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On Achieving Maximum Multicast Throughput
in Undirected Networks

Zongpeng Li, Baochun Li, Lap Chi Lau

Abstract— The transmission of information within a data net-
work is constrained by the network topology and link capacities.
In this paper, we study the fundamental upper bound of infor-
mation dissemination rates with these constraints in undirected
networks, given the unique replicable and encodable properties
of information flows. Based on recent advances in network coding
and classical modelling techniques in flow networks, we provide
a natural linear programming formulation of the maximum
multicast rate problem. By applying Lagrangian relaxation on the
primal and the dual LPs respectively, we derive (a) a necessary
and sufficient condition characterizing multicast rate feasibility,
and (b) an efficient and distributed subgradient algorithm for
computing the maximum multicast rate. We also extend our
discussions to multiple communication sessions, as well as to
overlay and ad hoc network models. Both our theoretical and
simulation results conclude that, network coding may not be
instrumental to achieve better maximum multicast rates in most
cases; rather, it facilitates the design of significantly more efficient
algorithms to achieve such optimality.

Index Terms— Duality, Multicast, Network Coding, Network
Flow, Steiner Tree, Subgradient Optimization, Undirected Net-
works

I. I NTRODUCTION

W E study in this paper information dissemination in an
undirected network, which consists of a set of end

hosts and switches interconnected via undirected (or duplex)
communication links. In data networks with known topologies
and bandwidth capacity bounds for each undirected link, a
fundamental problem is to compute and achieve the maximum
end-to-end throughput for one or multiple active communica-
tion sessions. Depending on the objectives of applications, a
communication session may be in the form of unicast (one-to-
one), multicast (one-to-many), broadcast (one-to-all), or group
communication (many-to-many). Our focus is on multicast,
which is representative in that the other types of transmissions
are special cases of or can be transformed into multicast
transmissions.

Packet transmission in data networks may be modelled
as the flow of bit streams, referred to asinformation flows.
Compared to classical network flows, information flows may
not only be buffered and forwarded, but also be replicated and
coded. In previous work, it has been shown that by coding
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information flows at network nodes, referred to asnetwork
coding[1], [2], the information flow rate in a multicast session
may be improved in directed networks.

In this paper, we seek to bring new insights and efficient
solutions to the problem of maximizing information flow rates
(or throughput) in undirected data networks. We first illustrate
the power ofnetwork codingwith respect to achieving maxi-
mum throughput. Although previous directions of computing
the maximum multicast rates involve solving NP-Complete
problems, the maximum multicast rates and the corresponding
optimal multicast strategy can indeed be computed efficiently
in polynomial time, with the unique encodable property of
information flows considered. We provide a natural linear pro-
gramming formulation of the maximum throughput problem,
with a polynomial number of variables and constraints. By
applying Lagrangian relaxation on the primal LP, we derive a
necessary and sufficient condition for multicast rate feasibility
in undirected networks, from a distance labelling perspective.
We show how it generalizes correspondent results in the
unicast and broadcast cases, and how it connects multicast
throughput with network capacity and bandwidth consump-
tion. We further apply Lagrangian relaxation on the dual LP,
and construct an efficient subgradient algorithm for computing
the maximum multicast throughput and the corresponding op-
timal transmission scheme. We provide intuitive interpretations
of the algorithm, and show that it can be implemented in a
distributed fashion.

In addition, we extend the solution to multiple concurrent
sessions without inter-session coding, as well as to other types
of communication, including unicast, broadcast and group
communication. Even when the general form of data networks
is modified to reflect realistic characteristics of overlay net-
works (where only end hosts at the edge may be able to
replicate and code data), or wireless ad hoc networks (where
data is communicated through antennas), similar modelling
and solution techniques are still effective.

The availability of efficient solutions makes it possible to
study various aspects of properties of the achievable rates,
in realistically sized networks. We present empirical studies
based on simulation results over thousands of test scenarios us-
ing our algorithms. We compare the maximum multicast rates
with and without network coding, and show that noticeable
gains can only be experienced in contrived network topologies;
for random and irregular network topologies, such gain is
almost always non-existent. This agrees with our theoretical
results on the upper bound of the advantage of network coding
in undirected networks: rather than improving the achievable
maximum rates, the advantage of network coding is indeed
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to facilitate significantly more efficient computation of the
strategies to achieve the maximum rate of information flows.
Our empirical studies also show that overlay multicast, which
has recently attracted extensive research efforts, may be used
to approach maximum rates quite well. To the best of our
knowledge, this work is the first that systematically studies
the effects of network coding with respect to maximizing
information flow rates inundirectednetworks.

The remainder of this paper is organized as follows. We first
discuss related work in Sec. II. From Sec. III to Sec. VI, we
present the feasibility condition and efficient solutions for the
single multicast case. In Sec. VII, we extend our results to the
cases of multiple sessions of unicast, multicast, broadcast, and
group communication. We also consider the model of overlay
networks and the model of wireless ad hoc networks. We then
present empirical studies in Sec. VIII, and conclude the paper
in Sec. IX.

II. RELATED WORK

The problem of achieving optimal end-to-end throughput
with efficient algorithms has not been discussed in depth
in existing literature. There exist, however, similar problems
that have been extensively studied. Towards the direction of
Quality of Service (QoS) routing, the objective is to find end-
to-end paths or multicast trees that satisfy specific bandwidth
or delay constraints, and therefore provide the desired QoS
guarantees [3]. With respect to end-to-end throughput, finding
good topologies that satisfy bandwidth requirements is obvi-
ously different from — and arguably easier than — finding
optimal ones.

There exists an extensive body of research in the area of
multicast routing in wide-area IP networks (e.g., [4]). The
advantage of IP-based multicast is brought by data packet
replication on multicast-capable switches, improving band-
width efficiency and throughput compared to naive all unicast
between the source and the multicast receivers. However, since
it is based on the construction of a single tree, the end-to-end
throughput is not optimal compared to what is achievable by
a mesh topology beyond a tree.

As IP multicast is not readily deployed, algorithms pro-
moting application-layer overlay multicast have recentlybeen
proposed as remedial solutions, focusing on the issue of con-
structing and maintaining a multicast tree using only end hosts
[5], [6]. Though a single multicast tree may not lead to optimal
throughput, recent studies (e.g.,SplitStream [7], CoopNet [8],
Digital Fountain [9] and Bullet [10]) have proposed to utilize
either multiple multicast trees (forest) or a topologicalmesh
to deliver striped data from the source, using either multiple
description coding or source erasure codes to split contentto
be multicast. These proposals have indeed improved end-to-
end throughput beyond that of a single tree, but there have
been no discussions on whether the optimal throughput may
be achieved, or how close the proposed algorithms approach
optimality. In this paper, we study such achievable optimality,
while considering the general case where the data source
transmits a stream of bytes, and is not assumed to perform
any source or error correction coding.

There have been studies on achieving optimality with
respect to computingoblivious routing strategies in data
networks. The objectives are to maximize throughput for a
source-destination pair, and to minimize congestion on the
network. Most notably, using linear programming techniques,
polynomial timealgorithms (with a polynomial number of
variables and constraints in the LP formulation) can be con-
structed to compute strategies foroptimaloblivious routing for
any network, directed or undirected [11]. Though we also em-
ploy linear optimization tools and study undirected networks,
our problem domain is more general: while optimal oblivious
routing focuses on origin-destination pairs ofunicastsessions
(possibly exploiting path diversity), we focus on a varietyof
communication sessions, including unicast, multicast, broad-
cast and group communication. We seek fundamental insights
on how optimal a routing strategy may become, and what is the
maximum achievable throughput in a communication session.

Recent research in information theory discovers that routing
alone is not sufficient to achieve the maximum information
transmission rate across a data network [1], [2]. Rather,
applying encoding and decoding operations at relay nodes as
well as at the sender and receivers, are in general necessary
in an optimal transmission strategy. Such coding operations
are referred to asnetwork coding. The pioneering work by
Ahlswedeet al. [1] and Koetteret al. [2] proves that, in a
directed network with network coding support, a multicast rate
is feasible if and only if it is feasible for a unicast from the
sender to each receiver. Liet al. [12] then prove that linear
coding usually suffices in achieving the maximum rate.

In [13], Jaggi et al. study efficient code assignment in
directed acyclic networks. They design polynomial time al-
gorithms that determine the coding operations to be applied
at each node, in order to achieve the maximum multicast
rate. Their result improves the previous algorithm of Liet
al., which performs exponentially many linear independence
inspections [12]. Code assignment is complementary to our
work in this paper. Our subgradient algorithm finds the optimal
routing strategy, which specifies how much flow is to be
routed through each link. Code assignment then determines
the content of these flows,i.e., their linear relation with the
original information flows at the sender.

Traditional network flow theory studies the transmission of
goods within a capacitied transportation network. The max-
imum transmission rate between two nodes is characterized
by the celebrated max-flow min-cut theorem [14]:a flow rate
χ between nodesu and v is feasible, if and only if every
cut betweenu and v has size at leastχ. Various algorithms
may compute the maximum flow efficiently, some of which
allow fully distributed implementation,e.g., the push-relabel
algorithm [14] and theǫ-relaxation algorithm [15]. While
information flows also need to confine to network topology and
respect link capacities, they are different than commodityflows
in that they are replicable and encodable. Data replicationand
coding are essential in throughput optimization for information
flows.

Our subgradient solutions in this paper were also inspired
by a preliminary version of [16], in which Lunet al. suc-
cessfully design subgradient algorithms for computing the
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min-cost multicast topology in directed networks. Both their
algorithm and ours target efficiency and the potential for
distributed implementation. Their algorithm works on a partial
Lagrangian dual of the primal problem, and employs primal
recovery techniques to obtain the entire optimal solution.Our
algorithm applies Lagrangian relaxation on the dual problem,
and compute the entire optimal primal solution from partial
primal solution through pure combinatorial computations.

