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Abstract

We present fast and simple algebraic algorithms for the
linear matroid parity problem and its applications. For
the linear matroid parity problem, we obtain a sim-
ple randomized algorithm with running time O(mrω−1)
where m and r are the number of columns and the num-
ber of rows and ω ≈ 2.376 is the matrix multiplication
exponent. This improves the O(mrω)-time algorithm by
Gabow and Stallmann, and matches the running time of
the algebraic algorithm for linear matroid intersection,
answering a question of Harvey. We also present a very
simple alternative algorithm with running time O(mr2)
which does not need fast matrix multiplication.

We further improve the algebraic algorithms for
some specific graph problems of interest. For the
Mader’s disjoint S-path problem, we present an O(nω)-
time randomized algorithm where n is the number of
vertices. This improves the running time of the existing
results considerably, and matches the running time of
the algebraic algorithms for graph matching. For the
graphic matroid parity problem, we give an O(n4)-
time randomized algorithm where n is the number
of vertices, and an O(n3)-time randomized algorithm
for a special case useful in designing approximation
algorithms. These algorithms are optimal in terms of n
as the input size could be Ω(n4) and Ω(n3) respectively.

The techniques are based on the algebraic algorith-
mic framework developed by Mucha and Sankowski,
Harvey, and Sankowski. While linear matroid parity
and Mader’s disjoint S-path are challenging generaliza-
tions for the design of combinatorial algorithms, our re-
sults show that both the algebraic algorithms for lin-
ear matroid intersection and graph matching can be ex-
tended nicely to more general settings. All algorithms
are still faster than the existing algorithms even if fast
matrix multiplication is not used. These provide simple
algorithms that can be easily implemented in practice.

1 Introduction

The graph matching problem and the matroid inter-
section problem are two fundamental polynomial-time
solvable problems in combinatorial optimization. Sev-
eral efforts have been made to obtain an elegant com-

mon generalization of these two problems, e.g. the ma-
troid parity problem by Lawler [22] (equivalent to the
matchoid problem by Edmonds [19] and the matroid
matching problem by Lovász [26]), the optimal path-
matching problem by Cunningham and Geelen [10], and
the membership problem for jump system by Bouchet
and Cunningham [3, 25].

So far the matroid parity problem is the most-
studied and the most fruitful problem among these gen-
eralizations. Although it is shown to be intractable in
the oracle model [20] and is NP-hard for matroids with
compact representations [26], Lovász proved an exact
min-max formula and obtained a polynomial time algo-
rithm for the linear matroid parity problem [26]. This
provides a polynomial-time solvable common general-
ization of the graph matching problem and the linear
matroid intersection problem1. Moreover, the linear
matroid parity problem has many applications of its
own in various areas, including the path packing prob-
lem [29, 41] in combinatorial optimization, the minimum
pinning set problem [26, 21] in combinatorial rigidity,
the maximum genus imbedding problem [11] in topo-
logical graph theory, the graphic matroid parity prob-
lem [26, 12] used in approximating minimum Steiner
tree [39, 2] and approximating maximum planar sub-
graph [5], and the unique solution problem [28] in elec-
tric circuit.

Given its generality and applicability, it is thus of
interest to obtain fast algorithms for the linear matroid
parity problem. In this paper we will present faster and
simpler algorithms for the linear matroid parity prob-
lem, and also improved algorithms for specific graph
problems of interest. The algorithms are based on the
algebraic algorithmic framework developed by Mucha
and Sankowski [30], Harvey [16, 18], and Sankowski [40].

1.1 Problem Formulation and Previous Work

The linear matroid parity problem can be formulated
as follows without using terminology from matroid

1This only holds when both matroids are representable over the
same field, but it covers most of the applications of the matroid
intersection problem; see Section 4 of [16] for more discussions.



theory2: Given an r×2m matrix where the columns are
partitioned into m pairs, find a maximum cardinality
collection of pairs so that the union of the columns
of these pairs are linearly independent. For instance,
to formulate the graph matching problem as a linear
matroid parity problem, we construct an n×2m matrix
where the rows are indexed by the vertices and the pairs
are indexed by the edges, where an edge ij is represented
by two columns where one column has an 1 in the i-th
entry and 0 otherwise and the other column has an 1 in
the j-th entry and 0 otherwise.

There are several deterministic combinatorial al-
gorithms for the linear matroid parity problem. The
first polynomial time algorithm is obtained by Lovász
with a running time of O(m17) which can be imple-
mented to run in O(m10) time [26, 28]. The fastest
known algorithm is an augmenting path algorithm ob-
tained by Gabow and Stallmann [13] with running time
O(mrω) [41], where ω ≈ 2.376 is the exponent on the
running time of the fastest known matrix multiplication
algorithm [8]. Orlin and Vande Vate [35] presented an
algorithm with running time O(mrω+1) [41] by reduc-
ing it to a sequence of matroid intersection problems.
Recently Orlin [34] presented a simpler algorithm with
running time O(mr3). While these algorithms are all
deterministic and reveal substantial structural insights
into the problem, even the simplest algorithm by Orlin
is quite complex and probably too difficult to be imple-
mented in practice.

On the other hand, Lovász [24] proposed an alge-
braic approach to the linear matroid parity problem.
First, he constructed an appropriate matrix with inde-
terminates (variables) where the matrix is of full rank
if and only if there are r/2 linearly independent pairs
(see Section 4.1). Then he showed that determining
whether the matrix is of full rank can be done efficiently
with high probability, by substituting the variables with
independent random values from a large enough field,
and then computing the determinant of the resulting
matrix [24]. This approach can be easily modified to
determine the optimal value of the linear matroid par-
ity problem in one matrix multiplication time, and one
can also construct a solution in m matrix multiplica-
tions time. Note that this already gives a randomized
O(mrω)-time algorithm for the linear matroid parity
problem, and this algebraic approach also leads to an
efficient parallel algorithm for the linear matroid parity
problem [32].

In a recent line of research an elegant algorithmic
framework has been developed for this algebraic ap-

2It is not necessary to formulate the general matroid parity
problem for this paper, but the formulation and some background
of matroid theory will be provided in Section 3.

proach. Mucha and Sankowski [30] showed how to use
Gaussian eliminations to construct a maximum match-
ing in one matrix multiplication time, leading to an
O(nω) time algorithm for the graph matching prob-
lem where n is the number of vertices. Harvey [16]
used a divide-and-conquer method to obtain an al-
gebraic algorithm for the linear matroid intersection
problem with running time O(mrω−1) where m is the
number of columns, and a simple O(nω) time algo-
rithm for the graph matching problem. Furthermore,
Sankowski [40] and Harvey [18] extended the algebraic
approach to obtain faster pseudo-polynomial algorithms
for the weighted bipartite matching problem and the
weighted linear matroid intersection problem.

Besides matching and linear matroid intersection,
other special cases of the linear matroid parity prob-
lem have also been studied. One special case of interest
is the graphic matroid parity problem [12, 14, 44, 45],
which has applications in designing approximation al-
gorithms [5, 39, 2]. For this problem the fastest known
algorithm is by Gabow and Stallmann [12] which runs
in O(mn lg6 n) time. Another special problem of con-
siderable interest is the Mader’s S-path packing prob-
lem [29, 26, 42, 7, 36, 37, 38, 1] which is a generaliza-
tion of the graph matching problem and the s-t ver-
tex disjoint path problem. Lovász [26] showed that this
problem can be reduced to the linear matroid parity
problem. Chudnovsky, Cunningham and Geelen [7] ob-
tained an O(n6) time direct combinatorial algorithm for
the problem, and Pap [38, 37] obtained a simpler direct
combinatorial algorithm for the problem and also for
the more general capacitated setting.

1.2 Our Results We obtain fast and simple alge-
braic algorithms for the linear matroid parity problem
and also for some specific graph problems of interest.
All algorithms are best possible in the sense that either
they match the running time in well-known special cases
or they are optimal in terms of some parameters.

1.2.1 Linear Matroid Parity There are two alge-
braic formulations for the linear matroid parity prob-
lem, one is a “compact” formulation by Lovász [24]
and another is a “sparse” formulation by Geelen and
Iwata [15]. Using the compact formulation and the
Sherman-Morrison-Woodbury formula, we present a
very simple algorithm for the linear matroid parity prob-
lem.

Theorem 1.1. There is an O(mr2)-time randomized

algorithm for the linear matroid parity problem.

One feature of this algorithm is that it does not use
fast matrix multiplication and is very easy to implement



in practice. Note that it is already faster than the
Gabow-Stallmann O(mrω) time algorithm, and actually
if fast matrix multiplication is not used then the best
known algorithms run in O(mr3) time [13, 34]. Using
the divide-and-conquer method of Harvey [16] on the
sparse formulation and fast matrix multiplications, we
can improve the running time further to match the
running time of the linear matroid intersection problem,
answering a question of Harvey [16].

