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Abstract

Given an undirected hypergraph and a subset of vertices
S C V with a specified root vertex v € S, the STEINER
ROOTED-ORIENTATION problem is to find an orientation
of all the hyperedges so that in the resulting directed hyper-
graph the “connectivity” from the root r to the vertices in S
is maximized. This is motivated by a multicasting problem
in undirected networks as well as a generalization of some
classical problems in graph theory. The main results of this
paper are the following approximate min-max relations:

e Given an undirected hypergraph H, if S is 2k-
hyperedge-connected in H, then H has a Steiner
rooted k-hyperarc-connected orientation.

e Given an undirected graph G, if S is 2k-element-
connected in G, then G has a Steiner rooted k-
element-connected orientation.

Both results are tight in terms of the connectivity bounds.
These also give polynomial time constant factor approxima-
tion algorithms for both problems. The proofs are based on
submodular techniques, and a graph decomposition tech-
nique used in the STEINER TREE PACKING problem. Some
complementary hardness results are presented at the end.

1 Introduction

Let H = (V,&) be an undirected hypergraph. An ori-
entation of H is obtained by assigning a direction to each
hyperedge in H. In our setting, a hyperarc (a directed hy-
peredge) is a hyperedge with a designated fail vertex and
other vertices as head vertices. Given a set S C V of ter-
minal vertices (the vertices in V' — S are called the Steiner
vertices) and a root vertex r € S, we say a directed hyper-
graph is Steiner rooted k-hyperarc-connected if there are k
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hyperarc-disjoint paths from the root vertex r to each ter-
minal vertex in S. Here, a path in a directed hypergraph
is an alternating sequence of distinct vertices and hyperarcs
{vo, ao, v1, a1, ..., ak—1, vk} so that v; is the tail of a;
and v;41 is a head of a; for all 0 < ¢ < k. The STEINER
ROOTED-ORIENTATION problem is to find an orientation of
H so that the resulting directed hypergraph is Steiner rooted
k-hyperarc-connected, and our objective is to maximize k.

When the STEINER ROOTED-ORIENTATION problem
specializes to graphs, it is a common generalization of some
classical problems in graph theory. When there are only
two terminals (S = {r,v}), it is the edge-disjoint paths
problem solved by Menger. When all vertices in the graph
are terminals (S = V), it can be shown to be equiva-
lent to the edge-disjoint spanning trees problem solved by
Tutte [32] and Nash-Williams [31]. An alternative com-
mon generalization of the above problems is the STEINER
TREE PACKING problem studied in [21, 18, 22]. Notice
that if a graph G has k edge-disjoint Steiner trees (i.e. trees
that connect the terminal vertices S), then GG has a Steiner
rooted k arc-connected orientation. The converse, however,
is not true. As we shall see, significantly sharper approxi-
mate min-max relations and also approximation ratio can be
achieved for the STEINER ROOTED-ORIENTATION prob-
lem, especially when we consider hyperarc-connectivity
and element-connectivity. This has implications in the net-
work multicasting problem, which will be discussed later.

Given a hypergraph H, we say S is k-hyperedge-
connected in H if there are k hyperedge-disjoint paths be-
tween every pair of vertices in .S. It is not difficult to see that
for a hypergraph H to have a Steiner rooted k-hyperarc-
connected orientation, S must be at least k-hyperedge-
connected in H. The main focus of this paper is to deter-
mine the smallest constant ¢ so that the following holds: If
S is ck-hyperedge-connected in H, then H has a Steiner
rooted k-hyperarc-connected orientation.

Previous Work: Graph orientations is a well-studied sub-
ject in the literature, and there are many ways to look at
such questions (see [2]). Here we focus on graph orien-
tations achieving high connectivity. A directed graph is



strongly k-arc-connected if there are k arc-disjoint paths be-
tween every ordered pair of vertices. The starting point of
this line of research is a theorem by Robbins which says
that an undirected graph G has a strongly 1-arc-connected
orientation if and only if G is 2-edge-connected. In the
following A(z,y) denotes the maximum number of edge-
disjoint paths from x to y, which is called the local-edge-
connectivity from x to y. Nash-Williams [30] proved the
following deep generalization of Robbins’ theorem which
achieves optimal local-arc-connectivity for all pairs of ver-
tices: “Every undirected graph G has an orientation D so
that Ap (z,y) > [Aa(z,y)/2] forall z,y € V.

Nash-Williams’ original proof is quite complicated, and
until now this is the only known orientation result achieving
high local-arc-connectivity. Subsequently, Frank, in a series
of works [9, 10, 12, 14], developed a general framework
to solve graph orientation problems achieving high global-
arc-connectivity by using the submodular flow problem in-
troduced by Edmonds and Giles [6]. With this powerful
tool, Frank greatly extended the range of orientation prob-
lems that can be solved concerning global-arc-connectivity.
Some examples include finding a strongly k-arc-connected
orientation with minimum weight [10], with in-degree con-
straints [9] and in mixed graphs [12]. Recently, this frame-
work has been generalized to solve hypergraph orientation
problems achieving high global-hyperarc-connectivity [15].