III. A CHIEVING OPTIMAL THROUGHPUT INUNDIRECTED

DATA NETWORKS: THE SINGLE MULTICAST CASE

We begin our study from the case of a single multicast
session. We consider the general form of data networks, rep-
resented by a simple graphG = (V,E) with undirectededges
between network nodes. Each edge represents a communica-
tion link, and the edge capacities are specified by a function
C : E → Q+ (whereQ+ denotes the set of positive rational
numbers), representing the available bandwidth capacities of
communication links. We usen = |V | to denote the number of
nodes andm = |E| to denote the number of undirected links.
Throughout this paper, we focus on thefractional model of
data routing, where the capacity of each link may be shared
fractionally in both directions, and information flows may be
split and merged at arbitrarily fine scales.

We useM = {S, T1, . . . , Tk} ⊆ V to specify the set
of nodes in the multicast group, withS being the sender,
and k being the number of multicast receivers. In graphical
illustrations throughout this paper, terminal nodes inM are
shown as black, and relay nodes inV − M are shown as
white. Links are labelled with their capacities, and unlabelled
links each has a capacity of1.

A. Steiner tree packing and Steiner strength

To compute the optimal throughput of multicast sessions,
Steiner tree packing[17], [18] andSteiner strengthhave been
the state-of-the-art. Unfortunately, both are NP-hard solutions.
Steiner tree packing.Consider the case of information flows
in one multicast session from a source to a set of destinations.
It can be theoretically shown that, if coding is not considered,
achieving optimal throughput via multiple multicast treesis
equivalent to the problem ofSteiner tree packing, which seeks
to find the maximum number of pairwise edge-disjoint Steiner
trees, in each of which the multicast group remains connected.
An intuitive explanation to such equivalence is that, each
unit throughput corresponds to a unit information flow being
transmitted along a tree that connects every node in the group.
The maximum number of trees we can find corresponds to the
optimal throughput for the session. Fig. 1(a) shows such an
example. In the figure, each letter corresponds to a distinct
Steiner tree, and nine such Steiner trees (a to i) exist in the
shown packing scheme, where the tree corresponding toa
is highlighted. Since each link with unit capacity needs to
accommodate5 Steiner trees, the achievable throughput on
each tree is, therefore,0.2. This leads to a multicast throughput
of 1.8, which is optimal without coding.

Unfortunately, Steiner tree packing has been shown to be
NP-Complete [17], [19], and the best known polynomial time
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Fig. 1. The achievable optimal throughput is1.8 without coding, and2 with
coding.

algorithm has an approximation ratio of1+ln 3/2 ≈ 1.55 [19].
With the same example, we can also show that the achievable
optimal throughput with network coding is2 (Fig. 1(b)), which
is higher than that achieved without coding. Consequently,
even if Steiner tree packing is computationally feasible, it may
not always yield the actual optimal multicast throughput.
Steiner strength. In an undirected link-capacitied networkN ,
we consider partitions of the network where there exists at
least one source or receiver node in each component of the
partition. LetP be the set of all such partitions. TheSteiner
strength of N is defined asminp∈P |Ec|/(|p| − 1), where
|Ec| is the total inter-component link capacity on the set of
links Ec being cut, and|p| is the number of components in
the partitionp. It is a natural extension ofnetwork strength
[20] defined for a broadcast network. It appears to be a
reasonable direction to compute the optimal throughput by
computing the Steiner strength, due to the following two
reasons. First, it is known that network strength is equivalent
to the achievable optimal throughput in the well-studied case
of broadcast networks [21]. Second, these two quantitiesare
equal in most networks, especially in real-world networks or
randomly generated networks. We are aware of only a few
contrived topologies in which they differ from each other.
Unfortunately, the Steiner strength problem turns out to be
NP-Complete as well.

Theorem 1. The Steiner strength problem is NP-Complete.
Proof: We present a brief outline of the proof. We can
reduce another well-known NP-Complete problem,max cut
[22], to the Steiner strength problem in polynomial time. The
reduction works in essentially the same way as the one given
by Dahlhauset al., in their NP-Completeness proof for the
multiterminal cutproblem [23]. We observe that in the instance
graph constructed in their proof, the optimal multiterminal
cut always leads to the minimum|Ec|/(|p| − 1) ratio, and
is therefore always the optimal partition that correspondsto
the Steiner strength value of the network. Since the max cut
in the original graph corresponds to the optimal multiterminal
cut, it also corresponds to the optimal partition for the Steiner
strength. The remaining steps of the proof can be found in
[23] and are omitted in this paper. ⊓⊔

The fact that computing Steiner strength is NP-Complete
also rules out the possibility that Steiner strength and opti-
mal multicast throughput are always equal. If the maximum
multicast rate always equals to the Steiner strength, then the
existence of a partition with|Ec|/(|p| − 1) = χ can serve as
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a short certificate for the claim that no transmission strategy
can achieve a higher multicast rate thanχ, and vice versa.
Consequently both the maximum throughput problem and
the Steiner strength problem would be Co-NP. This is very
unlikely to be true given the fact the Steiner Strength problem
is NP-Complete.

IV. M AXIMUM MULTICAST RATE : LINEAR PROGRAMMING

FORMULATION

Despite the previous pessimistic views, The introduction
of network coding dramatically changes the picture. In this
section, We first formulate the maximum multicast throughput
problem as a linear network optimization problem, with both
the number of variables and the number of constraints bounded
by O(km). The resulting LPs are a natural combination of
recent advances on multicast with network coding and classical
formulation techniques in flow networks. We then show that
optimal solutions from the linear program gives exactly the
maximum achievable throughput, as well as the corresponding
flow routing strategy.

Based on our LP formulation, we derive in Sec. V a
necessary and sufficient condition that characterizes multicast
rate feasibility in undirected networks. Based on its dual LP,
we design in Sec. VI a subgradient algorithm that efficiently
solves the LP in a distributed manner. Our primal and dual
linear programs have an underlying structure of network flow
and cut, respectively. For the ease of understanding and later
reference, we present the max-flow and the min-cut linear
programs first.

A. The max-flow LP and the min-cut LP

In the max-flow LP,
→

TS is a virtual directed link with
infinite capacity, going from the destinationT to the source
S. N(u) = {v|uv ∈ E} denotes the set of neighbors of node
u. f ∈ QA

+ is the flow vector, whereA = {
→
uv,

→
vu |uv ∈ E} is

the set of directed arcs. The scalarχ is the overall end-to-end
flow rate. The max-flow LP essentially maximizes the end-to-
end flow rate, with link capacity limits and flow conservation
requirements (total incoming flow rate at a node equals its
total outgoing flow rate). Flow conservation at the source and

destination nodes are possible due to the virtual link
→

TS we
add, on which the flow rate exactly equals the overall flow
rate fromS to T .

The max-flow linear program

Maximize χ = f(
→

TS)

Subject to:
(

f(
→
uv) ≤ C(uv) ∀

→
uv 6=

→

TS
P

v∈N(u)(f(
→
uv) − f(

→
vu)) = 0 ∀u

f(
→
uv) ≥ 0 ∀

→
uv

The min-cut linear program

Minimize
P

→

uv
C(uv)y(

→
uv)

Subject to:
(

y(
→
uv) + p(v) ≥ p(u) ∀

→
uv 6=

→

TS
p(T ) − p(S) ≥ 1

y(
→
uv) ≥ 0 ∀

→
uv

In the min-cut LP, vectory indicates which links are “cut”.
This LP always has an optimal solution that is integral, where
each entry iny is valued to either1 or 0, indicating whether
the corresponding link is in the min-cut or not. The constraints
imply that, for each pathP connecting the sourceS to the
destinationT ,

∑

→

uv∈P
yi ≥ 1, i.e., at least one link along the

path is cut. The objective is to minimize the total link capacity
being cut.

B. The primal cFlow linear program

We are now ready to present our linear programming for-
mulation of the maximum multicast rate problem. Intuitively,
it orients undirected links into directed ones, and establishes
virtual network flows from the sender to each receiver. Vector
c ∈ QA

+ stores capacities for directed links,i.e., the allocation
of the undirected link capacity in both directions.χ is the
overall multicast rate. Vectorsfi ∈ QA

+ denotes the network

flow from senderS to receiverTi. Directed links
→

TiS with
infinite capacity are again introduced for a concise presentation
of the LP.