Theorem 1.2. There is an O(mrω−1)-time random-

ized algorithm for the linear matroid parity problem.

It is still open whether there is a polynomial time
algorithm for the weighted linear matroid parity prob-
lem, and even a deterministic PTAS is not known
yet [23]. We present a faster pseudo-polynomial ran-
domized algorithm for the weighted matroid parity
problem, which also implies a faster randomized FP-
TAS for the weighted linear matroid parity problem us-
ing standard scaling technique [39].

1.2.2 Graph Algorithms For graph problems that
can be reduced to the linear matroid parity problem,
we show that the additional structure can be exploited
in the compact formulation to obtain faster algorithms
than that follow from Theorem 1.2. We illustrate this
with some well-known problems.

Mader’s Disjoint S-Path: In this problem we
are given an undirected graph G = (V, E) and S
is a collection of disjoint subsets of V , the goal is
to find a maximum collection of vertex disjoint S-
paths, where an S-path is a path that connects two
different sets in S and has no internal vertex in S.
This problem generalizes the graph matching problem
and the vertex disjoint s-t path problem, and is of
considerable interest [29, 26, 42, 7, 36, 37, 38, 1].
Obtaining a direct combinatorial algorithm is quite
nontrivial [7, 38]. The best known running time is
still the O(mnω)-time bound implied by the Gabow-
Stallmann algorithm, where m is the number of edges
and n is the number of vertices. The algorithm in
Theorem 1.2 implies an O(mnω−1)-time algorithm. By
using the compact formulation, we further improve the
running time to match the algebraic algorithms for the
graph matching problem. The algorithm would be quite
simple if fast matrix multiplication is not used, and its
running time would be Õ(n3) which is still faster than
the existing algorithms.

Theorem 1.3. There is an O(nω)-time randomized al-

gorithm for the Mader’s S-path problem.

Graphic Matroid Parity: In this problem we
are given an undirected graph and some edge pairs,

and the problem is to find a maximum collection of
edge pairs such that the union of these edges forms a
forest. One special case of interest [28, 44] is when each
pair has a common vertex (i.e. {ij, ik} for some vertex
i). This has applications in approximating minimum
Steiner tree [39, 2] and approximating maximum planar
subgraph [5]. In the general problem the input could
have up to Ω(n4) edge pairs where n is the number of
vertices, and in the special problem the number of edge
pairs could be Ω(n3). The following algorithms achieve
optimal running time in terms of n for both problems.

Theorem 1.4. There is an O(n4)-time randomized al-

gorithm for the graphic matroid parity problem, and an

O(n3)-time randomized algorithm when every edge pair

has a common vertex.

The fastest algorithm on graphic matroid parity is
obtained by Gabow and Stallmann [12] with running
time O(mn lg6 n) where m is the number of edge pairs,
and so our algorithm is faster if there are Ω(n3) edge
pairs in the general problem and if there are Ω(n2) edge
pairs in the special problem. We remark that the same
statement holds even if we use a cubic algorithm for
matrix multiplication, and the resulting algorithm is
much simpler than that of Gabow and Stallmann.

Colorful Spanning Tree: In this problem we
are given an undirected multigraph G = (V, E) where
each edge has one color, and the objective is to deter-
mine whether there is a spanning tree in which every
edge has a distinct color. This is a generalization of
the arborescence problem and the connected detach-
ment problem [33, 41], and is a special case of the lin-
ear matroid intersection problem. Note that the input
graph could have Ω(n3) edges where n is the number
of vertices, since each pair of vertices could have Ω(n)
edges in between, each of which has a distinct colors.
So the following algorithm has optimal running time in
terms of n.

Theorem 1.5. There is an O(n3)-time randomized al-

gorithm for the colorful spanning tree problem.

1.3 Techniques Our results show that both the alge-
braic algorithms for graph matching and linear matroid
intersection can be generalized to linear matroid parity.
The O(mrω−1)-time algorithm for linear matroid par-
ity is a straightforward generalization of Harvey’s linear
matroid intersection algorithm, and the algorithm for
weighted linear matroid parity follows from the tech-
niques used by Sankowski [40]. The main new technical
contribution is the use of the compact formulation to
design new algebraic algorithms. For graph problems,
the basic observation is that the column vectors have at



most a constant number of nonzeros, and this allows us
to extend Harvey’s matching algorithm to obtain faster
algorithms using the compact formulation. The O(nω)
algorithm for the S-path problem is based on a good
matrix formulation of the problem, while the O(n3) al-
gorithms for graphic matroid parity and colorful span-
ning tree are based on different recursions used in the
divide-and-conquer method. We remark that this ap-
proach on the compact formulation implies some new
results for linear matroid intersection problems as well,
e.g. colorful spanning tree, graphic matroid intersec-
tion, simple O(mr2) algorithm.

While linear matroid parity and Mader’s disjoint
S-path are challenging generalizations for the design
of combinatorial algorithms, our results show that the
algebraic algorithmic framework can be adapted nicely
to give faster and simpler algorithms in more general
settings. Our algorithms are still faster than the
existing algorithms even if fast matrix multiplications
are not used, and these simpler algorithms could be
implemented easily in practice using MATLAB (see
e.g. [17]).

2 Algebraic Preliminaries

Notations: Given a matrix M , the submatrix contain-
ing rows S and columns T is denoted by MS,T . A sub-
matrix containing all rows (or columns) is denoted by
M∗,T (or MS,∗), and an entry of M is denoted by Mi,j .
Let ~ei to be a column vector with an 1 in the i-th po-
sition and 0 otherwise. When a set of integers S are
partitioned into k subsets, the set S is partitioned into
k equal size subsets S1, S2, · · ·Sk. In addition, S1 con-
tains the smallest |S|/k elements of S, S2 contains the
next |S|/k smallest elements of S, and Sk contains the
largest |S|/k elements of S.

Algebraic algorithms: Given two n× n matrices
with entries in a field F of size poly(n), the matrix
multiplication operation requires O(nω) time [8] where
ω < 2.38. For an n × n matrix, it is known that the
operations of computing the determinant, computing
the rank, computing the inverse, and computing a
maximum rank submatrix can all be done in the same
time bound as one matrix multiplication [4, 17]. We
assume the number of pairs m and the number of rows
r in the linear matroid parity problem will be powers of
two. This assumption can be easily satisfied by adding
redundant pairs and rows.

Matrix of indeterminates: Let F be a field,
and let F(x1, . . . , xm) be the field of rational function
over F with indeterminates {x1, x2, . . . , xm}. A matrix
with entries in F(x1, . . . , xm) is called a matrix of
indeterminates. A matrix M of indeterminates is
non-singular if and only if its determinant is not the

zero function. To check if an n × n matrix M with
indeterminates is non-singular, one can substitute each
xi with a random value in Fq and call the resulting
matrix M ′. By the Schwartz-Zippel Lemma, if M is
non-singular then det(M ′) is zero with probability at
most n/q. Hence, by setting q = nc for a large constant
c, this gives a randomized algorithm with running time
O(nω) to test if M is non-singular with high probability.

Skew-symmetric matrix: A matrix M is called
skew-symmetric if Mi,j = −Mj,i for all i, j. For any
non-singular skew-symmetric matrix M , it is known
that its inverse is also skew-symmetric [31].

Small rank update formula: Suppose we have a
matrix M and its inverse M−1. If we perform a small
rank update on M , the following formula [46] shows how
to update M−1 efficiently.

Lemma 2.1. (Sherman-Morrison-Woodbury) Let

M be an n × n matrix, U be an n × k matrix, and V
be an n × k matrix. Suppose that M is non-singular.

Then

1. M + UV T is non-singular if and only if I +
V T M−1U is non-singular.

2. If M +UV T is non-singular, then (M +UV T )−1 =
M−1 − M−1U(I + V T M−1U)−1V T M−1.

Small area update formula: Suppose we have a
matrix M and its inverse M−1. If we update MS,S for
small |S|, then Harvey [16] showed that the Sherman-
Morrison-Woodbury formula can be used to compute
the values in M−1

T,T quickly for small |T |.

Lemma 2.2. (Harvey) Let M be a non-singular ma-

trix and let N = M−1. Let M̃ be a matrix which is

identical to M except M̃S,S 6= MS,S and let ∆ = M̃−M .

