios in
Theorem 1.3 can be improved (details to appear in the journal ver-
sion).

2.3 Hardness of Low Degree SubsetVertex
Connected Subgraph

In this subsection, we show that unlike the degree bounded EC-
SNDP for which we presented @, 2B, + 3)-bicriteria approx-
imation algorithm, the vertex-connectivity version, which we call
degree bounded VC-SNDP is very hard to approximate. In the VC-
SNDP we are given a weighted undirected grépk- (V, E) with
degree bound, for everyv € V, and a connectivity requirement
r:V xV — Z%. We want to find a minimum cost subgragh
satisfying the connectivity requirements and the degree bounds. As
we will see, it is hard to get afvo, 2°¢" ™ . B,)-approximation
for this problem. In other words, even if all edge costs are zero and
we just have to approximate the degree bounds it is still hard. In
fact the same hardness holds for a more special case of the problem,
called degree-bounded subsetertex connected subgraphXBC
for short) in whichr,, = k for every pairu,v € S for some set
S C V andr,, = 0 otherwise. Ana-approximation for &VC
will find a solutionG’ in which the degree of every vertexis at
mostaB, and there are,, vertex-disjoint paths between every
pairu,v € V. The following theorem immediately implies Theo-
rem 1.4.

THEOREM 2.10. Unless NPC DTIME(nPY°%™)) there is no
glos’ ¢ "-approximation for B:VC for some: > 0.

We have a similar hardness result for the Low Degree Directed
Steiner Forest (LDSF) problem. In LDDSF, we are given a directed
graphG = (V, E), degree bound8, for everyv € V, and con-
nectivity requirements : V x V. — {0,1}. The goal is to find
smalleste > 1 and a subgraph’ satisfying the connectivity re-
quirements in which the degree of each verteis at mostaB,,.

has a in-degree constraint has at least eight in-going edges with The proofs of Theorems 2.10 and 2.11 follow from the construc-
non-zero values and each vertex that has an Out-degree Constrainttion for the hardness of VerteX-conneCtiVity version of survivable
has at least eight out-going edges with non-zero values. Then in h€twork design problem (SNDP) and subset connectivity [23]. De-

the unique solutiorx to the system, there is an edgeé such that
ZTer > 1,
€T = 4

This lemma is the same as the key lemma in [26]; Our rounding
algorithm is very similar to that of Theorems 2.1: The only dif-

tails appear in the full version of the paper.

THEOREM 2.11. Unless NPC DTIME(nPo°%™)) there is no
9lee" ~“ n_approximation for LDSF for some> 0.

ference is that we delete degree constraints (in-degree/out—degreeg_ MINIMUM COST »-CONNECTED

for vertices with at most seven incident edges (in going/out-going
respectively). By the above lemmas, there is at least one edge

K-SUBGRAPHS



In this section we focus on the following class of problems.
Given are a (multi)grapld(V, E) with edge costs : £ — R™T,
and positive integeré and connectivity requirement > 1; the
(k, X)-subgraph problem asks to find a minimum cbstdge-connected
subgraph ofG with at leastk vertices. We should point out that
edge costs induce an arbitrary function. Furthermore, we are not al-
lowed to take more copies of an edge than are present in the graph
Otherwise, a 2-approximate solution can be computed by taking a
2-approximaté:-MST solutionT’, and then taking\ copies ofT".

Note that th€k, \)-subgraph problem contains, as special cases,
several classical problems. For instance, the minimum gest
edge-connected spanning subgraph problem is just the minimum
(n, A)-subgraph, and the classicaMST problem is the(k, 1)-
edge-subgraph problem. Another related and well-studied prob-
lem is that ofk-TSP (finding a minimum cost traveling salesman
tour visiting at leask vertices) for the metric cost functions. Al-
though there are approximation algorithms for each of these special
cases, we are not aware of any study of the more general problem
of (k, X\)-subgraph. As we will see below, it seems that this prob-
lem for arbitrary values ok (and even unweighted graphs) is very
difficult to approximate.

