
A

Algebraic Algorithms for Linear Matroid Parity Problems

HO YEE CHEUNG, The Chinese University of Hong Kong
LAP CHI LAU, The Chinese University of Hong Kong
KAI MAN LEUNG, The Chinese University of Hong Kong

We present fast and simple algebraic algorithms for the linear matroid parity problem and its applica-
tions. For the linear matroid parity problem, we obtain a simple randomized algorithm with running time
O(mrω−1) where m and r are the number of columns and the number of rows and ω ≈ 2.3727 is the matrix
multiplication exponent. This improves the O(mrω)-time algorithm by Gabow and Stallmann, and matches
the running time of the algebraic algorithm for linear matroid intersection, answering a question of Harvey.
We also present a very simple alternative algorithm with running time O(mr2) which does not need fast
matrix multiplication.

We further improve the algebraic algorithms for some specific graph problems of interest. For the Mader’s
disjoint S-path problem, we present an O(nω)-time randomized algorithm where n is the number of vertices.
This improves the running time of the existing results considerably, and matches the running time of the
algebraic algorithms for graph matching. For the graphic matroid parity problem, we give an O(n4)-time
randomized algorithm where n is the number of vertices, and an O(n3)-time randomized algorithm for a
special case useful in designing approximation algorithms. These algorithms are optimal in terms of n as
the input size could be Ω(n4) and Ω(n3) respectively.

The techniques are based on the algebraic algorithmic framework developed by Mucha and Sankowski,
Harvey, and Sankowski. While linear matroid parity and Mader’s disjoint S-path are challenging gener-
alizations for the design of combinatorial algorithms, our results show that both the algebraic algorithms
for linear matroid intersection and graph matching can be extended nicely to more general settings. All
algorithms are still faster than the existing algorithms even if fast matrix multiplication is not used. These
provide simple algorithms that can be easily implemented in practice.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.1 [Discrete Mathematics]: Combinatorics—Combinatorial algo-
rithms; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Matroid parity

ACM Reference Format:
Cheung, H.Y., Lau, L.C. and Leung, K.M. 2011. Algebraic Algorithms for Linear Matroid Parity Problems,

A preliminary version of the article appeared in Proceedings of the 22nd ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2011.

This research is supported by RGC grant 412907 and GRF grant 413609 from the Research Grant Council
of Hong Kong.

Authors’ addresses: H.Y. Cheung, Department of Computer Science and Engineering, The Chinese Uni-
versity of Hong Kong, Shatin, Hong Kong, email: hycheung@cse.cuhk.edu.hk; L.C. Lau, Department of
Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, email:
chi@cse.cuhk.edu.hk; K.M. Leung, Department of Computer Science and Engineering, The Chinese Uni-
versity of Hong Kong, Shatin, Hong Kong, email: kmleung@cse.cuhk.edu.hk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1549-6325/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 H.Y. Cheung et al.

ACM Trans. Algor. V, N, Article A (January YYYY), 26 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The graph matching problem and the matroid intersection problem are two fundamen-
tal polynomial-time solvable problems in combinatorial optimization. Several efforts
have been made to obtain an elegant common generalization of these two problems,
e.g. the matroid parity problem by Lawler [1976] (equivalent to the matchoid problem
by Edmonds [Jenkyns 1974] and the matroid matching problem by Lovász [1980]), the
optimal path-matching problem by Cunningham and Geelen [1997], and the member-
ship problem for jump system by Bouchet and Cunningham [1995; 1997].

So far the matroid parity problem is the most-studied and the most fruitful prob-
lem among these generalizations. Although it is shown to be intractable in the oracle
model [Jensen and Korte 1982] and is NP-hard for matroids with compact representa-
tions [Lovász 1980], Lovász [1980] proved an exact min-max formula and obtained a
polynomial time algorithm for the linear matroid parity problem.

This provides a polynomial-time solvable common generalization of the graph
matching problem and the linear matroid intersection problem1. Moreover, the linear
matroid parity problem has many applications of its own in various areas, including
the path packing problem [Mader 1978; Schrijver 2003] in combinatorial optimization,
the minimum pinning set problem [Lovász 1980; Jordán 2010] in combinatorial rigid-
ity, the maximum genus imbedding problem [Furst et al. 1988] in topological graph
theory, the graphic matroid parity problem [Lovász 1980; Gabow and Stallmann 1985]
used in approximating minimum Steiner tree [Prömel and Steger 1997; Berman et al.
2006] and approximating maximum planar subgraph [Călinescu et al. 1998], and the
unique solution problem [Lovász and Plummer 1986] in electric circuit.

Given its generality and applicability, it is thus of interest to obtain fast algorithms
for the linear matroid parity problem. In this paper we will present faster and simpler
algorithms for the linear matroid parity problem, and also improved algorithms for
specific graph problems of interest. The algorithms are based on the algebraic algo-
rithmic framework developed by Mucha and Sankowski [2004], Harvey [2009; 2007],
and Sankowski [2006].

1.1. Problem Formulation and Previous Work
The linear matroid parity problem can be formulated as follows without using termi-
nology from matroid theory2: Given an r×2mmatrix where the columns are partitioned
into m pairs, find a maximum cardinality collection of pairs so that the union of the
columns of these pairs are linearly independent. For instance, to formulate the graph
matching problem as a linear matroid parity problem, we construct an n× 2m matrix
where the rows are indexed by the vertices and the pairs are indexed by the edges,
where an edge ij is represented by two columns where one column has an 1 in the i-th
entry and 0 otherwise and the other column has an 1 in the j-th entry and 0 otherwise.

There are several deterministic combinatorial algorithms for the linear matroid par-
ity problem. The first polynomial time algorithm is obtained by Lovász with a running
time of O(m17) which can be implemented to run in O(m10) time [Lovász 1980; Lovász
and Plummer 1986]. The fastest known algorithm is an augmenting path algorithm
obtained by Gabow and Stallmann [1986] with running time O(mrω) [Schrijver 2003],

1This only holds when both matroids are representable over the same field, but it covers most of the appli-
cations of the matroid intersection problem; see Section 4 of [Harvey 2009] for more discussions.
2It is not necessary to formulate the general matroid parity problem for this paper, but the formulation and
some background of matroid theory will be provided in Section 3.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:3

where ω ≈ 2.3727 is the exponent on the running time of the fastest known matrix
multiplication algorithm [Stothers 2010; Vassilevska Williams 2012]. Orlin and Vande
Vate [1990] presented an algorithm with running time O(mrω+1) [Schrijver 2003] by
reducing it to a sequence of matroid intersection problems. Recently Orlin [2008] pre-
sented a simpler algorithm with running time O(mr3). While these algorithms are
all deterministic and reveal substantial structural insights into the problem, even the
simplest algorithm by Orlin is quite complex and probably too difficult to be imple-
mented in practice.

On the other hand, Lovász [1979] proposed an algebraic approach to the linear ma-
troid parity problem. First, he constructed an appropriate matrix with indeterminates
(variables) where the matrix is of full rank if and only if there are r/2 linearly indepen-
dent pairs (see Section 4.1). Then he showed that determining whether the matrix is
of full rank can be done efficiently with high probability, by substituting the variables
with independent random values from a large enough field, and then computing the
determinant of the resulting matrix [Lovász 1979]. This approach can be easily modi-
fied to determine the optimal value of the linear matroid parity problem in one matrix
multiplication time, and one can also construct a solution in m matrix multiplications
time. Note that this already gives a randomized O(mrω)-time algorithm for the linear
matroid parity problem, and this algebraic approach also leads to an efficient parallel
algorithm for the linear matroid parity problem [Narayanan et al. 1994].

In a recent line of research an elegant algorithmic framework has been developed
for this algebraic approach. Mucha and Sankowski [2004] showed how to use Gaus-
sian eliminations to construct a maximum matching in one matrix multiplication
time, leading to an O(nω) time algorithm for the graph matching problem where n
is the number of vertices. Harvey [2009] used a divide-and-conquer method to obtain
an algebraic algorithm for the linear matroid intersection problem with running time
O(mrω−1) where m is the number of columns, and a simple O(nω) time algorithm for
the graph matching problem. Furthermore, Sankowski [2006] and Harvey [2007] ex-
tended the algebraic approach to obtain faster pseudo-polynomial algorithms for the
weighted bipartite matching problem and the weighted linear matroid intersection
problem.

Besides matching and linear matroid intersection, other special cases of the lin-
ear matroid parity problem have also been studied. One special case of interest is
the graphic matroid parity problem [Gabow and Stallmann 1985; Gabow and Xu
1989; Szigeti 1998; 2003], which has applications in designing approximation algo-
rithms [Călinescu et al. 1998; Prömel and Steger 1997; Berman et al. 2006]. For this
problem the fastest known algorithm is by Gabow and Stallmann [1985] which runs
in O(mn lg6 n) time. Another special problem of considerable interest is the Mader’s
S-path packing problem [Mader 1978; Lovász 1980; Sebő and Szegő 2004; Chud-
novsky et al. 2008; Pap 2007a; 2007b; 2008; Babenko 2010] which is a generalization
of the graph matching problem and the s-t vertex disjoint path problem. Lovász [1980]
showed that this problem can be reduced to the linear matroid parity problem. Chud-
novsky, Cunningham and Geelen [2008] obtained an O(n6) time direct combinatorial
algorithm for the problem, and Pap [2008; 2007b] obtained a simpler direct combina-
torial algorithm for the problem and also for the more general capacitated setting.

Recent breakthroughs by Iwata [2012] and Pap [2012] independently show that the
weighted linear matroid parity problem is solvable deterministically in polynomial
time. Prior to that, only a pseudo-polynomial randomized algorithm with time com-
plexity Õ(m2r2+Wmr4) is known [Camerini et al. 1992], whereW is the largest weight
among all pairs.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 H.Y. Cheung et al.

1.2. Our Results
We obtain fast and simple algebraic algorithms for the linear matroid parity problem
and also for some specific graph problems of interest. All algorithms are best possible
in the sense that either they match the running time in well-known special cases or
they are optimal in terms of some parameters.