1. M̃ is non-singular if and only if det(I +
∆S,SNS,S) 6= 0.

2. If M̃ is non-singular then M̃−1 = N − N∗,S(I +
∆S,SNS,S)−1∆S,SNS,∗.

3. Restricting M̃−1 to a subset T , we have M̃−1
T,T =

NT,T − NT,S(I + ∆S,SNS,S)−1∆S,SNS,T , and this

can be computed in O(|T |ω) time for |T | ≥ |S|.

3 Matroid Preliminaries

A matroid is a pair M = (V, I) of a finite set V and a
set I of subsets of V so that the following axioms are
satisfied

1. ∅ ∈ I,

2. I ⊆ J ∈ I =⇒ I ∈ I,



3. I, J ∈ I, |I| < |J | =⇒ ∃v ∈ J \ I such that
I ∪ {v} ∈ I.

We call V the ground set and I ∈ I an independent set.
So I is the family of independent sets. Bases B of M
are independent sets with maximum size. By the above
axioms, all bases have the same size. For any U ⊆ V ,
the rank of U , denoted by rM (U), is defined as

rM (U) = max{|I| | I ⊆ U, I ∈ I}.

3.1 Examples

Linear Matroid: Let Z be a matrix over a field F,
and V be the set of the column vectors of Z. The linear
independence among the vectors of Z defines a matroid
M on ground set V . A set I ⊆ V is independent in M if
and only if the column vectors indexed by I are linearly
independent. The rank function r of M is simply defined
as rM (I) = rank(Z∗,I). A matroid that can be obtained
in this way is linearly representable over F.

Partition Matroid: Let {V1, · · · , Vk} be a par-

tition of ground set V , that is,
⋃k

i=1 Vi = V and
Vi ∩ Vj = ∅ for i 6= j. Then the family of the inde-
pendent sets I on the ground set V is given by

I = {I ⊆ V : |I ∩ Vi| ≤ 1 ∀i ∈ {1, · · · , k}}.

M = (V, I) is called the partition matroid. Partition
matroids are linearly representable. This can be done
by representing each element v ∈ Vi as a vector ~ei.

Graphic Matroid: Let G = (V, E) be a graph
with vertex set V and edge set E. A graphic matroid

has ground set E. A set I ⊆ E is independent if and
only if I contains no cycles in G. The matroid is linearly

representable by representing each edge (u, v) ∈ E to a
column vector ~eu − ~ev in the linear matroid.

3.2 Constructions The restriction of a matroid
M to U ⊆ V , denoted as M |U , is a matroid with
ground set U so that I ⊆ U is independent in M |U if
and only if I is independent in M . This is the same
as saying M |U is obtained by deleting the elements
V \ U in M . The rank function rM|U of M |U is simply
rM|U (I) = rM (I) for I ⊆ U .

The contraction of a matroid M by U ⊆ V , denoted
by M/U , is a matroid on ground set V \ U so that
I ⊆ V \ U is independent if and only if I ∪ B is
independent in M for a base B of M \ U . The rank
function rM/U of M/U is given by

rM/U (I) = rM (I ∪ U) − rM (U), I ⊆ V \ U.

For any matrix Z and its corresponding linear matroid
M , the matrix for M/{i} can be obtained by Gaussian

eliminations on Z as follows. First, using row operation
and scaling we can transform the column indexed by i to
a unit vector ~ek. Then the matrix obtained by removing
i-th column and k-th row from M is the required matrix.
It can be seen that I ∪ {i} is independent in M if and
only if I is independent in M/{i}.

3.3 Matroid Parity Given a matroid M = (V, I)
whose elements are given in pairs where each element
is contained in exactly one pair. The matroid parity

problem is to find a maximum cardinality collection of
pairs, so that union of these pairs is an independent set
of M . The general matroid parity problem is intractable
in the oracle model [20], and is NP-hard on matroids
with compact representations [26].

3.4 Matroid Intersection Given two matroids
M1 = (S, I1) and M2 = (S, I2), the matroid intersection

problem is to find a maximum size common independent
set of the two matroids. The fastest known algorithm
for linear matroid intersection is given by Harvey [16].
It is an algebraic randomized algorithm with running
time O(mrω−1), where m is the size of the ground set
and r is the rank of both matroids.

4 A Simple Algebraic Algorithm for Linear

Matroid Parity

In this section we will present the matrix formulations
for linear matroid parity and the proof of Theorem 1.1.
The proof of Theorem 1.2 will be presented in Section 6,
and the results on weighted linear matroid parity will
be presented in Section 7.

Given an r × 2m matrix M where the columns are
partitioned into m pairs {{b1, c1}, . . . , {bm, cm}}, the
linear matroid parity problem is to find a maximum
collection of pairs J ⊆ [m] so that the vectors in
⋃

i∈J{bi, ci} are linearly independent. We use νM to
denote the optimal value, and call an optimal solution
a parity basis if νM = r/2. We also call a set parity set

if every column pair is either contained in it or disjoint
from it.

4.1 Matrix Formulations There are two matrix
formulations for the linear matroid parity problem. One
is a compact formulation given by Lovász. In the
following the wedge product b∧ c of two column vectors
b and c is defined as bcT − cbT .

Theorem 4.1. (Lovász [24]) Given m column pairs

{(bi, ci)} for 1 ≤ i ≤ m and bi, ci ∈ R
r. Let

Y =

m∑

i=1

xi(bi ∧ ci),



where xi are indeterminates. Then 2νM = rank(Y ).

Another is a sparse formulation given by Geelen
and Iwata. Let M be a r × 2m matrix for the linear
matroid parity problem. Let T be a matrix with size
2m × 2m, so that indeterminate ti appears in T2i−1,2i

and −ti appears in T2i,2i−1 for 1 ≤ i ≤ m, while all
other entries of T are zero.

Theorem 4.2. (Geelen and Iwata [15]) Let

Z :=

(
0 M

−MT T

)

Then 2νM = rank(Z) − 2m.

4.2 An O(mr2) algorithm In this subsection we
present a very simple O(mr2)-time algorithm for the
linear matroid parity problem. Here we consider the
case where we find a parity basis if one exists or report
that no parity basis exists. We will show how to reduce
the general problem to this case in Section 6.5.

A pseudocode of the algorithm is presented in Algo-
rithm 4.1. First we construct the matrix Y with indeter-
minates using the compact formulation in Theorem 4.1.
By Theorem 4.1 we have νM = r/2 if and only if Y is of
full rank. As stated in Section 2, we can test whether
Y is of full rank in O(r3) time with high probability, by
substituting the indeterminates with random values and
then checking whether the resulting matrix has nonzero
determinant. If Y is not of full rank, then we report
that no parity basis exists, otherwise we construct the
matrix Y −1 in O(r3) time.

Then, for each column pair (bi, ci), the algorithm
checks whether this pair can be removed while keeping
the resulting matrix full rank. If so this pair is removed
from the problem since there is still an optimal solution
surviving, otherwise this pair is kept since it is in every
parity basis with high probability. In the end the
algorithm returns the pairs that were not removed.

Next we show how to check whether a pair can be
removed efficiently. Removing the i-th column pair from
M is equivalent to assign xi to zero. Let Y ′ be the new
matrix with xi = 0, then

Y ′ = Y − xi(bic
T
i − cib

T
i ) = Y − xi

(
bi ci

) (
ci -bi

)T

Observe that this is just a rank-2 update. By set-
ting U = xi

(
bi ci

)
and V =

(
-ci bi

)
and us-

ing Lemma 2.1(1), Y ′ is of full rank if and only if
I + V T Y −1U is of full rank. Since both U and V are
of size r × 2, we can check whether a pair can be re-
moved in O(r2) time. If so, we apply Lemma 2.1(2)
to compute the inverse of Y ′ by the formula Y −1 −
Y −1U(I + V T Y −1U)−1V T Y −1, this can be computed

in O(r2) time since I +V T Y −1U is of size 2×2. Apply-
ing this procedure iteratively, the whole algorithm can
be implemented in O(mr2) time.

Finally the algorithm fails only if a matrix is of
full rank but the determinant is zero after the random
substitutions. As stated in Section 2, this happens with
probability at most r/q where q is the field size. Since
we only check the rank at most m times, the failure
probability is at most mr/q by the union bound, and so
by choosing q = mr/ǫ this probability is at most ǫ.

Algorithm 4.1 A simple algebraic algorithm for linear
matroid parity

SimpleParity(M)
Construct Y using the compact formulation and
assign random values to indeterminates xi

if det(Y ) = 0 return “there is no parity basis”
Compute Y −1

Set I = {b1, c1, · · · bm, cm}
for i = 1 to m do

Set Y ′ := Y − xi

(
bi ci

) (
ci -bi

)T

if det(Y ′) 6= 0 then

Y := Y ′

Update Y −1 by the Sherman-Morrison-
Woodbury formula
I := I − {bi, ci}

return I

5 Graph Algorithms

In most applications of linear matroid parity, not only
is the given matroid linear, but also each column vector
of the matroid has few nonzero entries. For example,
each column vector of a graphic matroid has only two
nonzero entries. In this section, we will show how we can
exploit such special structure to obtain faster algorithms
for some graph problems of interest.

