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Abstract

Given an undirected hypergraph and a subset of vertices S ⊆ V with a specified root vertex r ∈ S, the
STEINER ROOTED-ORIENTATION problem is to find an orientation of all the hyperedges so that in the
resulting directed hypergraph the “connectivity” from the root r to the vertices in S is maximized. This is
motivated by a multicasting problem in undirected networks as well as a generalization of some classical
problems in graph theory. The main results of this paper are the following approximate min–max relations:

• Given an undirected hypergraph H , if S is 2k-hyperedge-connected in H , then H has a Steiner rooted
k-hyperarc-connected orientation.

• Given an undirected graph G, if S is 2k-element-connected in G, then G has a Steiner rooted k-element-
connected orientation.

Both results are tight in terms of the connectivity bounds. These also give polynomial time constant factor
approximation algorithms for both problems. The proofs are based on submodular techniques, and a graph
decomposition technique used in the STEINER TREE PACKING problem. Some complementary hardness
results are presented at the end.
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1. Introduction

Let H = (V , E ) be an undirected hypergraph. An orientation of H is obtained by assigning a
direction to each hyperedge in H . In our setting, a hyperarc (a directed hyperedge) is a hyperedge
with a designated tail vertex and other vertices as head vertices. This model has been used in
network multicasting [5,24], which is the main motivation for our research. Given a set S ⊆ V of
terminal vertices (the vertices in V −S are called the Steiner vertices) and a root vertex r ∈ S, we
say a directed hypergraph is Steiner rooted k-hyperarc-connected if there are k hyperarc-disjoint
paths from the root vertex r to each terminal vertex in S. Here, a path in a directed hypergraph is
an alternating sequence of distinct vertices and hyperarcs {v0, a0, v1, a1, . . . , ak−1, vk} so that vi

is the tail of ai and vi+1 is a head of ai for all 0 � i < k. The STEINER ROOTED-ORIENTATION

problem is to find an orientation of H so that the resulting directed hypergraph is Steiner rooted
k-hyperarc-connected, and our objective is to maximize k.

When the STEINER ROOTED-ORIENTATION problem specializes to graphs, it is a common
generalization of some classical problems in graph theory. When there are only two terminals
(S = {r, v}), it is the edge-disjoint paths problem solved by Menger [26]. When all vertices in the
graph are terminals (S = V ), it can be shown to be equivalent to the edge-disjoint spanning trees
problem solved by Tutte [29] and Nash-Williams [28]. An alternative common generalization of
the above problems is the STEINER TREE PACKING problem studied in [16,20,21]. Notice that
if a graph G has k edge-disjoint Steiner trees (i.e. trees that connect the terminal vertices S), then
G has a Steiner rooted k arc-connected orientation. The converse, however, is not true. As we
shall see, significantly sharper approximate min–max relations and also approximation ratio can
be achieved for the STEINER ROOTED-ORIENTATION problem, especially when we consider
hyperarc-connectivity and element-connectivity.

Given a hypergraph H , we say S is k-hyperedge-connected in H if there are k hyperedge-
disjoint paths between every pair of vertices in S. It is not difficult to see that for a hypergraph
H to have a Steiner rooted k-hyperarc-connected orientation, S must be at least k-hyperedge-
connected in H . The main focus of this paper is to determine the smallest constant c so that the
following holds: If S is ck-hyperedge-connected in H , then H has a Steiner rooted k-hyperarc-
connected orientation.

1.1. Previous work

Graph orientations is a well-studied subject in the literature, and there are many ways to look
at such questions (see [2]). Here we focus on graph orientations achieving high connectivity. In
the following λ(x, y) denotes the maximum number of edge-disjoint paths from x to y, which
is called the local-edge-connectivity from x to y. Nash-Williams [27] proved the following deep
generalization of Robbins’ theorem which achieves optimal local-arc-connectivity for all pairs
of vertices:

Every undirected graph G has an orientation D so that λD(x, y) � �λG(x, y)/2� for all
x, y ∈ V .

Nash-Williams’ original proof is quite complicated, and until now this is the only known orien-
tation result achieving high local-arc-connectivity. Subsequently, Frank, in a series of works
[8–11], developed a general framework to solve graph orientation problems achieving high
global-arc-connectivity by using the submodular flow problem. Recently, this framework has
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been generalized to solve hypergraph orientation problems achieving high global-hyperarc-
connectivity [13].

1.2. Results

The main result of this paper is the following approximate min–max theorem on hypergraphs.

Theorem 1.1. Suppose H is an undirected hypergraph, S is a subset of terminal vertices with a
specified root vertex r ∈ S. Then H has a Steiner rooted k-hyperarc-connected orientation if S

is 2k-hyperedge-connected in H .

Theorem 1.1 is best possible in terms of the connectivity bound. This is shown by any 2k-
regular 2k-edge-connected non-complete graph G by setting S = V (G) (e.g. a 2k-dimensional
hypercube).

The proof of Theorem 1.1 is constructive, and implies a polynomial time constant factor
approximation algorithm for the problem. When the above theorem specializes to graphs, this
gives a new and simpler algorithm (without using Nash-Williams’ orientation theorem) to find
a Steiner rooted k-arc-connected orientation in a graph when S is 2k-edge-connected in G. On
the other hand, we prove that finding an orientation which maximizes the Steiner rooted-arc-
connectivity in a graph is NP-complete (Theorem 6.1).

Following the notation on approximation algorithms on graph connectivity problems, by an
element we mean either an edge or a Steiner vertex. For graph connectivity problems, element-
connectivity is regarded as of intermediate difficulty between vertex-connectivity and edge-
connectivity (see [7,17]). A directed graph is Steiner rooted k-element-connected if there are
k element-disjoint directed paths from r to each terminal vertex in S. We prove the following
approximate min–max theorem on element-connectivity, which is tight in terms of the connec-
tivity bound. We also prove the NP-completeness of the problem of deciding if there is a Steiner
rooted k-element-connected orientation (Theorem 6.4).

Theorem 1.2. Suppose G is an undirected graph, S is a subset of terminal vertices with a spec-
ified root vertex r ∈ S. Then G has a Steiner rooted k-element-connected orientation if S is
2k-element-connected in G.

1.3. Techniques

A key ingredient in the proof of Theorem 1.1 is the use of an “extension property” (see
[21,22]) to help decompose a general hypergraph into hypergraphs with substantially simpler
structures. Then, in those simpler hypergraphs, we apply submodularity in an effective way to
solve the problem (and also prove the extension property). An important building block of our
approach is the following class of polynomial time solvable graph orientation problems, which
we call the DEGREE-SPECIFIED STEINER ROOTED-ORIENTATION problem.

Theorem 1.3. Suppose G is an undirected graph, S is a subset of terminal vertices with a
specified root vertex r ∈ S, and m is an in-degree specification on the Steiner vertices (i.e.
m : (V (G) − S) → Z

+). Then deciding whether G has a Steiner rooted k-arc-connected ori-
entation with the specified indegrees can be solved in polynomial time.