Maximize χ
Subject to:

8

>

>

>

>

<

>

>

>

>

:

χ ≤ fi(
→

TiS) ∀i (4.1)

fi(
→
uv) ≤ c(

→
uv) ∀i, ∀

→
uv 6=

→

TiS (4.2)
P

v∈N(u)(fi(
→
uv) − fi(

→
vu)) = 0 ∀i, ∀u (4.3)

c(
→
uv) + c(

→
vu) ≤ C(uv) ∀uv 6= TiS (4.4)

c(
→
uv), fi(

→
uv), χ ≥ 0 ∀i, ∀

→
uv

This linear program is referred to as thecFlow LP, reflecting
the fact that each network flowfi is conceptual rather than
physical, and two different flows do not contend for the
capacity available at a directed link. Constraints in the primal
program require capacities allocated to both directions not to
exceed the undirected link capacity (4.4), each flowfi to be
a valid network flow (4.2)(4.3), and the multicast rate not to
exceed any of these network flow rates (4.1). Essentially, the
primal LP tries to establish an orientation of the undirected
network, within which it sets up independent network flows
from the senderS to each receiverTi. It does so in an optimal
way, in that the minimum of the independent max-flow rates
— which by the result of Ahlswedeet al. [1] is equal to
the multicast rate — is maximized. A feasible solution to the
primal LP provides an orientation of the original network,
c(

→
uv); a flow routing scheme,f(

→
uv) = maxi fi(

→
uv); and a

feasible multicast rate,χ.
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C. The dual cFlow linear program

The dual linear program for the maximum multicast rate
problem is:

Minimize
P

uv
C(uv)x(uv)

Subject to:
8

>

>

<

>

>

:

x(uv) ≥
P

i
yi(

→
uv) ∀uv 6= TiS (4.5)

yi(
→
uv) + pi(v) ≥ pi(u) ∀i, ∀

→
uv 6=

→

TiS (4.6)
pi(Ti) − pi(S) ≥ zi ∀i (4.7)
P

i
zi ≥ 1 (4.8)

x(uv), yi(
→
uv), zi ≥ 0 ∀i, ∀

→
uv

While the primal LP is in the form of flow maximization,
the dual LP is in the form of cut minimization. In an optimal
solution, each dual variable in vectorsx, y and z is valued
between0 and 1. In the dual constraints, (4.8) distributes
weights among the cuts betweenS and eachTi. (4.6) and
(4.7) require each cutyi to be a valid cut, except that an edge
in the cut will now be cut to percentagezi, rather than100%
as in the minimum cut LP. Then the cut values of a link in
the k different cuts are added up in (4.5). If the summations
in two directions differ, the larger one is taken to be the cut
value for the undirected link.

The variable-constraint correspondence in the primal and
dual LPs is given in the table below. It will later assist us to
decide which constraints to relax in Sec. V and Sec. VI.

primal (4.1) (4.2) (4.3) (4.4) c f(
→
uv) f(

→

TiS) χ
dual z y p x (4.5) (4.6) (4.7) (4.8)

D. Correctness of the cFlow LPs

The primal and the dualcFlow LPs are computationally
equivalent to each other, with their optimal values being
identical. We now prove their correctness by showing that
an optimal solution of the primal LP yields the maximum
multicast rate and the corresponding flow routing scheme.
Theorem 2. For an undirected data network with a single
multicast session, the maximum end-to-end throughputχ and
its corresponding optimal routing strategy can be computedin
polynomial time using thecFlow LP, in which both the number
of variables and the number of constraints are polynomial,
and on the order ofO(km). The conceptual flowsf1 . . . fk

constitute the optimal routing strategy.
Proof: The orientation constraints reflect complete flexibility
in orienting the undirected networkN , without being too
restrictive or too relaxed. For each fixed orientation, conceptual
flows are maximized with independent and standard network
flow constraints, as well as the extra constraint that conceptual
flow rates are equal to each other. Therefore, the result of the
maximization is the maximum possible flow rate that can be
independently achieved from the source to all receivers, over
all possible orientations of the network:

χ = max
o∈O

[min
i

(maximumS → Ti flow rate)],

whereO denotes all possible orientations of the network,
and M − {m0} is the set of multicast receivers. Recall the
recent breakthrough in network coding [1], [2] shows that, for
a fixed orientation of the network, a ratex can be achieved for
the entire multicast session if and only if it can be achievedfor
each multicast receiver independently. This implies that,the
maximum throughput in each orientation equals the minimum
of the maximum source to receiver flow rates. ThecFlow
LP essentially maximizes this min-max flow over all possible
network orientations, and obtains the max-min-max flow that
is precisely the maximum multicast throughput in the original
undirected network. Further, the source may transmit informa-
tion to each receivermi according to the conceptual flowf i.
Should more than one conceptual flows utilize the capacity on
the same link, the conflict can always be resolved, provided
that network coding is applied appropriately [1], [2].

The number of variables in the primal program and the
number of constraints in the dual program are(2k+1)m+k+
1. The number of constraints in the primal program and the
number of variables in the dual program are(2k+1)m+kn+k.
Both are on the order ofO(km).

⊓⊔
The optimal routing strategy computed by thecFlow LP

specifies the rate of data streams being transmitted along each
link. Based on the routing strategy, we need to perform the
additional step ofcode assignmentto compute thecoding
strategy, before data streams may be transmitted. The coding
strategy includes one transformation matrix for each node,
which specifies how incoming data streams are linearly coded
into outgoing streams. Given the routing strategy from the
cFlow LP, there exist polynomial time algorithms to perform
such code assignments [13], [24]. Therefore, we have the
following corollary of Theorem 2:

Corollary 1. The complete solution that achieves optimal
throughput in undirected data networks with a single multicast
session can be computed in polynomial time, including both
the routing and coding strategies.

V. M ULTICAST RATE FEASIBILITY: THE NECESSARY AND

SUFFICIENT CONDITION

We now apply Lagrangian relaxation on the primal LP to
derive the necessary and sufficient condition for multicast
rate feasibility in undirected networks. We explain how it
generalizes the conditions in unicast and broadcast cases,and
provide an interpretation from the perspective of bandwidth
efficiency.

A. The condition as a theorem

Theorem 3. A multicast rateχ is feasible in an undirected
networkG, if and only if for every link distance functionx ∈
QE

+,

|G|x
Minχ(f)=1|f |x

≥ χ.
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In the theorem above,|G|x denotes the size of the network
under distance vectorx, i.e., |G|x =

∑

uv C(uv)x(uv).
f ∈ QA

+ denotes a multicast topology, or a flow routing
scheme; and|f |x =

∑

→

uv
f(

→
uv)x(uv) is the size of the

multicast topology, under distance vectorx. Minχ(f)=1|f |x
denotes the size of the minimum multicast topology that
achieves unit multicast rate. Note that a multicast topology
is not necessarily a multicast tree — for instance, the second
multicast transmission in Fig. 1 constitutes a counter example.

B. The proof of correctness

Proof of Theorem 3:Consider the primalcFlow LP given in
Sec. IV-B. We now formulate its Lagrangian dual by relaxing
the undirected link capacity constraints (4.4), and introducing
the corresponding prices into the objective function, which
becomes:

χ −
∑

uv

x(uv)∆(uv).

In the modified objective function above,∆(uv) = c(
→
uv) +

c(
→
vu) − C(uv) denotes the amount of capacity over-use at

link uv, andx(uv) is the Lagrangian multiplier acting as the
unit price charged for the capacity over-use. At this point,
the primal cFlow LP is transformed into the Lagrangian
subproblem:

L(x) = MaxP1
[χ −

∑

uv

x(uv)∆(uv)],

with P being the following polytope:

P1 :























χ ≤ fi(
→

TiS) ∀i

fi(
→
uv) ≤ c(

→
uv) ∀i,∀

→
uv 6=

→

TiS
∑

v∈N(u) fi(
→
uv) =

∑

v∈N(u) fi(
→
vu) ∀i,∀u

c(
→
uv), fi(

→
uv), χ ≥ 0 ∀i,∀

→
uv

The Lagrangian dual problem is then:

Minimize L(x)
Subject to: x ≥ 0

The Lagrangian duality theorem assures that each feasible
value ofL(x) is an upper-bound for a feasible multicast rateχ.
Furthermore, this bound is tight in the sense that the minimum
value of L(x) exactly matches the maximum achievable rate
χ, i.e., the optimal objective values of the primal LP and
the Lagrangian dual are equal. Consequently, the maximum
multicast rateχ∗ can be computed as:

χ∗ = Minx≥0{MaxP1
[χ −

∑

uv

x(uv)∆(uv)]}

We now perform manipulations on the expression ofχ∗,
and provide justifications for each step.

χ∗

=1 Minx≥0{MaxP1 [χ −
P

uv
x(uv)∆(uv)]}

=2 Minx≥0{MaxP1 [χ −
P

→

uv
x(uv)c(

→
uv) +

P

uv
x(uv)C(uv)]}

=3 Minx≥0{MaxP1 [χ − |f |x + |G|x]}

=4 Min
x≥0,Minχ(f)=1|f |x≥1

{MaxP1 [χ − |f |x + |G|x]}

=5 Min
x≥0,Minχ(f)=1|f |x≥1

|G|x

=6 Min
x≥0,Minχ(f)=1|f |x=1

|G|x

=7 Minx≥0
|G|x

Minχ(f)=1|f |x

In the derivations above,=1 holds due to Lagrangian dual-
ity, as discussed early.=2 and=3 are due to definitions.=4

is due to dual feasibility. The inner maximization subproblem
is unbounded in cases where Minχ(f)=1|f |x < 1 — one may
scale up flows inf to arbitrarily large, and hence scale up the
difference betweenχ and|f |x to arbitrarily large.=5 is due to
the fact that when Minχ(f)=1|f |x ≥ 1, we haveχ− |f |x ≤ 0,
and MaxP [χ−|f |x+|G|x] = |G|x. =6 is due to the observation
that for everyx where Minχ(f)=1|f |x > 1, there exists another
vectorx′ = x/Minχ(f)=1|f |x, such that Minχ(f)=1|f |x′ = 1,
and |G|x′ < |G|x. Finally, =7 is due to the fact that if we
scale link distances inx proportionally, the ratio|G|x/|f |x
remains at the same value.