For the Mader’s S-path problem in Section 5.1, we
will translate the reduction into a good matrix formula-
tion, so that the recursive approach for graph matching
problem can be extended to solve this problem. Also,
we will give different recursive algorithms to solve the
graphic matroid parity problem in Section 5.2 and the
colorful spanning tree problem in Section 5.3.

Our algorithms below assume the matroid parity
instance contains a parity basis. If not we can use
the same step as in Section 6.5 to reduce to this case:
Suppose the given matroid M has rank r. Consider the
matrix formulation Y in Theorem 4.1. The maximum
rank submatrix YS,S can be found in O(rω) time, and
then we only need to focus on YS,S . At any time
our algorithm considers a submatrix YR,C , we shall
consider YR∩S,C∩S instead, except at the beginning of



the algorithm when we start with the whole ground set.

5.1 Mader’s S-Path Given an undirected graph
G = (V, E) and let S1, · · · , Sk be disjoint subsets of
V . A path is called an S-path if it starts and ends with
vertices in Si and Sj such that Si 6= Sj , while all other
internal vertices of the path are in V \(S1∪S2∪· · ·∪Sk).
The disjoint S-path problem is to find a maximum
cardinality collection of vertex disjoint S-Paths of the
graph G. In the following we assume without loss of
generality that each Si is an independent set.

Lovász [26] showed that the S-path problem can
be reduced to the linear matroid parity problem, but
it is not immediately clear how his reduction can be
translated into a matrix formulation of the problem.
Instead, we will follow the reduction by Schrijver ([41]
page 1284), and show that it can be translated into a
good matrix formulation.

5.1.1 Reduction to Linear Matroid Parity Here
we only present the reduction following Schrijver, for
proofs we refer the reader to Chapter 73 of [41].
The high level idea is to associate each edge to a 2-
dimensional linear subspace, and show that the edges
in a solution of the S-path problem correspond to sub-
spaces that are linearly independent in an appropriately
defined quotient space R

2n/Q, where two subspaces are
linearly independent if their basis vectors are linearly
independent.

Associate each edge e = (u, w) ∈ E to a 2-
dimensional linear subspace Le of (R2)V such that

Le =

{

x ∈ (R2)V

∣
∣
∣
∣
∣

x(v) = 0 for each v ∈ V \{u, w}

and x(u) + x(w) = 0

}

where x : V → R
2 is a function that maps each vertex

to a 2-dimensional vector. Let r1, · · · rk be k distinct 1-
dimensional subspaces of R

2. For each vertex v ∈ V , let
Rv = rj if v ∈ Sj for some j, and Rv = {0} otherwise.
Define a linear subspace Q of (R2)V such that

Q = {x ∈ (R2)V | x(v) ∈ Rv for all v ∈ V }.

Let E be the collection of subspaces Le/Q for each e ∈ E
of (R2)V /Q, where Le/Q is the quotient space of Le by
Q. Note that dim(Le/Q) = 2 for all edges e, since
it does not connect two vertices in the same Si as we
assume each Si is an independent set. The following
lemma shows the reduction to the linear matroid parity
problem.

Lemma 5.1. (Schrijver [41] (73.20)) If G is con-

nected, then the maximum number of disjoint S-paths

is equal to ν(E) − |V | + |T |, where T =
⋃k

i=1 Si and

ν(E) is the size of a maximum collection of linearly in-

dependent 2-dimensional subspaces in E.

5.1.2 Matrix Formulation To translate the above
reduction into a matrix formulation, we need to asso-
ciate each edge e to a column pair (b′e, c

′
e), such that

for F ⊆ E the subspaces in LF = {Le/Q | e ∈ F}
are linearly independent if and only if the vectors in
⋃

e∈F {b
′
e, c

′
e} are linearly independent.

Let ~ek be the k-th unit vector. For each edge
e = (u, v) ∈ E, construct an orthogonal basis be and
ce of Le such that

be = ~e2u−1 − ~e2v−1 and ce = ~e2u − ~e2v,

where we abuse notation to also use u and v as indexes
of the vertices u and v. For v ∈ V we define:

qv =

{
~e2v−1 + i~e2v if v ∈ Si

0 otherwise

Note that the collection of non-zero qv forms an orthog-
onal basis of Q. To obtain the vectors for Le/Q, we just
need to write be = b′e + bQ and ce = c′e + cQ where
b′e, c

′
e ∈ Q⊥ and bQ, cQ ∈ Q. Then, for any subset

F ⊆ E, the vectors in
⋃

e∈F {be, ce} are linearly indepen-
dent in R

2n/Q if and only if the vectors in
⋃

e∈F {b
′
e, c

′
e}

are linearly independent in R
2n.

We can use a procedure similar to the Gram-
Schmidt process to compute (b′e, c

′
e) from (be, ce). Recall

that the collection of non-zero qv forms an orthogonal
basis of Q. Define

b′e = be −
∑

v∈V :qv 6=0

bT
e qv

qT
v qv

qv c′e = ce −
∑

v∈V :qv 6=0

cT
e qv

qT
v qv

qv.

By subtracting the projection of be onto qv for all v from
be, the resulting vector b′e is orthogonal to the subspace
Q. Thus, by the above discussion, we have that for
each F ⊆ E, the subspaces in LF = {Le/Q | e ∈ F}
are linearly independent if and only if the vectors in
⋃

e∈F {b
′
e, c

′
e} are linearly independent in R

2n.
Therefore, by solving the linear matroid parity

problem of M on the set of column pairs {(b′e, c
′
e)} for

all e ∈ E, we can find the maximum number of disjoint
S-paths in G, using Lemma 5.1. Also, from the solution
of the linear matroid parity problem, one can easily
construct the solution for the S-path problem, see [41].

Observe that for any e = (u, v), after the Gram-
Schmidt process, b′e and c′e are of the form:

b′e = i2

1+i2~e2u−1 −
i

1+i2~e2u − j2

1+j2~e2v−1 + j
1+j2~e2v

c′e = − i
1+i2~e2u−1 + 1

1+i2~e2u + j
1+j2~e2v−1 −

1
1+j2~e2v

where u ∈ Si and v ∈ Sj for some i and j. If u or v are
not in any Si, then the corresponding entries in b′e and c′e



remain the same as in be and ce. Therefore, M contains
at most four non-zero entries in each column. Now
we can apply Theorem 4.1 to construct the described
matrix Y for the linear matroid parity problem, which
is given by Y =

∑

e∈E xe(b
′
e ∧ c′e).

Let m = |E| and n = |V |. Then Y is a 2n × 2n
matrix. For each wedge product, there are at most four
2×2 non-zero blocks, and so for each edge e there are at
most 16 entries of xe in Y . Further observe that for any
2× 2 non-zero block at the two rows occupied by u and
two columns occupied by v of Y , the same block (but
negated) appears at the two rows occupied by v and two
columns occupied by u of Y . Hence the appearance of
2×2 blocks (as well as the indeterminates xi) are always
symmetric.

5.1.3 Recursive Algorithm Here is the high-level
idea of the recursive algorithm to construct a parity
basis of M . Similar to the O(mr2)-time algorithm
in Section 4, the algorithm checks for each edge e
whether some parity basis survives after the column pair
(b′e, c

′
e) is removed. Removing a column pair (b′e, c

′
e) is

equivalent to setting the corresponding xe to zero. The
observation is that each edge e has at most 16 entries of
xe in Y , and so the small area update formula of Harvey
can be applied. Suppose we already have Y and Y −1,
this implies that checking whether e can be removed
can be done in constant time by Lemma 2.2(1). Note
that we also need to update Y −1 for future queries, and
therefore we use a recursive procedure so that edges
within a subset are removed consecutively, so that the
relevant entries in the inverse can be computed more
efficiently using Lemma 2.2(3).

The algorithm is shown in Algorithm 5.1. Let
R and C be the indexes of a subset of rows and a
subset of columns of Y , and S = R ∪ C. For each
edge e = uv, the corresponding xe appears only in
YTe,Te

where Te = {2u − 1, 2u, 2v − 1, 2v}. Procedure
Remove(R, C) will try to remove all edges e = uv
with Te ⊆ S. In the base case when |R| = |C| = 2,
we can determine whether xe can be eliminated or not
by Lemma 2.2(1) in constant time. Otherwise, when
|R| = |C| > 2, we partition R and C into R1, R2 and
C1, C2, such that first(second) half of R goes to R1(R2),
and C is also partitioned in the same way. And then we
recursively call Remove(Ri, Cj) for i, j ∈ {1, 2}. Note
that before entering into any smaller area during the
recursion, we need to update Y −1, but only updating
Y −1

S,S is enough for the checkings in Remove(Ri, Cj)
by Lemma 2.2(1), and this can be done in O(|S|ω) time
using Lemma 2.2(3).