Extending graph orientation results to local hyperarc-
connectivity or to vertex-connectivity is more challeng-
ing. For the STEINER ROOTED-ORIENTATION problem,
the only known result follows from Nash-Williams’ orien-
tation theorem: if .S is 2k-edge-connected in an undirected
graph G, then G has a Steiner rooted k-arc-connected orien-
tation. For hypergraphs, there is no known orientation result
concerning Steiner rooted-hyperarc-connectivity. A closely
related problem of characterizing hypergraphs that have a
Steiner strongly k-hyperarc-connected orientation is posted
as an open problem in [8] (and more generally an ana-
log of Nash-Williams’ orientation theorem in hypergraphs).
For orientation results concerning vertex-connectivity, very
little is known even for global rooted-vertex-connectivity
(when there are no Steiner vertices). Frank [13] made a con-
jecture on a necessary and sufficient condition for the exis-
tence of a strongly k-vertex-connected orientation, which
in particular would imply that a 2k-vertex-connected graph
has a strongly k-vertex-connected orientation (and hence a
rooted k-vertex-connected orientation). The only positive
result along this line is a sufficient condition due to Jordan
[20] for the case k = 2: Every 18-vertex-connected graph
has a strongly 2-vertex-connected orientation.

Results: The main result of this paper is the following ap-
proximate min-max theorem on hypergraphs, which is tight
in terms of the connectivity bound. This gives a positive
answer to the rooted version of the question in [8].

Theorem 1.1 Suppose H is an undirected hypergraph, S
is a subset of terminal vertices with a specified root vertex
r € S. Then H has a Steiner rooted k-hyperarc-connected
orientation if S is 2k-hyperedge-connectedin H.

The proof is constructive, and also implies a polynomial
time constant factor approximation algorithm for the prob-
lem. When the above theorem specializes to graphs, this
gives a new and simpler algorithm (without using Nash-
Williams’ orientation theorem) to find a Steiner rooted k-
arc-connected orientation in a graph when S is 2k-edge-
connected in GG. On the other hand, we prove that find-
ing an orientation which maximizes the Steiner rooted-arc-
connectivity in a graph is NP-complete (Theorem 6.1).

Following the notation on approximation algorithms on
graph connectivity problems, by an element we mean ei-
ther an edge or a Steiner vertex. For graph connectiv-
ity problems, element-connectivity is regarded as of inter-
mediate difficulty between vertex-connectivity and edge-
connectivity (see [19, 7]). A directed graph is Steiner
rooted k-element-connected if there are k element-disjoint
directed paths from 7 to each terminal vertex in .S. We prove
the following approximate min-max theorem on element-
connectivity, which is tight in terms of the connectivity
bound. We also prove the NP-completeness of this prob-
lem (Theorem 6.2).

Theorem 1.2 Suppose G is an undirected graph, S is a
subset of terminal vertices with a specified root vertex r €
S. Then G has a Steiner rooted k-element-connected orien-
tation if S is 2k-element-connected in G.

Techniques: Since Nash-Williams’ orientation theorem,
little progress has been made on orientation problems con-
cerning local-arc-connectivity, local-hyperarc-connectivity
or vertex-connectivity. The difficulty is largely due to a lack
of techniques to work with these more sophisticated con-
nectivity notions. The main technical contribution of this
paper is a new method to use the submodular flow problem.
A key ingredient in the proof of Theorem 1.1 is the use of
an “extension property” (see [22, 23]) to help decompose
a general hypergraph into hypergraphs with substantially
simpler structures. Then, in those simpler hypergraphs,
we apply the submodular flows technique in a very effec-
tive way to solve the problem (and also prove the extension
property). An important building block of our approach is
the following class of polynomial time solvable graph ori-
entation problems, which we call the DEGREE-SPECIFIED
STEINER ROOTED-ORIENTATION problem.

Theorem 1.3 Suppose G is an undirected graph, S is a
subset of terminal vertices with a specified root vertex r €
S, and m is an in-degree specification on the Steiner ver-
tices (i.e. m : (V(G) — S) — Z7T). Then deciding whether
G has a Steiner rooted k-arc-connected orientation with the
specified in-degrees can be solved in polynomial time.



Perhaps Theorem 1.3 does not seem to be very useful
at first sight, but it turns out to be surprisingly powerful in
some situations when we have a rough idea on what the
indegrees of Steiner vertices should be like. To prove Theo-
rem 1.3, we shall reduce this problem to a submodular flow
problem from which we can also derive a sufficient and nec-
essary condition for the existence of a Steiner rooted k-arc-
connected orientation. This provides us with a crucial tool
in establishing the approximate min-max relations.

Interestingly, the proof of Theorem 1.2 is also
based on the DEGREE-SPECIFIED STEINER ROOTED-
ORIENTATION problem (Theorem 1.3) which is designed
for edge-connectivity problems. For a similar step in the
hypergraph orientation problem, we shall use a technique in
[4] to obtain a graph with simpler structures.

The Network Multicasting Problem: The STEINER
ROOTED-ORIENTATION problem is motivated by the mul-
ticasting problem in computer networks, where the root
vertex (the sender) must transmit all its data to the termi-
nal vertices (the receivers) and the goal is to maximize the
transmission rate that can be achieved simultaneously for
all receivers. The connection is through a beautiful min-
max theorem by Ahlswede et. al. [1]: “Given a directed
multigraph with unit capacity on each arc, if there are k
arc-disjoint paths from the root vertex to each terminal ver-
tex, then the root vertex can transmit k units of data to
all terminal vertices simultaneously”. They prove the the-
orem by introducing the innovative idea of network cod-
ing [1], which has generated much interest from informa-
tion theory to computer science. These studies focus on
directed networks, for example the Internet, where the di-
rection of data movement on each link is fixed a priori.
On the other hand, there are practical networks which are
undirected, i.e. data can be sent in either direction along a
link. By using the theorem by Ahlswede et. al., comput-
ing the maximum multicasting rate in undirected networks
(with network coding supported) reduces to the STEINER
ROOTED-ORIENTATION problem. This has been studied in
the graph model [25, 26] and efficient (approximation) algo-
rithms have been proposed. An important example of undi-
rected networks is wireless networks (equipped with omni-
directional antennas), for which many papers have studied
the advantages of incorporating network coding (see [28]
and the references therein). However, there are some as-
pects of wireless communications that are not captured by
a graph model. One distinction is that wireless commu-
nications in such networks are inherently one-to-many in-
stead of one-to-one. This motivates researchers to use the
directed hypergraph model (see [5, 28]) to study the mul-
ticasting problem in wireless networks. A simple reduc-
tion shows that the above theorem by Ahlswede el. al. ap-
plies to directed hypergraphs as well. Therefore, computing
the maximum multicasting rate in an undirected hypergraph