1236 T. Király, L.C. Lau / Journal of Combinatorial Theory, Series B 98 (2008) 1233–1252
Perhaps Theorem 1.3 does not seem to be very useful at first sight, but it turns out to be sur-
prisingly powerful in some situations when we have a rough idea on what the indegrees of Steiner
vertices should be like. To prove Theorem 1.3, we shall reduce this problem to membership in
a base polyhedron from which we can also derive a sufficient and necessary condition for the
existence of a degree-specified Steiner rooted k-arc-connected orientation. This provides us with
a crucial tool in establishing the approximate min–max relations.

2. The basics

Let H = (V , E ) be an undirected hypergraph. Given X ⊆ V , we say a hyperedge e enters X

if 0 < |e ∩ X| < |e|. The rank of H is the cardinality of the largest hyperedge of H . We define
δH (X) to be the set of hyperedges that enter X, and dH (X) := |δH (X)|. We also define i(X) to
be the number of induced hyperedges in X. In a directed hypergraph �H = (V ,

−→E ), a hyperarc a

enters a set X if the tail of a is not in X and some head of a is in X. We define δin
�H (X) to be the

set of hyperarcs that enter X, and d in
�H (X) := |δin

�H (X)|. Similarly, a hyperarc a leaves a set X if a

enters V −X. We define δout
�H (X) to be the set of hyperarcs that leave X, and dout

�H (X) := |δout
�H (X)|.

Let V be a finite ground set. Two subsets X and Y are intersecting if X − Y , Y − X, X ∩ Y

are all non-empty. X and Y are crossing if they are intersecting and X ∪ Y 
= V . For a function
m : V → R we use the notation m(X) := ∑

(m(v): v ∈ X). Let f : 2V → R be a function
defined on the subsets of V . The set-function f is called (intersecting, crossing) submodular if
the following inequality holds for any two (intersecting, crossing) subsets X and Y of V :

f (X) + f (Y ) � f (X ∪ Y) + f (X ∩ Y). (1)

The set function f is called (intersecting, crossing) supermodular if the reverse inequality of (1)
holds for any two (intersecting, crossing) subsets X and Y of V .

2.1. Base polyhedra and graph orientations

The following two results show the connection between orientation problems and the theory
of base polyhedra.

Lemma 2.1. (See [14].) Let G = (V ,E) be an undirected graph, x : V → Z
+ an in-degree

specification, and h : 2V → Z
+ a non-negative function. Then G has an orientation D such that

d in
D(X) � h(X) for all X ⊆ V and d in

D(v) = x(v) for every v ∈ V if and only if x(V ) = |E| and

x(X) � i(X) + h(X) for every X ⊆ V .

Notice that the set function i(X) is supermodular, so if h(X) is intersecting supermodular
then so is i(X) + h(X).

Theorem 2.2. (See [23].) Let h : 2V → Z
+ be a non-negative intersecting supermodular set

function, and let l be a non-negative integer. The polyhedron

B := {
x ∈ R

V : x(X) � h(X) for X ⊆ V , x(V ) = l
}

is non-empty if and only if the following conditions hold:
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1. h(∅) = 0,
2.

∑
X∈F h(X) � l for every partition F of V .

If B is non-empty, then it is a base polyhedron, so its vertices are integral.

2.2. Mader’s splitting-off theorem

Let G be an undirected graph. Splitting-off a pair of edges e = uv, f = vw means that we
replace e and f by a new edge uw (parallel edges may arise). The resulting graph will be de-
noted by Gef . When a splitting-off operation is performed, the local edge-connectivity never
increases. The content of the splitting-off theorem is that under certain conditions there is an
appropriate pair of edges {e = uv, f = vw} whose splitting-off preserves all local or global
edge-connectivity between vertices distinct from v. The following theorem by Mader [25] proves
to be very useful in graph connectivity problems.

Theorem 2.3. Let G = (V ,E) be a connected undirected graph in which 0 < dG(s) 
= 3 and
there is no cut-edge incident with s. Then there exists a pair of edges e = su,f = st so that
λG(x, y) = λGef (x, y) holds for every x, y ∈ V − s.

3. Degree-specified Steiner orientations

In this section we consider the DEGREE-SPECIFIED STEINER ORIENTATION problem,2

which will be the basic tool for proving the main theorems. Note that we shall only consider
this problem in graphs. Given a graph G = (V ,E), a terminal set S ⊆ V (G) and a connectivity
requirement function h : 2S → Z, we say the connectivity requirement function h∗ : 2V → Z is
the Steiner extension of h if h∗(X) = h(X ∩ S) for every X ⊆ V . Suppose G,S,h are given
as above, and an in-degree specification m(v) for each Steiner vertex is given. The goal of the
DEGREE-SPECIFIED STEINER ORIENTATION problem is to find an orientation D of G that cov-
ers the Steiner extension h∗ of h, with an additional requirement that d in

D(v) = m(v) for every
v ∈ V (G) − S.

This problem is a generalization of the hypergraph orientation problem studied in [3,13,18].
Given a hypergraph H = (V , E ), we construct the bipartite representation B of H for which
the terminal vertices correspond to V (H) and the Steiner vertices correspond to E (H). Now,
by specifying the indegree of each Steiner vertex to be exactly 1, an orientation of B with the
specified indegrees corresponds to a hypergraph orientation of H .

We show that the DEGREE-SPECIFIED STEINER ORIENTATION problem can be solved in
polynomial time if h is a non-negative intersecting supermodular set function. Notice that h∗ is
not an intersecting submodular function in general, and therefore Theorem 2.2 cannot be directly
applied. Nonetheless, we can reformulate the problem so that we can use Theorem 2.2.

Since the indegrees of the vertices in V − S are fixed, we have to determine the indegrees of
the vertices in S. By Lemma 2.1, a vector x : S → Z

+ with x(S) = |E| − m(V − S) is the vector
of indegrees of a degree-specified Steiner orientation if and only if x(X)+m(Z) � h∗(X ∪Z)+

2 The study of this problem is suggested by Frank (personal communication).
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i(X ∪ Z) = h(X) + i(X ∪ Z) for every X ⊆ S and Z ⊆ V − S. Let us define the following set
function on S:

h′(X) := h(X) + max
Z⊆V −S

(
i(X ∪ Z) − m(Z)

)
for X ⊆ S.

It follows that there is a degree-specified Steiner orientation such that x is the vector of indegrees
of the vertices of S if and only if x(X) � h′(X) for every X ⊆ S and x(S) = |E| − m(V − S).

Lemma 3.1. The set function h′ is intersecting supermodular if h is intersecting supermodular.

Proof. Let X1 ⊆ S and X2 ⊆ S be two intersecting sets. There are sets Z1 ⊆ V − S and Z2 ⊆
V − S such that h′(X1) = h(X1) + i(X1 ∪ Z1) − m(Z1) and h′(X2) = h(X2) + i(X2 ∪ Z2) −
m(Z2). By the properties of the set functions involved, we have the following inequalities:

• h(X1) + h(X2) � h(X1 ∩ X2) + h(X1 ∪ X2).

• i(X1 ∪ Z1) + i(X2 ∪ Z2) � i((X1 ∩ X2) ∪ (Z1 ∩ Z2)) + i((X1 ∪ X2) ∪ (Z1 ∪ Z2)).

• m(Z1) + m(Z2) = m(Z1 ∩ Z2) + m(Z1 ∪ Z2).