Correctness: The algorithm is correct because ev-
ery pair is checked, and when a pair is checked the rel-

evant entries in the inverse are always updated. Con-
sider an instance of Remove on rows R and columns
C and let S = R ∪ C. We keep the invariant NS,S =
Y −1

S,S . After each recursive call Remove(Ri, Cj) for
i, j ∈ {1, 2}, only the entries in YS,S have been changed,
denoted by ∆S,S. By Lemma 2.2(3), NS,S can be up-
dated by NS,S−NS,S(I+∆S,SNS,S)−1∆S,SNS,S, which
can be done in O(|S|ω) time. When a base case is
reached, by Lemma 2.2(1), an indeterminate x can be
removed if and only if det(I+∆S,SNS,S) 6= 0, which can
be checked in constant time since |S| = 4. The analysis
of the failure probability is the same as in Section 4.2
and we omit it here.

Time Complexity: Let f(n) be the time required
by Remove, where n = |R|. From Algorithm 5.1 we
have f(n) = 4f

(
n/2

)
+ O(nω). Hence we have f(n) =

O(nω) by the master theorem [9]. The initialization also
takes time O(nω), and so the overall time complexity is
O(nω).

Algorithm 5.1 An algebraic algorithm for disjoint S-
paths

Spath(M)
Construct Y and assign random values to each inde-
terminate xe for e ∈ E
Compute N := Y −1 by a fast inverse algorithm
Remove({1..2n}, {1..2n})
return all remaining pairs

Remove(R, C)
Let S = R ∪ C
Invariant: NS,S = Y −1

S,S

if |R| > 2 then

Partition R and C into two equal-size subsets
for all pair i, j ∈ {1, 2} do

Remove(Ri, Cj)
Compute NS,S = Y −1

S,S by the small area
update formula (Lemma 2.2(3))

else

Let e = uv be the edge (if exists) with S =
{2u − 1, 2u, 2v − 1, 2v}
Let xe and b′e, c

′
e be the indeterminate and the

vectors associated with e
Set Y ′ = Y − xe(b

′
e ∧ c′e)

Check if Y ′ is non-singular by the small area
update formula (Lemma 2.2(1))
if Y ′ is non-singular then

Remove e and set Y = Y ′

5.2 Graphic Matroid Parity In this problem we
are given an undirected graph and some edge pairs, and
the problem is to find a maximum collection of edge
pairs such that the union of these edges forms a forest.



In some applications for graphic matroid parity, each
of the given edge pair has a common vertex. We will
first show an O(n3) time algorithm for this special case,
followed by an O(n4) time algorithm for the general
case.

Construct the matrix Y using the compact formu-
lation in Theorem 4.1. Since the matroid is graphic,
there are only two nonzero entries in each bi and ci.
Let each bi and ci be written in the form ~ej − ~ek and
~eu − ~ev where jk is one edge and uv is another edge.
It is easy to see that each pair of elements affects at
most 8 entries in Y , and thus the small area update
formula can be used. Similar to previous sections, we
use a recursive approach to enumerate each edge pair.
For each pair our algorithm checks if some parity basis
survives after removal of such pair. Recall that a parity
basis exists if and only if its corresponding matrix for-
mulation Y is of full rank. Removing a pair is done by
assigning corresponding xi to zero. Since xi affects at
most 8 entries, this can be checked in constant time by
Lemma 2.2(1) using Y −1. If Y remains full rank after
setting xi to zero, we remove such pair. When the al-
gorithm terminates, the remaining pairs forms a parity
basis.

We first consider the special case where each edge
pair has a common vertex, where we can obtain a
speedup over the general graphic matroid parity prob-
lem. The algorithm is shown in Algorithm 5.2 and an
illustration of the recursions is shown in Figure 5.1. De-
fine procedure Remove(P, R, C) to check all edge pairs
(i, j), (i, k) that have i ∈ P , j ∈ R and k ∈ C. Consider
the base case where |P | = |R| = |C| = 1. We need
to determine whether pair (i, j),(i, k) (i ∈ P , j ∈ R,
k ∈ C) can be removed. Since removal of such pair will
only affect entries in YS,S where S = P ∪R∪C, decision
can be made using Lemma 2.2(1) in constant time using
Y −1

S,S.
The algorithm start with Remove(V, V, V ), V =

{1..n}, which will check all edge pairs. The procedure
simply calls recursions when it does not reach its base
cases yet. For any set T , define its first (second) half
by T1 (T2). Then the procedure can be implemented
by recursive call to Remove(Px, Ry, Cz) for all x, y, z ∈
{1, 2}, see Figure 5.1. Since inverse of Y is required
to decide if a pair can be removed, Y −1

S,S (S =
P ∪ R ∪ C) is recomputed before each recursive call
using Lemma 2.2(3), as in the algorithm for the S-path
problem.

Now we analyze the time complexity of this al-
gorithm. Any changes done by Remove(P, R, C) is
made to YS,S where S = P ∪ R ∪ C. So, similar to
that in the S-path problem, updating Y −1

S,S using
Lemma 2.2(3) takes O(|S|ω) time. Let f(n) be time

required by Remove where n = |P | = |R| = |C|. We
have f(n) = 8f(n/2) + O(nω). By the master theorem
[9], if fast matrix multiplication is used, this algorithm
has overall time complexity O(n3), otherwise its time
complexity is O(n3 log n) time. The analysis of the fail-
ure probability is the same as in Section 4.2 and we omit
it here.

For the general case where edge pairs are in the
form (i, k) and (j, l). Our algorithm is very similar but
the procedure is now defined as Remove(P, Q, R, C)
which checks all pairs in the form i ∈ P , j ∈ Q, k ∈ R
and l ∈ C. Hence we now require 16 recursion calls of
Remove(Pw , Qx, Ry, Cz) where w, x, y, z ∈ {1, 2}, see
Figure 5.1. This gives an O(n4) time algorithm by the
master theorem.

Algorithm 5.2 An algebraic algorithm for graphic
matroid parity, when each edge pair has a common
vertex.
GraphicParity(M)

Construct Y and assign random values to indetermi-
nates xi

N := Y −1

Remove({1..n}, {1..n}, {1..n})
return all remaining pairs

Remove(P, R, C)
Let S = P ∪ R ∪ C
Invariant: NS,S = Y −1

S,S

if |P | = |R| = |C| = 1 then

Let i ∈ P , j ∈ R, k ∈ C
Let x, b, c be the indeterminate and the vectors
associated with edge pair (i, j) and (i, k)
Y ′ = Y − x(b ∧ c)
Check if Y ′ is non-singular by the small area
update formula (Lemma 2.2(1))
if Y ′ is non-singular then

Remove this edge pair and set Y = Y ′

else

Partition P , R and C into two equal-size subsets
for i, j, k ∈ {1, 2} do

Remove(Pi, Rj , Ck)
Compute NS,S = Y −1

S,S using the small area
update formula (Lemma 2.2(3))

5.3 Colorful Spanning Tree Given an connected
undirected multigraph G = (V, E) where each edge is
colored by one of the k colors. The colorful spanning
tree problem [41] is to determine if there is a spanning
tree T in G such that each edge in T has a distinct color.
Let n = |V | and m = |E|.

The distinct color constraint can be modelled by
a partition matroid M1 = (E, I1) where I1 = {I :
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Figure 5.1: All 8 possible smaller cases of invoking Remove(Px, Ry, Cz) are shown on the left figure for the special
problem. Each of them considers a pair of squares, which are indicated by the same number. The figure on the
right shows 16 possible subroutines for Remove(Pw , Qx, Ry, Cz) in general graphic matroid parity. Note that in
the special problem the rows and the columns of the first square are the same, while in the general problem the
rows and the columns of the first square could be different.

|I ∩ Ei| ≤ 1 for all i}. The tree constraint can be
captured by a graphic matroid M2 = (E, I2) where
I2 = {I : edges in I form an acyclic subgraph}. Thus
a matroid intersection (see Section 3.4 for definition)
of M1 and M2 gives a maximum size acyclic colorful
subgraph of G. In particular when k = n − 1 and G
is connected, a common basis of the two matroids is
a colorful spanning tree of G. Recall that a partition
matroid can be represented by a linear matroid with
exactly one non-zero entry in each column. This simpler
structure can be used to obtain a faster algorithm.