1.2.1. Linear Matroid Parity. There are two algebraic formulations for the linear matroid
parity problem, one is a “compact” formulation (Theorem 4.1) by Lovász [1979] and
another is a “sparse” formulation (Theorem 4.2) by Geelen and Iwata [2005]. Using
the compact formulation and the Sherman-Morrison-Woodbury formula, we present a
very simple algorithm for the linear matroid parity problem.

THEOREM 1.1. There is an O(mr2)-time randomized algorithm for the linear ma-
troid parity problem.

One feature of this algorithm is that it does not use fast matrix multiplication and
is very easy to be implemented in practice. Note that it is already faster than the
Gabow-Stallmann O(mrω) time algorithm, and actually if fast matrix multiplication
is not used then the best known algorithms run in O(mr3) time [Gabow and Stall-
mann 1986; Orlin 2008]. Using the divide-and-conquer method of Harvey [2009] on
the sparse formulation and fast matrix multiplications, we can improve the running
time further to match the running time of the linear matroid intersection problem,
answering a question of Harvey [2009].

THEOREM 1.2. There is an O(mrω−1)-time randomized algorithm for the linear
matroid parity problem.

We present a faster pseudo-polynomial randomized algorithm for the weighted ma-
troid parity problem, which has time complexity Õ(Wmrω). This also implies a faster
randomized FPTAS for the weighted linear matroid parity problem using standard
scaling technique [Prömel and Steger 1997].

1.2.2. Graph Algorithms. For graph problems that can be reduced to the linear matroid
parity problem, we show that the additional structure can be exploited in the com-
pact formulation to obtain faster algorithms than that follow from Theorem 1.2. We
illustrate this with some well-known problems.

Mader’s Disjoint S-Path. In this problem we are given an undirected graph G =
(V,E) and S is a collection of disjoint subsets of V , the goal is to find a maximum
collection of vertex disjoint S-paths, where an S-path is a path that connects two dif-
ferent sets in S and has no internal vertex in S. This problem generalizes the graph
matching problem and the vertex disjoint s-t path problem, and is of considerable in-
terest [Mader 1978; Lovász 1980; Sebő and Szegő 2004; Chudnovsky et al. 2008; Pap
2007a; 2007b; 2008; Babenko 2010]. Obtaining a direct combinatorial algorithm is
quite nontrivial [Chudnovsky et al. 2008; Pap 2008]. The best known running time
is still the O(mnω)-time bound implied by the Gabow-Stallmann algorithm, where m
is the number of edges and n is the number of vertices. The algorithm in Theorem 1.2
implies an O(mnω−1)-time algorithm. By using the compact formulation, we further
improve the running time to match the algebraic algorithms for the graph matching
problem. The algorithm would be quite simple if fast matrix multiplication is not used,
and its running time would be Õ(n3) which is still faster than the existing algorithms.

THEOREM 1.3. There is an O(nω)-time randomized algorithm for the Mader’s S-
path problem.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:5

Graphic Matroid Parity. In this problem we are given an undirected graph and some
edge pairs, and the problem is to find a maximum collection of edge pairs such that the
union of these edges forms a forest. One special case of interest [Lovász and Plummer
1986; Szigeti 1998] is when each pair has a common vertex (i.e. {ij, ik} for some vertex
i). This has applications in approximating minimum Steiner tree [Prömel and Steger
1997; Berman et al. 2006] and approximating maximum planar subgraph [Călinescu
et al. 1998]. In the general problem the input could have up to Ω(n4) edge pairs where
n is the number of vertices, and in the special problem the number of edge pairs could
be Ω(n3). The following algorithms achieve optimal running time in terms of n for both
problems.

THEOREM 1.4. There is an O(n4)-time randomized algorithm for the graphic ma-
troid parity problem, and an O(n3)-time randomized algorithm when each edge pair
has a common vertex.

The fastest algorithm on graphic matroid parity is obtained by Gabow and Stall-
mann [1985] with running time O(mn lg6 n) where m is the number of edge pairs, and
so our algorithm is faster if there are Ω(n3) edge pairs in the general problem and if
there are Ω(n2) edge pairs in the special problem. We remark that the same statement
holds even if we use a cubic algorithm for matrix multiplication, and the resulting
algorithm is much simpler than that of Gabow and Stallmann.

Colorful Spanning Tree. In this problem we are given an undirected multigraph G =
(V,E) where each edge has one color, and the objective is to determine whether there is
a spanning tree in which every edge has a distinct color. This is a generalization of the
arborescence problem and the connected detachment problem [Nash-Williams 1985;
Schrijver 2003], and is a special case of the linear matroid intersection problem. Note
that the input graph could have Ω(n3) edges where n is the number of vertices, since
each pair of vertices could have Ω(n) edges in between, each of which has a distinct
colors. So the following algorithm has optimal running time in terms of n.

THEOREM 1.5. There is an O(n3)-time randomized algorithm for the colorful span-
ning tree problem.

1.3. Techniques
Our results show that both the algebraic algorithms for graph matching and linear
matroid intersection can be generalized to linear matroid parity. The O(mrω−1)-time
algorithm for linear matroid parity is a straightforward generalization of Harvey’s
linear matroid intersection algorithm, and the algorithm for weighted linear matroid
parity follows from the techniques used by Sankowski [2006]. The main new technical
contribution is the use of the compact formulation to design new algebraic algorithms.
For graph problems, the basic observation is that the column vectors have at most a
constant number of nonzeros, and this allows us to extend Harvey’s matching algo-
rithm and small area update formula to obtain faster algorithms using the compact
formulation. The O(nω) algorithm for the S-path problem is based on a good matrix
formulation of the problem, while the O(n3) algorithms for graphic matroid parity and
colorful spanning tree are based on different recursions used in the divide-and-conquer
method. We remark that this approach on the compact formulation implies some new
results for linear matroid intersection problems as well, e.g. colorful spanning tree,
graphic matroid intersection, simple O(mr2) algorithm.

While linear matroid parity and Mader’s disjoint S-path are challenging generaliza-
tions for the design of combinatorial algorithms, our results show that the algebraic
algorithmic framework can be adapted nicely to give faster and simpler algorithms

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 H.Y. Cheung et al.

in more general settings. Our algorithms are still faster than the existing algorithms
even if fast matrix multiplications are not used, and these simpler algorithms could be
implemented easily in practice using MATLAB (see e.g. [Harvey 2008]).

2. ALGEBRAIC PRELIMINARIES
Notations: Given a matrix M , the submatrix containing rows S and columns T is
denoted by MS,T . A submatrix containing all rows (or columns) is denoted by M∗,T (or
MS,∗), and an entry of M is denoted by Mi,j . Let ~ei to be a column vector with an 1 in
the i-th position and 0 otherwise. When a set of integers S is partitioned into k subsets,
the set S is partitioned into k equal size subsets S1, S2, · · ·Sk. In addition, S1 contains
the smallest |S|/k elements of S, S2 contains the next |S|/k smallest elements of S, and
Sk contains the largest |S|/k elements of S.

Algebraic algorithms: Given two n × n matrices with entries in a field F of size
poly(n), the matrix multiplication operation requires O(nω) time [Stothers 2010; Vas-
silevska Williams 2012] where ω < 2.3727. For an n × n matrix, it is known that the
operations of computing the determinant, computing the rank, computing the inverse,
and computing a maximum rank submatrix can all be done in the same time bound
as one matrix multiplication [Bunch and Hopcroft 1974; Harvey 2008]. We assume the
number of pairs m and the number of rows r in the linear matroid parity problem will
be powers of two. This assumption can be easily satisfied by adding redundant pairs
and rows.

Matrix of indeterminates: Let F be a field, and let F(x1, . . . , xm) be the field of
rational function over F with indeterminates {x1, x2, . . . , xm}. A matrix with entries
in F(x1, . . . , xm) is called a matrix of indeterminates. A matrix M of indeterminates
is non-singular if and only if its determinant is not the zero function. To check if an
n × n matrix M with indeterminates is non-singular, one can substitute each xi with
a random value in Fq and call the resulting matrix M ′. Throughout this paper, each
entry of M is a linear polynomial in x1, . . . , xm. Thus by the Schwartz-Zippel Lemma, if
M is non-singular then det(M ′) is zero with probability at most n/q. Hence, by setting
q = nc for a large constant c, this gives a randomized algorithm with running time
O(nω) to test if M is non-singular with high probability.

Skew-symmetric matrix: A matrix M is called skew-symmetric if Mi,j = −Mj,i for
all i, j. For any non-singular skew-symmetric matrix M , it is known that its inverse is
also skew-symmetric [Murota 2009].

Small rank update formula: Suppose we have a matrix M and its inverse M−1. If
we perform a small rank update on M , the following formula [Woodbury 1950] shows
how to update M−1 efficiently.

LEMMA 2.1 (SHERMAN-MORRISON-WOODBURY). Let M be an n × n matrix, U be
an n× k matrix, and V be an n× k matrix. Suppose that M is non-singular. Then

(1) M + UV T is non-singular if and only if I + V TM−1U is non-singular.
(2) If M + UV T is non-singular, then (M + UV T)−1 = M−1 − M−1U(I +

V TM−1U)−1V TM−1.

Small area update formula: Suppose we have a matrix M and its inverse M−1. If
we update MS,S for small |S|, then Harvey [2009] showed that the Sherman-Morrison-
Woodbury formula can be used to compute the values in M−1T,T quickly for small |T |.

LEMMA 2.2 (HARVEY). Let M be a non-singular matrix and let N = M−1. Let M̃
be a matrix which is identical to M except M̃S,S 6= MS,S and let ∆ = M̃ −M .

(1) M̃ is non-singular if and only if det(I + ∆S,SNS,S) 6= 0.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:7

(2) If M̃ is non-singular then M̃−1 = N −N∗,S(I + ∆S,SNS,S)−1∆S,SNS,∗.
(3) Restricting M̃−1 to a subset T , we have M̃−1 T,T = NT,T − NT,S(I +

∆S,SNS,S)−1∆S,SNS,T , and this can be computed in O(|T |ω) time for |T | ≥ |S|.