Thus

h′(X1) + h′(X2) = h(X1) + h(X2) + i(X1 ∪ Z1) + i(X2 ∪ Z2) − m(Z1) − m(Z2)

� h(X1 ∩ X2) + i
(
(X1 ∩ X2) ∪ (Z1 ∩ Z2)

) − m(Z1 ∩ Z2)

+ h(X1 ∪ X2) + i
(
(X1 ∪ X2) ∪ (Z1 ∪ Z2)

) − m(Z1 ∪ Z2)

� h′(X1 ∩ X2) + h′(X1 ∪ X2). �
Let us consider the following polyhedron:

B := {
x ∈ R

S : x(X) � h′(X) for every X ⊆ S, x(S) = |E| − m(V − S)
}
.

The integer vectors of this polyhedron correspond to indegree vectors of degree-specified
Steiner orientations. By Theorem 2.2, B is non-empty if and only if the following two conditions
hold:

1. h′(∅) = 0,
2.

∑
X∈F h′(X) � |E| − m(V − S) for every partition F of S.

If B is non-empty, then it is a base polyhedron, so its vertices are integral. As we have seen, such
a vertex is the indegree vector of a degree-specified Steiner orientation. Thus the non-emptiness
of B is equivalent to the existence of a degree-specified orientation. Since a vertex of a base
polyhedron given by an intersecting supermodular set function can be found in polynomial time,
we obtained the following results:

Theorem 3.2. Let G = (V ,E) be an undirected graph with a terminal set S ⊆ V . Let h : 2S →
Z

+ be a non-negative intersecting supermodular set function and m : (V − S) → Z
+ be an in-

degree specification. Then G has an orientation covering the Steiner extension h∗ of h with the
specified indegrees if and only if i(Z) � m(Z) for every Z ⊆ V − S and for every partition F
of S ∑ (

h(X) + max
Z⊆V −S

(
i(X ∪ Z) − m(Z)

))
� |E| − m(V − S).
X∈F
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Theorem 3.3. If h is non-negative and intersecting supermodular, then the DEGREE-SPECIFIED

STEINER ORIENTATION problem can be solved in polynomial time.

3.1. Steiner rooted-orientations of graphs

In the following we focus on the STEINER ROOTED-ORIENTATION problem. First we derive
Theorem 1.3 as a corollary of Theorem 3.2. In contrast with Theorem 3.3, the STEINER ROOTED-
ORIENTATION problem is NP-complete (Theorem 6.1). That said, in general, finding an in-
degree specification for the Steiner vertices to maximize the Steiner rooted-edge-connectivity
is hard.

Proof of Theorem 1.3. Let S be the set of terminal vertices and r ∈ S be the root vertex. Set
h(X) := k for every X ⊆ S with r /∈ X, and h(X) := 0 otherwise. Then h is an intersecting super-
modular function on S. By Menger’s theorem, an orientation is Steiner rooted k-arc-connected if
and only if it covers the Steiner extension of h. Thus, by Theorem 3.2, the problem of finding a
Steiner rooted-orientation with the specified indegrees can be solved in polynomial time. �

The following theorem can be derived from Theorem 3.2 (by “hardwiring” the indegrees of
the Steiner vertices to be 1), which will be used to prove Theorem 1.1 for rank 3 hypergraphs.
This is also implicit in [3], we omit the proof here.

Theorem 3.4. Let G = (V ,E) be an undirected graph with terminal set S ⊆ V (G). If every
Steiner vertex is of degree at most 3 and there is no edge between two Steiner vertices in G, then
G has a Steiner rooted k-edge-connected orientation if and only if

δ(P ) � k(t − 1)

holds for every partition P = (V1, . . . , Vt ) of V (G) such that each Vi contains a terminal vertex,
where δ(P ) denotes the number of edges with one endpoint in Vi and the other endpoint in Vj

for i 
= j . In fact, there exists such an orientation with every Steiner vertex of indegree 1.

4. Proof of Theorem 1.1

In this section, we present the proof of the main result of this paper (Theorem 1.1). We shall
consider a minimal counterexample H of Theorem 4.2 with the minimum number of edges and
then the minimum number of vertices. Note that Theorem 4.2 is a stronger version of Theo-
rem 1.1 with an “extension property” introduced (Definition 4.1). The extension property allows
us to apply a graph decomposition procedure to simplify the structures of H significantly (Corol-
laries 4.5, 4.6). With these structures, we can construct a bipartite graph representation B of H.
Then, the DEGREE-SPECIFIED STEINER ROOTED-ORIENTATION problem can be applied in the
bipartite graph B to establish a tight approximate min–max relation (Theorem 4.10).

We need some notation to state the extension property. A hyperarc a is in δin(X;Y ) if a

enters X and a ∩ Y = ∅. If Y is an emptyset, then δin(X;Y ) is the same as δin(X). We use
d in(X;Y ) to denote |δin(X;Y )|. A hyperarc a is in

−→
E(X,Y ;Z ) if a leaves X, enters Y and

a ∩ Z = ∅. If Z is an emptyset, we denote
−→
E(X,Y ;Z) by

−→
E(X,Y ). We use

−→
d (X,Y ;Z ) to

denote |−→E(X,Y ;Z )|, and
−→
d (X,Y ) to denote |−→E(X,Y )|. The following extension property is at

the heart of our approach.
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Definition 4.1. Given H = (V , E ), S ⊆ V and a vertex s ∈ S, a Steiner rooted-orientation D of
H extends s if:

(i) d in
D(s) = dH (s);

(ii) d in
D(Y ; s) � −→

d D(Y, s) for every Y ⊆ V for which Y ∩ S = ∅.

As mentioned previously, we shall prove the following stronger theorem which immediately
implies Theorem 1.1.

Theorem 4.2. Suppose H is an undirected hypergraph, S is a subset of terminal vertices with a
specified root vertex r ∈ S. Then H has a Steiner rooted k-hyperarc-connected orientation if S

is 2k-hyperedge-connected in H . In fact, given any vertex s ∈ S of degree 2k, H has a Steiner
rooted k-hyperarc-connected orientation that extends s. We call the special vertex s the sink of H .

The next lemma shows that the choice of the root vertex does not matter. The proof idea is
that we can reverse the directions of the arcs in the r, v-paths.

Lemma 4.3. Suppose there exists a Steiner rooted k-hyperarc-connected orientation that extends
s with r as the root. Then there exists a Steiner rooted k-hyperarc-connected orientation that
extends s with v as the root for every v ∈ S − s.