Now we can claimχ∗ = Minx≥0
|G|x

Minχ(f)=1|f |x
, and that

concludes the proof of Theorem 3. ⊓⊔

C. Interpretation and discussions

Comparison with unicast and broadcast cases

A unicast is an one-to-one data transmission, and a broad-
cast is an one-to-all data transmission. It is known that for
unicast or broadcast, encodability does not make a difference
in the maximum achievable transmission rate [21]. Therefore,
each atomic unicast topology is a path, and each atomic
broadcast topology is a spanning tree. The maximum unicast
rate problem is equivalent to the path packing or maximum
flow problem, and the maximum broadcast rate problem is
equivalent to the spanning tree packing problem. For unicast
rate feasibility, the max-flow min-cut theorem constitutesan
elegant necessary and sufficient condition. For broadcast rate
feasibility, Tutte-Nash-Williams’ theorem takes the role[25],
[26]: A capacitied networkG containsχ pair-wise capacity-
disjoint unit spanning trees, if and only if for every partition
that separates the network intok components, the total cross-
component link capacity is at least(k − 1)χ.

Unicast and broadcast are special cases of multicast, with
the number of receivers being1 and n, respectively. Conse-
quently, Theorem 3 is a generalization of both the max-flow
min-cut theorem and Tutte-Nash-Williams’ theorem. For any
given cut (vertex partition) of the network, we can assign a
distance1 to each link in the cut (partition), and a distance0
to all the other links. Then the condition in Theorem 3 implies
the cut condition (the partition connectivity condition) in the
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max-flow min-cut theorem (Tutte-Nash-Williams’ theorem).
The reverse implications are also true due to the validity of
Theorem 3 and the two special case theorems.

A bandwidth efficiency perspective

Since the total bandwidth capacity of a network is fixed,
the achievable multicast rate closely depends on the band-
width efficiency of the multicast transmission,i.e., how much
bandwidth consumption is necessary to achieve a unit end-to-
end throughput. Generally speaking, the higher the bandwidth
efficiency, the higher the achievable multicast rate. Theorem
3 essentially claims that these two quantities are exactly
proportional to each other, once we account for the fact that
prolonging or shrinking an internal branch without changing
its capacity does not affect the achievable multicast rate.
We now reformulate Theorem 3 towards this direction, after
giving two definitions. A link contraction means replacing
a 2-hop internal pathu-z-v (internal means degree ofz is
2) with a link uv, and setC(uv) = min{C(uz), C(zv)}.
Link expansionis the inverse operation for link contraction,
where a linkuv is replaced with a 2-hop pathu-z-v, with
C(uz) = C(zv) = C(uv).
Theorem 3.a. For a multicast connection in an undirected
networkG, a sequence of link contraction and link expansion
operations can be applied onG, after which the maximum
multicast rate equals the bandwidth capacity of the network
divided by the minimum bandwidth consumption required for
multicasting one bit information.

The following two facts may help establish the connection
between Theorem 3 and Theorem 3.a. First, it is always
possible to apply link expansion and contraction operations
such that the topological distance between every pair of nodes
uv is proportional to its assigned distancex(uv). Second, the
“if and only if” relation in Theorem 3 assures that there always
exists a distance function that makes the equality hold in
Theorem 3. Theorem 3.a shows that a multicast network can be
manipulated using link expansion and contraction operations
to a stage where (a) it is possible to utilize only the most
bandwidth efficient multicast topologies to achieve the max
throughput, and (b) the bandwidth capacity of the network is
entirely utilized in the transmission scheme achieving themax
throughput.

VI. M AXIMUM MULTICAST RATE : THE SUBGRADIENT

ALGORITHM

Previous experiences show that for network flow type
problems with extra side constraints,e.g., the multicommodity
flow problem, the performance of general linear programming
techniques are often below acceptable levels, when the size
of the problem is relatively large. For the multicast rate
problem in particular, we have experimented with both the
simplex method and the primal-dual interior-point method,as
implemented inglpk 4.4 [27]. We apply both methods to
solve the primal LP as a black-box, on networks and multicast
groups with various sizes. Our findings show that, on a typical
Pentium IV computing platform, the interior-point method
may handle networks with a few thousand links within a

reasonable amount of time (on the order of seconds), as long
as the multicast group is small (k ≤ 5). For networks that are
larger, or for a broadcast network with a few hundred nodes
and less than one thousand links, the computation easily takes
hours. The performance of the simplex method is constantly
worse than that of the interior-point method.

Another critical drawback of applying general linear pro-
gramming methods is that they are inherently centralized,
requiring global information to be collected to one central
point of computation. The solution we construct in this section
resolves both problems. It decomposes the maximum multicast
rate computation into a sequence of max-flow/min-cut com-
putations, for which very efficient algorithms exist and can
be applied. It also allows the computation to be distributed
onto each node in the network, where only local information
is collected.

To construct a subgradient solution for the maximum multi-
cast rate problem, we have the choices of applying Lagrangian
relaxation on either constraints in the primal program (dual
subgradient), or constraints in the dual program (primal sub-
gradient). We have decided to take the later approach, due
to the following facts. First, dual subgradient methods do
not always yield optimal primal solutions, which contain the
optimal routing information we need. Second, as we will
show, our primal subgradient algorithm decomposes the entire
problem into a sequence of max-flow/min-cut computations,
and allows appealing combinatorial interpretations. We now
present the primal subgradient solution in three steps: the
dualization strategy, subgradient iterations, and maximum rate
computation.

A. The dualization strategy

Consider the dualcFlow LP given in Sec.IV-C for the
maximum multicast rate problem. We choose to relax con-
straint group (4.5), which corresponds to primal variables
c(

→
uv). Recall thatc(

→
uv) specifies the capacity of each directed

link, and therefore determines an orientation of the original
undirected network. The objective function is modified to:

P

uv
C(uv)x(uv) +

P

→

uv
c(

→
uv)(

P

i
yi(

→
uv) − x(uv))

=
P

uv
x(uv)(C(uv) − c(

→
uv) − c(

→
vu)) +

P

→

uv
(c(

→
uv)

P

i
yi(

→
uv))

=
P

i

P

→

uv
c(

→
uv)yi(

→
uv) −

P

uv
x(uv)∆(uv)

Note when∆(uv) > 0 for any uv, the modified objective
function does not have a lower bound, withx(uv) freely
chosen from[0,∞). Therefore dual feasibility requires∆ ≤ 0,
i.e., c(

→
uv) + c(

→
vu) ≤ C(uv), ∀uv.

The Lagrangian dual we obtain is then:

Maximize L(c)

Subject to:
{

c(
→
uv) + c(

→
vu) ≤ C(uv) ∀uv

c(
→
uv) ≥ 0 ∀

→
uv
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where

L(c) = MinP2

∑

i

∑

→

uv

c(
→
uv)yi(

→
uv) (6.1)

with P2 being the polytope:

P2 :



















yi(
→
uv) + pi(v) ≥ pi(u) ∀i,∀

→
uv 6=

→

TiS
pi(Ti) − pi(S) ≥ zi ∀i
∑

i zi ≥ 1

yi(
→
uv), zi ≥ 0 ∀i,∀

→
uv

Two critical observations justify our choice of the dual-
ization strategy above. First, the price variables introduced
through relaxation and optimized through subgradient itera-
tions, c, is exactly the orientation of the network, the optimal
values of which are essential to decide the maximum multicast
rate and the optimal routing strategy. Second, the minimization
subproblem (6.1) is separable, and may be decomposed into
k min-cut computations. We shall come back to these two
facts in the presentation of the subgradient iterations andthe
maximum rate computation, respectively.

B. Subgradient iterations

Choosing the initial primal solution

To start the subgradient iterations, we need a valid set
of initial values for c(

→
uv), i.e., an initial orientation of the

multicast network. A promising choice is to setc[0](
→
uv) =

1
2C(uv), ∀

→
uv. Note that any transmission that is feasible

in the undirected network is feasible in the network obtained
by scaling up link capacities in the balanced orientation
by a factor of 2. Therefore the balanced orientation is 2-
competitive,i.e., if the maximum multicast rate in an optimal
orientation isχ∗, then the balanced orientation may support a
rate of at least12χ∗.

Updating dual variables

During each roundk, given current values ofc[k], we
solve subproblem (6.1) to obtain new dual values iny[k]. As
previously mentioned, this subproblem has a nice separable
structure, in the form of a weighted minimum cut computation.
Note that when

∑

i zi = 1,

L(c) = MinP2

∑

i

∑

→

uv
c(

→
uv)yi(

→
uv)

= Mini[MinP3

∑

→

uv
c(

→
uv)yi(

→
uv)]

whereP3 is the standard cut polytope:

P3 :











y(
→
uv) + p(v) ≥ p(u) ∀

→
uv 6=

→

TiS
p(Ti) − p(S) ≥ 1

y(
→
uv) ≥ 0 ∀

→
uv

i.e., the weighted minimum cut is equal to the minimum cut
when all weights sum to1. Further note that

∑

i zi = 1 must
be satisfied in any optimal solution, since dual complementary
slackness conditions requireχ(

∑

i zi − 1) = 0. Therefore, for
our specific problem, we can computey[k] by first computing
k minimum cuts,i.e., one minimum cut between the senderS
and each receiverTi:

y∗
i = argminy∈P3

∑

→

uv

c[k](
→
uv)y(

→
uv)

Then letj = argmini
∑

→

uv
c[k](

→
uv)y∗

i (
→
uv), we updatey as

follows:
yj [k] = y∗

j , and

yi[k] = 0,∀i 6= j.