For this reason, we look into the approximability of tfie 2)-
subgraph, which is the first generalizatiomeMST to higher con-

nectivity. We show thatk, 2)-subgraph has af(log® k)-approximation,.

This algorithm is based on the results of [1, 17]. It works for the
rooted version of the problem where a particular vertex V is
required to be in the solution. It is easy to see that given an algo-
rithm for the rooted version, we can try all possible vertices as the
root to obtain an algorithm for the unrooted version.

THEOREM 3.1. Thereis arO(log® k)-approximation algorithm
for the rooted(k, 2)-subgraph problem.

As mentioned earlier, we show that for arbitrary values ahe
(k, M)-subgraph problem seems to be very difficult. As evidence,
we show a reduction from the-dense-subgraph problem. In the
k-dense-subgraph problem we are given a grépand integerk
and have to find a subgraph withvertices with maximum number
of induced edges. Despite considerable effort, the best known ap-
proximation algorithm for thé-dense-subgraph problem has ratio

O(n%*) for some constart > 0 [10]. We can prove that:

THEOREM 3.2. If there is ana-approximation algorithm for
(k, A)-subgraph for arbitrary\, even for unweighted graphs, then
there is an(« - log? k)-approximation for thek-dense subgraph
problem.

Therefore, obtaining any poly-logarithmic approximation for the
(k, A)-subgraph problem would imply a poly-logarithmic approx-
imation for thek-dense subgraph problem. Proof of Theorem 3.2
appears in the full version of this paper.

3.1 Proof of Theorem 3.1

Recall that an instanc& to the rooted(k, 2)-subgraph has a
graphG = (V, E), parametelk, and a root- € V. Our algo-
rithm, which is based on [1, 17], has a key procedure, which we
call it Partial. This procedure tries to find a 2-edge-connected sub-
graph on at Ieasg vertices that contains the root and whose cost
is at mostO(log? k)-factor of the optimum solution to instange
Then, by running this procedure at méflog k) rounds, we find a
(k, 2)-subgraph of cost at mo&(log® k) of the optimum solution
toZ.

Procedure Partial is a Kruskal-like algorithm. At any given time

Procedure Partial
1. Leteveryv; € V be asingle clustef; with multiplicity one.
2.p—0
3. For everyC; and everys; satisfyings; < |C;| < 2s; do

(a) Let S; be the set of clusters (vertices) with multiplic
betweens; and2s;.

ty

(b) Find a clusterC; € S; with the smallest ratio g
d2(Cy,Cy) /s p — p + 1; Let M, = {Cy,C;} be
a candidate set, its edge dét be the edges of the tw
disjoint paths found to comput& (C;, C;), and its ra-
tio bedg(Ci, CJ)/Sl

(c) Find a cycleD containing (vertex}; with the smalles|
ratioof ) ., c(e)/(si-[DN(Si = Ci)])ip — p+1;
Let M, be the set of clusters &f; on cycleD (includ-
ing C;), F, be the set of edges of this cycle, andbe
its ratio.

t

A

4. Among allp candidate sets, 16¥/, (1 < ¢ < p) be the ong
with the smallest rati@,,.

. Merge all the clusters in, by adding the edges iR,. Con-
tract the new cluster into a single vertex and assign its
tiplicity as the sum of the multiplicities of all the vertic
contracted.

mul-
es

. Goto Step 3 unless there is a cluster of size (multiplicity
least®. Return the largest cluster.

) at

Figure 3: The main subroutine used in the algorithm for (k, 2)-
subgraph problem

cluster and at each iteration we try to connect two or more clusters.
Once there is at least one cluster that contains at kasrtices

the procedure stops and returns that cluster. The main step of this
procedure is to find the set of clusters that have to be merged. We
always look for clusters that have about the same size (more specif-
ically, factor at most two apart) to find a group of size at least two
that are to be merged. To simplify the algorithm, at each iteration
we contract each clustér; into a single vertex and usg to refer

to that (contracted) cluster. The multiplicity of that vertex is the
number of vertices contracted into that vertex.

