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Abstract

We consider a general p-norm objective for experimental design problems that captures
some well-studied objectives (D/A/E-design) as special cases. We prove that a randomized
local search approach provides a unified algorithm to solve this problem for all p. This provides
the first approximation algorithm for the general p-norm objective, and a nice interpolation of
the best known bounds of the special cases.
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1 Introduction

In experimental design problems, we are given vectors v1, . . . , vn ∈ Rd and a budget k ≥ d, and the
goal is choose a subset S of k vectors so that

∑
i∈S viv⊤

i optimizes some objective function that
measures the “diversity” of the input data. The most popular and well-studied objective functions
are:

• D-design: Maximizing (det(
∑

i∈S viv⊤
i ))

1
d .

• A-design: Minimizing 1
d tr((

∑
i∈S vivi)−1).

• E-design: Maximizing λmin(
∑

i∈S viv⊤
i ).

Experimental design problems have a long history and a wide range of applications, from statistics
to machine learning to numerical linear algebra to graph algorithms. For more information about
these applications, we refer the reader to [13, 11, 2, 6, 7] and the references therein.

Although the objectives of D/A/E-design look quite different, we observe that there is a natural
generalization using eigenvalues that captures all three objective functions as special cases.

Definition 1.1 (p-Norm of Inverse Eigenvalues). Given a d-dimensional real-symmetric matrix A
with eigenvalues λ1, . . . , λd > 0 and a natural number 0 ≤ p ≤ ∞, we define

Φp(A) :=
(
1

d
tr
(
A−p

)) 1
p

=

(
1

d

d∑
i=1

λ−p
i

) 1
p

, (1.1)

with Φ0(A) := limp→0+ Φp(A) and Φ∞(A) := limp→+∞Φp(A).

Given p ≥ 0, we refer to the experimental design problem with objective function Φp as Φp-design.
To see that Φp-design is a generalization of D/A/E-design, let A =

∑
i∈S vivT

i and note that:

• For p =∞, Φ∞(A) = λmax(A−1) = 1/λmin(A), which is the inverse of the E-design objective;

• For p = 1, Φ1(A) = 1
d tr(A

−1) is exactly the A-design objective;

• For p = 0, Φ0(A) is the inverse of the D-design objective, as

Φ0(A) = lim
p→0+

(
1

d

d∑
i=1

λ−p
i

)1/p

=

( d∏
i=1

λ−1
i

)1/d

= det(A)−1/d,

where the second equality is a well-known fact (see, e.g., Exercise 28 in Chapter 5 of [16]).
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It is known that Φp(A) is convex in A for any given 0 ≤ p ≤ ∞, and so the following is the natural
convex programming relaxation for Φp-design:

minimize
x∈Rn

Φp

( n∑
i=1

x(i) · viv⊤
i

)

subject to
n∑

i=1

x(i) ≤ k,

0 ≤ x(i) ≤ 1, for 1 ≤ i ≤ n.

(1.2)

To the best of our knowledge, there are no known approximation algorithms for the general Φp-
design problem, other than the special cases p = 0, 1,∞ which we summarize as follows (the
notation x ≳ y denotes that x ≥ cy for some large enough constant c):

1. There is a (1+ε)-approximation algorithm for Φ0-design (D-design) when k ≳ d/ε [13, 9, 11, 7].

2. There is a (1 + ε)-approximation algorithm for Φ1-design (A-design) when k ≳ d/ε [9, 11, 7].

3. There is a (1+ ε)-approximation algorithm for Φ∞-design (E-design) when k ≳ d/ε2 [1, 2, 6].

These results are tight in the sense that they match the known integrality gap lower bound of the
convex programming relaxation (1.2) (see [11] for integrality gap examples).

Note that there is a d/ε vs d/ε2 gap between the relaxations for D/A-design (p = 0, 1) and for
E-design (p =∞). The main question that we study in this paper is: How does the integrality gap
of the convex programming relaxation (1.2) change with varying value of p? In particular, where
does the transition from d/ε to d/ε2 happen?

1.1 Main Result

Our main result is that, when k ≳ min{dp/ε, d/ε2}, there is a (1 + ε)-approximation algorithm for
Φp-design.

Theorem 1.2. Given an integer p ≥ 1, let x ∈ [0, 1]n be an optimal fractional solution to (1.2).
For any ε ∈ (0, 1), let γ = max{ε, 1/p}, if k ≳ d/(γε), then there is a randomized polynomial time
algorithm which returns an integral solution Z =

∑n
i=1 z(i) · viv⊤

i with z(i) ∈ {0, 1} for 1 ≤ i ≤ n
such that

Φp

( n∑
i=1

z(i) · viv⊤
i

)
≤ (1 + ε) · Φp

( n∑
i=1

x(i) · viv⊤
i

)
and

n∑
i=1

z(i) ≤ k,

with probability at least 1−O
(
(d2+d/γ)2

ε2p2
· e−Ω(γ

√
d)
)
− e−Ω(εd/γ).

Remark. The result in Theorem 1.2 can be generalized to all real p ≥ 1, see Remark 3.2 in Section 3
for more details.
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This is the first approximation algorithm for Φp-design for general p. Theorem 1.2 shows that
Φp-design for constant p admits as good an approximation algorithm as for D/A-design, and there
is a unifying algorithm to achieve this guarantee.

Note that, when p → +∞, Φp becomes the E-design objective and γ = max{ε, 1/p} = ε. Thus,
Theorem 1.2 provides a nice interpolation between the d/ε bound for D/A-design and the d/ε2

bound for E-design.

We further remark that our results can be generalized to the weighted setting to handle multiple
budget/knapsack constraints as in [7], but we omit the details to keep the presentation cleaner as
they are the same as in [7].

The proof of Theorem 1.2 is built on the randomized local search approach in [7] and [6], but
several new technical ideas are needed to handle higher moments that are introduced by higher
p-norm. In Section 2, we will review the background and previous work, present the algorithm and
the overall structure of the analysis, and explain the new ideas in this work. Then, in Section 3,
we will present the details for p-norm experimental design.

1.2 Related Work

In this paper, we are focusing on generalizing D/A/E-design with the p-norm objective in (1.1).
However, there are other different ways to extend D/A/E-design. For example, the Bayesian frame-
work of experimental design [3] extends the problem by adding a fixed matrix B (which encodes
some prior information, e.g., a multiple of identity) to the covariance matrix before applying the
objective function. When B = 0, we recover classical experimental design problems. Tantipongpi-
pat [14] provided an approximation algorithm for Bayesian A-design problem when B is a multiple of
identity. Dereziński et. al. [4] studied approximation algorithms for Bayesian A/D-design (together
with C/V-design, i.e., two other objectives) with a general PSD matrix B. Another example is us-
ing elementary symmetric polynomials to generalize A/D-design [10]. Nikolov et al. [11] extended
their approximation algorithm for A-design to tackle this family of generalized ratio objectives.

All these are interesting generalizations of D/A/E-design. It would be interesting to see whether
the randomized local search approach in [6, 7] and this paper can be applied to these settings to
obtain better results.

2 The Framework

In this section, we first review the randomized local search approach in Section 2.1. Then, we present
the full algorithm in Section 2.2 and state the main technical theorem. Then, in Section 2.3, we
provide the overall proof plan and the precise statements for analyzing the randomized exchange
algorithm, and then put together the statements to prove the main technical theorem. Finally, we
discuss the main difficulty and the new ideas needed to analyze the Φp objective in Section 3.
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2.1 Randomized Local Search Approach

The proof of Theorem 1.2 is built on the randomized local search approach in [7], which is based
on the regret minimization framework developed in [2] for experimental design problems and the
randomized spectral rounding techniques in [6]. We review this approach in this subsection.

In [7], the first step is to solve (1.2) for D/A/E-design to obtain a solution x ∈ Rn, and then to
normalize the vectors vi’s so that

∑n
i=1 x(i) · viv⊤

i = I for using the regret minimization framework
in [2]. Then, the rounding algorithm starts from a random initial solution set S0 that is indepen-
dently sampled according to x . Using the density matrix At maintained by the regret minimization
framework at each step t, the algorithm randomly chooses a pair of vectors vit and vjt with the
following probability distributions:

Pr(it = i) ∝
(
1− x(i)

)
·
(
1− α⟨viv⊤

i ,A1/2
t ⟩

)
and Pr(jt = j) ∝ x(j) ·

(
1 + α⟨vjv⊤

j ,A1/2
t ⟩

)
,

(2.1)
and set St+1 ← St−vit+vjt . Using the above randomized local search strategy, it can be shown that
the size of the solution is expected to stay around k, while the potential function from the regret
minimization framework [2] related to the minimum eigenvalue is expected to improve as long as the
minimum eigenvalue is less than 1− ε. Freedman’s martingale inequality and a new concentration
inequality for non-martingales are used in [6] to prove that all these quantities are close to their
expected values with high probability. This randomized local search algorithm provides a (1± ε)-
approximate solution for D/A/E-design when k ≳ d/ε2.