3. MATROID PRELIMINARIES
A matroid is a pair M = (V, I) of a finite set V and a set I of subsets of V so that the
following axioms are satisfied

(1) ∅ ∈ I,
(2) I ⊆ J ∈ I =⇒ I ∈ I,
(3) I, J ∈ I, |I| < |J | =⇒ ∃v ∈ J \ I such that I ∪ {v} ∈ I.

We call V the ground set and I ∈ I an independent set. So I is the family of independent
sets. Bases B of M are independent sets with maximum size. By the above axioms, all
bases have the same size. For any U ⊆ V , the rank of U , denoted by rM (U), is defined
as

rM (U) = max{|I| | I ⊆ U, I ∈ I}.

3.1. Examples
Linear Matroid:. Let Z be a matrix over a field F, and V be the set of the column

vectors of Z. The linear independence among the vectors of Z defines a matroid M
on ground set V . A set I ⊆ V is independent in M if and only if the column vectors
indexed by I are linearly independent. The rank function r of M is simply defined as
rM (I) = rank(Z∗,I). A matroid that can be obtained in this way is linearly representable
over F.

Partition Matroid:. Let {V1, · · · , Vk} be a partition of ground set V , that is,
⋃k

i=1 Vi =
V and Vi ∩ Vj = ∅ for i 6= j. Then the family of the independent sets I on the ground
set V is given by

I = {I ⊆ V : |I ∩ Vi| ≤ 1 ∀i ∈ {1, · · · , k}}.
M = (V, I) is called the partition matroid. Partition matroids are linearly repre-
sentable. This can be done by representing each element v ∈ Vi as a vector ~ei.

Graphic Matroid:. Let G = (V,E) be a graph with vertex set V and edge set E.
A graphic matroid has ground set E. A set I ⊆ E is independent if and only if I
contains no cycles in G. The matroid is linearly representable by representing each
edge (u, v) ∈ E to a column vector ~eu − ~ev in the linear matroid.

3.2. Constructions
The restriction of a matroid M to U ⊆ V , denoted as M |U , is a matroid with ground
set U so that I ⊆ U is independent in M |U if and only if I is independent in M . This
is the same as saying M |U is obtained by deleting the elements V \ U in M . The rank
function rM |U of M |U is simply rM |U (I) = rM (I) for I ⊆ U .

The contraction of a matroid M by U ⊆ V , denoted by M/U , is a matroid on ground
set V \ U so that I ⊆ V \ U is independent if and only if I ∪B is independent in M for
a base B of M |U . The rank function rM/U of M/U is given by

rM/U (I) = rM (I ∪ U)− rM (U), I ⊆ V \ U.

For any matrix Z and its corresponding linear matroid M , the matrix for M/{i} can
be obtained by Gaussian eliminations on Z as follows. First, using row operation and
scaling we can transform the column indexed by i to a unit vector ~ek. Then the matrix

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 H.Y. Cheung et al.

obtained by removing i-th column and k-th row from M is the required matrix. It can
be seen that I ∪ {i} is independent in M if and only if I is independent in M/{i}.

3.3. Matroid Parity
Given a matroid M = (V, I) whose elements are given in pairs where each element
is contained in exactly one pair. The matroid parity problem is to find a maximum
cardinality collection of pairs, so that union of these pairs is an independent set of
M . The general matroid parity problem is intractable in the oracle model [Jensen and
Korte 1982], and is NP-hard on matroids with compact representations [Lovász 1980].

3.4. Matroid Intersection
Given two matroids M1 = (S, I1) and M2 = (S, I2), the matroid intersection problem
is to find a maximum size common independent set of the two matroids. The fastest
known algorithm for linear matroid intersection is given by Harvey [2009]. It is an
algebraic randomized algorithm with running time O(mrω−1), where m is the size of
the ground set and r is the rank of both matroids.

4. A SIMPLE ALGEBRAIC ALGORITHM FOR LINEAR MATROID PARITY
In this section we will present the matrix formulations for linear matroid parity and
the proof of Theorem 1.1. The proof of Theorem 1.2 will be presented in Section 6, and
the results on weighted linear matroid parity will be presented in Section 7.

Given an r × 2m matrix M where the columns are partitioned into m pairs
{{b1, c1}, . . . , {bm, cm}}, the linear matroid parity problem is to find a maximum col-
lection of pairs J ⊆ [m] so that the vectors in

⋃
i∈J{bi, ci} are linearly independent.

We use νM to denote the optimal value, and call an optimal solution a parity basis if
νM = r/2. We also call a set parity set if every column pair is either contained in it or
disjoint from it.

4.1. Matrix Formulations
There are two matrix formulations for the linear matroid parity problem. One is a
compact formulation given by Lovász. In the following the wedge product b ∧ c of two
column vectors b and c is defined as bcT − cbT .

THEOREM 4.1 (LOVÁSZ [1979]). Given m column pairs {(bi, ci)} for 1 ≤ i ≤ m and
bi, ci ∈ Rr. Let

Y =

m∑
i=1

xi(bi ∧ ci),

where xi are indeterminates. Then 2νM = rank(Y).

Another is a sparse formulation given by Geelen and Iwata. LetM be a r×2mmatrix
for the linear matroid parity problem. Let T be a matrix with size 2m × 2m, so that
indeterminate ti appears in T2i−1,2i and −ti appears in T2i,2i−1 for 1 ≤ i ≤ m, while all
other entries of T are zero.

THEOREM 4.2 (GEELEN AND IWATA [2005]). Let

Z :=

(
0 M
−MT T

)
Then 2νM = rank(Z)− 2m.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:9

4.2. An O(mr2) algorithm
In this subsection we present a very simple O(mr2)-time algorithm for the linear ma-
troid parity problem. Here we consider the case where we find a parity basis if one
exists or report that no parity basis exists. We will show how to reduce the general
problem to this case in Section 6.5.

A pseudocode of the algorithm is presented in Algorithm 4.1. First we construct the
matrix Y with indeterminates using the compact formulation in Theorem 4.1. By The-
orem 4.1 we have νM = r/2 if and only if Y is of full rank. As stated in Section 2, we can
test whether Y is of full rank in O(r3) time with high probability, by substituting the
indeterminates with random values and then checking whether the resulting matrix
has nonzero determinant. If Y is not of full rank, then we report that no parity basis
exists, otherwise we construct the matrix Y −1 in O(r3) time.

Then, for each column pair (bi, ci), the algorithm checks whether this pair can be
removed while keeping the resulting matrix full rank. If so this pair is removed from
the problem since there is still an optimal solution surviving, otherwise this pair is
kept since it is in every parity basis with high probability. In the end the algorithm
returns the pairs that were not removed.

Next we show how to check whether a pair can be removed efficiently. Removing the
i-th column pair from M is equivalent to assign xi to zero. Let Y ′ be the new matrix
with xi = 0, then

Y ′ = Y − xi(bicTi − cibTi) = Y − xi (bi ci) (ci -bi)
T

Observe that this is just a rank-2 update. By setting U = xi (bi ci) and V = (-ci bi)
and using Lemma 2.1(1), Y ′ is of full rank if and only if I + V TY −1U is of full rank.
Since both U and V are of size r × 2, we can check whether a pair can be removed in
O(r2) time. If so, we apply Lemma 2.1(2) to compute the inverse of Y ′ by the formula
Y −1 − Y −1U(I + V TY −1U)−1V TY −1, this can be computed in O(r2) time since I +
V TY −1U is of size 2 × 2. Applying this procedure iteratively, the whole algorithm can
be implemented in O(mr2) time.

Finally the algorithm fails only if a matrix is of full rank but the determinant is zero
after the random substitutions. As stated in Section 2, this happens with probability
at most r/q where q is the field size. Since we only check the rank at most m times, the
failure probability is at most mr/q by the union bound, and so by choosing q = mr/ε
this probability is at most ε.

Algorithm 4.1 A simple algebraic algorithm for linear matroid parity
SIMPLEPARITY(M)

Construct Y using the compact formulation and assign random values to indetermi-
nates xi
if det(Y) = 0 return “there is no parity basis”
Compute Y −1
Set I = {b1, c1, · · · bm, cm}
for i = 1 to m do

Set Y ′ := Y − xi (bi ci) (ci -bi)
T

if det(Y ′) 6= 0 then
Y := Y ′

Update Y −1 by the Sherman-Morrison-Woodbury formula
I := I − {bi, ci}

return I

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 H.Y. Cheung et al.

5. GRAPH ALGORITHMS
In most applications of linear matroid parity, not only is the given matroid linear, but
also each column vector of the matroid has few nonzero entries. For example, each
column vector of a graphic matroid has only two nonzero entries. In this section, we
will show how we can exploit such special structure to obtain faster algorithms for
some graph problems of interest.

For the Mader’s S-path problem in Section 5.1, we will translate the reduction into
a good matrix formulation, so that the recursive approach for graph matching problem
can be extended to solve this problem. Also, we will give different recursive algorithms
to solve the graphic matroid parity problem in Section 5.2 and the colorful spanning
tree problem in Section 5.3.

Our algorithms below assume the matroid parity instance contains a parity basis.
If not we can use the approach to be described in Section 6.5 to reduce to this case:
Suppose the given linear matroid M has r rows. Consider the matrix formulation Y in
Theorem 4.1. The maximum rank submatrix YS,S can be found in O(rω) time, and then
we only need to focus on YS,S . At any time our algorithm considers a submatrix YR,C ,
we shall consider YR∩S,C∩S instead.

5.1. Mader’s S-Path
Given an undirected graphG = (V,E) and let S1, · · · , Sk be disjoint subsets of V . A path
is called an S-path if it starts and ends with vertices in Si and Sj such that Si 6= Sj ,
while all other internal vertices of the path are in V \(S1 ∪ S2 ∪ · · · ∪ Sk). The disjoint
S-path problem is to find a maximum cardinality collection of vertex disjoint S-Paths
of the graph G. In the following we assume without loss of generality that each Si is
an independent set.

Lovász [1980] showed that the S-path problem can be reduced to the linear matroid
parity problem, but it is not immediately clear how his reduction can be translated into
a matrix formulation of the problem. Instead, we will follow the reduction by Schrijver
([2003] page 1284), and show that it can be translated into a good matrix formulation.