5.3.1 Matrix Formulation Using the matrix for-
mulation and the algebraic framework from Harvey [16],
there is an algebraic algorithm in solving the color-
ful spanning tree problem. Note that Harvey used
a “sparse” formulation and his algorithm runs in
O(mnω−1) time. A similar “compact” formulation for
matroid parity problem is also known. We include its
proof here for completeness.

Theorem 5.2. Let M1 and M2 be linear matroids with

the same ground set. Let A =
(
a1 a2 · · · am

)
be

a r × m matrix whose columns represent M1 and B =
(
b1 b2 · · · bm

)
be a r × m matrix whose columns

represent M2, where ai and bi are column vectors. Let

matrix

Y =

m∑

i=1

xi(aib
T
i )

be a r × r matrix where xi is a distinct indeterminate

for 1 ≤ i ≤ m. Then the two matroids have a common

independent set of size rank(Y ).

Proof. Harvey [17] showed the matrix formulation for
matroid intersection of M1 and M2 is given by

Z =

(
O A
BT T

)

where T is an n × n matrix with non zero distinct
indeterminates at the diagonal, that is Ti,i = ti. He
showed that

rank(Z) = n + λ,

where λ is the maximum cardinality of the intersection
to M1 and M2.

Perform Gaussian elimination in Z, by eliminating
A using b we have

rank(Z) = rank(AT−1BT ) + n,



and we have to show AT−1BT =
∑n

i=1 xi(aib
T
i ) = Y .

AT−1BT =
(
a1 · · · an

)
T−1

(
b1 · · · bn

)T

=
(

1
t1

a1 · · · 1
tn

an

) (
b1 · · · bn

)T

=
n∑

i=1

xi(aib
T
i )

where xi =
1

ti
. �

5.3.2 An O(n3) Algorithm The idea of the algo-
rithm is to examine each edge e one by one, and see
if any common basis (that is a colorful spanning tree)
remains after removal of this edge. We construct Y as
described in Theorem 5.2. Let the matrix representing
M1 be

(
a1 a2 · · · am

)
and matrix representing M2

be
(
b1 b2 · · · bm

)
. Note that both ai and bi have

size n × 1. For an edge ei = (u, v) that has color c,
we have ai = ~ec and bi = ~eu − ~ev. Then xi will only
appear in Yc,u and Yc,v. Let Y ′ be the new matrix with
xi assigned to zero, which is equivalent to remove edge
ei. Let S = {c, u, v}, Y ′ is identical to Y except Y ′

S,S .
Recall that we can remove edge ei if the rank of Y ′ re-
mains the same. If so we simply remove that edge and
update Y −1. After checking all edges a common basis
remains. If the size of the common basis is n − 1, then
it is a colorful spanning tree.

One technical point is that we require Y to have
full rank before the checking starts. In our problem the
originally constructed matrix Y is never full rank. So
we need another matrix that gives the same result as Y
while having full rank. We will describe in Section 5.3.3
how to find such a matrix using similar technique
described in Section 6.5. Henceforth we assume that
Y is of full rank.

The algorithm is shown in Algorithm 5.3, which
is similar to that for the graphic matroid parity prob-
lem. Let R be subset of rows of Y , C and C′ be subset
of columns of Y . Define procedure Remove(R, C, C′),
which tries to remove edges connecting u and v hav-
ing color c that have c ∈ R, u ∈ C, v ∈ C′. Re-
move(R, C, C′) has |R| = |C| = |C′| = 1 as base
case, where we have to determine an particular edge
(u, v) having color c can be removed (c ∈ R, u ∈
C, v ∈ C′). This can be done in constant time using
Lemma 2.2(1) because removing such edge only affect
two entries in Y . In other cases, R, C and C′ are
partitioned into R1, R2, C1, C2 and C′

1, C
′
2. All eight

smaller cases Remove(Ri, Cj , C
′
k) will be called, where

i, j, k ∈ {1, 2}. After any recursive call Y −1 is updated
using Lemma 2.2(3). Let S = R ∪ C ∪ C′, any instance
of Remove(R, C, C′) triggers updates to YS,S. The up-
dating process takes only O(|S|ω) time.

Time Complexity: Let f(n) be the time required
by Remove, where n = |S|. We have f(n) = 8f(n/2)+
O(nω). Hence f(n) = O(n3) by the master theorem.
As a result, the algorithm has time complexity O(n3).
If fast matrix multiplication is not used, then the
algorithm has time complexity O(n3 log n) again by the
master theorem.

Algorithm 5.3 An algorithm to compute colorful
spanning tree

ColorfulSpanningTree(M1, M2)
Construct Y and assign random values to indetermi-
nates xi

Compute N := Y −1 by fast inverse
Remove({1..n}, {1..n}, {1..n})
return all remaining pairs

Remove(R, C1, C2)
Let S = R ∪ C1 ∪ C2

Invariant: NS,S = Y −1
S,S

if |R| = 1 and C1 6= C2 then

Let x, b, c be the indeterminate and the vectors
associated with the edge in YS,S

Y ′ = Y − x(b ∧ c)
Check if Y ′ is non-singular using the small area
update formula (Lemma 2.2(1))
if Y ′ is non-singular then

Set x = 0 and Y = Y ′

else

Partition R, C1 and C2 into two equal-size subsets
for all tuples i, j, k ∈ {1, 2} do

Remove(Ri, C1,j , C2,k)
Compute NS,S = Y −1

S,S using the small area
update formula (Lemma 2.2(3))

5.3.3 Maximum Cardinality Matroid Intersec-

tion Construct Y as in Theorem 5.2. Let rank(Y ) = k.
Then the largest intersection of the two matroids will be
k. Since Y is not of full rank, we compute a largest rank
submatrix of Y . Let Y ′ = YR,C be such matrix where
|R| = |C| = k. Let N1 and N2 be linear matroids con-
structed by removing row set R from M1 and row set C
from M2 respectively. Observe that the matrix formula-
tion for intersection of N1 and N2 is

∑m
i=1 xi(AR,iB

T
C,i),

which is exactly Y ′. An independent set in N1 is also
independent in M1, and this is also true for N2 and M2.
Since Y ′ is of full rank, we can simply compute a com-
mon base of N1 and N2. The result will have size k, and
it is a maximum cardinality intersection of M1 and M2.
The maximum rank submatrix Y ′ can be computed in
O(nω) time using the algorithm suggested by Harvey
(Appendix A in [17]).



6 A Faster Linear Matroid Parity Algorithm

In this section we present an O(mrω−1)-time random-
ized algorithm for the linear matroid parity problem.
We first consider the problem of determining whether
M has a parity basis, and show how to reduce the gen-
eral problem into it in Section 6.5. The algorithm is
very similar to the algebraic algorithm for linear ma-
troid intersection by Harvey [16]. The general idea is
to build a parity basis incrementally. A subset of pairs
is called growable if it is a subset of some parity basis.
Starting from the empty solution, at any step of the
algorithm we try to add a pair to the current solution
so that the resulting subset is still growable, and the
algorithm stops when a parity basis is found.

6.1 Preliminaries Suppose A, B, C, D are respec-
tively p × p, p × q, q × p and q × q matrices, and A is
invertible. Let M be a (p + q) × (p + q) matrix so that

M =

(
A B
C D

)

,

then D − CA−1B is called the Schur complement of
block A.

Theorem 6.1. (Schur’s Formula [47] (Thm 1.1))
Let A, B, C, D and M be matrices defined above.

Then det(M) = det(A) × det(D − CA−1B).

Lemma 6.2. If A is non-singular and its Schur comple-

ment S = D − CA−1B is also non-singular, then

M−1 =

(
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)

In particular, if we have a matrix Z in the form

Z =

(
0 Q1

Q2 T

)

and T is non-singular. Denote Y as the Schur comple-
ment of T in Z. We have Y = −Q1T

−1Q2. Then, by
Lemma 6.2, if Y is non-singular, we can calculate Z−1

as follow

Z−1 =

(
Y −1 −Y −1Q1T

−1

−T−1Q2Y
−1 T−1 + T−1Q2Y

−1Q1T
−1

)
(6.1)

6.2 Matrix Formulation We use the matrix formu-
lation of Geelen and Iwata [15]. Define

Z :=

(
0 M

−MT T

)

.

Then we have νM = r/2 if and only if Z is of full rank.
To determine whether a subset J of pairs is growable,

we define Z(J) to be the matrix that have ti = 0 for all
pair i in J . We define νM/J to be the optimal value of
the linear matroid parity problem of M/J , which is the
contraction of M by J as stated in Section 3. Informally
the linear matroid parity problem of M/J corresponds
to the linear matroid parity problem of M when the
pairs in J are picked. In the following we will show
that, following from the Geelen-Iwata formula, that J
is growable if and only if Z(J) is of full rank.