The main contribution in [7] is to prove that the randomized local search algorithm can be adapted
to achieve (1±ε)-approximation for D/A-design when k ≳ d/ε, thus providing a unifying approach
to achieve the optimal integrality gap for D/A/E-design. Essentially, the algorithm is the same
as the one for E-design but only require that the solution to have minimum eigenvalue 3/4 rather
than 1−ε. For the analysis, the randomized local search algorithm is conceptually divided into two
phases. In the first phase, the algorithm will find a solution with minimum eigenvalue at least 3/4
with high probability when k ≳ d/ε. In the second phase, the minimum eigenvalue will maintain
to be at least 1/4 with high probability, and the objective value for D/A-design will improve to
(1 ± ε) times the optimal objective value in polynomial time with high probability. The analysis
of the first phase follows directly from earlier work on spectral rounding in [6]. The analysis
of the second phase includes two main parts: (1) to show that, in expectation, the probability
distributions in (2.1) for E-design are also good for making progress towards D/A-design objectives;
(2) to show that the progress in the objective value is concentrated around the expectation with
a martingale concentration argument. The condition that the minimum eigenvalue is at least 1/4
is very important in both parts in the second phase, and the optimality conditions for the convex
program (1.2) is crucially used in the second part in the second phase.

In this paper, we will extend the algorithm and the analysis described above, and show that the
randomized local search algorithm provides a unifying approach for Φp-design for all p.
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2.2 The Algorithm

We present the full algorithm for Φp-design in this subsection.

Randomized Exchange Algorithm

Input: m vectors u1, ..., um ∈ Rd, a budget k ≥ d, an accuracy parameter ε ∈ (0, 1).

1. Solve the convex programming relaxation (1.2) and obtain an optimal solution x ∈ [0, 1]m

with at most d2 + 1 fractional entries, i.e. |{i ∈ [m] | 0 < x(i) < 1}| ≤ d2 + 1. Let
X =

∑m
i=1 x(i) · uiu⊤

i .

2. Preprocessing: Let vi ← X−1/2ui for all i ∈ [m], so that
∑m

i=1 x(i) · viv⊤
i = Id.

3. Initialization: t ← 1, S0 ← ∅, γ = max{ ε6 ,
1
6p}, κ = max{ ε2 ,

1
2p}, M ← d

γ + d2 + 1, and

α←
√
d
γ .

4. Add i into S0 independently with probability x(i) for each i ∈ [m]. Let Y1 ←
∑

i∈S0
uiu⊤

i

and Z1 ←
∑

i∈S0
viv⊤

i .

5. While the termination condition (tr(Y−p
t ))

1
p ≤ (1 + ε)(tr(X−p))

1
p is not satisfied and

t ≤ 2M
γ + 2M

εp , do the following:

(a) St ← Exchange(St−1).

(b) Set Yt+1 ←
∑

i∈St
uiu⊤

i , Zt+1 ←
∑

i∈St
viv⊤

i and t← t+ 1.

6. Return St−1 as the solution.

The main algorithm is almost the same as the one in [7], but with two additional parameters γ, κ
that will depend on the value of p. For A-design (when p = 1), the algorithm in [7] is just a special
case of the randomized exchange algorithm with parameter γ = 1

8 and κ = 1. In this paper, the
parameter γ is used to adjust the learning rate α of the regret minimization framework and the
parameter κ will be used in the exchange subroutine, which is described as follows.

Exchange Subroutine

Input: the current solution set St−1.

1. Compute the action matrix At := (αZt − ctI )−2, where Zt =
∑

i∈St−1
viv⊤

i and ct is the
unique scalar such that At ≻ 0 and tr(At) = 1.

2. Define S′
t :=

{
i ∈ St−1 | α⟨viv⊤

i ,A1/2
t ⟩ ≤ 1

2 and ⟨viv⊤
i ,Z−1

t ⟩ ≤ κ
}
.
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3. Sample jt ∈ [m]\St−1 from the following probability distribution

Pr(jt = j) =
x(j)
M
·
(
1 + α⟨vjv⊤

j ,A1/2
t ⟩

)
, for j ∈ [m]\St−1 and

Pr(jt = ∅) = 1−
∑

j∈[m]\St−1

x(j)
M
·
(
1 + α⟨vjv⊤

j ,A1/2
t ⟩

)
.

4. Sample it ∈ S′
t−1 from the following probability distribution

Pr(it = i) =
1− x(i)

M
·
(
1− α⟨viv⊤

i ,A1/2
t ⟩

)
, for i ∈ S′

t−1 and

Pr(it = ∅) = 1−
∑

i∈S′
t−1

1− x(i)
M

·
(
1− α⟨viv⊤

i ,A1/2
t ⟩

)
.

5. Return St := St−1 ∪ {jt}\{it}.

The exchange subroutine is also almost the same as in [7]. The key difference is to use the new
parameter κ to further restrict the set of vectors that are allowed to remove from the current
solution.

Remark 2.1. Using the new analysis in this paper, the same algorithm in [7] (without changing
the parameters γ and κ) can achieve (1 + ε)-approximation for Φp-design when k ≳ 2O(p)d/ε, with
an exponential dependence on p in the budget requirement, much worse than k ≳ min{dp/ε, d/ε2}
in Theorem 1.2.

2.2.1 Main Technical Theorem

To prove Theorem 1.2, we will prove that the randomized exchange algorithm is a bicriteria approx-
imation algorithm, such that it returns a solution that is (1 + ε)-approximate in the Φp objective
and the size of the solution is not much larger than k.

Theorem 2.2. Given ε ∈ (0, 1), if k ≳ d
γε , then the randomized exchange algorithm returns a

solution set S within 2M
γ + 2M

εp iterations such that

(
tr
((∑

i∈S
uiu⊤

i

)−p)) 1
p ≤ (1 + ε) ·

(
tr
(
X−p

))1/p
with probability at least 1−O

(
M2

ε2p2
· e−Ω(γ

√
d)), where X is an optimal fractional solution to (1.2).

Moreover, the solution set S satisfies |S| ≤ (1 + ε)k + O
(
d
γ + d

κ

)
with probability at least 1 −

e−Ω(εd/min{γ,κ}).
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With Theorem 2.2, we can prove Theorem 1.2 by first noticing that both γ and κ are chosen
in the order of Θ(max{ε, 1/p}) and then turning the bicriteria approximation result into a true
approximation with a scaling argument as in [7]. We omit the standard proof and refer the readers
to [7] for more details.

2.3 The Proof Plan

In this subsection, we provide the overall plan and the precise statements for analyzing the ran-
domized exchange algorithm, and then put together the statements to obtain the main technical
theorem.

2.3.1 Well-Defined Algorithm

First, we prove that the randomized exchange algorithm is well-defined. In particular, we need to
show that a fractional optimal solution to the convex relaxation (1.2) with at most O(d2) fractional
entries can be found in polynomial time, and also the probability distributions in the exchange
subroutine are well-defined for M = d2+ d

γ +1. These can be established using the same arguments
(with a different value for γ) as in Lemma 4.2 and Claim 4.4 in [7]. Note that the modified exchange
subroutine does not affect these arguments.

The following simple observation (Observation 4.3 in [7]) will be useful in the analysis of the
algorithm.

Observation 2.3. For any t ≥ 0, it holds that i ∈ St for all i with x(i) = 1 and j ∈ [n]\St

for all j with x(j) = 0. This further implies that Pr(it = i) = 0 for all i with x(i) ∈ {0, 1} and
Pr(jt = j) = 0 for all j with x(j) ∈ {0, 1}.

2.3.2 Solution Size Bound

Then, we show that the algorithm returns a solution set S of size not much larger than k with high
probability.

Theorem 2.4 (Variant of Theorem 3.12 of [6]). Let α =
√
d/γ and κ be the parameters used in the

randomized exchange algorithm. Suppose that the solution St of the randomized exchange algorithm
satisfies λmin

(∑
i∈St

viv⊤
i

)
< 1 for all t ∈ [τ ]. Then, for any given δ ∈ [0, 1],

Pr

[
|Sτ | ≤ (1 + δ) ·

n∑
i=1

x(i) +
(12d

γ
+

2d

κ

)]
≥ 1− exp

(
− Ω

( δd

min{γ, κ}

))
.

When κ = 1, the above theorem follows directly from the one-sided spectral rounding result in [6].
With smaller κ, we are restricting the set of vectors that can be swapped out from the current
solution. This would increase the chance of not removing a vector, and thus increasing the size of
the solution. Fortunately, we can show that the increase of the solution size can be bounded by an
additive d/κ term. The proof idea is similar to the one in [6], and the main difference is a modified
bound on the expected change of size. We provide a proof sketch in Appendix B for completeness.
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2.3.3 Approximation Guarantee

The most technical part of the proof is to establish the approximation guarantee. We follow the
analysis in [7] to conceptually divide the execution of the algorithm into two phases as described
in Section 2.1.

In the first phase, we show that the minimum eigenvalue will reach 1 − 2γ in O(M/γ) iterations
with high probability, which follows from the spectral rounding result in [6].

Proposition 2.5 (Counterpart of Proposition 4.5 in [7]). The probability that the randomized
exchange algorithm has terminated successfully within 2M/γ iterations or there exists τ1 ≤ 2M/γ
with λmin(Zτ1) ≥ 1− 2γ is at least 1− exp(−Ω(

√
d)).

In the second phase, the minimum eigenvalue will be at least 1 − 5γ during the next Θ
(
M
εp

)
iterations with good probability.

Proposition 2.6 (Counterpart of Proposition 4.6 in [7]). Suppose λmin(Zτ1) ≥ 1− 2γ for some τ1.
In the randomized exchange algorithm, the probability that λmin(Zt) ≥ 1−5γ for all τ1 ≤ t ≤ τ1+

2M
εp

is at least 1− 4M2

ε2p2
· e−Ω(γ

√
d).

Both of the proofs of Proposition 2.5 and Proposition 2.6 follow same arguments in [7] (with a
new parameter γ). We remark that the modified exchange subroutine with a restricted S′

t does not
affect these arguments, as removing less vectors only helps to improve the minimum eigenvalue of
the solution. We omit the proofs and refer the readers to [7].