5.1.1. Reduction to Linear Matroid Parity. Here we only present the reduction following
Schrijver, for proofs we refer the reader to Chapter 73 of [Schrijver 2003]. The high
level idea is to associate each edge to a 2-dimensional linear subspace, and show that
the edges in a solution of the S-path problem correspond to subspaces that are linearly
independent in an appropriately defined quotient space R2n/Q, where two subspaces
are linearly independent if their basis vectors are linearly independent.

Associate each edge e = (u,w) ∈ E to a 2-dimensional linear subspace Le of (R2)V

such that
Le =

{
x ∈ (R2)V | x(v) = 0 for each v ∈ V \{u,w} and x(u) + x(w) = 0

}
where x : V → R2 is a function that maps each vertex to a 2-dimensional vector. Let
r1, · · · rk be k distinct 1-dimensional subspaces of R2. For each vertex v ∈ V , let Rv = rj
if v ∈ Sj for some j, and Rv = {0} otherwise. Define a linear subspace Q of (R2)V such
that

Q = {x ∈ (R2)V | x(v) ∈ Rv for all v ∈ V }.
Let E be the collection of subspaces Le/Q for each e ∈ E of (R2)V /Q, where Le/Q is the
quotient space of Le by Q. Note that dim(Le/Q) = 2 for all edges e, since it does not
connect two vertices in the same Si as we assume each Si is an independent set. The
following lemma shows the reduction to the linear matroid parity problem.

LEMMA 5.1 (SCHRIJVER [2003] (73.20)). If G is connected, then the maximum
number of disjoint S-paths is equal to ν(E) − |V | + |T |, where T =

⋃k
i=1 Si and ν(E)

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:11

is the size of a maximum collection of linearly independent 2-dimensional subspaces in
E .

5.1.2. Matrix Formulation. To translate the above reduction into a matrix formulation,
we need to associate each edge e to a column pair (b′e, c

′
e), such that for F ⊆ E the

subspaces in LF = {Le/Q | e ∈ F} are linearly independent if and only if the vectors in⋃
e∈F {b′e, c′e} are linearly independent.
Let ~ek be the k-th unit vector. For each edge e = (u, v) ∈ E, construct an orthogonal

basis be and ce of Le such that

be = ~e2u−1 − ~e2v−1 and ce = ~e2u − ~e2v,

where we abuse notation to also use u and v as indexes of the vertices u and v. For
v ∈ V we define:

qv =

{
~e2v−1 + i~e2v if v ∈ Si

0 otherwise

Note that the collection of non-zero qv forms an orthogonal basis of Q. To obtain the
vectors for Le/Q, we just need to write be = b′e + bQ and ce = c′e + cQ where b′e, c′e ∈ Q⊥
and bQ, cQ ∈ Q. Then, for any subset F ⊆ E, the vectors in

⋃
e∈F {be, ce} are linearly

independent in R2n/Q if and only if the vectors in
⋃

e∈F {b′e, c′e} are linearly independent
in R2n.

We can use a procedure similar to the Gram-Schmidt process to compute (b′e, c
′
e) from

(be, ce). Recall that the collection of non-zero qv forms an orthogonal basis of Q. Define

b′e = be −
∑

v∈V :qv 6=0

bTe qv
qTv qv

qv c′e = ce −
∑

v∈V :qv 6=0

cTe qv
qTv qv

qv.

By subtracting the projection of be onto qv for all v from be, the resulting vector b′e is
orthogonal to the subspace Q. Thus, by the above discussion, we have that for each
F ⊆ E, the subspaces in LF = {Le/Q | e ∈ F} are linearly independent if and only if
the vectors in

⋃
e∈F {b′e, c′e} are linearly independent in R2n.

Therefore, by solving the linear matroid parity problem of M on the set of column
pairs {(b′e, c′e)} for all e ∈ E, we can find the maximum number of disjoint S-paths in
G, using Lemma 5.1. Also, from the solution of the linear matroid parity problem, one
can easily construct the solution for the S-path problem, see [Schrijver 2003].

Observe that for any e = (u, v), after the Gram-Schmidt process, b′e and c′e are of the
form:

b′e =
i2

1 + i2
~e2u−1 −

i

1 + i2
~e2u −

j2

1 + j2
~e2v−1 +

j

1 + j2
~e2v

c′e = − i

1 + i2
~e2u−1 +

1

1 + i2
~e2u +

j

1 + j2
~e2v−1 −

1

1 + j2
~e2v

where u ∈ Si and v ∈ Sj for some i and j. If u or v are not in any Si, then the corre-
sponding entries in b′e and c′e remain the same as in be and ce. Therefore, M contains
at most four non-zero entries in each column. Now we can apply Theorem 4.1 to con-
struct the described matrix Y for the linear matroid parity problem, which is given by
Y =

∑
e∈E xe(b

′
e ∧ c′e).

Let m = |E| and n = |V |. Then Y is a 2n× 2n matrix. For each wedge product, there
are at most four 2×2 non-zero blocks, and so for each edge e there are at most 16 entries
of xe in Y . Further observe that for any 2 × 2 non-zero block at the two rows occupied
by u and two columns occupied by v of Y , the same block (but negated) appears at the

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 H.Y. Cheung et al.

two rows occupied by v and two columns occupied by u of Y . Hence the appearance of
2× 2 blocks (as well as the indeterminates xi) are always skew symmetric.

5.1.3. Recursive Algorithm. Here is the high-level idea of the recursive algorithm to con-
struct a parity basis of M . Similar to the O(mr2)-time algorithm in Section 4, the al-
gorithm checks for each edge e whether some parity basis survives after the column
pair (b′e, c

′
e) is removed. Removing a column pair (b′e, c

′
e) is equivalent to setting the

corresponding xe to zero. The observation is that each edge e has at most 16 entries of
xe in Y , and so the small area update formula of Harvey can be applied. Suppose we
already have Y and Y −1, this implies that checking whether e can be removed can be
done in constant time by Lemma 2.2(1). Note that we also need to update Y −1 for fu-
ture queries, and therefore we use a recursive procedure so that edges within a subset
are removed consecutively, so that the relevant entries in the inverse can be computed
more efficiently using Lemma 2.2(3).

The algorithm is shown in Algorithm 5.1. Let R and C be the indexes of a subset
of rows and a subset of columns of Y , and S = R ∪ C. For each edge e = uv, the
corresponding xe appears only in YTe,Te

where Te = {2u − 1, 2u, 2v − 1, 2v}. Procedure
REMOVE(R,C) will try to remove all edges e = uv with Te ⊆ S. In the base case when
|R| = |C| = 2, we can determine whether xe can be eliminated or not by Lemma 2.2(1)
in constant time. Otherwise, when |R| = |C| > 2, we partition R and C into R1, R2

and C1, C2, such that first(second) half of R goes to R1(R2), and C is also partitioned in
the same way. And then we recursively call REMOVE(Ri, Cj) for i, j ∈ {1, 2}. Note that
before entering into any smaller area during the recursion, we need to update Y −1, but
only updating Y −1S,S is enough for the checkings in REMOVE(Ri, Cj) by Lemma 2.2(1),
and this can be done in O(|S|ω) time using Lemma 2.2(3).

Correctness: The algorithm is correct because every pair is checked, and when
a pair is checked the relevant entries in the inverse are always updated. Consider
an instance of REMOVE on rows R and columns C and let S = R ∪ C. We keep the
invariant NS,S = Y −1S,S . After each recursive call REMOVE(Ri, Cj) for i, j ∈ {1, 2}, only
the entries in YS,S have been changed, denoted by ∆S,S . By Lemma 2.2(3), NS,S can be
updated by NS,S −NS,S(I + ∆S,SNS,S)−1∆S,SNS,S , which can be done in O(|S|ω) time.
When a base case is reached, by Lemma 2.2(1), an indeterminate x can be removed if
and only if det(I + ∆S,SNS,S) 6= 0, which can be checked in constant time since |S| = 4.
The analysis of the failure probability is the same as in Section 4.2 and we omit it here.

Time Complexity: Let f(n) be the time required by REMOVE, where n = |R| = |C|.
From Algorithm 5.1 we have f(n) = 4f

(
n/2

)
+ O(nω). Hence we have f(n) = O(nω)

by the master theorem [Cormen et al. 2001]. The initialization also takes time O(nω),
and so the overall time complexity is O(nω). If ω = 2, then the time complexity is
O(n2 log n).

5.2. Graphic Matroid Parity
In this problem we are given an undirected graph and some edge pairs, and the prob-
lem is to find a maximum collection of edge pairs such that the union of these edges
forms a forest. In some applications for graphic matroid parity, each of the given edge
pair has a common vertex. We will first show an O(n3) time algorithm for this special
case, followed by an O(n4) time algorithm for the general case.

Construct the matrix Y using the compact formulation in Theorem 4.1. Since the
matroid is graphic, there are only two nonzero entries in each bi and ci. Let each bi and
ci be written in the form ~ej − ~ek and ~eu − ~ev where jk is one edge and uv is another
edge. It is easy to see that each pair of elements affects at most 8 entries in Y , and
thus the small area update formula can be used. Similar to previous sections, we use a
recursive approach to enumerate each edge pair. For each pair our algorithm checks if

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:13

Algorithm 5.1 An algebraic algorithm for disjoint S-paths
SPATH(M)

Construct Y and assign random values to each indeterminate xe for e ∈ E
Compute N := Y −1 by a fast inverse algorithm
REMOVE({1..2n}, {1..2n})
return all remaining pairs

REMOVE(R,C)
Let S = R ∪ C
Invariant: NS,S = Y −1S,S
if |R| > 2 then

Partition R and C into two equal-size subsets
for all pairs i, j ∈ {1, 2} do

REMOVE(Ri, Cj)
Compute NS,S = Y −1S,S by the small area update formula (Lemma 2.2(3))

else
Let e = uv be the edge (if exists) with S = {2u− 1, 2u, 2v − 1, 2v}
Let xe and b′e, c′e be the indeterminate and the vectors associated with e
Set Y ′ = Y − xe(b′e ∧ c′e)
Check if Y ′ is non-singular by the small area update formula (Lemma 2.2(1))
if Y ′ is non-singular then

Remove e and set Y = Y ′

some parity basis survives after removal of such pair. Recall that a parity basis exists
if and only if its corresponding matrix formulation Y is of full rank. Removing a pair is
done by assigning corresponding xi to zero. Since xi affects at most 8 entries, this can
be checked in constant time by Lemma 2.2(1) using Y −1. If Y remains full rank after
setting xi to zero, we remove such pair. When the algorithm terminates, the remaining
pairs forms a parity basis.