(with network coding supported) reduces to the STEINER
ROOTED-ORIENTATION problem of hypergraphs.

In the multicasting problem, the STEINER TREE PACK-
ING problem is used to transmit data when network cod-
ing is not supported. However, one cannot hope for analo-
gous results of Theorem 1.1 or Theorem 1.2 for the corre-
sponding STEINER TREE PACKING problems. In fact, both
the hyperedge-disjoint Steiner tree packing problem and the
element-disjoint Steiner tree packing problem are shown
to be NP-hard to approximate within a factor of Q(logn)
[4]. (It was also shown in [3] that no constant connectivity
bound implies the existence of two hyperedge-disjoint span-
ning sub-hypergraphs.) As a consequence, Theorem 1.1 in-
dicates that multicasting with network coding in the hyper-
graph model could be much more efficient in terms of the
throughput achieved (an Q(log n) gap in the worst case).

2 The Basics

Let H = (V,&) be an undirected hypergraph. Given
X C V,wesay ahyperedge e enters X if 0 < |eNX]| < |e].
We define 05 (X) to be the set of hyperedges that enter
X, and dy(X) := |0y (X)|. We also define F(X) to be
the number of induced hyperedges in X. In a directed hy-
pergraph H = (V, ?), a hyperarc a enters a set X if the
tail of a is not in X and some head of a is in X. We de-
fine 6%’ (X) to be the set of hyperarcs that enter X, and
d%” (X) = |6g’ (X)|. Similarly, a hyperarc a leaves a set
X if a enters V — X. We define 5;%“ (X) to be the set of
hyperarcs that leave X, and d%*(X) := [6%(X)].

Let V be a finite ground set. Two subsets X and Y
are intersecting if X —Y,Y — X, X NY are all non-
empty. X and Y are crossing if they are intersecting and
X UY # V. For a function m : V. — R we use the nota-
tion m(X) := > (m(x) : 2 € X). Let f : 2V — Rbea
function defined on the subsets of V. The set-function f is
called (intersecting, crossing) submodular if the following
inequality holds for any two (intersecting, crossing) subsets
XandY of V:

fXO)+fY) = f(XUY)+f(XnY). (D)

The set function f is called (intersecting, crossing) super-
modular if the reverse inequality of (1) holds for any two
(intersecting, crossing) subsets X and Y of V.

Submodular Flows and Graph Orientations: Now we in-
troduce the submodular flow problem. Let D = (V, A) be
a digraph, F be a crossing family of subsets of V' (if X,V
are two crossing sets in F, then X UY, X NY € F), and
b : F — Z be a crossing submodular function. Given such
D, F,b, a submodular flow is a function x : A — R satis-
fying:
™ (U) — 2°“*(U) < b(U) for each U € F.



Given two functions f : A - ZU {—oo}andg : A —
Z U {0}, a submodular flow is feasible with respect to f, g
if f(a) < z(a) < g(a) holds for all @ € A. The Edmonds-
Giles theorem [6] (roughly) says that the set of feasi-
ble submodular flows (with respect to given D, F, b, f, g)
has an integer optimal solution for any objective function
min{}_,c 4(p) ¢(a) - z(a)}. From the Edmonds-Giles the-
orem, Frank [11] derived a necessary and sufficient condi-
tion to have a feasible submodular flow if b is intersecting
submodular. From this characterization, using the same ap-
proach as in [12, 14], we can derive the following theorem
for finding an orientation covering an intersecting super-
modular function. Let h : 2¥ — Z be an integer valued
set-function with () = (V) = 0. We say an orientation
H covers h if d%’(X) > h(X)forall X C V.

Theorem 2.1 Let G = (V, E) be an undirected graph. Let
h : 2V — Z U {—00} be an intersecting supermodular
Sfunction with h(0) = h(V) = 0. Then there exists an ori-
entation D of G satisfying

dB(X) > h(X) forall X C V iff ep >y h(X;)

holds for every subpartition P = {X1, Xa,..., X} of V.
Here ep counts the number of edges which enter some
member of P.

Our original approach used Theorem 2.1 as the basis for
the results of Section 3 (see [24]), which works for arbi-
trary intersecting supermodular functions. For non-negative
intersecting supermodular functions (which include the
DEGREE-SPECIFIED STEINER ROOTED-ORIENTATION
problem), we can simplify the proofs by using the following
results.

Lemma 2.2 ([16]) Let G = (V,E) be an undirected
graph, v : V. — Z% an indegree specification, and h :
2V — Z% a non-negative function. Then G has an orienta-
tion D that covers h and d¥ (v) = x(v) for everyv € V if
and only if x(X) > E(X) + h(X) forevery X C V.