The main technical contribution in this paper is to prove that the Φp objective will improve to at
most (1 + ε) times the optimal value during the second phase when the minimum eigenvalue is at
least 1− 5γ.

Theorem 2.7. Given ε ∈ (0, 1), if p ≤ 1/ε and k ≳ pd
ε for some ε ∈ (0, 1), then the probability that

the following three events happen simultaneously during the execution of the randomized exchange
algorithm is at most exp(−Ω(γ

√
d)).

1. λmin(Zτ1) ≥ 1− 2γ for some τ1;

2. λmin(Zt) ≥ 1− 5γ for all τ1 ≤ t ≤ τ1 +
2M
εp ;

3. the randomized exchange algorithm has not terminated by time τ1 +
2M
εp .

2.3.4 Proof of Theorem 2.2

We put together the statements in this subsection to obtain Theorem 2.2.

Proof of Theorem 2.2. We start with analyzing the approximation guarantee in the theorem.
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Firstly, consider the easier case p ≥ 1/ε, which implies that γ = ε/6. By Proposition 2.5, there
exists τ1 ≤ 2M/γ such that λmin(Zτ1) ≥ (1− ε/3) with probability 1− exp(−Ω(

√
d)). We note that

λmin(Zτ1) ≥ (1− ε/3) is equivalent to Yτ1 ≽ (1− ε/3)X , which is sufficient to establish

(tr(Y−p
τ1 ))1/p ≤ (1 + ε)(tr(X−p))1/p,

i.e., the approximation guarantee in the theorem. We remark that we do not need the assumption
k ≳ d/(γε) in the proof of this case.

Then, we consider the case of p ≤ 1/ε and define the bad events for the randomized exchange
algorithm:

• B1: the algorithm has not terminated successfully within 2M/γ iterations and τ1 > 2M/γ
where τ1 is the first time such that λmin(Zτ1) ≥ 1− 2γ.

• B2: there exists some τ1 ≤ t ≤ τ1 +
2M
εp such that λmin(Zt) < 1− 5γ.

• B3: the termination condition (tr(Y−p
t ))

1
p ≤ (1+ ε)(tr(X−p))

1
p is not satisfied for all τ1 ≤ t ≤

τ1 +
2M
εp .

If none of the bad events happens, then either the algorithm has terminated successfully within
2M/γ iterations or the termination condition will be satisfied at some time t ≤ τ1+

2M
εp ≤

2M
γ + 2M

εp .
So, the probability that the randomized exchange algorithm has not satisfied the termination
condition within 2M

γ + 2M
εp iterations is upper bounded by

Pr[B1 ∪B2 ∪B3] = Pr[B1] + Pr[B2 ∩ ¬B1] + Pr[B3 ∩ ¬B2 ∩ ¬B1]

≤ O
(
e−Ω(

√
d)
)
+O

(
M2

ε2p2
· e−Ω(γ

√
d)

)
+O

(
e−Ω(γ

√
d)
)

≤ O

(
M2

ε2p2
· e−Ω(γ

√
d)

)
,

where Pr[B1] is bounded in Proposition 2.5, Pr[B2 ∩ ¬B1] is bounded in Proposition 2.6, and
Pr[B3 ∩ ¬B2 ∩ ¬B1] is bounded in Theorem 2.7 (note that we need the assumption p ≤ 1/ε and
k ≳ pd/ε here). The termination condition implies the approximation guarantee directly.

Finally, we consider the size of the returned solution. Note that if λmin(Zt) ≥ 1 then Yt ≽ X , which
further implies that the termination condition is met at time t. Hence, we can assume λmin(Zt) < 1
before the algorithm terminates. Therefore, we can apply Theorem 2.4 to conclude that the returned
solution S satisfies |S| ≤ (1 + ε)k +O

(
d
γ + d

κ

)
with probability at least 1− exp(−Ω( εd

min{γ,κ})).

2.4 New Ideas

The key in proving Theorem 2.7 is to bound the change of the objective value after an exchange.
For A-design (p = 1), there is a simple inequality bounding the change of the objective as

tr
((

Y − vv⊤ + ww⊤)−1
)
≤ tr

(
Y−1

)
+

v⊤Y−2v
1− ⟨vv⊤,Y−1⟩

− w⊤Y−2w
1 + ⟨ww⊤,Y−1⟩︸ ︷︷ ︸

progress

.
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For general Φp-design, the change of the Φp function under rank-two updates is considerably more
complicated. Using Sherman-Morrison formula and Lieb-Thirring inequality, we can bound the
change of the Φp objective (in fact, the p-th power of the Φp objective) as follows:

tr
(
(Y + ww⊤ − vv⊤)−p

)
≤ tr(Y−p) +

p∑
i=1

(
p

i

)(
(−1)i (w

⊤Y−1w)i−1 · w⊤Y−p−1w
(1 + w⊤Y−1w)i

+
(v⊤Y−1v)i−1 · v⊤Y−p−1v

(1− v⊤Y−1v)i

)
.

There are many higher order terms introduced by the p-norm, and dealing with these is the main
technical difficulty in this paper.

As discussed in Remark 2.1, if we use the same algorithm in [7], with some careful manipulations
including applying Hölder’s inequality appropriately, we can achieve (1+ε)-approximation but with
the much worst requirement that k ≳ 2O(p)d/ε. The reason is that removing some “influential” vec-
tors (even with relatively small probability) from the current solution will blow up the expectation
of the change of the objective function due to the higher order terms in the above inequality.

To overcome this issue, we introduce the parameter κ and modify the randomized exchange algo-
rithm by restricting those vectors (in S′

t) that are allowed to swap out of the current solution. This
helps us to effectively bound those higher order terms in the above inequality about the change
of the objective function. But, with smaller κ, we are restricting the set of vectors that can be
swapped out from the current solution. This would increase the chance of not removing a vector,
and thus increasing the size of the solution. Fortunately, we can show that the increase of the
solution size can be bounded by an additive d/κ term as described in Theorem 2.4.

The analysis for A-design in [7] contains two parts: (1) bound the expected progress; (2) prove
the concentration of the total progress. The condition that the minimum eigenvalue is at least
1/4 is very important in both parts, and the optimality conditions for the convex program (1.2) is
crucially used in the concentration argument. Interestingly, the optimality condition of the convex
program (1.2) is also crucial in bounding the expected progress for Φp objective with higher p.
Much effort in this paper is used to get the expectations of the objective value right, while it was
relatively easy for D/A-design (when p = 0, 1).

3 The Analysis of Φp Objective

The goal of this section is to prove Theorem 2.7. Since we are focusing on the case of p ≤ 1/ε in
Theorem 2.7, we can assume without loss of generality that

γ = max

{
ε

6
,
1

6p

}
=

1

6p
and κ = max

{
ε

2
,
1

2p

}
=

1

2p

in the remaining of this section. For ease of notation, we also assume the start time of the second
phase is τ1 = 1. To analyze progress of the algorithm in terms of the objective function, we upper
bound the change of tr(Y−p

t ) after a swap using the following lemma, for which we will provide a
proof in Section 3.1.
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Lemma 3.1. Let Y ≻ 0 be a d-dimensional positive definite matrix and p ≥ 1 be an integer. For
any w ∈ Rd and v ∈ Rd such that v⊤Y−1v < 1,

tr
(
(Y + ww⊤ − vv⊤)−p

)
≤ tr(Y−p) +

p∑
i=1

(
p

i

)(
(−1)i (w

⊤Y−1w)i−1 · w⊤Y−p−1w
(1 + w⊤Y−1w)i

+
(v⊤Y−1v)i−1 · v⊤Y−p−1v

(1− v⊤Y−1v)i

)
.

In the randomized exchange algorithm, we swap vectors uit and ujt in each iteration where uit is
in the current solution. Thus, u⊤

it
Y−1
t uit ≤ 1 always holds, and in fact it will be clear later that

u⊤
it

Y−1
t uit is strictly less than 1. Hence, Lemma 3.1 can be applied repeatedly to obtain that, for

any τ ≥ 1,

tr(Y−p
τ+1)− tr(Y−p

1 ) ≤
τ∑

t=1

( p∑
i=1

(
p

i

)
(u⊤

it
Y−1
t uit)i−1 · u⊤

it
Y−p−1
t uit

(1− u⊤
it

Y−1
t uit)i︸ ︷︷ ︸

loss

(3.1)

−
p∑

i=1

(
p

i

)
(−1)i+1

(u⊤
jt

Y−1
t ujt)i−1 · u⊤

jt
Y−p−1
t ujt

(1 + u⊤
jt

Y−1
t ujt)i︸ ︷︷ ︸

gain

)
.

We define gain gt, loss lt, and progress Γt in the t-th iteration as follows

gt :=

p∑
i=1

(
p

i

)
(−1)i+1

(u⊤
jt

Y−1
t ujt)i−1 · u⊤

jt
Y−p−1
t ujt

(1 + u⊤
jt

Y−1
t ujt)i

,

lt :=

p∑
i=1

(
p

i

)
(u⊤

it
Y−1
t uit)i−1 · u⊤

it
Y−p−1
t uit

(1− u⊤
it

Y−1
t uit)i

,

Γt := gt − lt.

In Section 3.2, we will prove that if x is a fractional optimal solution to (1.2) and Zt has lower-
bounded minimum eigenvalue and the objective value of the current solution is far from optimal,
then the expected progress in the t-th iteration is large. Then, in Section 3.3, we will prove that the
total progress is concentrated around its expectation. Finally, we complete the proof of Theorem 2.7
in Section 3.4.