We first consider the special case where each edge pair has a common vertex, where
we can obtain a speedup over the general graphic matroid parity problem. The al-
gorithm is shown in Algorithm 5.2 and an illustration of the recursions is shown in
Figure 5.1. Define procedure REMOVE(P,R,C) to check all edge pairs (i, j), (i, k) that
have i ∈ P , j ∈ R and k ∈ C. Consider the base case where |P | = |R| = |C| = 1. We
need to determine whether pair (i, j),(i, k) (i ∈ P , j ∈ R, k ∈ C) can be removed. Since
removal of such pair will only affect entries in YS,S where S = P ∪R ∪ C, decision can
be made using Lemma 2.2(1) in constant time using Y −1S,S .

The algorithm starts with REMOVE(V, V, V), V = {1..n}, which will check all edge
pairs. The procedure simply calls recursions when it does not reach its base cases
yet. For any set T , define its first (second) half by T1 (T2). Then the procedure can
be implemented by recursive call to REMOVE(Px, Ry, Cz) for all x, y, z ∈ {1, 2}, see
Figure 5.1. Since inverse of Y is required to decide if a pair can be removed, Y −1S,S
(S = P ∪R∪C) is recomputed before each recursive call using Lemma 2.2(3), as in the
algorithm for the S-path problem.

Now we analyze the time complexity of this algorithm. Any changes done by RE-
MOVE(P,R,C) is made to YS,S where S = P ∪ R ∪ C. So, similar to that in the S-path
problem, updating Y −1S,S using Lemma 2.2(3) takes O(|S|ω) time. Let f(n) be time
required by REMOVE where n = |P | = |R| = |C|. We have f(n) = 8f(n/2) + O(nω). By
the master theorem [Cormen et al. 2001], if fast matrix multiplication is used, this al-
gorithm has overall time complexity O(n3), otherwise its time complexity is O(n3 log n)

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 H.Y. Cheung et al.

time. The analysis of the failure probability is the same as in Section 4.2 and we omit
it here.

For the general case where edge pairs are in the form (i, k) and (j, l). Our algorithm
is very similar but the procedure is now defined as REMOVE(P,Q,R,C) which checks
all pairs in the form i ∈ P , j ∈ Q, k ∈ R and l ∈ C. Hence we now require 16 recursion
calls of REMOVE(Pw, Qx, Ry, Cz) where w, x, y, z ∈ {1, 2}, see Figure 5.1. This gives an
O(n4) time algorithm by the master theorem.

Algorithm 5.2 An algebraic algorithm for graphic matroid parity, when each edge pair
has a common vertex.
GRAPHICPARITY(M)

Construct Y and assign random values to indeterminates xi
N := Y −1

REMOVE({1..n}, {1..n}, {1..n})
return all remaining pairs

REMOVE(P,R,C)
Let S = P ∪R ∪ C
Invariant: NS,S = Y −1S,S
if |P | = |R| = |C| = 1 then

Let i ∈ P , j ∈ R, k ∈ C
Let x, b, c be the indeterminate and the vectors associated with edge pair (i, j) and
(i, k) (if exists)
Y ′ = Y − x(b ∧ c)
Check if Y ′ is non-singular by the small area update formula (Lemma 2.2(1))
if Y ′ is non-singular then

Remove this edge pair and set Y = Y ′

else
Partition P , R and C into two equal-size subsets
for all tuples i, j, k ∈ {1, 2} do

REMOVE(Pi, Rj , Ck)
Compute NS,S = Y −1S,S using the small area update formula (Lemma 2.2(3))

5.3. Colorful Spanning Tree
Given an connected undirected multigraph G = (V,E) where each edge is colored by
one of the k colors. The colorful spanning tree problem [Schrijver 2003] is to determine
if there is a spanning tree T in G such that each edge in T has a distinct color. Let
n = |V | and m = |E|.

The distinct color constraint can be modelled by a partition matroid M1 = (E, I1)
where I1 = {I : edges in I that contain at most one edge from each color}. The tree
constraint can be captured by a graphic matroid M2 = (E, I2) where I2 = {I :
edges in I form an acyclic subgraph}. Thus a matroid intersection (see Section 3.4 for
definition) of M1 and M2 gives a maximum size acyclic colorful subgraph of G. In par-
ticular when k = n − 1 and G is connected, a common basis of the two matroids is a
colorful spanning tree of G. Recall that a partition matroid can be represented by a
linear matroid with exactly one non-zero entry in each column. This simpler structure
can be used to obtain a faster algorithm.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:15

P2

P1
P {{

P1 P2

P︷︸︸︷︷︸︸︷

R2

R1{{R

C
C1 C2︷︸︸︷︷︸︸︷

5

5

7

7

6

6

8

8

1

1

3

3

2

2

4

4

P2

P1
P {{

Q1 Q2

Q︷︸︸︷︷︸︸︷

R2

R1{{R

C
C1 C2︷︸︸︷︷︸︸︷

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

Fig. 5.1. All 8 possible smaller cases of invoking REMOVE(Px, Ry , Cz) are shown on the left figure for the
special problem. Each of them considers a pair of squares, which are indicated by the same number. The
figure on the right shows 16 possible subroutines for REMOVE(Pw, Qx, Ry , Cz) in general graphic matroid
parity. Note that in the special problem the rows and the columns of the first square are the same, while in
the general problem the rows and the columns of the first square could be different.

5.3.1. Matrix Formulation. Using the matrix formulation and the algebraic framework
from Harvey [2009], there is an algebraic algorithm in solving the colorful spanning
tree problem. Note that Harvey used a “sparse” formulation and his algorithm runs
in O(mnω−1) time. A similar “compact” formulation for matroid parity problem is also
known. We include its proof here for completeness.

THEOREM 5.2. LetM1 andM2 be linear matroids with the same ground set. LetA =
(a1 a2 · · · am) be a r ×m matrix whose columns represent M1 and B = (b1 b2 · · · bm)
be a r×m matrix whose columns represent M2, where ai and bi are column vectors. Let
matrix

Y =

m∑
i=1

xi(aib
T
i)

be a r × r matrix where xi is a distinct indeterminate for 1 ≤ i ≤ m. Then the two
matroids have a common independent set of size rank(Y).

PROOF. Harvey [2008] showed the matrix formulation for matroid intersection of
M1 and M2 is given by

Z =

(
O A
BT T

)
where T is an m × m matrix with non zero distinct indeterminates at the diagonal,
that is Ti,i = ti. He showed that

rank(Z) = m+ λ,

where λ is the maximum cardinality of the intersection to M1 and M2.
Perform Gaussian elimination in Z, by eliminating A using T we have

rank(Z) = rank(AT−1BT) +m,

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 H.Y. Cheung et al.

and we have to show AT−1BT =
∑m

i=1 xi(aib
T
i) = Y .

AT−1BT = (a1 · · · am)T−1 (b1 · · · bm)
T

=
(

1
t1
a1 · · · 1

tn
am
)

(b1 · · · bm)
T

=

m∑
i=1

xi(aib
T
i)

where xi =
1

ti
.

5.3.2. An O(n3) Algorithm. The idea of the algorithm is to examine each edge e one by
one, and see if any common basis (that is a colorful spanning tree) remains after re-
moval of this edge. We construct Y as described in Theorem 5.2. Let the matrix repre-
senting M1 be (a1 a2 · · · am) and matrix representing M2 be (b1 b2 · · · bm). Note that
both ai and bi have size n × 1. For an edge ei = (u, v) that has color c, we have ai = ~ec
and bi = ~eu − ~ev. Then xi will only appear in Yc,u and Yc,v. Let Y ′ be the new matrix
with xi assigned to zero, which is equivalent to remove edge ei. Let S = {c, u, v}, Y ′ is
identical to Y except Y ′S,S . Recall that we can remove edge ei if the rank of Y ′ remains
the same. If so we simply remove that edge and update Y −1. After checking all edges
a common basis remains. If the size of the common basis is n − 1, then it is a colorful
spanning tree.

One technical point is that we require Y to have full rank before the checking starts.
In our problem the originally constructed matrix Y is never full rank. So we need an-
other matrix that gives the same result as Y while having full rank. We will describe
in Section 5.3.3 how to find such a matrix using similar technique described in Sec-
tion 6.5. Henceforth we assume that Y is of full rank.

The algorithm is shown in Algorithm 5.3, which is similar to that for the graphic
matroid parity problem. Let R be subset of rows of Y , C and C ′ be subset of columns of
Y . Define procedure REMOVE(R,C,C ′), which tries to remove edges connecting u and
v having color c that have c ∈ R, u ∈ C, v ∈ C ′. REMOVE(R,C,C ′) has |R| = |C| =
|C ′| = 1 as base case, where we have to determine an particular edge (u, v) having
color c can be removed (c ∈ R, u ∈ C, v ∈ C ′). This can be done in constant time
using Lemma 2.2(1) because removing such edge only affect two entries in Y . In other
cases, R, C and C ′ are partitioned into R1, R2, C1, C2 and C ′1, C ′2. All eight smaller cases
REMOVE(Ri, Cj , C

′
k) will be called, where i, j, k ∈ {1, 2}. After any recursive call Y −1 is

updated using Lemma 2.2(3). Let S = R ∪ C ∪ C ′, any instance of REMOVE(R,C,C ′)
triggers updates to YS,S . The updating process takes only O(|S|ω) time.