Proof. Let D be a Steiner rooted k-hyperarc-connected orientation that extends s with r as the
root. Let v 
= r be another terminal vertex which is not the special sink s. By assumption, there
are k hyperarc-disjoint paths {−→P1, . . . ,

−→
Pk} between r and v. Now, let D′ be an orientation with

the same orientation as D except the orientations of all the hyperarcs in P1 ∪· · ·∪Pk are reversed.
To be more precise, let

−→
Pi = {v0, a0, v1, a1, . . . , al−1, vl} where ai has vi as the tail and vi+1 as

a head, then
←−
Pi = {vl,

←−−−al−1, . . . ,
←−a0, v0} where ←−ai has vi+1 as the tail and vi as a head. For a

directed path
−→
P = {v0, a0, v1, a1, . . . , al−1, vl}, we say a hyperarc ai enters a subset of vertices

X if vi /∈ X and vi+1 ∈ X; and ai in
−→
P leaves X if vi ∈ X and vi+1 /∈ X. We claim that D′

is a Steiner rooted k-hyperarc-connected orientation that extends s with v as the root. First we
check that d in

D′(X) � k for every X ⊆ V (H) which satisfies v /∈ X and X ∩ S 
= ∅. If r ∈ X, then
{←−
P1, . . . ,

←−
Pk} are k hyperarc-disjoint paths from v to r in D′, where

←−
Pi denotes the reverse path

of
−→
Pi . Hence d in

D′(X) � k for such X. So we assume r /∈ X. As D is a Steiner rooted k-hyperarc-
connected orientation, we have d in

D(X) � k. Recall that D and D′ differ only on the orientations
of the paths in {P1, . . . ,Pk}. Notice that each path

−→
Pi has both endpoints outside of X, and thus−→

Pi enters X the same number of times as it leaves X. Therefore, by reorienting
−→
Pi to

←−
Pi for all i,

we have d in
D′(X) = d in

D(X) � k for those X which contains a terminal but contains neither v nor r .
This confirms that D′ is a Steiner rooted k-hyperarc-connected orientation with v as the root. To
finish the proof, we need to check that D′ extends s as defined in Definition 4.1. Since s is a
sink in D, by reorienting paths which do not start and end in s, s is still a sink in D′. So the first
condition in Definition 4.1 is satisfied. For a subset Y ⊆ V (H) with Y ∩ S = ∅,

−→
Pi enters Y and

leaves Y the same number of times. Let a1 be a hyperarc that enters Y and a2 be a hyperarc that
leaves Y in D. Suppose we reverse a1 and a2 in D′. We have four cases to consider.

• s ∈ a1 and s ∈ a2. Then d in
D′(Y ; s) = d in

D(Y ; s) � −→
d D(Y, s) = −→

d D′(Y, s).

• s ∈ a1 and s /∈ a2. Then d in
D′(Y ; s) = d in

D(Y ; s) + 1 � −→
d D(Y, s) + 1 = −→

d D′(Y, s).
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Fig. 1. An illustration of the proof of Lemma 4.4.

• s /∈ a1 and s ∈ a2. Then d in
D′(Y ; s) = d in

D(Y ; s) − 1 � −→
d D(Y, s) − 1 = −→

d D′(Y, s).

• s /∈ a1 and s /∈ a2. Then d in
D′(Y ; s) = d in

D(Y ; s) � −→
d D(Y, s) = −→

d D′(Y, s).

Since we have d in
D(Y ; s) � −→

d D(Y, s) to start with, by reorienting
−→
Pi to

←−
Pi , we still have

d in
D′(Y ; s) � −→

d D′(Y, s). Hence the second condition in Definition 4.1 is also satisfied. There-
fore, D′ is a Steiner rooted k-hyperarc-connected orientation that extends s. This proves the
lemma. �

In the following we say a set X is tight if dH(X) = 2k and X ∩ S and S − X are non-empty;
X is nontrivial if |X| � 2 and |V (H) − X| � 2. The following is the key lemma where we use
the graph decomposition technique (see Fig. 1 for an illustration).

Lemma 4.4. There is no nontrivial tight set in H.

Proof. Suppose there exists a nontrivial tight set U , i.e. dH(U) = 2k, |U | � 2 and
|V (H) − U | � 2. By Lemma 4.3 we may assume that r ∈ U and s /∈ U . Contract V (H) − U

of H to a single vertex v1 and call the resulting hypergraph H1 (notice this may create par-
allel hyperedges); similarly, contract U of H to a single vertex v2 and call the resulting
hypergraph H2. We assume s ∈ H2. See Fig. 1(b) for an illustration. So, V (H1) = U ∪ {v1},
V (H2) = (V (H)−U)∪{v2} and there is an one-to-one correspondence between the hyperedges
in δH1(v1) and the hyperedges in δH2(v2). To be more precise, for a hyperedge e ∈ δH(U), it
decomposes into e1 = (e ∩ V (H1)) ∪ {v1} in H1 and e2 = (e ∩ V (H2)) ∪ {v2} in H2 and we refer
them as the corresponding hyperedges of e in H1 and H2, respectively.

Since U is nontrivial, both H1 and H2 are smaller than H. We set S1 := (S ∩V (H1))∪ v1 and
S2 = (S∩V (H2))∪v2, and set the sink of H1 to be v1 and the sink of H2 to be s. Clearly, S1 is 2k-
hyperedge-connected in H1 and S2 is 2k-hyperedge-connected in H2. By the minimality of H,
H2 has a Steiner rooted k-hyperarc-connected orientation D2 that extends s. By Lemma 4.3, we
can choose the root of D2 to be v2. Similarly, by the minimality of H, H1 has a Steiner rooted
k-hyperarc-connected orientation D1 that extends v1. Let the root of D1 be r . See Fig. 1(c) for
an illustration.
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We shall prove that the concatenation D of the two orientations D1,D2 gives a Steiner rooted
k-hyperarc-connected orientation of H that extends s. Notice for a hyperedge e in δH(U), its
corresponding hyperedge e1 in H1 is oriented with v1 as a head (by the extension property of D1),
and its corresponding hyperedge e2 in H2 is oriented so that v2 is the tail (as v2 is the root of D2).
So, in D, the orientation of e is well defined and has its tail in H1. See Fig. 1(d) for an illustration.
Now we show that D is a Steiner rooted k-hyperarc-connected orientation. By Menger’s theorem,
it suffices to show that d in

D(X) � k for any X ⊆ V (H) for which r /∈ X and X ∩ S 
= ∅.
Suppose X ∩ S1 
= ∅. Then d in

D1
(X − V (H2)) � k by the orientation D1 of H1. Since v1 is the

sink of G1, there is no hyperarc going from V (H2) to V (H1) in D. Hence we have d in
D(X) �

d in
D1

(X − V (H2)) � k.
Suppose X ∩ S1 = ∅. Let X1 = X ∩ H1 and X2 = X ∩ H2. The case that X1 = ∅ follows

from the properties of D2. So we assume both X1 and X2 are non-empty. We have the following
inequality:

d in
D(X) � d in

D1
(X1;v1) + d in

D2
(X2) − −→

d D(X1,X2). (2)

Note that
−→
d D1(X1, v1) � −→

d D(X1,X2). So, by property (ii) of Definition 4.1, d in
D1

(X1;v1) �
−→
d D1(X1, v1) � −→

d D(X1,X2). Hence d in
D(X) � d in

D2
(X2) � k, where the second inequality is by

the properties of D2.
This implies that D is a Steiner rooted k-hyperarc-connected orientation of H. To finish the

proof, we need to check that D extends s. The first property of Definition 4.1 follows immediately
from our construction. It remains to check that property (ii) of Definition 4.1 still holds in D.
Consider a subset Y ⊂ V (H) with Y ∩ S = ∅. Let Y1 = Y ∩ H1 and Y2 = Y ∩ H2. The following
inequality is important:

d in
D(Y ; s) � d in

D1
(Y1;v1) + d in

D2
(Y2; s) − −→

d D(Y1, Y2; s). (3)

By property (ii) of the extension property of D1, we have d in
D1

(Y1;v1) � −→
d D1(Y1, v1) �

−→
d D(Y1, Y2; s) + −→

d D(Y1, s). Therefore, d in
D(Y ; s) � −→

d D(Y1, s) + d in
D2

(Y2; s). By property (ii)

of the extension property of D2, we have d in
D2

(Y2; s) � −→
d D2(Y2, s). Hence, by (3), d in

D(Y ; s) �−→
d D(Y1, s) + −→

d D2(Y2, s) = −→
d D(Y1, s) + −→

d D(Y2, s) = −→
d D(Y, s), as required. This shows that D

extends s, which contradicts that H is a counterexample. �
The following are two important properties obtained from Lemma 4.4.