3.1 Change of Objective Value in One Step

In [7], a rank-two update formula is used to compute the change of the objective value in one
step when p = 1. For general Φp-design, the rank-two update formula becomes considerably more
complicated, and instead we do the update in two smaller steps: We first use a rank-one update to
add ujt to the current solution, then use another rank-one update to remove uit from the current
solution.

12



Proof of Lemma 3.1. Let Y1 = Y + ww⊤. By Sherman-Morrison formula (Lemma A.1), it holds
that

tr(Y−p
1 ) = tr

((
Y−1 − Y−1ww⊤Y−1

1 + w⊤Y−1w

)p)
= tr

((
Y−1/2

(
I − Y−1/2ww⊤Y−1/2

1 + w⊤Y−1w

)
Y−1/2

)p)
.

Then, we can apply Lieb-Thirring inequality (Lemma A.2) to show that

tr(Y−p
1 ) ≤ tr

(
Y−p/2

(
I − Y−1/2ww⊤Y−1/2

1 + w⊤Y−1w

)p
Y−p/2

)
= tr

(
Y−p

(
I − Y−1/2ww⊤Y−1/2

1 + w⊤Y−1w

)p)
.

Expanding by the binomial theorem,

tr(Y−p
1 ) ≤

p∑
i=0

(−1)i
(
p

i

)
tr

(
Y−p

(Y−1/2ww⊤Y−1/2

1 + w⊤Y−1w

)i)

= tr(Y−p) +

p∑
i=1

(−1)i
(
p

i

)
(w⊤Y−1w)i−1 · w⊤Y−p−1w

(1 + w⊤Y−1w)i
. (3.2)

For Y2 = Y1 − vv⊤, we can apply similar argument to show that

tr(Y−p
2 ) ≤ tr(Y−p

1 ) +

p∑
i=1

(
p

i

)
(v⊤Y−1

1 v)i−1 · v⊤Y−p−1
1 v

(1− v⊤Y−1
1 v)i

.

Notice that Y1 = Y + ww⊤ ≽ Y and v⊤Y−1v < 1, thus it holds that

tr(Y−p
2 ) ≤ tr(Y−p

1 ) +

p∑
i=1

(
p

i

)
(v⊤Y−1v)i−1 · v⊤Y−p−1v

(1− v⊤Y−1v)i
. (3.3)

The lemma follows by combining (3.2) and (3.3).

Remark 3.2. Lemma 3.1 can be generalized to all real p ≥ 1 by invoking Newton’s generalized
binomial theorem in the proof. To guarantee the convergence of the generalized binomial theorem,
we need to ensure a stronger condition v⊤Y−1v ≤ 1

2 . This is not an issue for our application, as
our algorithm always removes vectors from the restricted set S′

t, which guarantees that v⊤Y−1v ≤ 1
2

is satisfied. Given the new version of Lemma 3.1 with real p, we can generalize the main result in
this paper (i.e., Theorem 1.2) to all real p ≥ 1 with essentially the same analysis.

3.2 Expected Progress

To analyze the expected progress, we need to use the following two lemmas. The first one is an
implication of the lower-bounded minimum eigenvalue condition, which is an analog of Lemma 4.13
in [7]. We provide a proof in Appendix C for completeness.
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Lemma 3.3. For γ ≤ 1
6 , if Zt ≽ (1− 5γ)I , then

⟨viv⊤
i ,Z−1

t ⟩ ≤ α⟨viv⊤
i ,A

1
2
t ⟩ ≤ αλmin(Zt)⟨viv⊤

i ,Z−1
t ⟩ ∀i ∈ [n].

The other one is an implication of the optimality condition of (1.2). The proof of the lemma is
similar to the one in [7] for A-design, we include it in Appendix C for completeness.

Lemma 3.4. Let x ∈ [0, 1]n be an optimal fractional solution of the convex programming relax-
ation (1.2) for the p-norm problem. Then, for each 1 ≤ i ≤ n with 0 < x(i) < 1,

⟨X−p−1, uiu⊤
i ⟩ ≤

1

k
· tr(X−p).

Now, we are ready to lower bound the expected progress. We will first handle the expected loss
and expected gain separately in Lemma 3.5 and Lemma 3.6. Then, combine the two parts to
lower bound the expected progress in Lemma 3.8. For simplicity, we denote Et[·] as the conditional
expectation given what had happened up to time t, that is, E[· | St−1].

3.2.1 Expected Loss

The minimum eigenvalue lower bound (Lemma 3.3), the optimality condition (Lemma 3.4), and
the introduction of the new parameter κ in the randomized exchange algorithm are all crucial in
the following lemma.

Lemma 3.5 (Expected Loss). Let St−1 be the solution set at time t and Zt =
∑

i∈St−1
viv⊤

i for
1 ≤ t ≤ τ . Suppose x is an optimal solution of (1.2), λmin(Zt) ∈ [1 − 5γ, 1), γ = 1/6p, and
κ = 1/2p. Then

Et[lt] ≤
p

M

(
tr(Y−p

t )− ⟨XSt−1 ,Y
−p−1
t ⟩

)
+O

( p2d
kM

)
· tr(X−p),

where we denote XS :=
∑

i∈S x(i)uiu⊤
i for any set S ⊆ [n].

Proof. There are p terms in the loss term lt. We deal with the linear term and higher order terms
separately. Consider the linear term:

Et

[
p · u⊤

it
Y−p−1
t uit

1− u⊤
it

Y−1
t uit

]
=
∑

i∈S′
t−1

1− x(i)
M

(
1− α⟨viv⊤

i ,A1/2
t ⟩

)
· p · u

⊤
i Y−p−1

t ui
1− u⊤

i Y−1
t ui

=
∑

i∈S′
t−1

1− x(i)
M

(
1− α⟨viv⊤

i ,A1/2
t ⟩

)
· p · u⊤

i Y−p−1
t ui

1− ⟨viv⊤
i ,Z−1

t ⟩
,

where the second line follows by the definitions of Yt and Zt, which implies that

⟨viv⊤
i ,Z−1

t ⟩ = u⊤
i Y−1

t ui. (3.4)
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Note that γ = 1/6p ≤ 1/6. Thus, we can apply the first inequality in Lemma 3.3 and then relax
S′
t−1 to St−1 to obtain that

Et

[
p · u⊤

it
Y−p−1
t uit

1− u⊤
it

Y−1
t uit

]
≤ p

M

∑
i∈St−1

(1− x(i)) · u⊤
i Y−p−1

t ui =
p

M

(
tr(Y−p

t )− ⟨XSt−1 ,Y
−p−1
t ⟩

)
. (3.5)

Then, we consider the remaining p− 1 higher order loss terms.

Et

[
p∑

l=2

(
p

l

)
(u⊤

it
Y−1
t uit)l−1 · u⊤

it
Y−p−1
t uit

(1− u⊤
it

Y−1
t uit)l

]
︸ ︷︷ ︸

1

=
∑

i∈S′
t−1

1− x(i)
M

(
1− α⟨viv⊤

i ,A1/2
t ⟩

) p∑
l=2

(
p

l

)
(u⊤

i Y−1
t ui)l−1 · u⊤

i Y−p−1
t ui

(1− u⊤
i Y−1

t ui)l
.

Again, by applying Lemma 3.3, it holds that

1 ≤
∑

i∈S′
t−1

1− x(i)
M

· u⊤
i Y−p−1

t ui ·
p∑

l=2

(
p

l

)
(u⊤

i Y−1
t ui)l−1

(1− u⊤
i Y−1

t ui)l−1
.

Notice that

λmin(Zt) ≥ 1− 5γ ⇐⇒ Yt ≽ (1− 5γ)X . (3.6)

Thus, by the assumption λmin(Zt) ≥ 1− 5γ, it follows that

1 ≤(1− 5γ)−p−1

M

∑
i∈S′

t−1

(1− x(i)) · u⊤
i X−p−1ui ·

p∑
l=2

(
p

l

)
(u⊤

i Y−1
t ui)l−1

(1− u⊤
i Y−1

t ui)l−1
.

Using the fact that x is a fractional optimal solution to (1.2) and then applying Lemma 3.4, it
holds that

1 ≤ (1− 5γ)−p−1

kM
· tr(X−p)

∑
i∈S′

t−1

(1− x(i)) ·
p∑

l=2

(
p

l

)
(u⊤

i Y−1
t ui)l−1

(1− u⊤
i Y−1

t ui)l−1

≤ (1− 5γ)−p−1

kM
· tr(X−p)

p∑
l=2

(
p

l

) ∑
i∈S′

t−1

u⊤
i Y−1

t ui ·
(u⊤

i Y−1
t ui)l−2

(1− u⊤
i Y−1

t ui)l−1
.

Due to the definition of the set S′
t−1 and (3.4), it holds that u⊤

i Y−1
t ui ≤ κ for all i ∈ S′

t−1. Thus,

1 ≤ (1− 5γ)−p−1

kM
· tr(X−p)

p∑
l=2

(
p

l

) ∑
i∈S′

t−1

u⊤
i Y−1

t ui ·
( κ

1− κ

)l−2
· 1

1− κ
.
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Since
∑

i∈S′
t−1

u⊤
i Y−1

t ui ≤ ⟨Yt, Y −1
t ⟩ = d, we can further upper bound the 1 term by

1 ≤ (1− 5γ)−p−1d

kM
· tr(X−p) ·

p∑
l=2

(
p

l

)( κ

1− κ

)l
· 1− κ

κ2

=
(1− 5γ)−p−1d

kM
· tr(X−p) · 1− κ

κ2

( 1

(1− κ)p
− 1− pκ

1− κ

)
≤ (1− 5γ)−p−1d

kM
· tr(X−p) · 1

κ2
· 1

(1− κ)p
. (3.7)

Combining (3.5) and (3.7), the expected loss can be bounded by

Et[lt] ≤
p

M

(
tr(Y−p

t )− ⟨XSt−1 ,Y
−p−1
t ⟩

)
+

(1− 5γ)−p−1d

κ2(1− κ)pkM
· tr(X−p)

≤ p

M

(
tr(Y−p

t )− ⟨XSt−1 ,Y
−p−1
t ⟩

)
+O

( p2d
kM

)
· tr(X−p),

where the last inequality follows by the choice of γ and κ.