Time Complexity: Let f(n) be the time required by REMOVE, where n = |R| =
|C| = |C ′|. We have f(n) = 8f(n/2)+O(nω). Hence f(n) = O(n3) by the master theorem.
As a result, the algorithm has time complexity O(n3). If fast matrix multiplication
is not used, then the algorithm has time complexity O(n3 log n) again by the master
theorem.

5.3.3. Maximum Cardinality Matroid Intersection. Construct Y as in Theorem 5.2. Let
rank(Y) = k. Then the largest intersection of the two matroids will be k. Since Y is
not of full rank, we compute a largest rank submatrix of Y . Let Y ′ = YR,C be such
matrix where |R| = |C| = k. Let N1 and N2 be linear matroids constructed by remov-
ing row set R from M1 and row set C from M2 respectively. Observe that the matrix
formulation for intersection of N1 and N2 is

∑m
i=1 xi(AR,iB

T
C,i), which is exactly Y ′. An

independent set in N1 is also independent in M1, and this is also true for N2 and M2.
Since Y ′ is of full rank, we can simply compute a common base of N1 and N2. The

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:17

Algorithm 5.3 An algorithm to compute colorful spanning tree
COLORFULSPANNINGTREE(M1,M2)

Construct Y and assign random values to indeterminates xi
Compute N := Y −1 by fast inverse
REMOVE({1..n}, {1..n}, {1..n})
return all remaining pairs

REMOVE(R,C,C ′)
Let S = R ∪ C ∪ C ′
Invariant: NS,S = Y −1S,S
if |R| = 1 then

Let x, b, c be the indeterminate and the vectors associated with the edge in YS,S (if
exists)
Y ′ = Y − x(b ∧ c)
Check if Y ′ is non-singular using the small area update formula (Lemma 2.2(1))
if Y ′ is non-singular then

Set x = 0 and Y = Y ′

else
Partition R, C and C ′ into two equal-size subsets
for all tuples i, j, k ∈ {1, 2} do

REMOVE(Ri, Cj , C
′
k)

Compute NS,S = Y −1S,S using the small area update formula (Lemma 2.2(3))

result will have size k, and it is a maximum cardinality intersection of M1 and M2.
The maximum rank submatrix Y ′ can be computed in O(nω) time using the algorithm
suggested by Harvey (Appendix A in [Harvey 2008]).

6. A FASTER LINEAR MATROID PARITY ALGORITHM
In this section we present an O(mrω−1)-time randomized algorithm for the linear ma-
troid parity problem. We first consider the problem of determining whether M has a
parity basis, and show how to reduce the general problem into it in Section 6.5. The
algorithm is very similar to the algebraic algorithm for linear matroid intersection by
Harvey [2009]. The general idea is to build a parity basis incrementally. A subset of
pairs is called growable if it is a subset of some parity basis. Starting from the empty
solution, at any step of the algorithm we try to add a pair to the current solution so
that the resulting subset is still growable, and the algorithm stops when a parity basis
is found.

6.1. Preliminaries
Suppose A, B, C, D are respectively p × p, p × q, q × p and q × q matrices, and A is
invertible. Let M be a (p+ q)× (p+ q) matrix so that

M =

(
A B
C D

)
,

then D − CA−1B is called the Schur complement of block A.

THEOREM 6.1 (SCHUR’S FORMULA [ZHANG 2005] (THM 1.1)). Let A, B, C, D
and M be matrices defined above. Then det(M) = det(A)× det(D − CA−1B).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 H.Y. Cheung et al.

LEMMA 6.2. If A is non-singular and its Schur complement S = D−CA−1B is also
non-singular, then

M−1 =

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
In particular, if we have a matrix Z in the form

Z =

(
0 Q1

Q2 T

)
and T is non-singular. Denote Y as the Schur complement of T in Z. We have Y =
−Q1T

−1Q2. Then, by Lemma 6.2, if Y is non-singular, we can calculate Z−1 as follow

Z−1 =

(
Y −1 −Y −1Q1T

−1

−T−1Q2Y
−1 T−1 + T−1Q2Y

−1Q1T
−1

)
(6.1)

6.2. Matrix Formulation
We use the matrix formulation of Geelen and Iwata [2005]. Define

Z :=

(
0 M
−MT T

)
as in Theorem 4.2. Then we have νM = r/2 if and only if Z is of full rank. To determine
whether a subset J of pairs is growable, we define Z(J) to be the matrix that have
ti = 0 for all pair i in J . We define νM/J to be the optimal value of the linear matroid
parity problem of M/J , which is the contraction of M by J as stated in Section 3.
Informally the linear matroid parity problem of M/J corresponds to the linear matroid
parity problem of M when the pairs in J are picked. In the following we will show that,
following from the Geelen-Iwata formula, that J is growable if and only if Z(J) is of
full rank.

COROLLARY 6.3. For any independent parity set J , rank(Z(J)) = 2νM/J + 2m+ |J |.
PROOF. In the following let R be the set of rows of M and V be the set of columns of

M (i.e. |V | = 2m). Note that Z(J) is in the following form.


R J V \ J

R MR,J MR,V \J

J (−MT)J,R

V \ J (−MT)V \J,R TV \J,V \J


︸ ︷︷ ︸

Z(J)

=


R J V \ J

R MR,J MR,V \J

J (−MT)J,R

V \ J (−MT)V \J,R


︸ ︷︷ ︸

P

+


R J V \ J

R

J

V \ J TV \J,V \J


︸ ︷︷ ︸

Q

.

It is known ([Murota 2009] Theorem 7.3.22) that for a mixed skew-symmetric matrix,
we have

rank(Z(J)) = max
A⊆S
{rank(PA,A) + rank(QS\A,S\A)} (6.2)

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:19

where S = R∪V is the column set and row set for Z(J). Consider a set A that maximize
rank(Z(J)), then A must be in the form R ∪A′ where J ⊆ A′ ⊆ V .

Recall that a set is a parity set if every pair is either contained in it or disjoint from
it. We can assume that A′ is a parity set. If A′ is not, consider parity set B′ such that
A′ ⊆ B′ and B′ has smallest size. Let B = R ∪ B′, we have rank(PA,A) ≤ rank(PB,B)
and rank(QS\A,S\A) = rank(QS\B,S\B) where the equality follows from the structure of
T .

As M and −MT occupy disjoint rows and columns of P , rank(PA,A) =
rank(MR,A′) + rank((−MT)A′,R) = 2 rank(MR,A′) asM is skew-symmetric. We also have
rank(QS\A,S\A) = |S \A| = |V \A′| = |V | − |A′|. Thus

rank(Z(J)) = max
A′⊆V

{2 rank(MR,A′) + |V | − |A′|}.

Write A′ = I ∪ J where I ∩ J = ∅ and I is a parity set. By the rank function rM/J of the
matroid M/J , we have rM/J(A′ \ J) = rM (A′)− rM (J). Hence

rank(Z(J)) = max
I⊆V \J

{2(rM/J(I) + |J |) + |V | − (|I|+ |J |)}

= max
I⊆V \J

{2rM/J(I)− |I|}+ |V |+ |J | (6.3)

Observe that a maximizer I ′ of (6.3) must be an independent parity set (so rM/J(I ′) =
|I ′|); otherwise an independent set K ⊂ I ′ such that rM/J(K) = rM/J(I ′) and |K| < |I ′|
gives a larger value for (6.3). So a maximizer I ′ of (6.3) would maximize rM/J(I), which
implies that I ′ is indeed a maximum cardinality parity set of M/J . The result follows
since 2νM/J = |I ′| = rM/J(I ′).

THEOREM 6.4. For any independent parity set J , Z(J) is non-singular if and only
if J is growable.

PROOF. If Z(J) is non-singular, by Corollary 6.3, we have

rank(Z(J)) = 2νM/J + |V |+ |J |
2m+ r = 2νM/J + 2m+ |J |

r = 2νM/J + |J |
Hence J is growable.

6.3. An O(mω) Algorithm
The algorithm here maintains a growable set J , starting with J = ∅. To check whether
a pair i can be added to J to form a growable set, we test whether Z(J ∪ {2i − 1, 2i})
is of full rank. Observe that Z(J ∪ {2i − 1, 2i}) is obtained from Z(J) by a small area
update, and so Lemma 2.2 can be used to check whether Z(J ∪ {2i − 1, 2i}) is of full
rank more efficiently. Pseudocode of the algorithm is shown in Algorithm 6.1.

First we show how to check whether a pair can be included to J to form a larger
growable set.

CLAIM 6.1. Let N = Z(J)−1, ni = N2i−1,2i and J ′ = J ∪ {2i − 1, 2i}. Then J ′ is a
growable set if and only if tini + 1 6= 0.

PROOF. By Theorem 6.4, J ′ is growable if and only if Z(J ′) is non-singular. By
Lemma 2.2(1), this is true if and only if the following expression is non-zero.

det

((
1 0
0 1

)
−
(

0 ti
−ti 0

)
·
(

0 ni
−ni 0

))
= det

(
tini + 1 0

0 tini + 1

)

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 H.Y. Cheung et al.

Thus Z(J ′) is non singular if and only if (tini +1)2 6= 0, which is equivalent to tini +1 6=
0.

Algorithm 6.1 An O(mω)-time algebraic algorithm for linear matroid parity
MATROIDPARITY(M)

Construct Z and assign random values to indeterminates ti
Compute N := Z−1 by fast matrix inverse
return BUILDPARITY(S,N, ∅)

BUILDPARITY(S,N ,J)
Invariant 1: J is a growable set
Invariant 2: N = Z(J)−1S,S
if |S| = 2 then

Let S = {2i− 1, 2i}
if 1 + tiN2i−1,2i 6= 0 then

return {2i− 1, 2i}
else

return ∅
else

Partition S into two equal-size subsets
J1 := BUILDPARITY(S1, NS1,S1

, J)
Compute M := Z(J ∪ J1)−1S2,S2

using Claim 6.2
J2 := BUILDPARITY(S2,M, J ∪ J1)
return J1 ∪ J2

Correctness: At the time MATROIDPARITY calls BUILDPARITY, the invariant N =
Z(J)

−1 obviously holds, and so as the first recursive call to BUILDPARITY. Regardless
the changes made in the first recursive call, Z(J ∪J1)−1 is recomputed so the invariant
is also satisfied with the second recursive call. Note S is partitioned in such a way that
its first half goes to S1 and the remaining goes to S2, so both S1 and S2 must be parity
set.