Corollary 4.5. Each hyperedge of H of size at least 3 contains only terminal vertices.

Proof. Suppose e is a hyperedge of H of size at least 3 and t ∈ e is a Steiner vertex. Let H ′
be a hypergraph with the same vertex and edge set as H except we replace e by e′ := e − t . If
H ′ is 2k-hyperedge-connected, then by the choice of H, H ′ has a Steiner rooted k-hyperedge-
connected orientation, hence H also has one; a contradiction. Therefore, there exists a set X

which separates two terminals with dH(X) = 2k and dH ′(X) < 2k. So e ∈ δH(X). Suppose
t ∈ X. Since X contains a terminal, |X| � 2. Also, e − t must be contained in V (H) − X;
otherwise dH(X) = dH ′(X). Hence |V (H) − X| � |e − t | � 2. Therefore, X is a nontrivial tight
set, which contradicts Lemma 4.4. �
Corollary 4.6. There is no edge between two Steiner vertices in H.
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Fig. 2. The bipartite representation B of H.

Proof. This follows from a similar argument as in Corollary 4.5. Let e be an edge which connects
two Steiner vertices. If H − e is 2k-hyperedge-connected, then by the choice of H, H − e has a
Steiner rooted k-hyperarc-connected orientation, hence H also has one; a contradiction. Other-
wise, there exists a set X which separates two terminals with dH(X) = 2k and dH−e(X) < 2k.
So e ∈ δH(X). Since X contains a terminal vertex and an endpoint of e which is a Steiner ver-
tex, |X| � 2. Similarly, |V (H) − X| � 2. Hence X is a nontrivial tight set, which contradicts
Lemma 4.4. �
4.1. The bipartite representation of H

Using Corollaries 4.5 and 4.6, we shall construct a bipartite graph from H, which allows
us to apply the results on the DEGREE-SPECIFIED STEINER ROOTED-ORIENTATION problem
to H. Let S be the set of terminal vertices in H. Let E ′ be the set of hyperedges in H which do
not contain a Steiner vertex, i.e. a hyperedge e is in E ′ if e ∩ (V (H) − S) = ∅. We construct a
bipartite graph B = (S, (V (H) − S) ∪ E ′;E) from the hypergraph H as follows. Every vertex v

in H corresponds to a vertex v in B , and also every hyperedge e ∈ E ′ corresponds to a vertex ve

in B . By Corollary 4.5, hyperedges which intersect V (H) − S are graph edges (i.e. hyperedges
of size 2); we add these edges to E(B). For every hyperedge e ∈ E ′, we add vew to E(B) if
and only if w ∈ e in H. Let the set of terminal vertices in B be S (the same set of terminal
vertices in H); all other vertices are non-terminal vertices in B . By Corollaries 4.5 and 4.6, there
is no edge between two non-terminal vertices in B . Hence B is a bipartite graph. To distinguish
the non-terminal vertices corresponding to Steiner vertices in H and the non-terminal vertices
corresponding to hyperedges in E ′, we call the former the Steiner vertices and the latter the
hyperedge vertices. See Fig. 2 for an illustration.

4.2. Rank 3 hypergraphs

To better illustrate the idea of the proof, we first prove Theorem 4.2 for the case of rank
3 hypergraphs. This motivates the proof for general hypergraphs, which is considerably more
complicated. It is not needed for the main result. Readers may choose to skip it.

Lemma 4.7. H is not a rank 3 hypergraph.

Proof. Since H is of rank 3, all hyperedge vertices in B are of degree at most 3. The use of the
rank 3 assumption is the following simple observation, which allows us to relate the hyperedge-
connectivity of H to edge-connectivity of B .
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Proposition 4.8. S is 2k-hyperedge-connected in H if and only if S is 2k-edge-connected in B .

Proof. Consider a, b ∈ S. If there are 2k hyperedge-disjoint paths from a to b in H, then clearly
there are 2k edge-disjoint paths from a to b in B . Suppose there are 2k edge-disjoint paths from
a to b in B . Since each hyperedge vertex z ∈ E ′ is of degree at most 3, no two edge-disjoint
paths in B share a hyperedge vertex. Hence there are 2k hyperedge-disjoint paths from a to b

in H. �
We remark that Proposition 4.8 does not hold for hypergraphs of rank greater than 3. With

Proposition 4.8, we can apply Mader’s splitting off theorem to prove the following:

Lemma 4.9. Steiner vertices of H are of degree at most 3.

Proof. If a Steiner vertex v is not of degree 3 in H, then it is not of degree 3 in B . So we
can apply Mader’s splitting-off theorem (Theorem 2.3) to find a suitable splitting at v in B . Let
e1 = s1v and e2 = vs2 be the pair of edges that we split-off, and e = s1s2 be the new edge. By
Corollary 4.6, s1 and s2 are terminal vertices. We add a new Steiner vertex ve to V (B) and re-
place the edge s1s2 by two new edges ves1 and ves2. Since B is bipartite, the resulting graph,
denoted by B ′, is bipartite. Notice that B ′ corresponds to a hypergraph H ′ with V (H ′) = V (H)

and E(H ′) = E(H) − {e1, e2} + {e}. S remains k-edge-connected in B ′, so by Proposition 4.8,
S is k-hyperedge-connected in H ′. By the minimality of H, there is a Steiner rooted k-hyperarc-
connected orientation of H ′. Suppose s1s2 in H ′ is oriented as −−→s1s2 in H ′, then we orient vs1
and vs2 as −−→s1v and −−→vs2 in H. All other hyperedges in H have the same orientations as the
corresponding hyperedges in H ′. It is easy to see that this orientation is a Steiner rooted k-
hyperarc-connected orientation of H, and also the extension property holds, a contradiction. �

Now we are ready to finish the proof of Lemma 4.7. Construct B ′ = B − s, where we remove
all edges in B which are incident with s. We shall use Theorem 3.4 to prove that there is a Steiner
rooted k-arc-connected orientation of B ′. Since S is 2k-edge-connected in B , for any partition
P = {P1, . . . ,Pt } of V (B ′) such that each Pi contains a terminal vertex, we have

∑t
i=1 dB ′(Pi) =∑t

i=1 dB(Pi) − dB(s) � 2kt − 2k = 2k(t − 1). So there are at least k(t − 1) edges crossing P
in B ′.