Updating primal variables

Primal variables in the orientationc are updated in two
steps. First, we compute a new orientation vectorc′ as follows:

c′ = c[k] + θ[k]
∑

i

yi[k] (6.2)

where θ is a prescribed sequence of step sizes. The new
vector c′ is not feasible in general. Therefore we need to
project it into the feasible simplex, to obtain a valid new vector
for updatingc. One possible way of projection is to take a
feasible point that is nearest toc′:

c[k + 1] = argminc≥0,∆≤0||c − c′|| (6.3)

Here ||l|| denotes the geometrical length of a vectorl, i.e.,
for l = (l1, . . . , lh), ||l|| = (

∑h
i=1 l2i )

1/2. Another simpler way
of projection, is to normalizec′ according to:

c[k+1](
→
uv) =

{

c′(
→
uv) ∆′(uv) ≤ 0
c′(

→

uv)

c′(
→

uv)+c′(
→

vu)
C(uv) ∆′(uv) > 0

(6.4)

where∆′(uv) = c′(
→
uv)+c′(

→
vu)−C(uv). After both primal

and dual variables are updated, the next iteration starts.

Step size selection and convergence

Step size rules play an important role in subgradient opti-
mization. It governs both the ultimate convergence in theory,
and the speed of convergence to the optimal solution in
practice. Large step sizes may be unstable, while small step
sizes lead to slow convergence speed. Therefore it is common
practice to use varying step sizes: take a small number of
large steps to reach the proximity of the optimal solution, then
switch to small steps to avoid overhitting. In our case, where
the original program is linear, designing step sizes that satisfy
the following conditions will guarantee convergence:

θ[k] ≥ 0, lim
k→∞

θ[k] = 0, and
∞
∑

k=1

θ[k] = ∞

A simple sequence that satisfies the conditions above is
θ[k] = a/(bk + c), for some positive constantsa, b and c.
Below we give an example to illustrate the input, output, and
convergence of the proposed algorithm.

In the example shown in Fig. 2,S is the multicast sender,
T1 andT2 are the multicast receivers. The maximum multicast
rate possible is13.5. The rate computed by the subgradient
algorithm converges to range[13.4, 13.5] within 100 iterations.
The network in this example is actually among the most ad-
verse to our algorithm, in that network flows towards different
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Fig. 2. A test case of the subgradient algorithm: input network, output
orientation, and convergence sequence.

receivers constantly compete for link bandwidth in opposite
directions. As later shown in Sec. VIII, the convergence
speed is usually much faster for randomly generated multicast
networks.

Algorithm interpretation

We now take a retrospect of the subgradient algorithm just
presented, and show that it has a very appealing combinatorial
interpretation. First, the algorithm takes a guessed orientation
of the network as a starting point. Then during each iteration,
it updates the orientation according to (6.2), (6.3) and (6.4). In
(6.2), larger values for

∑

i yi[k] leads to larger values forc′,
which in turn leads to larger values forc[k + 1] in (6.3)(6.4).
Note that non-zero values foryi(

→
uv) means the linkuv is

in the S-Ti min-cut, and is therefore the “bottleneck” for
the S→Ti transmission. From the flow perspective, non-zero
values ofy(

→
uv) meansf(

→
uv) = c(

→
uv), since dual complemen-

tary slackness conditions requireyi(
→
uv)(f(

→
uv)− c(

→
uv)) = 0.

Therefore links with non-zeroyi values are saturated links
in the S→Ti max-flow. We conclude that the new capacity
allocation in (6.2), (6.3) and (6.4) favors links with larger
∑

i yi[k] values, which are links that are more saturated.
Therefore, during each iteration of orientation refinement,

the algorithm computes the max-flow/min-cut from the sender
to each receiver, and increases the capacity share for more
saturated links, while decreases the capacity share for under-
utilized links. This has been summarized in Table I.

C. Computing the maximum rate

When the subgradient algorithm converges, it yields optimal
primal values inc, but not necessarily optimal dual values iny
— the dual values upon convergence may not even be feasible.
Although there exist convex combination techniques to recover

TABLE I

MAXIMUM MULTICAST RATE : SOLUTION SUMMARY

(1) Choose initial orientation (e.g., balanced orientation)

(2) Repeat
ComputeS→Ti max-flow,∀i
Refine orientation:

increase bandwidth share for saturated links
decrease bandwidth share for under-utilized links

Until convergence
→ optimal orientation obtained

(3) ComputeS→Ti max-flow,∀i
→ optimal multicast rate and routing strategy obtained

(4) Randomized code assignment
→ complete transmission strategy obtained

these optimal dual values [16], [28], it is not necessary in our
solution. We can directly recover the whole set of optimal
primal values from optimal values inc.

Recall that a feasible vectorc specifies an orientation of
the undirected network. Therefore optimal values ofc give an
optimal orientation. Once the orientation is determined, the
undirected maximum multicast rate problem boils down to
a directed one,i.e., computing the maximum multicast rate
in a directed network. By the result on directed multicast
rate feasibility proven by Ahlswedeet al. and Koetteret
al., this can be accomplished by invoking a maximum flow
computation from senderS to each of thek receiversTi. Let
f∗

i denote the resultingS→Ti flow vector, and|f∗
i | denote

the corresponding flow rate. Then our final solution to the
maximum multicast rate problem is:

• maximum multicast rate:χ = mini |fi|
• optimal routing strategy of information flows:f∗, where

f∗(
→
uv) = maxi fi(

→
uv), ∀

→
uv∈ A

As an illustration, the two network flows computed in the
previous example are shown in Fig. 3.
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Fig. 3. Output network flow to each multicast receiver.

D. Discussions on distributed implementation

Beside simplicity and efficiency, the potential for distributed
implementation has been another objective during our design
of the subgradient algorithm. After all, decentralized and
scalable implementations are always preferred for real-world
protocols. we now take a step-by-step examination of the
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entire solution, and discuss how each step can be transferred
into distributed, pure local computations, where each node
maintains only local information about its incident links and
one-hop neighbors.

In the initialization phase of the dual subgradient algorithm,
it is sufficient to have each nodeu compute its local orien-
tation, by settingc(

→
uv) = c(

→
vu) = 1

2C(uv), for each of its
incident link uv.

Primal variable update is achieved through pure local com-
putation, since each node can update the capacity of an
incident directed link

→
uv according to (6.2), based on current

values of local variablesc[k](
→
uv), θ[k] andy[k](

→
uv).

Most computation in the subgradient algorithm is performed
in dual variable updates, and in the final maximum flow
rate computation. Each of these steps translates intok max-
flow/min-cut computations. As previously mentioned, various
efficient algorithms exist for the classical max-flow/min-cut
problem, some of which permits natural distributed imple-
mentations, such as the push-relabel algorithm [14] and the
ǫ-relaxation algorithm [15]. For example, throughout the exe-
cution of the distributed version of the push-relabel algorithm,
each node exchanges messages with its direct neighbors only,
and maintains information about capacities and flow rates on
its incident links, plus distance labels of its neighbors and its
own.

So far, we have shown that our algorithm for computing
the optimal multicast routing strategy can be implemented in
a distributed fashion. In order to utilize such optimal routing
strategy in data transmission, we need to further decide how
each node linearly combines its incoming information flows
to form its outgoing information flows. A simple distributed
solution to this code assignment problem is randomized coding
[29], in which each node just locally generates a random code
matrix, without any message-passing required at all. With mild
assumptions on the size of the base field for coding operations,
the chance of generating a conflict is negligibly small [29].

VII. A CHIEVING OPTIMAL THROUGHPUT INUNDIRECTED

DATA NETWORKS: MORE GENERAL CASES

The cFlow LP, can be extended to solve the optimal
throughput problem in cases beyond a single multicast session.
We now present its extensions (1) to unicast, broadcast and
group communication sessions, (2) to the case of multiple
communication sessions, (3) to the model of overlay networks,
and (4) to the model of wireless ad hoc networks.

A. The cases of unicast, broadcast and group communication
sessions

Since unicast and broadcast can be viewed as special cases
of multicast, where two nodes and all nodes are in the mul-
ticast group, respectively, our solution in the single multicast
case can be readily applied to a single unicast or broadcast
session without modifications. In the case of a unicast session,
the cFlow LP essentially solves a linear program for a single
network flow. In the case of a broadcast session, thecFlow LP
computes the optimal broadcast throughput, which has been

shown by our previous work [21] to be the same as both the
spanning tree packing number and the network strength.

Traditionally, the three equal quantities above have been
computed from either the perspective of network strength
or spanning tree packing. Cunningham [20] first gave a
combinatorial algorithm that computes the network strength
through O(n3) max-flow computations. Barahona [30] later
improved the time complexity toO(n2) max-flow compu-
tations1. Both algorithms are based on matroid theory, and
are highly sophisticated. Though the spanning tree packing
problem has an LP formulation, the number of variables is
exponential. It is therefore necessary to work on its dual
program, where the minimum spanning tree algorithms can
serve as the separation oracle. In comparison, ourcFlow
approach provides an effective alternative, which is easy to
understand, allows fully-distributed implementation, and still
achieves high time efficiency.

S

S S

f
f

1


2

21

Fig. 4. Transforming group communication into multicast transmission.

Group communication refers to many-to-many communi-
cation sessions where multiple sources multicast independent
data to the same group of receivers. The set of senders and the
set of receivers may or may not overlap. Previous work [2] has
shown that a many-to-many session can be easily transformed
into a multicast session, by adding asupersource, which is a
traditional technique in network flows. As illustrated in Fig. 4,
we can add an additional sourceS to the network, and connect
it to each of the sources in the group communication session,
with links of unbounded capacity. We may then apply the
cFlow LP to maximize the multicast throughput fromS to
all the receivers. Additional constraints can be applied toflow
rates on the newly added links between the super source and
the original sources in the session, governing fairness among
the original sources. The outcome from thecFlow LP is the
optimal throughput and its corresponding routing strategyfor
the original group communication session.