For any two cluster§’; andC; we definedz (C;, C;) as the min-
imum cost of two edge-disjoint paths that run between these two
clusters. To computé; (C;, C;) we use a min-cost flow algorithm
betweenc; andc; [32]. Consider a fixed cluster; and letS; be
the set of clusters of size (multiplicity) betweenand2s; where
s; < |C5] < 2s; (we consider all possible values f that satisfy
this inequality, and therefore the corresponding%eteparately).
First, we consider all clustelS; € S; and compute the minimum
ratior, = d2(C;, Cj)/s:. Sofar{C;, C;} is one candidate for the
merge (using the two disjoint paths found between them). This set
has ratior;. Next we compute other sets of clusters as candidates
for merge withC;. To do so, we compute a minimum ratio cycle
containinge; (again, we work with contracted clusters), where the
ratio of a cycle is equal to the cost of its edges divided ptimes
the number of vertices corresponding to the clusters f§om C;
in that cycle. We later show how to compute a minimum ratio cy-

during this procedure, we have a set of 2-edge-connected compo-cle. Every such cycle defines a set of clusters fi®n{including

nents which we caltlusters We start with every vertex as a single

C;) as a candidate whose ratio is the ratio of the cycle (as defined).



The Main (k, 2)-subgraph Algorithm
1. Guess the value of optimum solution; let it pe

2. Delete all the vertices with d>(v,7) > p as they canngt
belong to OPT is the root).

3. Whilek > 0do
(a) Run Partial with parametér, let C; be the largest clus
ter found ands = |C;| > 2.

(b) ConnectC; to the root using two edge-disjoint paths
P, and P, with total cost at most:.. Letp be the total
number of vertices il’; U P, U Ps.

(c) ContractC; and these two paths into the root and
k=k—p+1.

paths) and return it.

Figure 4: The algorithm for (k, 2)-subgraph problem

We do this for all values o§; (that satisfys; < |C;| < 2s;) and
also for all clusters”;. Among all candidate sets found, take the

PROOF By way of contradiction, suppose that all the clusters
found so far have size smaller th%nand the smallest ratio that
the procedure finds is larger than= 24ulogk/k. We group
the clusters into at modbg k& buckets by placing clusters of size
betweenk/2° andk /2 into bucketi, for i > 2. Ignore all the
clusters that do not intersect the optimum solution. If we consider
buckets that have exactly one cluster inside, then the number of
vertices inside them is at mo§t+ §+, o< g Thus, there are
at least% vertices of the optimum that are in the buckets with at
least two clusters each. So there is at least one such bucket, say
bucket;, that contains at least= vertices of the optimum and

all the clusters of this bucket have size betwees k/2'*' and

2s = k/27. Thus, the optimum intersects at ledst ;% > 2

set clusters in this bucket. Take the optimum solution and ‘contract

each of these clusters into a single vertex and call this set of vertices
P = {p1,...,p¢}. Now in the optimum solution, make a parallel

4. Uncontract all the clusters contracted in the root (and theircqpy of every edge to obtain an Eulerian graph, cal’it We call

two cycles that meet in exactly one vertex a bi-cycle. Our goal is to
obtain an edge-disjoint collectich of cycles and bi-cycles of’

with the following properties: (i) each bi-cycle i is marked to
exactly two and each cycle i is marked to at least two vertices
of P such that eaclD € 7 contains the vertices aP? marked to

it, (if) no vertex of P is marked by more than one element®f
and (i) at least¢/3 vertices of P are marked by some element

one with the smallest ratio and merge the clusters in that set. The©f Z- To constructZ, we start with7 = () and every vertex of

full description of procedure Partial is given in Figure 3

P is unmarked. Take an Eulerian tour @f, starting from vertex

Here are more details for step 3c. First subdivide every edge P1 € £- Eachtime we visita vertex put that vertex and the edge we

(temporarily) by adding a new vertex into it and replacing it by a
path of length 2. For every vertex corresponding to a cluster
C; € S; — C4, let all edges: of that vertex havev(e) = 1. Every
other edgee, including the ones incident to vertex (for cluster
C;), havew(e) = 0. Then we compute a cycl® containing ver-
tex ¢; with minimum ratio (3., c(e)) /(si Y- .cp w(e)). This
can be done using the min-ratio cycle algorithms [25]. We prove
the following upper bound on the cost of the solution returned by
Partial. Let OPT be an optimum solution aadbe its cost.