3.2.2 Expected Gain

The analysis of the expected gain is slightly more complicated since the sampling probability does
not cancel out with the denominator term in gt as nicely as in the analysis of loss lt, and so we
will divide into two cases and use different arguments. Again the minimum eigenvalue lower bound
(Lemma 3.3) and the optimality condition (Lemma 3.4) are crucial in the following lemma.

Lemma 3.6 (Expected Gain). Let St−1 be the solution set at time t and Zt =
∑

i∈St−1
viv⊤

i for
1 ≤ t ≤ τ . Suppose x is an optimal solution to (1.2), λmin(Zt) ∈ [1− 5γ, 1), and γ = 1/6p. Then

Et[gt] ≥
p

M

(
⟨X ,Y−p−1

t ⟩ − ⟨XSt−1 ,Y
−p−1
t ⟩

)
−O

( p2d
kM

)
· tr(X−p).

Proof. We consider two separate cases:

S1 := {j ∈ [m]\St−1 | α⟨vjv⊤
j ,A1/2

t ⟩ ≥ p · u⊤
j Y−1

t uj} and

S2 := {j ∈ [m]\St−1 | α⟨vjv⊤
j ,A1/2

t ⟩ < p · u⊤
j Y−1

t uj}.

Then, the expected gain can be written as

Et[gt] =
∑
j∈S1

x(j)
M
·
(
1 + α⟨vjv⊤

j ,A1/2
t ⟩

)
·

p∑
l=1

(
p

l

)
(−1)l+1

(u⊤
j Y−1

t uj)l−1 · u⊤
j Y−p−1

t uj
(1 + u⊤

j Y−1
t uj)l

(3.8)

+
∑
j∈S2

x(j)
M
·
(
1 + α⟨vjv⊤

j ,A1/2
t ⟩

)
·

p∑
l=1

(
p

l

)
(−1)l+1

(u⊤
j Y−1

t uj)l−1 · u⊤
j Y−p−1

t uj
(1 + u⊤

j Y−1
t uj)l

.

(3.9)
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We analyze (3.8) and (3.9) separately. First, we consider (3.8) and rearrange the gt term a bit,
which will be easier for the analysis of (3.8).

gt =
u⊤jtY

−p−1
t ujt

u⊤
jt

Y−1
t ujt

·
p∑

i=1

(
p

i

)
(−1)i+1

( u⊤
jt

Y−1
t ujt

1 + u⊤
jt

Y−1
t ujt

)i

=
u⊤jtY

−p−1
t ujt

u⊤
jt

Y−1
t ujt

(
1−

(
1−

u⊤
jt

Y−1
t ujt

1 + u⊤
jt

Y−1
t ujt

)p)
(3.10)

=
u⊤jtY

−p−1
t ujt

u⊤
jt

Y−1
t ujt

(
1− 1

(1 + u⊤
jt

Y−1
t ujt)p

)
. (3.11)

Thus, we can rewrite (3.8) as

(3.8) =
∑
j∈S1

x(j)
M
·
(
1 + α⟨vjv⊤

j ,A1/2
t ⟩

)
·
u⊤j Y−p−1

t uj
u⊤
j Y−1

t uj

(
1− 1

(1 + u⊤
j Y−1

t uj)p

)
.

By the definition of S1, it holds that

(3.8) ≥
∑
j∈S1

x(j)
M
· u⊤j Y−p−1

t uj ·
1 + p · u⊤

j Y−1
t uj

u⊤
j Y−1

t uj

(
1− 1

(1 + u⊤
j Y−1

t uj)p

)
.

Let x = u⊤
j Y−1

t uj > 0 (as Yt ≻ 0). Then, it holds that

1 + px

x
·
(
1− 1

(1 + x)p

)
=

1 + px

x
· (1 + x)p − 1

(1 + x)p
=

px(1 + x)p + (1 + x)p − 1− px

x(1 + x)p
≥ p.

Thus,

(3.8) ≥ p

M

∑
j∈S1

x(j) · u⊤
j Y−p−1

t uj . (3.12)

Then, we consider (3.9). As in the proof of Lemma 3.5, we separate (3.9) into two parts, 2
concerning the linear term and 3 concerning the remaining p− 1 higher order terms.

(3.9) =
∑
j∈S2

x(j)
M
·
(
1 + α⟨vjv⊤

j ,A1/2
t ⟩

)
·
p · u⊤

j Y−p−1
t uj

1 + u⊤
j Y−1

t uj︸ ︷︷ ︸
2

−
∑
j∈S2

x(j)
M
·
(
1 + α⟨vjv⊤

j ,A1/2
t ⟩

)
·

p∑
l=2

(
p

l

)
(−1)l

(u⊤
j Y−1

t uj)l−1 · u⊤
j Y−p−1

t uj
(1 + u⊤

j Y−1
t uj)l︸ ︷︷ ︸

3

.
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The linear term 2 is easy to bound, we can control it by Lemma 3.3 (combined with (3.4)) so that

2 ≥ p

M

∑
j∈S2

x(j) · u⊤
j Y−p−1

t uj . (3.13)

Then, we upper bound the higher order terms 3 (notice that 3 does not contain the minus sign).

To upper bound 3 , for each j ∈ S2, we can assume
∑p

l=2

(
p
l

)
(−1)l (u

⊤
j Y−1

t uj)l−1·u⊤
j Y−p−1

t uj
(1+u⊤

j Y−1
t uj)l

≥ 0

without loss of generality, as otherwise we can simply ignore the j-th term. With this assumption
and by the definition of S2, it follows that

3 ≤ 1

M

∑
j∈S2

x(j)(1 + pu⊤
j Y−1

t uj)
p∑

l=2

(
p

l

)
(−1)l

(u⊤
j Y−1

t uj)l−1 · u⊤
j Y−p−1

t uj
(1 + u⊤

j Y−1
t uj)l

=
1

M

∑
j∈S2

x(j)u⊤
j Y−p−1

t uj · (1 + pu⊤
j Y−1

t uj)
p∑

l=2

(
p

l

)
(−1)l

(u⊤
j Y−1

t uj)l−1

(1 + u⊤
j Y−1

t uj)l
.

Using the assumption λmin(Zt) ≥ 1− 5γ and (3.6), it holds that

3 ≤ (1− 5γ)−p−1

M

∑
j∈S2

x(j)u⊤
j X−p−1uj · (1 + pu⊤

j Y−1
t uj)

p∑
l=2

(
p

l

)
(−1)l

(u⊤
j Y−1

t uj)l−1

(1 + u⊤
j Y−1

t .uj)l
.

Since x is an optimal solution to (1.2), we can apply Lemma 3.4 and derive that

3 ≤ (1− 5γ)−p−1

kM
· tr(X−p)

∑
j∈S2

x(j) · (1 + pu⊤
j Y−1

t uj)
p∑

l=2

(
p

l

)
(−1)l

(u⊤
j Y−1

t uj)l−1

(1 + u⊤
j Y−1

t uj)l

=
(1− 5γ)−p−1

kM
· tr(X−p)

∑
j∈S2

x(j) ·
1 + pu⊤

j Y−1
t uj

u⊤
j Y−1

t uj

((
1−

u⊤
j Y−1

t uj
1 + u⊤

j Y−1
t uj

)p
− 1 +

pu⊤
j Y−1

t uj
1 + u⊤

j Y−1
t uj

)
.

Let x = u⊤
j Y−1

t uj , we want to upper bound

1 + px

x

((
1− x

1 + x

)p
−1+ px

1 + x

)
=

1

x

((
1− x

1 + x

)p
−1+ px

1 + x

)
+p

((
1− x

1 + x

)p
−1+ px

1 + x

)
.

For any y ∈ [0, 1], it holds that (1− y)p ≤ 1− py +
(
p
2

)
y2. Thus, it follows that

1

x

((
1− x

1 + x

)p
− 1 +

px

1 + x

)
+ p

((
1− x

1 + x

)p
− 1 +

px

1 + x

)
≤ 1

x
·
(
p

2

)
· x2

(1 + x)2
+ p · px

1 + x
=

(
p

2

)
· x

1 + x
+

p2x

1 + x
≤ 2p2x.

Therefore, the 3 term can be further bounded by

3 ≤ 2(1− 5γ)−p−1 · p2

kM
· tr(X−p)

∑
j∈S2

x(j) · u⊤
j Y−1

t uj ≤
2(1− 5γ)−p−1 · p2

kM
· tr(X−p)⟨X ,Y−1

t ⟩.
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Using (3.6), it holds that

3 ≤ 2(1− 5γ)−p−2 · p2d
kM

· tr(X−p) ≤ O
( p2d
kM

)
· tr(X−p), (3.14)

where the last inequality follows by the choice of γ.

Combining (3.12), (3.13) and (3.14), we can lower bound the expected gain by

Et[gt] ≥
p

M

( ∑
j∈[m]\St−1

x(j)u⊤
j Y−p−1

t uj

)
−O

( p2d
kM

)
· tr(X−p)

=
p

M

(
⟨X ,Y−p−1

t ⟩ − ⟨XSt−1 ,Y
−p−1
t ⟩

)
−O

( p2d
kM

)
· tr(X−p).