B. The case of multiple sessions

In its most general form, the optimal throughput problem
allows multiple communication sessions of different typesto
co-exist in the same network. Since multicast is representative
— in that unicast, broadcast and group communication can all
be transformed into multicast — it is sufficient to consider the
optimal throughput problem in the case of multiple multicast
sessions.

1A representative max-flow algorithm, such as the FIFO-preflow-push
algorithm, runs inO(n3) time itself.
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To achieve optimal throughput with multiple sessions, we
need to consider the problem of inter-session fairness. The
definition of fairness is usually application dependent; how-
ever, as long as it can be expressed using linear constraints, we
can easily include them in the LP formulation. With respect to
network coding in multiple sessions, it is theoretically possible
to apply network coding on multiple incoming streams of
different sessions. However, we argue against this possibility,
and usecoding by superposition[1], i.e., network coding
is applied only to incoming streams of the same session.
This argument is mainly supported by the computational
intractability of the optimal throughput problem if inter-session
coding is allowed. So far we are not aware of any efficient
algorithm that can compute max throughput with inter-session
coding, or any effective characterization of rate feasibility with
inter-session coding. In addition, our empirical experiences
show that allowing inter-session coding can hardly improve
optimal throughput, and it is not practical to code data streams
from different applications either.

ThemFlowLP given below is designed to solve the optimal
throughput problem with multiple multicast sessions, where
we use weighted proportional fairness as the fairness model. It
is the result of extending thecFlow LP to its multicommodity
variant. We assume there exist a total ofs multicast sessions,
numbered as1 . . . s. Each sessioni has a sourceSi, a number
of receiversTi1 . . . Tiki

, a set of conceptual flowsfi1 . . . fiki
,

as well as a weightwi indicating the importance of the session.
The scalarχ is the common weighted throughput for all the
multicast sessions, and the target of themFlow LP is to
maximizeχ.

Maximize χ
Subject to:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

χ ≤ fij (
→

Tij Si)/wi ∀i, ∀j

fij (
→
uv) ≤ fi(

→
uv) ∀i, ∀j, ∀

→
uv

P

v∈N(u)(fij (
→
uv) − fij (

→
vu)) = 0 ∀i, ∀j, ∀u

P

i
fi(

→
uv) ≤ c(

→
uv) ∀

→
uv 6=

→

Tij Si

c(
→
uv) + c(

→
vu) ≤ C(uv) ∀uv 6= Tij Si

c(
→
uv), fij (

→
uv), fi(

→
uv), χ ≥ 0 ∀i, ∀j, ∀

→
uv

The mFlow LP replaces the standard network flow con-
straints in thecFlow LP with a set of multicommoditycFlow
constraints. Since flows of different sessions contend for link
capacity, the summation of the per-session flow rates should
not exceed link capacities. Since flows within the same session
do not compete for link capacity, the effective flow rate within
a sessioni on link a is fi(

→
uv) = maxj∈[1..ki] fij

(
→
uv). The

max function is not linear, so this constraint is relaxed to
fi(

→
uv) ≥ fij

(
→
uv),∀j.

Theorem 4. In the case of multiple multicast sessions with
coding by superposition, the optimal end-to-end throughput
and its corresponding optimal routing strategy in undirected
data networks can be computed in polynomial time, by the
mFlow LP.
Proof: The correctness of themFlow LP builds upon the
correctness of thecFlow LP, which is proved in Theorem 2,

plus the fact that for coding by superposition, data transmission
from different sessions constitute totally different commodities
when competing for link capacity. Furthermore, it is easy to
check that both the number of variables and the number of
constraints in themFlow LP are on the order ofO(kms). ⊓⊔

C. The case of overlay networks

Since neither network coding nor data replication (for
IP multicast) are widely supported in the current-generation
network elements in the core, we consider the case ofoverlay
networkswhere only the end hosts have the full capabilities to
forward, replicate and code data streams, and the core network
elements (henceforth referred to asrouters) may only forward
data packets as is. We note that the case of overlay networks
is actually more general than the classical model of undirected
data networks we have used so far, which hints that the optimal
throughput problem may become harder to solve.

Let N = {G(V,E), C,M = {S, T1, . . . , Tk} ⊆ H ⊆ V }
be an overlay network with a multicast session. The multicast
group M is a subset of the end hostsH. If M = H, i.e.,
all end hosts are in the multicast group, Garget al. [31] has
shown that the optimal multicast throughput can be efficiently
computed in this case, by working on the dual program of a
natural LP formulation. It has also been shown in [31] that,
in the general case, the optimal throughput problem without
network coding is the overlay Steiner tree packing problem,
and is still NP-Complete.

With the support of network coding, however, we are able
to extend thecFlow LP to its overlay variant, referred to as
the oFlow LP, to solve the optimal throughput problem in the
model of overlay networks. TheoFlow LP takes a hierarchical
view of the multicast transmission, with both anunderlay
and anoverlay level. The underlay level corresponds to the
physical network topology, and has multicommodity flowsguv

connecting each pair of end hostsu and v, via only routers
as intermediate nodes. The overlay level is conceptual, and
contains end hosts fully connected as a complete graph. The
overlay link

→
uv has a capacity that is equal to the underlay

flow rateguv(
→
vu). We then apply thecFlow LP in the overlay

level to maximize the end-to-end throughput, where each node
is capable of replication and coding.

Maximize χ
Subject to:

8
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>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

χ ≤ fi(
→

TiS) ∀i
P

v∈H−u
(fi(

→
uv) − fi(

→
vu)) = 0 ∀i, ∀u ∈ H

fi(
→
uv) ≤ guv(

→
vu) ∀i, ∀

→
uv∈ H × H−

→

TiS
P

v∈N(u)(gpq(
→
uv) − gpq(

→
vu)) = 0 ∀p, q ∈ H, ∀u

P

pq
gpq(

→
uv) ≤ c(

→
uv), ∀p, q ∈ H, ∀

→
uv 6=

→
qp

c(
→
uv) + c(

→
vv) ≤ C(uv) ∀uv

c(
→
uv), fi(

→
uv), gpq(

→
uv), χ ≥ 0 ∀i, ∀p, q ∈ H, ∀

→
uv

Theorem 5. In the case of a single multicast session in the
model of overlay networks, the optimal end-to-end throughput



IEEE TRANS. ON INFORMATION THEORY & IEEE/ACM TRANS. ON NETWORKING, SPECIAL ISSUE ON NETWORKING & INFORMATION THEORY, JUNE 200612

and its corresponding optimal routing strategy can be com-
puted in polynomial time, using theoFlow LP.
Proof: Since relay nodes in the overlay network can not
replicate or encode data, a data stream that is transmitted
between two end hosts without passing a third end host
remains unchanged throughout the transmission and upon ar-
rival. Therefore, it is valid to model these direct transmissions
between end hosts as multicommodity flows. The validity of
the cFlow constraints in the overlay layer may be derived
from the correctness of thecFlow LP, which we have proved
in Theorem 2. Furthermore, inspection on the variables and
constraints in theoFlow LP reveals that, the number of both
are on the order ofO(|H|2m). ⊓⊔

Similar to the extension fromcFlow to mFlow, one may
extend theoFlow LP into its multicommodity variant to
accommodate multiple sessions in overlay networks. More
specifically, one needs to replace the overlaycFlow constraints
with the overlay mFlow constraints in the third group of
constraints of theoFlow LP. The resulting linear program
has both its number of variables and number of constraints
bounded byO((|H|2 + ks)m). This is usually not worse than
those of the single-sessionoFlow LP, since|H|2 dominates
ks in most cases.

D. The case of wireless ad hoc networks

A wireless ad hoc network is a multi-hop wireless network
consisting of nodes communicating via antennas. In contrast
to single-hop wireless wireless networks, nodes in an ad hoc
network relay data packets for each other to realize multi-
hop routing. Here we consider two different transmission
technologies in the underlying physical and media access
layers: omni-directional antennas and beam-forming antennas.

Omni-directional antennas and the physical model

With omni-directional antennas, signal propagation is broad-
cast in nature, and nearby transmissions interfere with each
other. Traditionally, there have been two major directionsin
modelling such wireless medium contention, thelogical model
and thephysical model. Ad hoc routing research uses the
logical model and view physical layer interactions as a black-
box: a local transmission is successful if the sender and the
receiver are within the effective transmission range, and there
is no other active transmissions within the interference range.
Under such a model, even if the routing and coding schemes
have been decided, determining the optimal temporal schedule
of per-hop transmissions to achieve the maximum throughput
is equivalent to the graph coloring problem, and is therefore
NP-hard.

On the other hand, the capacity of a link is determined by
its SNR (signal-to-noise ratio) in the physical model:

c(
→
uv) ≤ log(1 + SNR(

→
uv)), where

SNR(
→
uv) =

µ(
→
uv)

∑

r 6=u,v µ(
→
rv) + b

, µ(
→
uv) = ||uv||−αP (u)

(7.1)

In (7.1),µ(
→
uv) is the strength of the signal fromu perceived

at v, P (u) denotes the adjustable power level at nodeu, α is a
constant usually between2 and4, andb is background noise.

Under such a physical model, the maximum multicast
throughput problem can be formulated as:

Maximize χ
Subject to:


χ ∈ C(c)
c ∈ C(P )

whereC(c) is equivalent to polytopeP1 given link capacity
vector c, as defined in Sec.V-B, andC(P ) is the feasible
region for the capacity vectorc, as defined in (7.1). A critical
observation about this non-linear optimization problem isthat,
by relaxing fi ≤ c in P, we can decompose it into two
sub-problems without compromising optimality. Due to space
constraints, we only provide a brief sketch of the solution
method, more details can be found in our technical report [32].
A similar approach was also taken in [33], where near-optimal
throughput is targeted.