In the algorithm every element of M is considered. By Claim 6.1, Z(J) is always
non-singular. Hence, by Theorem 6.4, this implies that J is always a growable set.

Time complexity: The following claim shows how to compute M :=
Z(J ∪ J1)−1S2,S2

efficiently.

CLAIM 6.2. Let J ′ = J ∪ J1, J1 ⊆ S. Using N = Z(J)−1S,S , computing Z(J ′)−1S,S
can be done in O(|S|ω) time.

PROOF. Since Z(J ′) is identical to Z(J) except Z(J ′)J1,J1 = 0, since Z(J)−1R,C =

NR,C , by Lemma 2.2(3),

Z(J ′)−1S,S = NS,S −NS,J1(I + (−Z(J)J1,J1)NJ1,J1)−1(−Z(J)J1,J1)NJ1,S

= NS,S +NS,J1
(I − ZJ1,J1

NJ1,J1
)−1ZJ1,J1

NJ1,S

Note the last equality holds because Z(J)J1,J1 = ZJ1,J1 . At any time during the compu-
tation, matrices involved have size at most |S|×|S|. Hence computing Z(J ′)−1S,S takes
O(|S|ω) time.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:21

Since Z has dimension (2m + r) × (2m + r), initial computation of Z−1S,S takes
O((2m + r)ω) = O(mω) time. Let f(m) be the time required by BUILDPARITY with
|S| = 2m, then

f(m) = 2 · f(m/2) +O(mω)

which implies f(n) = O(mω) by the master theorem.

6.4. An O(mrω−1) Algorithm
The previous algorithm works for matroids with large rank. In this section we present
an algorithm with better time complexity when rank is small. The idea behind is to
break the ground set S into a number of smaller pieces. In this way, inverse of these
matrices to be computed will have smaller size.

Algorithm 6.2 An O(mrω−1)-time algebraic algorithm for linear matroid parity
MATROIDPARITY(M)

Construct Z and assign random values to indeterminates ti
Compute Y := MT−1MT using Claim 6.3
Parition S into m/r subsets each with size r
J := ∅
for i = 1 to m/r do

Compute N := Z(J)−1Si,Si
using Claim 6.5

J ′ := BUILDPARITY(Si, N, J)
J := J ∪ J ′

return J

The matrix Y = MT−1MT will allow us to compute submatrices of Z(J)−1 efficiently
using Equation 6.1. We will assume Y −1 exists; otherwise, if Y has no inverse, then
we can conclude that Z has no inverse by Theorem 6.1 and thus there is no parity
basis. In the following we will show how to compute Y efficiently, and then show how
to compute Z(J)−1Si,Si

efficiently.

CLAIM 6.3. Computation of Y := MT−1MT can be done in O(mrω−1) time.

PROOF. First we show that MT−1R,C can be computed in O(RC) time. Recall that T
is a skew-symmetric matrix, having exactly one entry in each row and column. More-
over, the positions of the non-zero entries in T are just one row above or below the
diagonal of T . It is thus easy to compute T−1. If Ti,j is zero, then T−1i,j is also zero.
Otherwise T−1i,j = −1/Ti,j . As a result T−1 is also skew-symmetric and shares the
same special structure of T . Therefore any entry of MT−1 can be computed in O(1)
time. Hence MT−1R,C takes O(RC) to compute.

Now we are going to show MT−1MT can be computed in O(mrω−1) time. Since M
has size r × m, MT−1 can be computed in O(mr) time. To compute product of MT−1

(size r ×m) and MT (size m× r), we can break each of them into m/r matrices each of
size r × r, so computation of their products takes O(mrω−1).

Next we show how to compute Z(J)−1Si,Si
efficiently using Y and Y −1.

CLAIM 6.4. Given the matrix Y = MT−1MT , for any A,B ⊆ S with |A|, |B| ≤ r,
Z−1A,B can be computed in O(rω) time.

PROOF. By Equation 6.1,

Z−1S,S = T−1 − T−1MTY −1MT−1

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 H.Y. Cheung et al.

Hence for any A,B ⊆ S,

Z−1A,B = T−1A,B − (T−1MT)A,∗Y
−1(MT−1)∗,B

Both (T−1MT)A,∗ and (MT−1)∗,B have size r× r and can be computed in O(r2) time by
Claim 6.3. Thus the whole computation takes O(rω) time.

CLAIM 6.5. In each loop iteration, the matrix Z(J)−1Si,Si
can be computed in O(rω)

time.

PROOF. Since Z(J) is identical to Z except Z(J)J,J = 0, by using Lemma 2.2(3) with
M̃Si,Si

−MSi,Si
= −Z(J)J,J , we have

Z(J)−1Si,Si
= Z−1Si,Si

+ Z−1Si,J(I − ZJ,JZ
−1

J,J)−1ZJ,JZ
−1

J,Si

All the submatrices Z−1Si,Si
, Z−1Si,J , Z−1J,J and Z−1J,Si

can be computed in O(rω) by
Claim 6.4. Thus the whole computation can be done in O(rω) time.

Since |Si| = r, each call to BUILDPARITY takes O(rω) time. Hence the overall time
complexity of Algorithm 6.2 is O(m/r · rω) = O(mrω−1).

6.5. Maximum Cardinality Matroid Parity
The algorithms in previous sections can only produce a parity basis if one exists. If
there is no parity basis, these algorithms are only be able to report so. In this section,
we present how to find the maximum number of pairs that are independent. We are
going to show an O(rω) time reduction, that reduce a maximum cardinality matroid
parity problem to a problem of computing parity basis. Hence algorithms in previous
sections can be applied.

The idea here is to find a maximum rank submatrix of the matrix formulation for
matroid parity. Such a submatrix is of full rank and corresponds to a new instance of
matroid parity problem which has a parity basis.

Let Y be matrix formulation for the parity problem constructed as in Theorem 4.1.
Let r′ be the rank of Y . We first find a maximum rank submatrix YR,C of Y where
|R| = |C| = r′. This can be done inO(rω) time using a variant of the LUP decomposition
algorithm by Harvey (Appendix A of [Harvey 2008]). Since Y is a skew symmetric
matrix, YR,R is also a maximum rank submatrix of Y (see [Murota 2009] Proposition
7.3.6).

The matrix YR,R can be interpreted as matrix formulation for a new matroid parity
instance. Such an instance contains all the original given pairs, but only contains rows
indexed by R. Then

m∑
i=1

xi(biR ∧ ciR) = YR,R,

where biR denotes the vector containing entries of bi index by R. Since YR,R is of full
rank, such a new instance of matroid parity has a parity basis.

The column pairs that are independent in the new instance are also independent in
the original instance. Hence a parity basis of this new instance corresponds to a parity
set of the original instance. In addition, this new instance for matroid parity can be
solved using any algorithm presented.

For Algorithm 6.2 to keep the same time complexity O(mrω−1), this reduction has
to be done under the same time. However, naive construction of Y takes O(mr2) time.
Indeed, Y = MT−1MT which can be computed in O(mrω−1) time by Claim 6.3. The
proof for Y = MT−1MT , where xi = −1/ti (xi and ti are indeterminates in Y and T

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:23

respectively), is similar to the one of Theorem 5.2, we refer the reader to [Murota 2009]
(page 445) for the sketch of the proof.

7. WEIGHTED LINEAR MATROID PARITY
In the weighted matroid parity problem, each pair i is assigned a weight wi, and the
objective is to find a parity basis with maximum weight. Camerini, Galbiati and Maf-
fioli [1992] gave a compact matrix formulation to find the parity basis with maximum
weight p. The matrix formulation Y ∗ is almost the same as the formulation Y for the
unweighted case in Theorem 4.1. The only exception is that all indeterminates xi are
now replaced by xiywi .

THEOREM 7.1 (CAMERINI, GALBIATI, MAFFIOLI [1992]). Let

Y ∗ =

m∑
i=1

xi(bi ∧ ci)ywi ,

where the pairs {(bi, ci)} compose M , xi and y are indeterminates. Then

(1) each nonzero term of pf Y ∗ corresponds to a parity basis of M ;
(2) the degree of y in each term is the weight of the corresponding parity basis.

Here pf Y denotes the Pfaffian (see [Murota 2009]) of a skew symmetric matrix Y .
Each term of pf Y corresponds to a partition of the row set of Y into pairs. For an even
dimension skew symmetric matrix Y , it is known that detY = (pf Y)2 (see [Murota
2009]).

Since removing each pair is equivalent to assigning xi = 0, the above theorem gives
an algorithm for the weighted problem similar to Algorithm 4.1, but we need to make
sure that some parity basis with maximum weight is preserved. Therefore we have
to calculate pf Y ∗ to see if a term containing yp still remains. It can be achieved by
finding det(Y ∗) and look for a term that contains y2p. However calculating its determi-
nant may not be easy. Define W = maxi{wi}. Camerini, Galbiati and Maffioli [1992]
proposed an Õ(m2r2 + Wmr4) algorithm in finding the parity basis with maximum
weight. Sankowski [2006] used the following theorem of Storjohann [2003] to design a
faster pseudo-polynomial algorithm for the weighted bipartite matching problem.

THEOREM 7.2 (STORJOHANN [2003]). Let A ∈ F[x]n×n be a polynomial matrix of
degree d and b ∈ F[x]n×1 be a polynomial vector of the same degree, then

— determinant det(A),
— rational system solution A−1b,

can be computed in Õ(nωd) operations in K, with high probability.

Now we can apply Theorem 7.2 to get the determinant det(Y ∗). By choosing a large
enough field F, we can check if removing each pair i (by assigning xi = 0) would affect
the parity basis with maximum weight, with high probability. If the degree of det(Y ∗)
does not drop after removal of a pair, then it can be removed. And removal of a pair
can be simply done by a rank-2 update to Y ∗ in O(r2) time. Each time the checking
can be done in Õ(Wrω) time by Theorem 7.2, which dominates the updating time.
Calculating Y ∗ at the beginning takes O(mr2) time. Hence we can find a parity basis
with the maximum weight in Õ(Wmrω) time. The pseudocode of the algorithm can be
found in Algorithm 7.1.