LEmMA 3.3. The cost of the solution returned by Partial is at
mostO(p log? k).

First we show how using this lemma we obtain @flog® k)-
approximation for(k, 2)-subgraph. We guess the cost of the opti-
mum solution . (we can do binary search fof, or as we explain
later do it inO(log k) iterations). The main algorithm is given in
Figure 4. The following lemma follows from the algorithm and
Lemma 3.3.

LEMMA 3.4. The cost of the solution returned by the Main Al-
gorithm is at mosO (u log® k).

To guess the valug, for every vertexv # r, first we compute
da2(r,v). Let L be thekth smallest value. Clearly, < u < kL.
So it is enough to start with estimate= L and then double the
estimate ofy if the algorithm does not succeed; we have to do
this at mostO(log k) times. To prove Lemma 3.3 we need the
following two claims. These two claims are the heart of the proof
of correctness, specially Claim 3.6. We defer the proofs to the full
version of the paper.

CLaim 3.5. If the largest ratio used by procedure Partial so
far is at mostr then every cluster witlp vertices has cost at most

3rplog p.

CLAIM 3.6. Procedure partial never merges the clusters of a
candidate set with ratio larger tha(24 . log k) / k.

traversed on the stack. The first time we re-visit a vertexe look
at all the vertices and the edges on the stack until the most recent
copy ofwv on the stack:

1. If there are no unmarked vertices Bfin this set then we pop
all the vertices and edges from the stack and discard them;
continue with the Euler tour.

2. If there are at least two unmarked verticedin this set we
have found a cycle containing at least two unmarked vertices
of P. We place this cycle ii, mark those unmarked vertices
of P in the cycle, and pop all the edges and vertices until the
most recent copy of on the stack; continue with the Euler
tour.

3. Ifthere is exactly one unmarked vertex frdfthen we have
found a cycle with exactly one unmarked vertexiof We
continue with the tour until we either find another cycle con-
taining v and exactly one other unmarked vertex ®f(in
which case we place this bi-cycle i, mark those two ver-
tices of P with this bi-cycle, and pop all its edges and vertices
from the stack) or we find a cycle with at least two unmarked
vertices ofP; in the latter case we ignore the first cycle found
with only one unmarked vertex @ and continue.

Each time (except possibly the very last iteration) we ignore a cy-
cle containing exactly one unmarked vertexfofin step 3 above)
in the next round we mark at least two vertices fréinSo for ev-
ery vertex left unmarked i® there are at least 2 vertices marked.
Itis easy to see that at the end there are at least two marked vertices
in Pif £ < 5and at least¢/3 — 1 marked vertices irP if £ > 6.
In either case we have at le#gB marked vertices. Now by the as-
sumption, the ratio of each cycle and bi-cycleZinis larger than-.
This implies for every cycld € 7: 5 ., c(e)/(s-|DNP|) > r
and for every bi-cycld3 € 7: Y _; c(e)/s > r. Thus

chcle DeT ZEED C(e) + Zbi—cycle BeT ZeEB C(e)
chcle DGT(S ' ‘D n P|) + Zbifcycle BeT S

>



By property (iii) for set7, the sum in the denominator is at least

s€/3. This implies:
21 > Z Z c(e) + Z Z c(e) > srl/3
cycle DET e€D bi—cycle BET eeB

5. 24plogk k
k 12slog k

= 2p,
which is a contradiction. [J
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