Corollary 6.3. For any independent parity set J ,

rank(Z(J)) = 2νM/J + 2m + |J |.

Proof. In the following let R be the set of rows of M
and V be the set of columns of M (i.e. |V | = 2m). Note
that Z(J) is in the following form.






R J V \ J

R MR,J MR,V \J

J (−MT )J,R

V \ J (−MT )V \J,R TV \J,V \J






︸ ︷︷ ︸

Z(J)

=






R J V \ J

R MR,J MR,V \J

J (−MT )J,R

V \ J (−MT )V \J,R






︸ ︷︷ ︸

P

+






R J V \ J

R

J

V \ J TV \J,V \J






︸ ︷︷ ︸

Q

.

It is known ([31] Theorem 7.3.22) that for a mixed skew-
symmetric matrix, we have
(6.2)

rank(Z(J)) = max
A⊆S

{rank(PA,A) + rank(QS\A,S\A)}

where S = R ∪ V is the column set and row set for
Z(J). Consider a set A that maximize rank(Z(J)), then
A must be in the form R ∪ A′ where J ⊆ A′ ⊆ V .

Recall that a set is a parity set if every pair is either
contained in it or disjoint from it. We can assume that
A′ is a parity set. If A′ is not, consider parity set
B′ such that A′ ⊆ B′ and B′ has smallest size. Let
B = R ∪ B′, we have rank(PA,A) ≤ rank(PB,B) and
rank(QS\A,S\A) = rank(QS\B,S\B) where the equality
follows from the structure of T .



As M and −MT occupy disjoint rows and columns
of P , rank(PA,A) = rank(MR,A′) + rank((−MT )A′,R)
= 2 rank(MR,A′) as M is skew-symmetric. We also have
rank(QS\A,S\A) = |S \A| = |V \A′| = |V | − |A′|. Thus

rank(Z(J)) = max
A′⊆V

{2 rank(MR,A′) + |V | − |A′|}.

Write A′ = I ∪ J where I ∩ J = ∅ and I is a parity
set. By the rank function rM/J of the matroid M/J , we
have rM/J (A′ \ J) = rM (A′) − rM (J). Hence

rank(Z(J))

= max
I⊆V \J

{2(rM/J(I) + |J |) + |V | − (|I| + |J |)}

= max
I⊆V \J

{2rM/J(I) − |I|} + |V | + |J |(6.3)

Observe that a maximizer I ′ of (6.3) must be an
independent parity set (so rM/J(I ′) = |I ′|); otherwise
an independent set K ⊂ I ′ such that rM/J (K) =
rM/J (I ′) and |K| < |I ′| gives a larger value for (6.3).
So a maximizer I ′ of (6.3) would maximize rM/J (I),
which implies that I ′ is indeed a maximum cardinality
parity set of M/J . The result follows since 2νM/J =
|I ′| = rM/J (I ′). �

Theorem 6.4. For any independent parity set J , Z(J)
is non-singular if and only if J is growable.

Proof. If Z(J) is non-singular, by Corollary 6.3, we have

rank(Z(J)) = 2νM/J + |V | + |J |

2m + r = 2νM/J + 2m + |J |

r = 2νM/J + |J |

Hence J is growable. �

6.3 An O(mω) Algorithm The algorithm here
maintains a growable set J , starting with J = ∅. To
check whether a pair i can be added to J to form a
growable set, we test whether Z(J ∪ {2i − 1, 2i}) is of
full rank. Observe that Z(J ∪ {2i − 1, 2i}) is obtained
from Z(J) by a small area update, and so Lemma 2.2
can be used to check whether Z(J ∪ {2i − 1, 2i}) is of
full rank more efficiently. Pseudocode of the algorithm
is shown in Algorithm 6.1.

First we show how to check whether a pair can be
included to J to form a larger growable set.

Claim 6.5. Let N = Z(J)−1, ni = N2i−1,2i and J ′ =
J ∪{2i− 1, 2i}. Then J ′ is a growable set if and only if

tini + 1 6= 0.

Proof. By Theorem 6.4, J ′ is growable if and only if
Z(J ′) is non-singular. By Lemma 2.2(1), this is true if

and only if the following expression is non-zero.

det

((
1 0
0 1

)

−

(
0 ti
−ti 0

)

·

(
0 ni

−ni 0

))

= det

(
tini + 1 0

0 tini + 1

)

Thus Z(J ′) is non singular if and only if (tini +1)2 6= 0,
which is equivalent to tini + 1 6= 0. �

Algorithm 6.1 An O(mω)-time algebraic algorithm for
linear matroid parity

MatroidParity(M)
Construct Z and assign random values to indetermi-
nates ti
Compute N := Z−1 by fast matrix inverse
return BuildParity(S, N, ∅)

BuildParity(S,N ,J)
Invariant 1: J is a growable set
Invariant 2: N = Z(J)−1

S,S

if |S| = 2 then

Let S = {2i − 1, 2i}
if 1 + tiN2i−1,2i 6= 0 then

return {2i − 1, 2i}
else

return ∅
else

Partition S into two equal-size subsets
J1 := BuildParity(S1, NS1,S1

, J)
Compute M := Z(J ∪ J1)

−1
S2,S2

using Claim 6.6
J2 := BuildParity(S2, M, J ∪ J1)
return J1 ∪ J2

Correctness: At the time MatroidParity call
BuildParity, the invariant N = Z(J)

−1
obviously

holds, and so as the first recursive call to BuildParity.
Regardless the changes made in the first recursive call,
Z(J ∪ J1)

−1 is recomputed so the invariant is also
satisfied with the second recursive call. Note S is
partitioned in such a way that its first half goes to S1

and the remaining goes to S2, so both S1 and S2 must
be parity set.

In the algorithm every element of M is considered.
By Claim 6.5, Z(J) is always non-singular. Hence, by
Theorem 6.4, this implies that J is always a growable
set.

Time complexity: The following claim shows how
to compute M := Z(J ∪ J1)

−1
S2,S2

efficiently.

Claim 6.6. Let J ′ = J ∪ J1, J1 ⊆ S. Using

N = Z(J)−1
S,S, computing Z(J ′)−1

S,S can be done in

O(|S|ω) time.



Proof. Since Z(J ′) is identical to Z(J) except
Z(J ′)J1,J1

= 0, since Z(J)−1
R,C = NR,C , by

Lemma 2.2(3),

Z(J ′)−1
S,S

= NS,S−
NS,J1

(I + (−Z(J)J1,J1
)NJ1,J1

)−1(−Z(J)J1,J1
)NJ1,S

= NS,S + NS,J1
(I − ZJ1,J1

NJ1,J1
)−1ZJ1,J1

NJ1,S

Note the last equality holds because Z(J)J1,J1
= ZJ1,J1

.
At any time during the computation, matrices involved
have size at most |S|×|S|. Hence computing Z(J ′)−1

S,S

takes O(|S|ω) time. �

Since Z has dimension (2m + r) × (2m + r), initial
computation of Z−1

S,S takes O((2m + r)ω) = O(mω)
time. Let f(m) be the time required by BuildParity
with |S| = 2m, then

f(m) = 2 · f(m/2) + O(mω)

which implies f(n) = O(mω) by the master theorem.

6.4 An O(mrω−1) Algorithm The previous algo-
rithm works for matroids with large rank. In this section
we present an algorithm with better time complexity
when rank is small. The idea behind is to break the
ground set S into a number of smaller pieces. In this
way, inverse of these matrices to be computed will have
smaller size.

Algorithm 6.2 An O(mrω−1)-time algebraic algorithm
for linear matroid parity

MatroidParity(M)
Construct Z and assign random values to indetermi-
nates ti
Compute Y := MT−1MT using Claim 6.7
Parition S into m/r subsets each with size r
J := ∅
for i = 1 to m/r do

Compute N := Z(J)−1
Si,Si

using Claim 6.9
J ′ := BuildParity(Si, N, J)
J := J ∪ J ′

return J

The matrix Y = MT−1MT will allow us to compute
submatrices of Z(J)−1 efficiently using Equation 6.1.
We will assume Y −1 exists; otherwise, if Y has no
inverse, then we can conclude that Z has no inverse by
Theorem 6.1 and thus there is no parity basis. In the
following we will show how to compute Y efficiently, and
then show how to compute Z(J)−1

Si,Si
efficiently.

Claim 6.7. Computation of Y := MT−1MT can be

done in O(mrω−1) time.