By Theorem 3.4, there is a Steiner rooted k-edge-connected orientation D′ of B ′ with the
additional property that each Steiner vertex has indegree exactly 1. By orienting the edges in
δB(s) to have s as the head, we obtain an orientation D of B . Note that each Steiner vertex still
has indegree exactly 1, and so D corresponds to a hypergraph orientation of H. Also, by this
construction, property (i) of Definition 4.1 is satisfied.

Consider an arbitrary Y for which Y ∩ S = ∅. Since every vertex y in Y is of degree at most 3
by Lemma 4.9, y can have at most one outgoing arc to s; otherwise dH({s, y}) < 2k which
contradicts our connectivity assumption since dH(s) = 2k (recall that dH(s) = 2k as s is the
sink). Since Y induces an independent set by Corollary 4.6 and each vertex in Y has indegree
exactly 1, each y ∈ Y has an incoming arc from outside Y . Notice that those incoming arcs are of
size 2 by Corollary 4.5, So we have d in

D(Y ; s) � −→
d (Y, s). This implies that D satisfies property

(ii) of Definition 4.1 as well.
Finally we verify that D is a Steiner rooted k-hyperedge-connected orientation. Consider a

subset X ⊆ V (H) which contains a terminal but not the root. If X contains a terminal other
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than s, then clearly d in
D(X) � k by the orientation on H − s. So suppose X ∩ S = s. As ar-

gued above, since each Steiner vertex v is of degree 3, v has at most one outgoing arc to s. As
each Steiner vertex is of indegree 1 and there is no edge between two Steiner vertices, we have
d in
D(X) � d in

D(s) = 2k as s is the sink. This shows that D is a Steiner rooted k-hyperarc-connected
orientation that extends s, which contradicts the assumption that H is a counterexample. �
4.3. Applying degree-specified Steiner orientation

For the proof of Theorem 4.2 for the case of rank 3 hypergraphs, a crucial step is to apply
Mader’s splitting-off lemma to the bipartite representation B of H to obtain Lemma 4.9. In
general hypergraphs, however, a suitable splitting at a Steiner vertex which preserves the edge-
connectivity of S in B might not preserve the hyperedge-connectivity of S in H. And there is no
analogous edge splitting-off result which preserves hyperedge-connectivity.

Our key observation is that, if we were able to apply Mader’s lemma as in the proof of
Lemma 4.7, then every Steiner vertex would end up with indegree �d(v)/2� in the resulting
orientation of B . So, we apply the DEGREE-SPECIFIED STEINER ROOTED-ORIENTATION prob-
lem by “hardwiring” m(v) = �d(v)/2� for the Steiner vertices. Also, we “hardwire” the indegree
of the sink to be 2k for the extension property. (In the example of Fig. 2, the indegrees of the
Steiner vertices are specified to be 3, 2, 1 from left to right; the sink becomes a non-terminal
vertex with specified indegree 2k.) Quite surprisingly, such an orientation always exists when S

is 2k-hyperedge connected in H. The following theorem is the final (and most technical) step to
the proof of Theorem 4.2, which shows that a minimal counterexample of Theorem 4.2 does not
exist.

Theorem 4.10. Suppose that S is 2k-hyperedge-connected in H = (V , E ), there is no edge be-
tween two Steiner vertices, and no hyperedge of size at least 3 contains a Steiner vertex. Let
s0 ∈ S be a vertex of degree 2k. Then H has a Steiner rooted k-hyperarc-connected orientation
that extends s0.

Proof. We will use the theorem on the DEGREE-SPECIFIED STEINER ROOTED-ORIENTATION

problem of graphs (Theorem 3.2). To get an instance of that problem, we consider the bipartite
representation B = (V ′,E′) of H that was defined in Section 4.1 (i.e. we replace each hyper-
edge in E ′ by a hyperedge vertex). Let the set of terminals in B be S′ := S − s0. The indegree
specification m′ : V ′ − S′ → Z

+ is defined by

m′(v) :=

⎧⎪⎨
⎪⎩

�dH (v)/2� if v is a Steiner vertex,

1 if v is a hyperedge vertex,

2k if v = s0 is the sink.

By Theorem 3.2, this graph has a Steiner rooted k-arc-connected orientation with the specified
indegrees if and only if the following conditions hold:

i(Z) � m′(Z) for every Z ⊆ V ′ − S′, (4)∑
X∈F

(
h(X) + max

Y⊆V ′−S′
(
i(X ∪ Y) − m′(Y )

))
� |E′| − m′(V ′ − S′) (5)

for every partition F of S′, where h : S′ → Z
+ is defined by

h(X) :=
{

k if ∅ 
= X ⊆ S′ − r,

0 otherwise.
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It is easy to see that condition (4) is always satisfied, since the only edges spanned by V ′ − S′
are those incident to s0, and dB(s0) = 2k = m′(s0).

Proposition 4.11. Condition (5) is satisfied if

∑
e∈E

(∣∣{X ∈ F : e ∩ X 
= ∅}∣∣ − 1
) +

∑
v /∈⋃ F +s0

⌈
dH (v)

2

⌉
� k

(|F | − 1
)

(6)

for every subpartition F of V for which S ∩ X 
= ∅ for every X ∈ F , and S ∩ (
⋃

F ) = S − s0.

Proof. Suppose that there is a partition F of S′ where (5) does not hold. By the definition of h,

k
(|F | − 1

) +
∑
X∈F

max
Y⊆V ′−S′

(
i(X ∪ Y) − m′(Y )

)
> |E′| − m′(V ′ − S′). (7)

For a given X ∈ F we can determine the set Y where the maximum is attained. We can assume
that s0 is not in Y , since its inclusion would increase m′(Y ) by 2k, and i(X ∪ Y) can increase by
at most 2k.

We can assume that Y contains all the hyperedge vertices corresponding to hyperedges that are
not disjoint from X. The inclusion of such a vertex increases m′(Y ) by 1, and increases i(X ∪Y)

by at least 1. By a similar argument, we may assume that Y does not contain hyperedge vertices
corresponding to hyperedges that are disjoint from X, since the inclusion of such a vertex would
not increase i(X ∪ Y).

Finally, if we take into account the above observations, the inclusion in Y of a Steiner vertex
v increases m′(Y ) by �dH (v)/2�, and increases i(X ∪ Y) by |{e ∈ E : v ∈ e ⊆ X + v}|. Therefore
we may assume that a Steiner vertex v is included in Y if and only if |{e ∈ E : v ∈ e ⊆ X + v}| >
�dH (v)/2�.

For a given X, we determined a set Y ⊆ V ′ − S′ where the maximum in (7) is attained. Let
X∗ := X ∪ (Y ∩ (V − S)). If X1 ⊆ S − s0 and X2 ⊆ S − s0 are disjoint sets, then X∗

1 and X∗
2

are also disjoint, since a node in V − S cannot have more than half of its neighbors in both X1
and X2. So if F is a partition of S − s0, then F ∗ := {X∗: X ∈ F } is a subpartition of V for which
S ∩ X∗ 
= ∅ for every X ∈ F ∗, and S ∩ (

⋃
F ∗) = S − s0.

Since (7) holds for F , the following holds for F ∗:

k
(|F ∗| − 1

) = k
(|F | − 1

)
> |E′| − m′(V ′ − S′) −

∑
X∈F

max
Y⊆V ′−S′

(
i(X ∪ Y) − m′(Y )

)
.