3.2.3 Expected Progress

Finally, we apply Hölder’s inequality appropriately to compare the gain term and the loss term.

Lemma 3.7. Given positive definite matrices A,B ∈ Sd++ and an integer p ≥ 1, it holds that

⟨A,B−p−1⟩ ≥
(
tr(B−p)

tr(A−p)

)1/p

· tr(B−p).

Proof. Let A =
∑d

i=1 aiviv
⊤
i be the eigendecomposition of A, and B =

∑d
i=1 biwiw⊤

i be the eigen-
decomposition of B. Then,

tr(B−p) =
d∑

i=1

1

bpi
=

∑
1≤i,j≤d

1

bpi
⟨vi,wj⟩2 =

∑
1≤i,j≤d

a
p/(p+1)
j

bpi
⟨vi,wj⟩2p/(p+1) · 1

a
p/(p+1)
j

⟨vi,wj⟩2/(p+1)

≤
( ∑

1≤i,j≤d

aj

bp+1
i

⟨vi,wj⟩2
)p/(p+1)

·
( ∑

1≤i,j≤d

1

apj
⟨vi,wj⟩2

)1/(p+1)

= ⟨A,B−p−1⟩p/(p+1) · tr(A−p)1/(p+1),

where the inequality follows by Hölder’s inequality. Then, the lemma follows by taking the (p+1)/p’s
power of both sides and rearranging the terms.

Now, we lower bound the expected progress by combining Lemma 3.5 and Lemma 3.6.

Lemma 3.8. Let St−1 be the solution set at time t and Zt =
∑

i∈St−1
viv⊤

i for 1 ≤ t ≤ τ . Suppose x
is an fractional optimal solution to (1.2), and λmin(Zt) ∈ [1−5γ, 1), (tr(Y−2

t ))1/p ≥ λ ·(tr
(
X−2

)
)1/p

for some λ ≥ 1 and for 1 ≤ t ≤ τ . Then

Et[Γt] ≥
(
p(λ− 1)λp

M
−O

( p2d
kM

))
· tr(X−p).

In particular, when λ > 1 + ε and k ≳ pd
ε , the expected progress is positive.
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Proof. Combining the expected loss Lemma 3.5 and the expected gain Lemma 3.6, it follows that

Et[Γt] ≥
p

M

(
⟨X ,Y−p−1

t ⟩ − tr(Y−p
t )

)
−O

( p2d
kM

)
· tr(X−p).

Applying Lemma 3.7, we derive that

Et[Γt] ≥
p

M

((tr(Y−p
t )

tr(X−p)

)1/p
· tr(Y−p

t )− tr(Y−p
t )

)
−O

( p2d
kM

)
· tr(X−p).

By the assumption that (tr(Y−p
t ))1/p ≥ λ(tr(X−p))1/p, or equivalently tr(Y−p

t ) ≥ λp tr(X−p), we
arrive at the final bound that

Et[Γt] ≥
p(λ− 1)

M
· tr(Y−p

t )−O
( p2d
kM

)
· tr(X−p) ≥

(
p(λ− 1)λp

M
−O

( p2d
kM

))
· tr(X−p).

3.3 Martingale Concentration Argument

In this subsection, we prove that the total progress is concentrated around the expectation. The
proof uses the minimum eigenvalue assumption and the optimality characterization in Lemma 3.4
to bound the variance of the random process. The proof idea is similar to the one in [7], but we
need some additional efforts to take care of the higher order terms that are introduced by higher
p-norm.

Lemma 3.9. For any η > 0, it holds that

Pr

[
τ∑

t=1

Γt ≤
τ∑

t=1

Et[Γt]− η
⋂

min
1≤t≤τ

λmin(Zt) ≥ 1− 5γ

]

≤ exp

(
−Ω

(
η2kM

τp3
√
d(tr(X−p))2 + ηpM tr(X−p)

))
.

Proof. We define two sequences of random variables {Xt}t and {Yt}t, where Xt := Et[Γt]− Γt and
Yt :=

∑t
l=1Xl. It is easy to check that {Yt}t is a martingale with respect to {St}t. We will use

Freedman’s inequality (Theorem A.3) to bound the probability Pr[Yτ ≥ η ∩ min1≤t≤τ λmin(Zt) ≥
1− 5γ].

In the following, we first show that if the event min1≤t≤τ λmin(Zt) ≥ 1− 5γ happens, then we can
upper bound Xt and Et[X

2
t ] so that we can apply Freedman’s inequality. To upper bound Xt, we

first prove an upper bound on gt and lt.

Note that, if the event λmin(Zt) ≥ 1− 5γ happens, then Yt ≽ (1− 5γ)X , which implies

u⊤
it Y

−p−1
t uit ≤ (1− 5γ)−p−1u⊤

it X
−p−1uit and u⊤

jtY
−p−1
t ujt ≤ (1− 5γ)−p−1u⊤

jtX
−p−1ujt .

By Observation 2.3, for all the exchange pairs it, jt, it holds that x(it), x(jt) ∈ (0, 1). Thus, we
can apply Lemma 3.4 to show that ⟨X−p−1, uitu⊤

it
⟩ ≤ 1

k · tr(X
−p) and ⟨X−p−1, ujtu⊤

jt
⟩ ≤ 1

k · tr(X
−p).

Therefore, since γ = 1/6p,

u⊤
it Y

−p−1
t uit ≤ O

(1
k

)
· tr(X−p) and u⊤

jtY
−p−1
t ujt ≤ O

(1
k

)
· tr(X−p). (3.15)
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We first give a deterministic bound on gt. Let x = u⊤
jt

Y−p−1
t ujt , according to (3.10), the gain term

gt can be written as

gt = u⊤
jtY

−p−1
t ujt ·

1

x
·
(
1−

(
1− x

1 + x

)p)
.

Since (1− y)p ≥ 1− py for y ∈ [0, 1] and p ≥ 1, we can bound gt by

0 ≤ gt ≤ u⊤
jtY

−p−1
t ujt ·

1

x
· px

1 + x
≤ p · u⊤

jtY
−p−1
t ujt ≤ O

(p
k

)
· tr(X−p),

where the last inequality follows from (3.15).

Then, we give an deterministic bound on lt. By the definition of S′
t−1 and (3.4), it holds that

0 < u⊤
it

Y−1
t uit = ⟨vitv⊤

it
,Z−1

t ⟩ ≤ κ. Thus, we can bound lt by

0 ≤ lt =

p∑
i=1

(
p

i

)
(u⊤

it
Y−1
t uit)i−1 · u⊤

it
Y−p−1
t uit

(1− u⊤
it

Y−1
t uit)i

≤ u⊤itY
−p−1
t uit ·

p∑
i=1

(
p

i

)
κi−1

(1− κ)i

= u⊤
it Y

−p−1
t uit ·

1

κ
·
(

1

(1− κ)p
− 1

)
.

For κ = 1
2p , we can control lt such that

lt ≤ O(p) · u⊤
it Y

−p−1
t uit ≤ O

(p
k

)
· tr(X−p),

where the last inequality follows from (3.15).

With the above bounds on gt and lt, we can control the size of the martingale increment by

|Xt| = |Et[Γt]− Γt| ≤ gt + lt ≤ O
(p
k

)
· tr(X−p).

Next, we upper bound Et[X
2
t ] by

Et[X
2
t ] ≤ |Xt| · Et[|Xt|] ≤ O

(p
k

)
· tr(X−p) ·

(
Et[gt] + Et[lt]

)
.

Using Lemma 3.5, we bound the expected loss term by

Et[lt] ≤
p

M

(
tr(Y−p

t )− ⟨XSt−1 ,Y
−p−1
t ⟩

)
+O

( p2d
kM

)
· tr(X−p)

≤ O
( p

M

)
· tr(X−p) +O

( p2d
kM

)
· tr(X−p)

≤ O
( p

M

)
· tr(X−p),

where the inequality on the second line follows by the assumption that λmin(Zt) ≥ 1− 5γ happens
(and (3.6)), the inequality on the last line follows by the assumption on k.
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Then, with the expression of gt in (3.10), we write the expected gain as

Et[gt] =
∑

j∈[m]\St−1

x(j)
M
·
(
1 + α⟨vjv⊤

j ,A
1
2
t ⟩
)
·
u⊤
j Y−p−1

t uj
u⊤
j Y−1

t uj

(
1−

(
1−

u⊤
j Y−1

t uj
1 + u⊤

j Y−1
t uj

)p)
.

Using the fact that (1− y)p ≥ 1− py for y ∈ [0, 1] and p ≥ 1, the expected gain can be bounded by

Et[gt] ≤
∑

j∈[m]\St−1

p

M
· x(j) · u⊤

j Y−p−1
t uj ·

1 + α⟨vjv⊤
j ,A

1
2
t ⟩

1 + u⊤
j Y−1

t uj
.

By (3.4), u⊤
j Y−1

t uj = ⟨vjv⊤
j ,Z−1⟩. Then, by the second inequality in Lemma 3.3, it holds that

Et[gt] ≤
p

M
· αλmin(Zt) ·

m∑
j=1

x(j) · u⊤
j Y−p−1

t uj ≤
p

M
· α · ⟨X ,Y−p−1

t ⟩,

where the last inequality holds as λmin(Zt) < 1 before the termination of the algorithm. By the
assumption that λmin(Zt) ≥ 1− 5γ happens (and (3.6)) and the choice of α =

√
d/γ and γ = 1/6p,

we obtain the bound that

Et[gt] ≤
p
√
d

γ(1− 5γ)p+1M
· tr(X−p) ≤ O

(p2√d
M

)
· tr(X−p).