Theorem 2.3 (see [27]) Let h : 2V — Z7% be a non-
negative intersecting supermodular set function, and let [
be a non-negative integer. The polyhedron

B:={zeRY: o(X)>hX)for X CV,z(V)=1}
is non-empty if and only if the following conditions hold:

1. h(0) =0,
2. Y xer M(X) <1 for every partition F of V.

If B is non-empty, then it is a base polyhedron, so its vertices
are integral.

Mader’s Splitting-Off Theorem: Let GG be an undirected
graph. Splitting-off a pair of edges e = uv, f = vw means

that we replace e and f by a new edge uw (parallel edges
may arise). The resulting graph will be denoted by G*¢7.
The following theorem by Mader [29] proves to be very
useful in attacking edge-connectivity problems.

Theorem 2.4 Let G = (V, E) be a connected undirected
graph in which 0 < dg(s) # 3 and there is no cut-
edge incident with s. Then there exists a pair of edges
e = su, f = st so that A\g(x,y) = Ages (x,y) holds for
everyz,y €V —s.

3 Degree-Specified Steiner Orientations

In this section we consider the DEGREE-SPECIFIED
STEINER ORIENTATION problem, which will be the basic
tool for proving the main theorems. Note that we shall only
consider this problem in graphs. Given a graph G = (V, E),
a terminal set S C V(@) and a connectivity requirement
function h : 2% — Z, we say the connectivity require-
ment function h* : 2¥ — Z is the Steiner extension of h
if v*(X) = (X NS) forevery X C V. Suppose G, S, h
are given as above, and an indegree specification m(v) for
each Steiner vertex is given. The goal of the DEGREE-
SPECIFIED STEINER ORIENTATION problem is to find an
orientation D of G that covers the Steiner extension h* of
h, with an additional requirement that d% (v) = m(v) for
everyv € V(G) — S.

We show that the DEGREE-SPECIFIED STEINER ORI-
ENTATION problem can be solved in polynomial time if / is
a non-negative intersecting supermodular set function. No-
tice that A* is not an intersecting submodular function in
general, and therefore Theorem 2.3 (or Theorem 2.1) can-
not be directly applied. Nonetheless, we can reformulate
the problem so that we can use Theorem 2.3.

Since the indegrees of the vertices in V' — S are fixed,
we have to determine the indegrees of the vertices in S. By
Lemma 2.2, a vector z : S — Z* with 2(S) = |E| —
m(V — S) is the vector of indegrees of a degree-specified
Steiner orientation if and only if z(X) + m(Z) > h(X) +
E(XUZ)forevery X C Sand Z C V — S. Let us define
the following set function on S

h(X):= h(X)-i—ZIgl‘E/L}_(S(E(XUZ) —m(Z)) for X C 8.

It follows that there is a degree-specified Steiner orientation
such that x is the vector of indegrees of the vertices of S if
and only if 2(X) > h/(X) for every X C S and z(5) =
|E| — m(V = S).

Lemma 3.1 The set function h' is intersecting supermodu-
lar if h is intersecting supermodular.

Proof. Let X; C S and X5 C S be two intersecting sets.
There are sets Z; C V — S and Z; C V — S such that



WM(X1) = h(X1)+ E(X1UZ) —m(Zy) and A/ (X3) =
h(X2)+ E(X2UZ3) —m(Z2). By the properties of the set
functions involved, we have the following inequalities:

o h(X1)+ h(X2) < h(X1NXs)+ h(X1UXo).

e E(X1UZ1)+ E(XoUZy) <E(X1NXo)U(Z1N
ZQ)) + E((Xl @] XQ) @] (Zl @] ZQ))

] m(Zl) + m(Zg) = m(Z1 n ZQ) + m(Z1 U ZQ).

Thus
R(X1)+ W (X2)
= h(X1)+h(X2)+ E(X1UZ1)+ E(X2U Z7)
—m(Z1) — m(Z2)

< h(XiNXo)+ E(X1NX2)U(Z1NZy))
—m(Z1 n ZQ) + h(X1 @] XQ)
—|—E((X1 U XQ) U (Zl U ZQ)) - m(Z1 U ZQ)

< h/(XlﬁXg)—l—h/(XlUXg). |

Let us consider the following polyhedron:

B:={zxecR%: x(X)>h'(X)forevery X C S,
z(5) = [E[ —=m(V = 5).}

The integer vectors of this polyhedron correspond to in-
degree vectors of degree-specified Steiner orientations. By
Theorem 2.3, B is non-empty if and only if the following
two conditions hold:

1. K(@)=0
2. Y xer M(X) < |E| = m(V — S) for every partition
Fof S.

If B is non-empty, then it is a base polyhedron, so its ver-
tices are integral. As we have seen, such a vertex is the inde-
gree vector of a degree-specified Steiner orientation. Thus
the non-emptiness of B is equivalent to the existence of a
degree-specified orientation. Since a vertex of a base poly-
hedron given by an intersecting supermodular set function
can be found in polynomial time, we obtained the following
results:

Theorem 3.2 Let G = (V, E) be an undirected graph with
aterminal set S C V. Leth : 2° — 71 be a non-negative
intersecting supermodular set function and m : (V — S) —
7" be an indegree specification. Then G has an orientation
covering the Steiner extension h* of h with the specified
indegrees if and only if E(Z) < m(Z) forevery Z CV -8
and for every partition F of S

> (W(X)+ max (E(XUZ)-m(Z))) < |E|-m(V-5).

ZCV-8
XeF -
Theorem 3.3 If h is non-negative and intersecting super-
modular, then the DEGREE-SPECIFIED STEINER ORIEN-
TATION problem can be solved in polynomial time.