After relaxing fi ≤ c in P1 with price x, we can then
iteratively solve two sub-problems at the network layer andthe
physical layer respectively. At the network layer, we have the
flow routing sub-problem, maximizeχ−xT

∑

i(c−fi) subject
to flow conservation constraints only, which can be solved as
a network flow problem sincex and c are constant vectors
here. At the physical layer, we have the power allocation sub-
problem, maximizexT c subject toc ∈ C(P ). While C(P ) is
in general not convex, it can be transformed into a convex
one via time sharing techniques such as OFDM. After solving
both sub-problems, the price vectorx is updated according
to prescribed step sizes and the next iteration starts, until
convergence.

We point out, however, that the solutions presented above
do not take into account the fact that flows going out from
the same node may carry the same information, in which
case the broadcast nature of omni-directional antennas can
be exploited to further increase the throughput. Consequently
a lower bound of the optimal throughput is obtained. It is
our ongoing research to appropriately incorporate the wireless
broadcast advantage into the optimization framework for ad
hoc networks. We refer the readers to heuristic for incor-
porating the broadcast advantage discussed by Lunet al. in
[34], and to a related study of achieving minimum energy
consumption of wireless transmissions by Wuet al. in [35].

Beam-forming antennas and the node-centric approach

While omni-directional antenna leads to intense medium
contention, beam-forming antennas direct energy radiation
towards the intended receiver only, no node in other directions
will be affected by the transmission if beam-forming is ideal.
Therefore the radio capacity at each node is shared among
transmissions to and from it, and flow scheduling becomes
node-centric. We show that such a node-centric optimization
problem, as formulated below, can also be solved efficiently
via the subgradient approach.

Maximize χ
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Subject to:
8
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>
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>

>

>

>

:

χ ≤ fi(
→

TiS) ∀i (1)
P

v∈N(u)(f(
→
uv) + f(

→
vu)) ≤ C(u) ∀u (2)

P

v∈N(u)(fi(
→
uv) − fi(

→
vu)) = 0 ∀i, ∀u (3)

fi(
→
uv) ≤ f(

→
uv) ∀i, ∀

→
uv 6=

→

TiS (4)

f(
→
uv), fi(

→
uv), χ ≥ 0 ∀i, ∀

→
uv

In the LP above,C ∈ QV
+ denotes total radio capacity

available at each node. By relaxing
∑

v∈N(u)(f(
→
uv) + f(

→
vu

)) ≤ C(u), we obtain the equivalent Lagrangian dual problem:

Maximize L(f)
Subject to:
{

∑

v∈N(u)(f(
→
uv) + f(

→
vu)) ≤ C(u) ∀u

f(
→
uv) ≥ 0 ∀

→
uv

where

L(f) = MinP2

∑

i

∑

→

uv

f(
→
uv)yi(

→
uv)

andP2 is the same polytope ofyi as defined in Sec.VI-A.
Fixing f , L(f) can be computed in the same way asL(c)
in the link-centric case in Sec. VI, by separating the problem
into a sequence of min-cut computations. The only difference
is in the initialization and update of the primal variables.Here
f can be initialized according to an even capacity distribution,
by settingf [0](

→
uv) = min( C(u)

2|N(u)| ,
C(v)

2|N(v)| ), ∀
→
uv. Then at the

end of each iteration it can be updated based on new values in
yi and prescribed step sizes, and projected such that the total
incident flow rate respects the node capacity.

VIII. E MPIRICAL STUDIES

Due to the lack of efficient algorithms, previous studies
on the problem of improving session throughput are largely
based on experimental or intuitive insights. We argue that the
availability of thecFlow, mFlow and oFlow LPs has signifi-
cantly changed the landscape, and has made it computationally
feasible to study the exact benefits of various proposals to
achieve higher throughput, including a single multicast tree
with data replication, multiple multicast trees, and network
coding. Our empirical studies are based on the implementation
of the LPs and solutions that we have proposed. In comparison
studies, we have also implemented algorithms to compute the
optimal throughput with multiple multicast trees but without
coding, the optimal throughput with a widest multicast tree,
as well as the optimal throughput with all unicast from the
source to all receivers. Topologies used in our simulationsare
generated by the BRITE topology generator [36], with sizes
ranging from10 to 1, 000 nodes, both with and without power-
law properties, with heavy-tailed or constant link capacities.

How advantageous is network coding with respect to improv-
ing optimal throughput?

In order to evaluate the advantage of network coding with
respect to improving achievable optimal throughput, we have

implemented both thecFlow LP and a brute-force algorithm
to compute the Steiner tree packing number. The Steiner tree
packing algorithm enumerates all Steiner trees in the network,
assigns a flow variable to each tree, and then maximizes the
summation of all tree flows, subject to the constraints that the
total weight (throughput) of trees using each link should not
exceed its capacity.

We have evaluated both thecFlow LP and Steiner tree
packing (denoted asπ(N)) using our previous example in
Fig. 1, as well as a set ofuniform bipartitenetworks, which are
believed to be good candidates to show the power of coding on
improving throughput [24], [37]. A uniform bipartite network
C(n, k) consists of the data source and two layers: one withn
relay nodes and the other with

(

n
k

)

receivers. Each relay node
is connected to the sender, and each receiver is connected toa
different group ofk relay nodes, and all links have a capacity
of 1. For instance, the network in Fig. 1 isC(3, 2), and the
classic example showing the power of network coding [1] is
isomorphic toC(3, 2).

Table II summarizes the results of our empirical studies,
from which we have derived the following observations. First,
thecFlow LP is much more scalable and efficient than Steiner
tree packing, which fails to compute a solution for a networkas
small asC(5, 3), with only 16 nodes and35 links, but almost
50 million different Steiner trees. In separate experiments,
the cFlow LP is able to compute the optimal throughput
for networks having thousands of nodes. Second, optimal
throughput with coding is always lower bounded by that
without coding; however, network coding only introduces a
slight advantage, with theχ(N)/π(N) ratio no higher than
1.125. Third, coded transmission may lead to more integral
flow rates and throughput than uncoded transmission.

TABLE II

COMPUTING OPTIMAL THROUGHPUT: cFlow LP VS. STEINER TREE

PACKING

Network |V | |M | |E| χ(N) π(N) χ(N)
π(N)

# of trees
classical 7 3 9 2 1.875 1.067 17
C(3, 2) 7 4 9 2 1.8 1.111 26
Fig. 2 8 3 16 13.5 13.5 1.0 298
C(4, 3) 9 5 16 3 2.667 1.125 1,113
C(4, 2) 11 7 16 2 1.778 1.125 1,128
C(5, 4) 11 6 25 4 3.571 1.12 75,524
C(5, 2) 16 11 25 2 1.786 1.12 119,104
C(5, 3) 16 11 35 3 – – 49,956,624

Previous work [24] shows that in directed acyclic networks
with integral routing requirement, there exist multicast net-
works where the coding advantage grows proportionally as
log(n), and is thus not finitely bounded. However, we found
the situation is drastically different in undirected networks.
In [21], we use undirected splitting and graph orientation to
prove that, for multicast transmissions in undirected networks,
the coding advantage is bounded by a constant factor of2.

Given the bound1.125 obtained for contrived networks, and
the bound2 proven in theory, we further studied the coding
advantage in over one thousandrandomly generated topolo-
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gies. Our observation is that, forall the random topologies we
tested, the coding advantage always remains1.0, i.e., network
coding does not introduce any improvement in achievable
throughput. This implies that the fundamental benefit of net-
work coding isnot higher optimal throughput, but to facilitate
significantly more efficient computation and implementation of
strategies to achieve such optimal throughput.

Finally, we point out that the potential for network coding to
decrease cost in the min-cost multicast problem is essentially
the same as its potential to increase throughput in the max-
rate multicast problem [38], and both are equivalent to the
integrality gap of a bi-directed relaxation of the minimum
Steiner tree problem [39]. The largest value known so far for
these three equal quantities is8/7 [38], [39]. Our results in
Table II have also advanced the previously known largest value
in quasi-bipartite networks, which was10/9.

How advantageous is standard multicast compared to unicast
and overlay multicast?

The cFlow LP is instrumental to precisely compute the
achievable optimal throughput with one multicast communi-
cation session, either with network coding or with multiple
multicast trees, since the outcomes from the two are hardly
different. In either case, data replication need to be supported
on all network nodes, including core network elements. It has
been common knowledge that, when compared to unicast from
the source to all receivers, standard multicast brings better
bandwidth efficiency and higher end-to-end session through-
put. However, even in the case of unicast, path diversity needs
to be exploited to achieve optimal throughput, equivalent to the
maximum unicommodity flow problem. It is not immediately
clear how advantageous standard multicast is.

Overlay multicast balances the trade-off between the prac-
ticality of standard multicast and unicast. It refers to thecase
where only the members of the multicast group may replicate
or code data, whereas all other nodes may only forward
data. The optimal throughput achieved by overlay multicast
is efficiently computed by theoFlow LP.

We perform a quantitative study that compares the optimal
throughput achieved with standard multicast, overlay multicast
and unicast. The study is performed in random networks with
up to 500 nodes and over1000 links. There are3 and 10
members in the multicast group respectively, in two different
sets of tests. Multicast nodes are randomly selected, with
different multicast groups being as disjoint as possible. For
each network size, multiple tests are performed with different
network topologies and different choices of the multicast
group, the results are then averaged.