Therefore,

Et[X
2
t ] ≤ O

(p
k

)
·O
(p2√d

M

)
·
(
tr(X−p)

)2
= O

(p3√d
kM

)
·
(
tr(X−p)

)2
,

which implies

Wt :=
t∑

l=1

El[X
2
l ] ≤ O

(τp3√d
kM

)
·
(
tr(X−p)

)2
, ∀t ∈ [τ ].

Finally, we can apply Freedman’s martingale inequality Theorem A.3 with

R = O
(p
k

)
· tr(X−p) and σ2 = O

(p3√dτ
kM

)
·
(
tr(X−p)

)2
to conclude that

Pr

[
Yτ ≥ η

⋂
min
1≤t≤τ

λmin(Zt) ≥ 1− 5γ

]
≤ Pr[∃t ∈ [τ ] : Yt ≥ η ∩Wt ≤ σ2]

≤ exp

(
− η2/2

σ2 +Rη/3

)
= exp

(
−Ω

(
η2kM

τp3
√
d(tr(X−p))2 + ηpM tr(X−p)

))
.

The lemma follows by noting that
∑τ

t=1 Γt ≤
∑τ

t=1 Et[Γt]− η is equivalent to Yτ ≥ η.
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3.4 Proof of Theorem 2.7

We are ready to prove Theorem 2.7. Let τ = 2M
εp . We want to upper bound the probability that

the following three events happen simultaneously:

• E1: The randomized exchange algorithm entered the second phase, i.e., λmin(Z1) ≥ 1 − 2γ
using the notation in this subsection.

• E2: min1≤t≤τ λmin(Zt) ≥ 1− 5γ.

• E3: The second phase of the algorithm has not terminated by time τ .

Suppose the event E3 happens. Then λ = min1≤t≤τ+1(tr(Y
−p
t ))1/p/(tr(X−p))1/p > (1 + ε). If the

event E2 also happens, then Lemma 3.8 implies that
τ∑

t=1

Et [Γt] ≥ τ ·
(
p(λ− 1)λp

M
−O

( p2d
kM

))
· tr(X−p) ≥ 2M

εp
·
(
εp

M
− εp

2M

)
· tr(X−p) ≥ tr

(
X−p

)
,

(3.16)

where the second inequality holds for k ≳ pd/ε with large enough constant.

On the other hand, the initial solution of the second phase satisfies Z1 ≽ (1− 2γ)I (follows by E1),
which implies that Y1 ≽ (1− 2γ)X . Thus, tr(Y−p

1 ) ≤ (1− 2γ)−p tr(X−p) ≤ (1− 1/3p)−p tr(X−p) ≤
3 tr(X−p)/2, for p ≥ 1. When the event E2 happens, we know from Lemma 3.3 that ⟨vitv⊤

it
,Z−1

t ⟩ ≤

α · ⟨vitv⊤
it
,A

1
2
t ⟩ < 1

2 , and so we can apply (3.1) to deduce that

tr(Y−p
τ+1) ≤ tr(Y−p

1 )−
τ∑

t=1

Γt ≤
3

2
· tr
(
X−p

)
−

τ∑
t=1

Γt.

Since the algorithm has not terminated by time τ ,

tr(X−p) ≤ tr(Y−p
τ+1) =⇒

τ∑
t=1

Γt ≤
1

2
· tr
(
X−p

)
. (3.17)

Combining (3.16) and (3.17), E1 ∩ E2 ∩ E3 implies a large deviation of the progress from the
expectation such that

τ∑
t=1

Γt −
τ∑

t=1

Et[Γt] < −
1

2
· tr(X−p).

Thus, we can apply Lemma 3.9 with η = 1
2 · tr(X

−p) and τ = 2M
εp to conclude that

Pr [E1 ∩ E2 ∩ E3] ≤Pr

[
τ∑

t=1

Γt <

τ∑
t=1

Et [Γt]−
1

2
· tr(X−p)

⋂
E2

]

≤ exp

(
− Ω

(
(tr(X−p))2 · kM(

2M
εp

)
p3
√
d · (tr(X−p))2 + pM · (tr(X−p))2

))

≤ exp

(
−Ω
( εk

p2
√
d

))
≤ exp

(
−Ω
(√d

p

))
= exp

(
−Ω
(
γ
√
d
))

,
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where the last inequality holds by the assumption k ≳ pd/ε, and the last equality follows as
γ = 1/6p.

Acknowledgment

We thank Mohit Singh for bringing the Φp objective function to our attention. We also thank
anonymous reviewers of an earlier version of this manuscript for helpful suggestions.

References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal design of ex-
periments via regret minimization. In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of ICML’17, pages 126–135. JMLR.org, 2017. 3

[2] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal discrete opti-
mization for experimental design: a regret minimization approach. Math. Program., 186(1-2,
Ser. A):439–478, 2021. 2, 3, 5, 27

[3] Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: a review. Statist.
Sci., 10(3):273–304, 1995. 4

[4] Michal Derezinski, Feynman T. Liang, and Michael W. Mahoney. Bayesian experimental design
using regularized determinantal point processes. In Silvia Chiappa and Roberto Calandra,
editors, The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS
2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine
Learning Research, pages 3197–3207. PMLR, 2020. 4

[5] David A. Freedman. On tail probabilities for martingales. Ann. Probability, 3:100–118, 1975.
26

[6] Lap Chi Lau and Hong Zhou. A spectral approach to network design. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC ’20, page 826–839,
New York, NY, USA, 2020. Association for Computing Machinery. 2, 3, 4, 5, 8, 9, 26

[7] Lap Chi Lau and Hong Zhou. A local search framework for experimental design. In Proceedings
of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’21, page
1039–1058, USA, 2021. Society for Industrial and Applied Mathematics. 2, 3, 4, 5, 6, 7, 8, 9,
11, 12, 13, 14, 20, 27

[8] Elliott H. Lieb and Walter E. Thirring. Inequalities for the moments of the eigenvalues of the
Schrödinger Hamiltonian and their relation to Sobolev inequalities, pages 269–304. Princeton
University Press, 1976. 25

24



[9] Vivek Madan, Mohit Singh, Uthaipon Tantipongpipat, and Weijun Xie. Combinatorial algo-
rithms for optimal design. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the
Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning
Research, pages 2210–2258, Phoenix, USA, 25–28 Jun 2019. PMLR. 3

[10] Zelda Mariet and Suvrit Sra. Elementary symmetric polynomials for optimal experimental
design. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 2136–2145, Red Hook, NY, USA, 2017. Curran Associates Inc. 4

[11] Aleksandar Nikolov, Mohit Singh, and Uthaipon Tao Tantipongpipat. Proportional volume
sampling and approximation algorithms for A-optimal design. In Proceedings of the Thir-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages 1369–1386,
Philadelphia, PA, USA, 2019. Society for Industrial and Applied Mathematics. 2, 3, 4

[12] Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a
change in one element of a given matrix. Ann. Math. Statistics, 21:124–127, 1950. 25

[13] Mohit Singh and Weijun Xie. Approximate positive correlated distributions and approxima-
tion algorithms for D-optimal design. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’18, page 2240–2255, USA, 2018. Society for In-
dustrial and Applied Mathematics. 2, 3

[14] Uthaipon Tantipongpipat. λ-regularized A-optimal design and its approximation by λ-
regularized proportional volume sampling. CoRR, abs/2006.11182, 2020. 4

[15] Joel A. Tropp. Freedman’s inequality for matrix martingales. Electron. Commun. Probab.,
16:262–270, 2011. 26

[16] Richard L. Wheeden and Antoni Zygmund. Measure and integral. Pure and Applied Mathe-
matics (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2015. An introduction to
real analysis. 2

A Background

We will use the following two results to analyze the Φp objective function.

Lemma A.1 (Sherman-Morrison Formula [12]). Suppose A ∈ Rd×d is an invertible matrix, and
u, v ∈ Rd. Then, A + uv⊤ is invertible if and only if 1 + v⊤A−1u ̸= 0, and under this case(

A + uv⊤
)−1

= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Lemma A.2 (Lieb-Thirring Inequality [8]). For any A,B ≽ 0 and p ≥ 1, it holds that

tr((BAB)p) ≤ tr(BpApBp).

25



We will use concentration inequality for martingales to analyze our randomized algorithm. Recall
that a sequence of random variables Y1, . . . , Yτ is a martingale with respect to a sequence of random
variables Z1, . . . , Zτ if for all t > 0, it holds that

1. Yt is a function of Z1, . . . , Zt−1;

2. E[|Yt|] <∞;

3. E[Yt+1|Z1, . . . , Zt] = Yt.

We will use the following theorem by Freedman to bound the probability that Yτ is large.

Theorem A.3 ([5, 15]). Let {Yt}t be a real-valued martingale with respect to {Zt}t, and {Xt =
Yt − Yt−1}t be the difference sequence. Assume that Xt ≤ R deterministically for 1 ≤ t ≤ τ . Let
Wt :=

∑t
j=1 E[X2

j |Z1, ..., Zj−1] for 1 ≤ t ≤ τ . Then, for all δ ≥ 0 and σ2 > 0,

Pr
(
∃t ∈ [τ ] : Yt ≥ δ and Wt ≤ σ2

)
≤ exp

(
−δ2/2

σ2 +Rδ/3

)
.