Proof. First we show that MT−1
R,C can be computed

in O(RC) time. Recall that T is a skew-symmetric
matrix, having exactly one entry in each row and
column. Moreover, the positions of the non-zero entries
in T are just one row above or below the diagonal of
T . It is thus easy to compute T−1. If Ti,j is zero, then
T−1

i,j is also zero. Otherwise T−1
i,j = −1/Ti,j. As a

result T−1 is also skew-symmetric and shares the same
special structure of T . Therefore any entry of MT−1

can be computed in O(1) time. Hence MT−1
R,C takes

O(RC) to compute.
Now we are going to show MT−1MT can be com-

puted in O(mrω−1) time. Since M has size r×m, MT−1

can be computed in O(mr) time. To compute product
of MT−1 (size r × m) and MT (size m × r), we can
break each of them into m/r matrices each of size r× r,
so computation of their products takes O(mrω−1). �

Next we show how to compute Z(J)−1
Si,Si

effi-

ciently using Y and Y −1.

Claim 6.8. Given the matrix Y = MT−1MT , for any

A, B ⊆ S with |A|, |B| ≤ r, Z−1
A,B can be computed in

O(rω) time.

Proof. By Equation 6.1,

Z−1
S,S = T−1 − T−1MT Y −1MT−1

Hence for any A, B ⊆ S,

Z−1
A,B = T−1

A,B − (T−1MT )A,∗Y
−1(MT−1)∗,B

Both (T−1MT )A,∗ and (MT−1)∗,B have size r × r and
can be computed in O(r2) time by Claim 6.7. Thus the
whole computation takes O(rω) time. �

Claim 6.9. In each loop iteration, the matrix

Z(J)−1
Si,Si

can be computed in O(rω) time.

Proof. Since Z(J) is identical to Z except Z(J)J,J =

0, by using Lemma 2.2(3) with M̃Si,Si
− MSi,Si

=
−Z(J)J,J , we have

Z(J)−1
Si,Si

=

Z−1
Si,Si

+ Z−1
Si,J(I − ZJ,JZ−1

J,J)−1ZJ,JZ−1
J,Si

All the submatrices Z−1
Si,Si

, Z−1
Si,J , Z−1

J,J and
Z−1

J,Si
can be computed in O(rω) by Claim 6.8. Thus

the whole computation can be done in O(rω) time. �

Since |Si| = r, each call to BuildParity takes
O(rω) time. Hence the overall time complexity of
Algorithm 6.2 is O(m/r · rω) = O(mrω−1).



6.5 Maximum Cardinality Matroid Parity The
algorithms in previous sections can only produce a
parity basis if one exists. If there is no parity basis, these
algorithms are only be able to report so. In this section,
we present how to find the maximum number of pairs
that are independent. We are going to show an O(rω)
time reduction, that reduce a maximum cardinality
matroid parity problem to a problem of computing
parity basis. Hence algorithms in previous sections can
be applied.

The idea here is to find a maximum rank submatrix
of the matrix formulation for matroid parity. Such a
submatrix is of full rank and corresponds to a new
instance of matroid parity problem which has a parity
basis.

Let Y be matrix formulation for the parity problem
constructed as in Theorem 4.1. Let r′ be the rank
of Y . We first find a maximum rank submatrix YR,C

of Y where |R| = |C| = r′. This can be done in
O(rω) time using a variant of the LUP decomposition
algorithm by Harvey (Appendix A of [17]). Since Y is a
skew symmetric matrix, YR,R is also a maximum rank
submatrix of Y (see [31] Proposition 7.3.6).

The matrix YR,R can be interpreted as matrix
formulation for a new matroid parity instance. Such an
instance contains all the original given pairs, but only
contains rows indexed by R. Then

m∑

i=1

xi(biR
∧ ciR

) = YR,R,

where biR
denotes the vector containing entries of bi

index by R. Since YR,R is of full rank, such a new
instance of matroid parity has a parity basis.

The column pairs that are independent in the new
instance are also independent in the original instance.
Hence a parity basis of this new instance corresponds
to a parity set of the original instance. In addition, this
new instance for matroid parity can be solved using any
algorithm presented.

7 Weighted Linear Matroid Parity

In the weighted matroid parity problem, each pair i is
assigned a weight wi, and the objective is to find a parity
basis with maximum weight. Camerini, Galbiati and
Maffioli [6] gave a compact matrix formulation to find
the parity basis with maximum weight p. The matrix
formulation Y ∗ is almost the same as the formulation
Y for the unweighted case in Theorem 4.1. The only
exception is that all indeterminates xi are now replaced
by xiy

wi .

Theorem 7.1. (Camerini, Galbiati, Maffioli [6])
Let

Y ∗ =

m∑

i=1

xi(bi ∧ ci)y
w(i),

where the pairs {(bi, ci)} compose M , xi and y are

indeterminates. Then

1. each nonzero term of pf Y ∗ corresponds to a parity

basis of M ;

2. the degree of y in each term is the weight of the

corresponding parity basis.

Here pf Y denotes the Pfaffian (see [31]) of a skew
symmetric matrix Y . Each term of pf Y corresponds
to a partition of the row set of Y into pairs. For an
even dimension skew symmetric matrix Y , it is known
that detY = (pf Y )2 (see [31]).

Since removing each pair is equivalent to assigning
xi = 0, the above theorem gives an algorithm for the
weighted problem similar to Algorithm 4.1, but we need
to make sure that some parity basis with maximum
weight is preserved. Therefore we have to calculate
pf Y ∗ to see if a term containing yp still remains. It
can be achieved by finding det(Y ∗) and look for a term
that contains y2p. However calculating its determinant
may not be easy. Define W = maxi{w(i)}. Camerini,
Galbiati and Maffioli [6] proposed an Õ(m2r2 +Wmr4)
algorithm in finding the parity basis with maximum
weight. Sankowski [40] used the following theorem of
Storjohann [43] to design a faster pseudo-polynomial
algorithm for the weighted bipartite matching problem.

Theorem 7.2. (Storjohann [43]) Let A ∈ F[x]n×n

be a polynomial matrix of degree d and b ∈ F[x]n×1 be a

polynomial vector of the same degree, then

• determinant det(A),

• rational system solution A−1b,

can be computed in Õ(nωd) operations in K, with high

probability.

Now we can apply Theorem 7.2 to get the determi-
nant det(Y ∗). By choosing a large enough field F, we
can check if removing each pair i (by assigning xi = 0)
would affect the parity basis with maximum weight,
with high probability. If the degree of det(Y ∗) does not
drop after removal of a pair, then it can be removed.
And removal of a pair can be simply done by a rank-2
update to Y ∗ in O(r2) time. Each time the checking
can be done in Õ(Wrω) time by Theorem 7.2, which
dominates the updating time. Calculating Y ∗ at the
beginning takes O(mr2) time. Hence we can find a par-
ity basis with the maximum weight in Õ(Wmrω) time.



The pseudocode of the algorithm can be found in Algo-
rithm 7.1.

Algorithm 7.1 An algebraic algorithm for weighted
linear matroid parity

MaxWeightParity(M)
Construct Y ∗ and assign random values to indeter-
minates xi

J := {b1, c1, · · · bm, cm}
for i = 1 to m do

Y := Y ∗ − xi(bi ∧ ci)y
w(i)

if degree of det(Y ) equals that of det(Y ∗) then

Y ∗ := Y
J := J − {bi, ci}

return J

Finally we describe how to obtain a randomized FP-
TAS using the pseudo-polynomial algorithm by stan-
dard scaling technique [39]. Here we assume every col-
umn pair is contained in some parity basis. This as-
sumption can be satisfied by checking the rank of cor-
responding Z(J) as in Theorem 6.4. If Z(J) is not full
rank we discard the corresponding column pair.

The idea is to scale the weight of each pair down
and solve the new instance using Algorithm 7.1. Given
ǫ > 0, let K = ǫW/r. For each pair i scale its
weight to w∗(i) = ⌊w(i)/K⌋. Solve the new instance
using Algorithm 7.1. This takes Õ(⌊W/K⌋mrω) =
Õ(mrω+1/ǫ) time.

We will show the result of the scaled instance is
an (1 − ǫ)-approximation of the original instance. Let
J and O be pairs return by the above algorithm and
the optimal pairs respectively. Also denote original
(scaled) weight of a set S by w(S) (w∗(S)). We have
w(O) − Kw∗(O) ≤ rK because for each pair in O at
most weight with value K is lost, and there are at most
r/2 pairs chosen. Then

w(J) ≥ K · w∗(J) ≥ K · w∗(O) ≥ w(O) − rK =

w(O) − ǫW ≥ (1 − ǫ) · w(O).
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