Steiner Rooted-Orientations of Graphs: In the following
we focus on the STEINER ROOTED ORIENTATION prob-
lem. First we derive Theorem 1.3 as a corollary of The-
orem 3.2. In contrast with Theorem 3.3, the STEINER
ROOTED ORIENTATION problem is NP-complete (Theo-
rem 6.1). That said, in general, finding an in-degree spec-
ification for the Steiner vertices to maximize the Steiner
rooted-edge-connectivity is hard.

Proof of Theorem 1.3: Let S be the set of terminal vertices
and r € S be the root vertex. Set h(X) := k for every
X C Swithr ¢ X, and h(X) := 0 otherwise. Then h is
an intersecting supermodular function on S. By Menger’s
theorem, an orientation is Steiner rooted k-arc-connected
if and only if it covers the Steiner extension of h. Thus,
by Theorem 3.2, the problem of finding a Steiner rooted-
orientation with the specified indegrees can be solved in
polynomial time. |

The following theorem can be derived from Theo-
rem 3.2, which will be used to prove a special case of The-
orem 1.1. This is one of the examples that the DEGREE-
SPECIFIED STEINER ORIENTATION problem is useful. The
key observation is that we can “hardwire” the indegrees of
the Steiner vertices to be 1.

Theorem 3.4 Let G = (V, E) be an undirected graph with
terminal set S C V(Q). If every Steiner vertex (vertices
in V(G) — S) is of degree at most 3 and there is no edge
between two Steiner vertices in G, then G has a Steiner
rooted k-edge-connected orientation if and only if

ep > k(t—1)
holds for every partition P = (V1,..., Vi) of V(G) such
that each V; contains a terminal vertex, where ep denotes

the number of crossing edges. In fact, there exists such an
orientation with every Steiner vertex of indegree 1.

4 Proof of Theorem 1.1

In this section, we present the proof of the main result
of this paper (Theorem 1.1). We shall consider a mini-
mal counterexample 7 of Theorem 4.2 with the minimum
number of edges and then the minimum number of vertices.
Note that Theorem 4.2 is a stronger version of Theorem 1.1
with an “extension property” introduced (Definition 4.1).
The extension property allows us to apply a graph decom-
position procedure to simplify the structures of H signifi-
cantly (Corollary 4.5, Corollary 4.6). With these structures,
we can construct a bipartite graph representation B of H.
Then, the DEGREE-SPECIFIED STEINER ROOTED ORIEN-
TATION problem can be applied in the bipartite graph B
to establish a tight approximate min-max relation (Theo-
rem 4.10). To better illustrate the proof idea, we also in-
clude a proof of Theorem 4.2 in the special case of rank 3
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Figure 1. An illustration of the proof of Lemma 4.4.

hypergraphs (Lemma 4.7), where every hyperedge is of size
at most 3.

We need some notation to state the extension property.
A hyperarc a is in §"(X;Y) if aenters X andanNY = .
If Y is an emptyset, then 5" (X;Y) is the same as 5" (X).
We use d™(X;Y) to denote |§*(X;Y)|. A hyperarc a is
in F(X, Y') if a leaves X and enters Y. We use 7(X, Y)
to denote |E(X ,Y)|. The following extension property is
at the heart of our approach.

Definition 4.1 Given H = (V,£), S C V and a vertex
s € S, a Steiner rooted-orientation D of H extends s if:

1. d%(s) = du(s);

2. dB(Y;3) > 7D(Y,s) for every Y C 'V for which
Yyns=4.

As mentioned previously, we shall prove the following
stronger theorem which immediately implies Theorem 1.1.

Theorem 4.2 Suppose H is an undirected hypergraph, S
is a subset of terminal vertices with a specified root vertex
r € S. Then H has a Steiner rooted k-hyperarc-connected
orientation if S is 2k-hyperedge-connected in H. In fact,
given any vertex s € S of degree 2k, H has a Steiner rooted
k-hyperarc-connected orientation that extends s. We call
the special vertex s the sink of H.

The next lemma shows that the choice of the root vertex
does not matter. The proof idea is that we can reverse the
directions of the arcs in the r, v-paths.

Lemma 4.3 Suppose there exists a Steiner rooted k-
hyperarc-connected orientation that extends s with r as
the root. Then there exists a Steiner rooted k-hyperarc-
connected orientation that extends s with v as the root for
everyv € S — s.

In the following we say a set X is tight if dp,(X) = 2k;
X is nontrivial if | X| > 2 and |V(H) — X| > 2. The
following is the key lemma where we use the graph decom-
position technique (see Figure 1 for an illustration).

Lemma 4.4 There is no nontrivial tight set in H.

Proof. Suppose there exists a nontrivial tight set U, i.e.
dy(U) = 2k, |U| > 2 and |[V(H) — U| > 2. Contract
V(H) — U of H to a single vertex v; and call the result-
ing hypergraph H;; similarly, contract U of H to a single
vertex vy and call the resulting hypergraph Hy. We as-
sume s € Hs,. See Figure 1 (b) for an illustration. So,
V(H1) = UUA{v}, V(H2) = (V(H) = U) U {va} and
there is an one-to-one correspondence between the hyper-
edges in dp, (v1) and the hyperedges in dg, (v2). To be
more precise, for a hyperedge e € £(H), it decomposes into
e1 = (eNV(Hy))U{v1}in Hy and ey = (eNV (Hz))U{v2}
in Hy and we refer them as the corresponding hyperedges
of e in H; and H» respectively.