Finally we describe how to obtain a randomized FPTAS using the pseudo-polynomial
algorithm by standard scaling technique [Prömel and Steger 1997]. Here we assume
every column pair is contained in some parity basis. This assumption can be satisfied

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 H.Y. Cheung et al.

Algorithm 7.1 An algebraic algorithm for weighted linear matroid parity
MAXWEIGHTPARITY(M)

Construct Y ∗ and assign random values to indeterminates xi
J := {b1, c1, · · · bm, cm}
for i = 1 to m do
Y := Y ∗ − xi(bi ∧ ci)ywi

if degree of det(Y) equals that of det(Y ∗) then
Y ∗ := Y
J := J − {bi, ci}

return J

by checking the rank of corresponding Z(J) as in Theorem 6.4. If Z(J) is not full rank
we discard the corresponding column pair.

The idea is to scale the weight of each pair down and solve the new instance using
Algorithm 7.1. Given ε > 0, let K = εW/r. For each pair i scale its weight to w∗i =

bwi/Kc. Solve the new instance using Algorithm 7.1. This takes Õ(bW/Kcmrω) =

Õ(mrω+1/ε) time.
We will show the result of the scaled instance is an (1−ε)-approximation of the origi-

nal instance. Let J and O be the pairs returned by the above algorithm and the optimal
pairs respectively. Also denote original (scaled) weight of a set S by w(S) (w∗(S)). We
have w(O) −Kw∗(O) ≤ rK because for each pair in O at most weight with value K is
lost, and there are at most r/2 pairs chosen. Then

w(J) ≥ K · w∗(J) ≥ K · w∗(O) ≥ w(O)− rK = w(O)− εW ≥ (1− ε) · w(O).

8. CONCLUDING REMARKS
A recent work [Cheung et al. 2012] shows that the O(mrω−1)-time algorithm for the
linear matroid parity problem can be improved to O(mr+m(νM)ω−1)-time. In addition,
all graph algorithms presented here can be improved similar to the way algebraic
graph matching algorithms being improved in the same paper by Cheung et al..

ACKNOWLEDGMENT

We thank Nick Harvey for helpful discussions on this topic.

REFERENCES
BABENKO, M. 2010. A Fast Algorithm for the Path 2-Packing Problem. Theory of Computing Systems 46, 1,

59–79.
BERMAN, P., FÜRER, M., AND ZELIKOVSKY, A. 2006. Applications of the Linear Matroid Parity Algorithm

to Approximating Steiner Trees. In Proceedings of the 1st International Computer Science Symposium
in Russia (CSR). 70–79.

BOUCHET, A. AND CUNNINGHAM, W. 1995. Delta-Matroids, Jump Systems, and Bisubmodular Polyhedra.
SIAM Journal on Discrete Mathematics 8, 1, 17–32.

BUNCH, J. AND HOPCROFT, J. 1974. Triangular Factorization and Inversion by Fast Matrix Multiplication.
Mathematics of Computation 28, 125, 231–236.

CĂLINESCU, G., FERNANDES, C., FINKLER, U., AND KARLOFF, H. 1998. A Better Approximation Algorithm
for Finding Planar Subgraphs. Journal of Algorithms 27, 2, 269–302.

CAMERINI, P., GALBIATI, G., AND MAFFIOLI, F. 1992. Random pseudo-polynomial algorithms for exact
matroid problems. Journal of Algorithms 13, 2, 258–273.

CHEUNG, H., KWOK, T., AND LAU, L. 2012. Fast matrix rank algorithms and applications. In Proceedings
of the 44th ACM Symposium on Theory of Computing (STOC). 549–562.

CHUDNOVSKY, M., CUNNINGHAM, W., AND GEELEN, J. 2008. An algorithm for packing non-zero A-paths
in group-labelled graphs. Combinatorica 28, 2, 145–161.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

Algebraic Algorithms for Linear Matroid Parity Problems A:25

CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. 2001. Introduction to Algorithms. MIT Press.
CUNNINGHAM, W. AND GEELEN, J. 1997. The optimal path-matching problem. Combinatorica 17, 3, 315–

337.
FURST, M., GROSS, J., AND MCGEOCH, L. 1988. Finding a maximum-genus graph imbedding. Journal of

the ACM 35, 3, 523–534.
GABOW, H. AND STALLMANN, M. 1985. Efficient algorithms for graphic matroid intersection and parity. In

Proceedings of the 12th International Colloquium on Automata, Languages and Programming (ICALP).
210–220.

GABOW, H. AND STALLMANN, M. 1986. An augmenting path algorithm for linear matroid parity. Combina-
torica 6, 2, 123–150.

GABOW, H. AND XU, Y. 1989. Efficient algorithms for independent assignment on graphic and linear ma-
troids. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS).
106–111.

GEELEN, J. AND IWATA, S. 2005. Matroid matching via mixed skew-symmetric matrices. Combinator-
ica 25, 2, 187–215.

HARVEY, N. 2007. An algebraic algorithm for weighted linear matroid intersection. In Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete algorithms (SODA). 444–453.

HARVEY, N. 2008. Matchings, Matroids and Submodular Functions. Ph.D. thesis, Massachusetts Institute
of Technology.

HARVEY, N. 2009. Algebraic Algorithms for Matching and Matroid Problems. SIAM Journal on Comput-
ing 39, 2, 679–702.

IWATA, S. 2012. Weighted linear matroid parity. International Symposium on Mathematical Programming.
JENKYNS, T. 1974. Matchoids: a generalization of matchings and matroids. Ph.D. thesis, University of Wa-

terloo.
JENSEN, P. AND KORTE, B. 1982. Complexity of matroid property algorithms. SIAM Journal on Comput-

ing 11, 184–190.
JORDÁN, T. 2010. Rigid and globally rigid graphs with pinned vertices. In Fete of Combinatorics and Com-

puter Science. Bolyai Society Mathematical Studies Series, vol. 20. Springer Berlin Heidelberg, 151–172.
LAWLER, E. 1976. Combinatorial Optimization: Networks and Matroids. Oxford University Press.
LOVÁSZ, L. 1979. On determinants, matchings and random algorithms. In Fundamentals of Computation

Theory. Vol. 79. 565–574.
LOVÁSZ, L. 1980. Matroid matching and some applications. Journal of Combinatorial Theory, Series B 28, 2,

208–236.
LOVÁSZ, L. 1997. The membership problem in jump systems. Journal of Combinatorial Theory, Series

B 70, 1, 45–66.
LOVÁSZ, L. AND PLUMMER, M. 1986. Matching theory. Elsevier.
MADER, W. 1978. Über die Maximalzahl kreuzungsfreier H-Wege. Archiv der Mathematik 31, 1, 387–402.
MUCHA, M. AND SANKOWSKI, P. 2004. Maximum Matchings via Gaussian Elimination. In Proceedings of

the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 248–255.
MUROTA, K. 2009. Matrices and Matroids for Systems Analysis. Springer Verlag.
NARAYANAN, H., SARAN, H., AND VAZIRANI, V. 1994. Randomized parallel algorithms for matroid union

and intersection, with applications to arborescences and edge-disjoint spanning trees. SIAM Journal on
Computing 23, 2, 387–397.

NASH-WILLIAMS, C. 1985. Connected detachments of graphs and generalized Euler trails. Journal of the
London Mathematical Society 2, 1, 17–29.

ORLIN, J. 2008. A fast, simpler algorithm for the matroid parity problem. In Proceedings of the 13th Inter-
national Conference on Integer Programming and Combinatorial Optimization (IPCO). 240–258.

ORLIN, J. AND VANDE VATE, J. 1990. Solving the linear matroid parity problem as a sequence of matroid
intersection problems. Mathematical Programming: Series A and B 47, 1, 81–106.

PAP, G. 2007a. Packing Non-Returning A-Paths. Combinatorica 27, 2, 247–251.
PAP, G. 2007b. Some new results on node-capacitated packing of A-paths. In Proceedings of the 39th Annual

ACM Symposium on Theory of Computing (STOC). 599–604.
PAP, G. 2008. Packing non-returning A-paths algorithmically. Discrete Mathematics 308, 8, 1472–1488.
PAP, G. 2012. Weighted linear matroid matching. in preparation.
PRÖMEL, H. AND STEGER, A. 1997. RNC-Approximation Algorithms for the Steiner Problem. In Proceed-

ings of the 14th Annual Symposium on Theoretical Aspects of Computer Science (STACS). 559–570.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 H.Y. Cheung et al.

SANKOWSKI, P. 2006. Weighted bipartite matching in matrix multiplication time. In Proceedings of the 33rd
International Colloquium on Automata, Languages and Programming (ICALP). 274–285.

SCHRIJVER, A. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer Verlag.
SEBŐ, A. AND SZEGŐ, L. 2004. The path-packing structure of graphs. In Proceedings of the 10th Conference

on Integer Programming and Combinatorial Optimization (IPCO). 131–143.
STORJOHANN, A. 2003. High-order lifting and integrality certification. Journal of Symbolic Computa-

tion 36, 3-4, 613–648.
STOTHERS, A. 2010. On the complexity of matrix multiplication. Ph.D. thesis, University of Edinburgh.
SZIGETI, Z. 1998. On a Min-max Theorem of Cacti. In Proceedings of the 6th Conference on Integer Program-

ming and Combinatorial Optimization (IPCO). 84–95.
SZIGETI, Z. 2003. On the graphic matroid parity problem. Journal of Combinatorial Theory, Series B 88, 2,

247–260.
VASSILEVSKA WILLIAMS, V. 2012. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings

of the 44th ACM Symposium on Theory of Computing (STOC). 887–898.
WOODBURY, M. 1950. Inverting modified matrices. Memorandum Report 42, 106.
ZHANG, F. 2005. The Schur complement and its applications. Springer Verlag.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