B Omitted Proofs in Section 2

Sketched Proof of Theorem 2.4. As in the proof of Theorem 3.12 in [6], there are two main parts
in proving Theorem 2.4: (1) bound the expected change of solution size; (2) bound the conditional
variance of the stochastic process. The main difference in proving Theorem 2.4 is within the first
part, i.e., the expected change of solution size will become worse because of the new κ parameter.

Let 1it and 1jt be the indicator variables of whether it and jt are empty or not. The key of the
updated proof is to show the following inequalities.

1

M

( n∑
i=1

x(i)− |St−1|
)
⩽ Et[1jt − 1it ] ⩽

1

M

( n∑
i=1

x(i)− |St−1|+
(11d

γ
+

d

κ

))
. (B.1)

We will sketch how we obtain this bound and highlight the loss caused by κ < 1.

We first bound the conditional expectation of 1jt . With the same argument as in [6], we can show
that

1

M

( n∑
i=1

x(i)−
∑

i∈St−1

x(i)
)

⩽ Et[1jt ] ⩽
1

M

( n∑
i=1

x(i)−
∑

i∈St−1

x(i) +
d ∥c∥∞

γ

)
. (B.2)

Next we bound the expectation of 1it . This is the main difference caused by κ. By the probability
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distribution of it,

Et[1it ] =
1

M

∑
i∈S′

t−1

(1− x(i))
(
1− α⟨viv⊤

i ,A
1
2
t ⟩
)

=
1

M

( ∑
i∈S′

t−1

(1− x(i))− α
∑

i∈S′
t−1

(1− x(i))⟨viv⊤
i ,A

1
2
t ⟩
)

=
1

M

(
|St−1| −

( ∑
i∈St−1

x(i)
)
−

∑
i∈St−1\S′

t−1

(1− x(i))− α
∑

i∈S′
t−1

(1− x(i))⟨viv⊤
i ,A

1
2
t ⟩
)
.

We would like to bound the last two terms of the right hand side. Recall that S′
t−1 := {i ∈

St−1 | α⟨viv⊤
i ,A

1
2
t ⟩ ≤ 1

2 and ⟨viv⊤
i ,Z−1

t ⟩ ≤ κ}. Therefore, for any i ∈ St−1\S′
t−1, it holds that

1 < 2α⟨viv⊤
i ,A1/2

t ⟩+ κ−1⟨viv⊤
i ,Z−1

t ⟩. This implies that

|St−1 \ S′
t−1| ≤

∑
i∈St−1\S′

t−1

2α⟨viv⊤
i ,A

1
2
t ⟩+

∑
i∈St−1\S′

t−1

κ−1⟨viv⊤
i ,Z−1

t ⟩

≤ 2α
∑

i∈St−1

⟨viv⊤
i ,A

1
2
t ⟩+ κ−1

∑
i∈St−1

⟨viv⊤
i ,Z−1

t ⟩

⩽ 2
(
d+ α

√
d · λmin(Zt)

)
+

d

κ
⩽

8d

γ
+

d

κ
,

where the second last inequality uses Claim 2.14 in [2] and the last inequality is by α =
√
d
γ and

the assumption that λmin(Zt) < 1. Since x ∈ [0, 1]m, it follows that the second last term is

0 ⩽
∑

i∈St−1\S′
t−1

(1− x(i)) ⩽ |St−1\S′
t−1| ⩽

(8d
γ

+
d

κ

)
Similarly, for the last term,

0 ⩽ α
∑

i∈S′
t−1

(1− x(i))⟨viv⊤
i ,A

1
2
t ⟩ ⩽ α

∑
i∈St−1

⟨viv⊤
i ,A

1
2
t ⟩ ⩽ (d+ α

√
d · λmin(Zt)) ⩽

2d

γ
.

Plugging back these upper and lower bounds for the last two terms, for κ < 1, we obtain

1

M

(
|St−1| −

( ∑
i∈St−1

x(i)
)
−
(10d

γ
+

d

κ

))
⩽ Et[1it ] ⩽

1

M

(
|St−1| −

∑
i∈St−1

x(i)
)
. (B.3)

Combining (B.2) and (B.3), we can obtain (B.1). The remaining concentration argument is the
same as in the proof of Theorem 3.12 in [7].
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C Omitted Proofs in Section 3

Proof of Lemma 3.3. Recall that At = (αZt − ctI )−2 where ct is the unique value such that At ≻ 0
and tr(At) = 1. Since Zt ≽ λmin(Zt) · I , it follows that

1 = tr(At) ≤ (αλmin(Zt)− ct)
−2 · tr(I ) =⇒ αλmin(Zt)− ct ≤

√
d =⇒ ct ≥ 0,

where the last implication holds as α =
√
d/γ, λmin(Zt) ≥ 1− 5γ and the assumption γ ≤ 1

6 . This

implies that A
1
2
t = (αZt − ctI )−1 ≽ α−1Z−1

t , proving the first inequality.

For the second inequality, consider the eigen-decomposition of Zt=
∑d

j=1 λjwjw⊤
j , where 0 < λ1 ≤

. . . ≤ λd are the eigenvalues and {wj} are the corresponding orthonormal eigenvectors. Then,

⟨viv⊤
i ,A

1
2
t ⟩

⟨viv⊤
i ,Z−1

t ⟩
=

∑d
j=1

⟨vi,wj⟩2
αλj−ct∑d

j=1
⟨vi,wj⟩2

λj

≤ max
j∈[d]

λj

αλj − ct
≤ λ1

αλ1 − ct
≤ λ1,

where the first inequality holds since αλj − ct > 0 as At ≻ 0, the second inequality holds as ct ≥ 0
and the function f(x) = x

αx−ct
is decreasing for x ≥ lt

α when ct ≥ 0, and the last inequality follows

as 1 = tr(At) ≥ (αλ1 − ct)
−2 which implies αλ1 − ct ≥ 1.

Proof of Lemma 3.4. We will use a dual characterization to prove the lemma. We introduce a
dual variable Y for the first equality constraint, a dual variable µ ≥ 0 for the budget constraint∑m

i=1 x(i)− k ≤ 0, a dual variable β−
i ≥ 0 for each non-negative constraint −x(i) ≤ 0, and a dual

variable β+
i ≥ 0 for each capacity constraint x(i)− 1 ≤ 0.

The Lagrange function L(x ,X ,Y , µ, β+, β−) is defined as(
tr
(
X−p

))1/p
+

〈
Y ,X −

m∑
i=1

x(i) · uiu⊤
i

〉
+µ

( m∑
i=1

x(i)− k

)
−

m∑
i=1

β−
i x(i) +

m∑
i=1

β+
i (x(i)− 1)

=
(
tr
(
X−p

))1/p
+⟨Y ,X ⟩−µk−

m∑
i=1

β+
i −

m∑
i=1

x(i) ·
(
⟨Y , uiu⊤

i ⟩ − µ+ β−
i − β+

i

)
.

The Lagrangian dual program is

max
Y≻0,µ≥0,

β+≥0,β−≥0

min
X≻0,x

L(x ,X ,Y , µ, β+, β−).

Note that we can add the constraint X ≻ 0 to the inner minimization without loss of generality, as
otherwise the Lagrange function is unbounded. Similarly, we can assume that Y ≻ 0 in the outer
maximization, as otherwise the inner maximization problem is unbounded below.

To simplify the dual program, we will apply first order optimality condition to the inner minimiza-
tion problem. We start with computing the gradient of (tr(X−p))1/p.

∇X (tr(X−p))1/p =
1

p
(tr(X−p))

1−p
p · ∂X (X

p)−1 = −1

p
(tr(X−p))

1−p
p ·X−p(∂XX

p)X−p

= −(tr(X−p))
1−p
p ·X−p−1.
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Therefore, given any Y ≻ 0, µ, β+, β− ≥ 0, the minimizers X ≻ 0, x of the inner minimization
problem satisfy the optimality conditions that

∇XL = −(tr(X−p))
1−p
p ·X−p−1 + Y = 0 and ∇x(i)L = −⟨Y , uiu⊤

i ⟩+ µ− β−
i + β+

i = 0. (C.1)

On the other hand, it is easy to verify that x = δ1⃗ is a strictly feasible solution of the primal
program for a small enough δ. So, Slater’s condition implies that strong duality holds. Let x ,X be
an optimal solution for the primal program, and Y , µ, β+, β− be an optimal solution for the dual
program. Strong duality implies that(

tr
(
X−p

))1/p
=
(
tr
(
X−p

))1/p
+⟨Y ,X ⟩−µk−

m∑
i=1

β+
i −

m∑
i=1

x(i) ·
(
⟨Y , uiu⊤

i ⟩ − µ+ β−
i − β+

i

)
,

where the LHS is the optimal value of the primal program and the RHS is equal to the optimal
value of the dual program given the optimal primal and dual solutions.

Then, it follows from the Lagrangian optimality condition (C.1) that

0 = tr(X−p)1/p − µk −
m∑
i=1

β+
i =⇒ µk +

m∑
i=1

β+
i = tr(X−p)1/p =⇒ µ ≤ 1

k
· tr(X−p)1/p,

where the last implication follows from β+
i ≥ 0 for all i ∈ [m].

Finally, by the complementary slackness conditions, we have β−
i · x(i) = 0 and β+

i · (1− x(i)) = 0
for all i ∈ [n]. Therefore, for each i ∈ [n] with 0 < x(i) < 1, we must have β+

i = β−
i = 0. By (C.1),

it follows that

1

k
· tr(X−p)1/p ≥ µ = ⟨Y , uiu⊤

i ⟩ = (tr(X−p))
1−p
p · ⟨X−p−1, uiu⊤

i ⟩ =⇒ ⟨X−p−1, uiu⊤
i ⟩ ≤

1

k
· tr(X−p).
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