Since U is non-trivial, both H; and H are smaller than
H. Weset S := (SNV (H;))Uvy and Sy = (SNV (Hz))U
v, and set the sink of H; to be v; and the sink of Hs to be
s. Clearly, Sy is 2k-hyperedge-connected in H; and S5 is
2k-hyperedge-connected in Hs. By the minimality of H,
H; has a Steiner rooted k-hyperarc-connected orientation
D, that extends s. By Lemma 4.3, we can choose the root
of Dy to be vy. Similarly, by the minimality of H, H; has
a Steiner rooted k-hyperarc-connected orientation D; that
extends v;. Let the root of D1 be r. See Figure 1 (c) for an
illustration.

We shall prove that the concatenation D of the two orien-
tations D1, Do gives a Steiner rooted k-hyperarc-connected
orientation of H that extends s. Notice for a hyperedge e
in 99, (U), its corresponding hyperedge e, in H is oriented
with v; as a head (by the extension property of D), and its
corresponding hyperedge es in H> is oriented so that vg is



the tail (as vq is the root of Ds). So, in D, the orientation
of e is well-defined and has its tail in H;. See Figure 1 (d)
for an illustration. Now we show that D is a Steiner rooted
k-hyperarc-connected orientation. By Menger’s theorem, it
suffices to show that d'5(X) > k for any X C V(H) for
whichr ¢ X and X NS # (.

Suppose X NSy = ) (the case that X NSy # 0 is easy).
Let X1 = XNH; and Xo = XN Hs. The case that X; = ()
follows from the properties of Ds. So we assume both X3
and X5 are non-empty. We have the following inequality:

diB(X) > dif (X1;77) + dB, (Xo) — d p(X1, X2). (2)

Note that 7D1 (X1,v1) > 7D(X1,X2). So, by prop-
erty (ii) of Definition 4.1, di2 (X1;77) > d p, (X1, v1) >
7D(X1,X2). Hence d(X) > diy, (X2) > k, where the
second inequality is by the properties of Ds.

This implies that D is a Steiner rooted k-hyperarc-
connected orientation of . To finish the proof, we need
to check that D extends s. The first property of Defini-
tion 4.1 follows immediately from our construction. The
second property of Definition 4.1 can be shown by a simi-
lar argument as above. This shows that D extends s, which
contradicts that  is a counterexample. |

The following are two important properties obtained
from Lemma 4.4.

Corollary 4.5 Each hyperedge of H of size at least 3 con-
tains only terminal vertices.

Proof. Suppose e is a hyperedge of H of size at least 3
and ¢ € e is a Steiner vertex. Let H' be a hypergraph with
the same vertex and edge set as 7 except we replace e by
e’ := e — t. By minimality of H, there exists a set X which
separates two terminals with dy,(X) = 2k and dp/ (X) <
2k. So e € 9/(X). Suppose t € X. Since X contains
a terminal, |X| > 2. Also, e — t must be contained in
V(H) — X; otherwise dp; (X) = dp(X). Hence |V (H) —
X| > |e — t| > 2. Therefore, X is a nontrivial tight set,
which contradicts Lemma 4.4. |

The proof of the following corollary is similar.

Corollary 4.6 There is no edge between two Steiner ver-
tices in H.

4.1 The Bipartite Representation of H

Using Corollary 4.5 and Corollary 4.6, we shall con-
struct a bipartite graph from H, which allows us to apply
the results on the DEGREE-SPECIFIED STEINER ROOTED-
ORIENTATION problem to H. Let S be the set of terminal
vertices in H. Let £ be the set of hyperedges in H which
do not contain a Steiner vertex, i.e. a hyperedge e is in £’
ifen (V(H) — S) = 0. We construct a bipartite graph

Steiner vertices

hyperedge vertices  Steiner vertices

Figure 2. The bipartite representation B of .

B = (S,(V(H) — S) U &'; E) from the hypergraph H as
follows. Every vertex v in H corresponds to a vertex v in
B, and also every hyperedge e € £ corresponds to a ver-
tex v, in B. By Corollary 4.5, hyperedges which intersect
V(H) — S are graph edges (i.e. hyperedges of size 2); we
add these edges to E(B). For every hyperedge ¢ € &',
we add vew to E(B) if and only if w € e in H. Let the
set of terminal vertices in B be S; all other vertices are
non-terminal vertices in B. By Corollary 4.5 and Corol-
lary 4.6, there is no edge between two non-terminal ver-
tices in B. Hence B is a bipartite graph. To distinguish the
non-terminal vertices corresponding to Steiner vertices in H
and the non-terminal vertices corresponding to hyperedges
in £, we call the former the Steiner vertices and the latter
the hyperedge vertices. See Figure 2 for an illustration.

4.2 Rank 3 Hypergraphs

To better illustrate the idea of the proof, we first prove
Theorem 4.2 for the case of rank 3 hypergraphs. This moti-
vates the proof for general hypergraphs, which is consider-
ably more complicated.

Lemma 4.7 H is not a rank 3 hypergraph.

Proof. Since H is of rank 3, all hyperedge vertices in
B are of degree at most 3. The crucial use of the rank 3
assumption is the following simple observation.

Proposition 4.8 S is 2k-hyperedge-connected in 'H if and
only if S is 2k-edge-connected in B.

We remark that Proposition 4.8 does not hold for hyper-
graphs of rank greater than 3. With Proposition 4.8, we can
apply Mader’s splitting off theorem to prove the following.

Lemma 4.9 Steiner vertices of H are of degree at most 3.