Here

|E′| = |E | +
∑
e∈E ′

(|e| − 1
)
,

m′(V ′ − S′) = |E ′| + 2k +
∑

v∈V −S

⌊
dH (v)

2

⌋
,

max
Y⊆V ′−S′

(
i(X ∪ Y) − m′(Y )

) =
∑
e∈E

max
{
0, |e ∩ X∗| − 1

} −
∑

v∈X∗∩(V −S)

⌊
dH (v)

2

⌋
.

Using these identities, and the fact that dH (s0) = 2k, we get the following inequalities:
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k
(|F ∗| − 1

)

> |E | +
∑
e∈E ′

(|e| − 2
) −

∑
e∈E

∑
X∗∈F ∗

max
{
0, |e ∩ X∗| − 1

} − 2k −
∑

v /∈⋃ F ∗+s0

⌊
dH (v)

2

⌋

=
∑
e∈E

(
|e| − 1 −

∑
X∗∈F ∗

max
{
0, |e ∩ X∗| − 1

}) − 2k −
∑

v /∈⋃ F ∗+s0

⌊
dH (v)

2

⌋

=
∑
e∈E

(∣∣∣e ∩
(
V −

⋃
F ∗)∣∣∣ + ∣∣{X∗ ∈ F ∗: e ∩ X∗ 
= ∅}∣∣ − 1

)
− 2k

−
∑

v /∈⋃ F ∗+s0

⌊
dH (v)

2

⌋

=
∑
e∈E

(∣∣∣e ∩
(
V −

(⋃
F ∗ + s0

))∣∣∣ + ∣∣{X∗ ∈ F ∗: e ∩ X∗ 
= ∅}∣∣ − 1
)

−
∑

v /∈⋃ F ∗+s0

⌊
dH (v)

2

⌋

=
∑
e∈E

(∣∣{X∗ ∈ F ∗: e ∩ X∗ 
= ∅}∣∣ − 1
) +

∑
v /∈⋃ F ∗+s0

⌈
dH (v)

2

⌉
.

But this means that property (6) does not hold for the subpartition F ∗. �
Notice that Proposition 4.11 is formulated in terms of the original hypergraph H . We will

prove that the bipartite representation B of H has the desired degree-specified orientation by
showing that the conditions in Proposition 4.11 are satisfied if S is 2k-hyperedge-connected in
H .

Let F be a subpartition of V for which S ∩ X 
= ∅ for every X ∈ F , and S ∩ (
⋃

F ) = S − s0.
Let E1 denote the set of hyperedges of H which enter exactly 1 member of F , and let E2 denote
the set of hyperedges of H which enter at least 2 members of F . Let dE1(X) := d(X) ∩ E1 and
dE2(X) := d(X)∩ E2. Let U := V − (

⋃
F + s0). Then the only hyperedges that are disjoint from

every member of F are the edges between U and s0, so

∑
e∈E

(∣∣{X ∈ F : e ∩ X 
= ∅}∣∣ − 1
) +

∑
v /∈⋃ F +s0

⌈
dH (v)

2

⌉

�
∑
X∈F

dE2(X)

2
− dH (U, s0) +

∑
v∈U

dH (v)

2

=
∑
X∈F

dE2(X)

2
+ dH (U,S − s0)

2
− dH (U, s0)

2
. (8)

Here

dH (U,S − s0) =
∑
X∈F

dE1(X) − ∣∣{e ∈ E1: e ∩ U = ∅}∣∣ =
∑
X∈F

dE1(X) − dH (V − U, s0),

and so

dH (U,S − s0) − dH (U, s0) =
∑

dE1(X) − dH (s0) =
∑

dE1(X) − 2k.
X∈F X∈F



1248 T. Király, L.C. Lau / Journal of Combinatorial Theory, Series B 98 (2008) 1233–1252
Using this identity in inequality (8) we get that

∑
e∈E

(∣∣{X ∈ F : e ∩ X 
= ∅}∣∣ − 1
) +

∑
v /∈⋃ F +s0

⌈
dH (v)

2

⌉

�
∑
X∈F

(
dE2(X) + dE1(X)

2

)
− k � k

(|F | − 1
)
,

where the last inequality holds because dE2(X) + dE1(X) � 2k for every X ∈ F as S is 2k-
hyperedge-connected in H .

We proved that the conditions of type (6) in Proposition 4.11 are satisfied. Therefore, we
have the desired degree-specified orientation of the bipartite representation B of H . Since every
hyperedge vertex has indegree 1 in B , this orientation corresponds to a Steiner rooted k-hyperarc-
connected orientation of H . It remains to check that this orientation extends s0. The first property
of the extension property (Definition 4.1) follows immediately from our construction, since the
indegree of s0 is 2k. To check the second property of the extension property, we consider an
arbitrary Y ⊂ V (H) for which Y ∩ S = ∅. Since s0 is of degree 2k and S is 2k-hyperedge-
connected in H , each vertex v ∈ Y has at most �d(v)/2� edges to s0. Recall that the indegree
of v in the orientation is �d(v)/2�. Since there are no edges between two Steiner vertices, all
the incoming arcs of v come from V (H) − Y . Notice that these incoming arcs are of size 2 by
Corollary 4.5, and so do not intersect s0. Hence, d in(Y ; s0) � −→

d (Y, s0), as required. �
Since a minimal counterexample H must satisfy the condition of Theorem 4.10, Theorem 4.10

proves that H does not exist. So Theorem 4.2 (and hence Theorem 1.1) is proven. We remark that
in the proof of Theorem 4.10, the indegree specifications on the Steiner vertices have two uses.
The major use is to apply Theorem 3.2 to establish the connectivity upper bound, which consists
of the bulk of the proof. The other use is that it is crucial in proving the extension property
(Definition 4.1).

5. Proof of Theorem 1.2

In this section we show another application of the DEGREE-SPECIFIED STEINER ORI-
ENTATION problem. We consider the ELEMENT-DISJOINT STEINER ROOTED-ORIENTATION

problem where our goal is to find an orientation D of G that maximizes the Steiner rooted-
element-connectivity. The proof of Theorem 1.2 consists of two steps. The first step is to reduce
the problem from general graphs to the graphs with no edges between Steiner vertices. This tech-
nique was used in [4,15] so we omit the proof here. The second step is to reduce the problem in
this special instance into the DEGREE-SPECIFIED STEINER ROOTED-ORIENTATION problem.
The idea is that if we specify the indegree of each Steiner vertex to be 1, then a Steiner rooted k-
arc-connected orientation is a Steiner rooted k-element-connected orientation, since each Steiner
vertex cannot be in two edge-disjoint paths. It turns out that such a degree-specified orientation
always exists when S is 2k-element-connected in G.

We remark that the property that every Steiner vertex is of indegree 1 in the orientation will
be used twice—once in Lemma 5.2 to establish the connectivity upper bound, and once in the
following lemma for the reduction. In the following lemma conditions (1)–(3) have been proved
in [4,15]: the construction involves the deletion or contraction of edges between Steiner vertices.
It is easy to check that the property in (4) can be maintained during the inverse operations of
deletion and contraction.
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Lemma 5.1. (See also [4,15].) Given an undirected graph G and a set S of terminal vertices.
Suppose S is k-element-connected in G. Then we can construct in polynomial time a graph G′
with the following properties:

(1) S ⊆ V ′;
(2) there is no edge between Steiner vertices in G′;
(3) S is k-element-connected in G′;
(4) if there is a Steiner rooted k′-element-connected orientation in G′ with the indegrees of the

Steiner vertices being 1, then there is a Steiner rooted k′-element-connected orientation in G.