Proof. If a Steiner vertex v is not of degree 3 in H, then it
is not of degree 3 in B. So we can apply Mader’s splitting-
off theorem (Theorem 2.4) to find a suitable splitting at v
in B. Let e; = s1v and e; = vss be the pair of edges
that we split-off, and e = s;s5 be the new edge. By Corol-
lary 4.6, s; and s, are terminal vertices. We add a new



Steiner vertex v. to V(B) and replace the edge s1s2 by
two new edges v.s; and v.ss. Since B is bipartite, the re-
sulting graph, denoted by B’, is bipartite. Notice that B’
corresponds to a hypergraph H' with V(H') = V(H) and
E(H') = E(H) — {e1,e2} + {e}. By Proposition 4.8, S
is k-hyperedge-connected in H'. By the minimality of H,
there is a Steiner rooted k-hyperarc-connected orientation
of H'. Suppose 5152 in H' is oriented as 5753 in H’, then
we orient vs; and vss as 570 and ©53 in H. All other hyper-
edges in H have the same orientations as the corresponding
hyperedges in H’. It is easy to see that this orientation is
a Steiner rooted k-hyperarc-connected orientation of H, a
contradiction. |

Now we are ready to finish the proof of Lemma 4.7.
Construct B = B — s, where we remove all edges in
B which are incident with s. We shall use Theorem 3.4
to prove that there is a Steiner rooted k-arc-connected ori-
entation of B’. Since S is 2k-edge-connected in B, for
any partition P = {Py,..., P;} of V(B’) such that each
P; contains a terminal vertex, we have Z§=1 dp/(P;) =
S d(P) —dp(s) > 2kt — 2k = 2k(t — 1). So there
are at least k(¢ — 1) edges crossing P in B’.

By Theorem 3.4, there is a Steiner rooted k-edge-
connected orientation D’ of B’ with the additional property
that each Steiner vertex has indegree exactly 1. By orienting
the edges in d5(s) to have s as the head, we obtain an ori-
entation D of B. Note that D corresponds to a hypergraph
orientation of . Also, by this construction, property (i) of
Definition 4.1 is satisfied.

Consider an arbitrary Y for which Y NS = (). Since
every vertex y in Y is of degree at most 3 by Lemma 4.9,
y can have at most one outgoing arc to s; otherwise
dp({s,y}) < 2k which contradicts our connectivity as-
sumption since dp/(s) = 2k. Since Y induces an indepen-
dent set by Corollary 4.6 and each vertex in Y has indegree
exactly 1, each y € Y has an incoming arc from outside
Y. So we have d?'(Y;5) > d (Y, s). This implies that D
satisfies property (ii) of Definition 4.1 as well.

Finally we verify that D is a Steiner rooted k-hyperedge-
connected orientation. Consider a subset X C V' (H) which
contains a terminal but not the root. If X contains a ter-
minal other than s, then clearly d%(X) > k. So sup-
pose X NS = s. As argued above, v has at most one
outgoing arc to s. As each Steiner vertex is of indegree 1
and there is no edge between two Steiner vertices, we have
di?(X) > di%(s) = 2k. This shows that D is a Steiner
rooted k-hyperarc-connected orientation that extends s, a
contradiction. |

4.3 General Hypergraphs

For the proof of Theorem 4.2 for the case of rank 3
hypergraphs, a crucial step is to apply Mader’s splitting-

off lemma to the bipartite representation B of H to ob-
tain Lemma 4.9. In general hypergraphs, however, a suit-
able splitting at a Steiner vertex which preserves the edge-
connectivity of S in B might not preserve the hyperedge-
connectivity of .S in H. And there is no analogous edge
splitting-off result which preserves hyperedge-connectivity.

Our key observation is that, if we were able to ap-
ply Mader’s lemma as in the proof of Lemma 4.7,
then every Steiner vertex would end up with indegree
|d(v)/2] in the resulting orientation of B. This motivates
us to apply the DEGREE-SPECIFIED STEINER ROOTED-
ORIENTATION problem by “hardwiring” m(v) = |d(v)/2]
to “simulate” the splitting-off process. Also, we “hardwire”
the indegree of the sink to be 2k for the extension property.
(In the example of Figure 2, the indegrees of the Steiner
vertices are specified to be 3,2,1 from left to right; the sink
becomes a non-terminal vertex with specified indegree 2k.)
Quite surprisingly, such an orientation always exists when
S is 2k-hyperedge connected in H. The following theorem
is the final (and most technical) step to the proof of The-
orem 4.2, which shows that a minimal counterexample of
Theorem 4.2 does not exist.

Theorem 4.10 Suppose that S is 2k-hyperedge-connected
in H, there is no edge between two Steiner vertices, and no
hyperedge of size at least 3 contains a Steiner vertex. Let
so € S be a vertex of degree 2k. Then H has a Steiner
rooted k-hyperarc-connected orientation that extends s.

Proof. We will use the theorem on the DEGREE-
SPECIFIED STEINER ROOTED-ORIENTATION problem of
graphs (Theorem 3.2). To get an instance of that prob-
lem, we consider the bipartite representation (B’ =
(V',E"),S",m') of H as in the proof of Lemma 4.7. Let
the set of terminals be S’ := S — sg. The indegree specifi-
cationm’ : V! — S’ — Z7% is defined by

|dm(v)/2] ifvis a Steiner vertex
m/(v) =< 1 if v is a hyperedge vertex
2k if v = s is the sink

We shall show that if B’ has a Steiner rooted k-arc-
connected orientation with the specified indegrees, then
has a Steiner rooted k-hyperarc-connected orientation that
extend sg. By Theorem 3.2, this graph has a Steiner rooted
k-arc-connected orientation with the specified indegrees if
and only if the following conditions hold:

Ep/(Z)<m/(Z) foreveryZCV' -5, (3

);E;(h(X) +amax (Bp(XUY) = nl(Y)

<|E'|—m/(V' - §) @)



for all partition F of S, where h : S’ — Z7 is defined by

[k f0£AXCS
h(X) = { 0 otherwise.