The following lemma can be shown to be a special case of Theorem 4.10.

Lemma 5.2. Given an undirected graph G = (V ,E) and a set S of terminal vertices. If S is
2k-element-connected in G and there are no edges between vertices in V (G) − S, then G has a
Steiner rooted k-element-connected orientation with the indegrees of the Steiner vertices being 1.

Proof. We construct a hypergraph H as follows. The vertex set of H is S. For each vertex
v ∈ V (G) − S, we add a hyperedge NG(v) to H . Note that since there are no edges between two
vertices in V (G)−S, NG(v) ⊆ S and so is well defined. Also, we keep all the edges in G between
two vertices in S. Since S is 2k-element-connected in G, S is 2k-hyperedge-connected in H .
Theorem 4.10 implies that H (which has no Steiner vertices) has a Steiner rooted k-hyperarc-
connected orientation. This corresponds to a Steiner rooted k-element-connected orientation with
the indegrees of the Steiner vertices being 1. �

Theorem 1.2 follows immediately from Lemmas 5.2 and 5.1.

6. Hardness results

Nash-Williams’ orientation theorem implies that the maximum k for which a graph has a
Steiner strongly k-arc-connected orientation can be found in polynomial time. By the theorem,
this is equivalent to finding the maximum k for which the graph is Steiner 2k-edge-connected,
and this can be done using O(n) flow computations. Moreover, the algorithmic proof of Nash-
Williams’ theorem provides an algorithm for finding such an orientation. Usually the rooted
counterparts of graph connectivity problems are easier to solve. For example, finding a minimum
cost k-arc-connected subgraph of a directed graph is NP-hard, while a minimum cost rooted k-
arc-connected subgraph can be found in polynomial time [12]. It is a very rare phenomenon that
the rooted version of a connectivity problem is more difficult than the non-rooted one. In this
light, the following result is somewhat surprising.

Theorem 6.1. Given a graph G, a set of terminals S, and a root vertex r ∈ S, it is NP-complete
to determine if G has a Steiner rooted k-arc-connected orientation.

Proof. First we introduce the NP-complete problem to be reduced to the STEINER ROOTED-
ORIENTATION problem. Let G = (V ,E) be a graph, and R : V × V → Z+ a demand function
for which R(v, v) = 0 for every v ∈ V . An R-orientation of G is an orientation where for every
pair u,v ∈ V there are at least R(u, v) edge-disjoint paths from u to v.
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Theorem 6.2. (See [13].) The problem of finding an R-orientation of a graph is NP-complete,
even if R has maximum value 3.

In the following we show that the R-orientation problem can be reduced to the Steiner rooted
orientation problem, thus the latter is NP-complete. Let (G = (V ,E),R) be an instance of the
R-orientation problem. We define a graph G′ = (V ′,E′) such that G is an induced subgraph
of G′. In addition to the vertices of V , V ′ contains the root r , and vertices bu,v for every ordered
pair (u, v) ∈ V × V , u 
= v. In addition to the edges of E, E′ contains the following 4 types of
edges:

1.
∑

v∈V R(u, v) edges from r to u for every u ∈ V ,
2. R(u, v) edges from v to bu,v for every pair u,v,
3.

∑
w∈V −v R(u,w) edges from u to bu,v for every pair u,v,

4.
∑

w∈V R(x,w) edges from x to bu,v for every triple x,u, v of distinct nodes.

Let

S := {bu,v: u,v ∈ V, u 
= v},
k :=

∑
u,v∈V

R(u, v).

We set the vertices in S to be the terminal vertices, and all other vertices the Steiner vertices.

Lemma 6.3. The graph G′ has a Steiner rooted k-edge-connected orientation if and only if G

has an R-orientation.

Proof. Let D′ be a Steiner rooted k-edge-connected orientation of G′. Since the degree of r is k

in G′, each edge of type 1 must be oriented away from r . Since the degree of every node in S is
k in G, each edge of types 2, 3, or 4 must be oriented towards S.

Let (u, v) ∈ V × V be a fixed pair. Since D′ is a Steiner rooted k-edge-connected orientation,
there are k edge-disjoint paths from r to bu,v . Of these paths, k − R(u, v) are necessarily com-
posed of an edge of type 1 and an edge of type 3 or 4. The remaining R(u, v) paths necessarily
start with the edge ru, and end with the edge vbu,v . Thus, in order to “complete” these paths,
there must be R(u, v) edge-disjoint paths from u to v in D′[V ]. The above argument applied to
all pairs (u, v) ∈ V × V shows that D′[V ] is an R-orientation of G. To prove the other direction
of the claim, let D be an R-orientation of G. We define an orientation D′ of G′ by orienting
the edges in E according to D, and orienting the other edges as described earlier in this proof.
It is easy to see that the obtained digraph D′ is a Steiner rooted k-edge-connected orientation
of G′. �

Since R has maximum value 3, the size of G′ is polynomial in the size of G. Thus the
construction is polynomial and this proves that the Steiner rooted orientation problem is NP-
complete. �

The question remains whether the Steiner rooted k-edge-connected orientation problem is
polynomially solvable for fixed k. We do not even know whether it is solvable for k = 2 (for
k = 1 it is easy).
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For element-connectivity, can we show that the STEINER ROOTED-ORIENTATION problem
is NP-complete. The proof is described in [19].

Theorem 6.4. Given a graph G, a set of terminals S, and a root vertex r ∈ S, it is NP-complete
to determine if G has a Steiner rooted k-element-connected orientation.

One can consider minimum cost versions of the orientation problems discussed in this section.
For each edge, the two different orientations have separate costs, and the cost of an orientation of
the graph is the sum of the costs of the oriented edges. It turns out that in both the edge-disjoint
and the element-disjoint cases the minimum cost problem is more difficult to approximate than
the basic problem. Even for k = 1, when the edge-disjoint and element-disjoint problems coin-
cide, we can obtain the following result:

Theorem 6.5. The MINIMUM COST STEINER ROOTED-ORIENTATION problem (even for k = 1)
is hard to approximate within a factor of c log(n) for some constant c unless P = NP.

The proof, which is described in detail in [19], consists of the reducing the SET COVER

problem (which is hard to approximate within a factor of c log(n) for some constant c [1,6]) to
the MINIMUM COST STEINER ROOTED-ORIENTATION problem, such that the number of sets
in the cover corresponds to the cost of the orientation.

7. Concluding remarks

The questions of generalizing Nash-Williams’ theorem to hypergraphs and obtaining graph
orientations achieving high vertex-connectivity remain wide open. We believe that substantially
new ideas are required to solve these problems. The following problem seems to be a concrete
intermediate problem which captures the main difficulty: If S is 2k-element-connected in an
undirected graph G, is it true that G has a Steiner strongly k-element-connected orientation? We
believe that settling it would be a major step towards the above questions.
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