Proposition 4.11 Condition (3) is always satisfied.

Proposition 4.12 Conditions (4) is satisfied if

DX eF:enX #£0} - 1)+

ecf
> |2 ekA-n o

vgUF +sg

for every subpartition F of V for which SNX # ( for every
X eF,and SN (UF) =5 — s.

Notice that Proposition 4.12 is formulated in terms of
the original hypergraph /. We will prove that the bipartite
representation B’ of H has the desired degree-specified ori-
entation by showing that the conditions in Proposition 4.12
are satisfied if .S is 2k-hyperedge-connected in H.

Let F be a subpartition of V for which § N X ## () for
every X € F,and S N (UF) = S — so. Let & denote the
set of hyperedges of H which enter exactly 1 member of F,
and let & denote the set of hyperedges of H which enter at
least 2 members of F. Let U := V — (UF + sg). Then the
only hyperedges that are disjoint from every member of F
are the edges between U and sq, so

o
2

Z(HXE}": emX;é(ZJ}|—1)+ 3

ecE vgUF +sg
de, (X) du(v)
ZZT—dH(U7SO)+ZT ©)
XeF velU
o Z dgz(X) dH(U,S—S()) dH(U,S())
= 4 — .
2 2 2
XeF
Here
du(U, 8 —s0) = Y de,(X) = du(V — U, s0),
XeF
and so
du(U,S = s0) —du(U,s0) = de, (X) — 2k.
XeF

Using this identity in inequality (6) we get that

Z(HXE]:: eﬂX;é@}|—1)+ 3

5]
2
ec& ’L)QU]'-J,*SQ

.y (dEZ(X);Ldsl(X)) — k> k(F| - 1),
XeF

where the last inequality holds because dg, (X ) +dg, (X) >
2k for every X € F as S is 2k-hyperedge-connected in H.

Therefore, we have the desired degree-specified orien-
tation of the bipartite representation B of H. Since every
hyperedge vertex has indegree 1 in B, this orientation cor-
responds to a Steiner rooted k-hyperarc-connected orienta-
tion of H. To check the second property of the extension
property, we use a similar argument as in Lemma 4.7. The
properties that we use are that there are no edges between
two Steiner vertices and each Steiner vertex v has indegree
|d(v)/2]. This finishes the proof of Theorem 4.10. 1

Since a minimal counterexample H must satisfy the con-
dition of Theorem 4.10, Theorem 4.10 proves that H does
not exist. So Theorem 4.2 (and hence Theorem 1.1) is
proven.

5 Proof of Theorem 1.2

In this section we sketch another application of the
DEGREE-SPECIFIED STEINER ORIENTATION problem.
The proof of Theorem 1.2 consists of two steps. The
first step is to reduce the problem from general graphs to
the graphs with no edges between Steiner vertices. This
technique was used in [17, 4]. The second step is to re-
duce the problem in this special instance into the DEGREE-
SPECIFIED STEINER ROOTED ORIENTATION problem.
The idea is that if we specify the indegree of each Steiner
vertex to be 1, then a Steiner rooted k-arc-connected orien-
tation is a Steiner rooted k-element-connected orientation,
since each Steiner vertex cannot be in two edge-disjoint
paths. It turns out that such a degree-specified orientation
always exists when S is 2k-element-connected in G.

Lemma 5.1 (See also [17, 4].) Given an undirected graph
G and a set S of terminal vertices. Suppose S is k-element-
connected in G. Then we can construct in polynomial time
a graph G’ with the following properties:

1. there is no edge between Steiner vertices in G';
2. S is k-element-connected in G';

3. if there is a Steiner rooted k'-element-connected ori-
entation in G' with the indegrees of the Steiner ver-
tices being 1, then there is a Steiner rooted k'-element-
connected orientation in G.

The following lemma can be shown to be a special case
of Theorem 4.10. Then Theorem 1.2 follows immediately
from Lemma 5.2 and Lemma 5.1.

Lemma 5.2 Given an undirected graph G = (V, E) and a
set S of terminal vertices. If S is 2k-element-connected in
G and there are no edges between vertices in V(G) — S,
then G has a Steiner rooted k-element-connected orienta-
tion with the indegrees of the Steiner vertices being 1.



6 Hardness Results

Theorem 6.1 Given a graph G, a set of terminals S, and a
root vertex v € S, it is NP-complete to determine if G has a
Steiner rooted k-arc-connected orientation.

Theorem 6.2 Given a graph G, a set of terminals S, and a
root vertex v € S, it is NP-complete to determine if G has a
Steiner rooted k-element-connected orientation.

7 Concluding Remarks

The questions of generalizing Nash-Williams’ theorem
to hypergraphs and obtaining graph orientations achieving
high vertex-connectivity remain wide open. We believe that
substantially new ideas are required to solve these prob-
lems. The following problem seems to be a concrete in-
termediate problem which captures the main difficulty: If
S is 2k-element-connected in an undirected graph G, is it
true that G has a Steiner strongly k-element-connected ori-
entation? We believe that settling it would be a major step
towards the above questions.
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