As we may observe from Fig. 5, there exists obvious
differences between standard multicast throughput and all
unicast throughput, and the differences are more significant
in Fig. 5(b), where the scale of the multicast transmission is
larger. This is due to the fact that with a large number of
receivers, the number of unicast flows increases in the all
unicast approach, and links incident to the sender become
bottlenecks for the transmission. Surprisingly, the figurealso
suggests that, the optimal throughput achieved by overlay
multicast is almost identical to that achieved by standard
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Fig. 5. Achievable optimal throughput using standard multicast, overlay
multicast, and all unicast from the sender to all receivers.

multicast, where all network nodes are able to replicate or code
data. On average, the optimal throughput of overlay multicast
is over 95% of standard multicast. This observation shows
that, from the perspective of maximum achievable throughput,
while there may exist contrived network topologies that show
more significant advantages of standard multicast over overlay
multicast, little difference remains once large scale practical
network topologies are considered. In summary, the all unicast
approach does not scale, while overlay multicast may closely
approach optimal throughput without requiring core routers to
be modified.

How time-efficient is the subgradient solution?

Fig. 6 shows the convergence speed of the subgradient
algorithm on random networks generated by BRITE [36],
with network sizes up to1000 nodes, and with2, 5, and10
receivers, respectively. As we can see, the optimal solution
is usually approached within10 iterations, regardless of the
network size or the multicast group size. However, the com-
putation time for large networks or for large multicast groups
are longer, due to the fact that the time taken by each single
max-flow/min-cut computation is roughly proportional ton3,
and that the number of max-flow/min-cut computations in each
iteration is proportional to the multicast group size.

We proceed to compare the computation time of the follow-
ing three approaches for computing maximum multicast rate in
networks with various sizes: Steiner tree packing, direct linear
program solving, and applying the subgradient algorithm. To
make the comparison possible, we further implemented a
brute-force algorithm to compute the optimal Steiner tree
packing number. The algorithm exhaustively enumerates all
distinct Steiner trees connecting the multicast group, then
assigns a flow rate to each tree, and maximizes the summation
of all tree flow rates with the constraint that, total flow rates
of trees using a linkuv should not exceed the capacityC(uv).
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Fig. 6. Convergence speed in random networks.

The comparison result is given in Fig. 7. The multicast group
consists of three nodes.

10 20 50 100 200 500 1000
10

−1

10
0

10
1

10
2

10
3

10
4

|V|

R
un

ni
ng

 ti
m

e 
(s

)

Subgradient algo.
LP: interior point
Steiner tree packing

Fig. 7. Computation time comparison: Steiner tree packing, general LP
solver, and proposed subgradient solution (axes onlog scale).

The scalability of the brute-force Steiner tree packing algo-
rithm is extremely poor. We find that its running time crucially
depends on the number of links in the network, in a roughly
exponential fashion. It basically fails for networks with more
than50 links, and may take more than a minute for a network
with only 11 nodes. Solving the LP with the interior point
method may handle small to medium sized networks in a
reasonable amount of time (on the order of seconds), but
the running time grows rapidly as the network size further
grows. On the other hand, the subgradient algorithm may
solve networks with one thousand nodes in around1 second.
Another important advantage of the subgradient solution over
the direct LP solving method is that, the former is amenable
to fully distributed implementations, while the later is in-
herently centralized. We also point out that the computation
time discussed here corresponds to the one-time only session
set up delay, and does not apply to successive data packet
transmissions.

How sensitive is optimal throughput to node joins?

When new nodes join the multicast session, how may

achievable optimal throughput be affected? Intuitively, if a
relay node joins the multicast group and becomes a new
receiver, the achievable session throughput should decrease,
due to the following two causes: (1) a larger number of
receivers may lead to more intense competition for bandwidth;
and (2) a new node with low capacity may become a bottleneck
and limit the throughput for the entire session. Our simulation
results show that, the second cause has a much more significant
impact than the first one.

Fig. 8(a) shows variations of optimal throughput as the
number of nodes in the multicast group increases from three
to ⌈n/2⌉, and then ton (effectively a broadcast session),
for various network sizesn. In this experiment, network
topologies are generated with two edges per node without
power-law relationships, with heavy-tailed bandwidth distri-
bution between 10 and 50 Kbps on the links. As we can
observe, when the size of the multicast group increases from
three to⌈n/2⌉, the effects on achievable throughput is rather
significant. However, further expanding the multicast group
to the entire network leads to a much smaller decrease. Both
causes that we have discussed contribute to the initial decrease
of throughput, while the second cause (i.e., the effects of a
bottleneck node) plays a less important role in the subsequent
decrease — when the multicast group contains half of the
nodes in the network, it is very likely for the group to have
already contained a node with low capacity.

20 25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

45

Number of nodes in the network

O
pt

im
al

 th
ro

ug
hp

ut
 (

K
bp

s)
(a) Heavy−tailed link capacity
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Fig. 8. Variations of optimal throughput due to new nodes joining the
multicast session.

We further performed the same tests on power-law network
topologies with10 Kbps constant link bandwidth, and the
results are shown in Fig. 8(b). In the power-law topologies,
most nodes have small degrees of two or three, while a
small number of nodes have high degrees. Therefore, the
initial multicast group usually contains a node with a small
degree already, which also has a low capacity, since the
link bandwidth is constant. In this case, only inter-receiver
bandwidth competition remains as a major concern. However,
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as we can observe in the figure, in most cases the optimal
multicast throughput remains roughly constant, even afterall
the nodes have joined the multicast session. This counter-
intuitive observation shows that, new receivers may share
bandwidth with existing receivers well, and do not significantly
affect the achievable throughput, as long as their capacities are
not too low. Spikes in Fig. 8(b) correspond to the occasional
cases where nodes in the initial multicast group all have
relatively high capacities. Both results in Fig. 8(a) and 8(b)
have led to the same observation that, when new nodes join a
multicast session, the decreased optimal throughput is mainly
due to bottleneck receivers with lower capacities.

How sensitive is optimal throughput to the addition of new
sessions?

When new sessions are added to the network, how do
they affect achievable optimal throughput? ThemFlow LP,
presented in Sec. VII, makes it feasible to carry out our
empirical studies. Fig. 9 shows the variation of optimal
throughput as new communication sessions are created. Three
types of throughput are shown: (1)previous optimal, which
represents the optimal weighted session throughput beforethe
new session is added; (2)incremental, which is the weighted
throughput for the new session using residual link capacities
only, or just the previous optimal throughput if the achievable
throughput of the new session is higher; and (3)re-optimized,
which is the re-computed optimal session throughput after
the new session is added. Four groups of simulations are
performed, with two, three, four, and five existing sessions,
respectively, before the new session is established. Each mul-
ticast group has a size five, and nodes in different multicast
groups are chosen to be as disjoint as possible. Each session
is assigned an equal weight.
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Fig. 9. Throughput variations as a new session is created.

Results in Fig. 9 show that, the addition of an extra session
does not dramatically affect the achievable optimal throughput,
especially when the network size is large in comparison to
the number of nodes involved in the transmissions. However,

if the existing sessions remain transmitting according to the
optimal transmission strategy computed before the new session
joins, and only residual capacities can be utilized to serve
the new session (theincremental throughputcase), then the
resulting throughput is not satisfactory unless the numberof
sessions is very small (s = 2). In general, this may lead to
very low, even zero, throughput for the new session. Therefore
it is necessary to perform re-optimization before a new session
starts to transmit.

How sensitive is optimal throughput to fairness constraints?

In order to investigate how inter-session fairness require-
ments affect the optimal throughput, we establish three one-
to-two multicast sessions in networks of various sizes between
10 and 350, and computed their total optimal throughput with
the following fairness constraints, respectively: (a) no fairness
requirement, which leads to the maximum value possible for
the total throughput; (b) absolute fairness, in which each
session is required to have exactly the same throughput; (c)
weighted proportional fairness, where the throughput of each
session is proportional to the associated weight of that session;
and (d) max-min fairness, in which no session throughput
can be increased without decreasing another already smaller
session throughput.

As a first small-scale experiment to gain some insights,
Fig. 10 shows the total throughput of three sessions in a
network with twenty nodes, using themFlow LP. Multicast
groups are chosen to be as disjoint as possible. The total
weight of three sessionsw1 + w2 + w3 = 1. As we can
see, the weight distribution has a significant impact on the
achievable total throughput. When the three weights are heav-
ily unbalanced, the session with the smallest weight can not
realize its throughput potential, and consequently leads to a
small value of total throughput. The achievable throughput
with absolute fairness atw1 = w2 = w3 = 0.333 is 91.8
Kbps. The global optimal throughput107.0 Kbps is achieved
at (w1, w2, w3) = (0.287, 0.407, 0.306), which turns out to be
identical to the throughput with max-min fairness in this case.
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Fig. 10. Total throughput of three multicast sessions, as inter-session fairness
requirements change.

Further results in Table III show that the excellent perfor-
mance of max-min fairness in the above example is not a
coincidence. As we may observe, when the network size is
relatively large (50 and above in the table), max-min fairness
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always leads to optimal throughput. When the network size is
small (10 and20 in the table), the inter-session competition for
bandwidth becomes more intense. The throughput with max-
min fairness may be inferior to the optimal throughput in this
case, but the difference is usually small.

TABLE III

TOTAL ACHIEVABLE THROUGHPUT WITH MAX -MIN FAIRNESS VS. GLOBAL

OPTIMAL THROUGHPUT

network size 10 50 100 150 250 350
max-min (Kbps) 120.0 173.3 160.0 146.7 146.7 183.3
optimal (Kbps) 126.1 173.3 160.0 146.7 146.7 183.3

Does optimal throughput lead to low bandwidth efficiency?

In order to find out whether achieving optimal throughput
sacrifices bandwidth efficiency, we have conducted perfor-
mance comparisons between optimal throughput multicast and
single tree multicast. In the latter case, we compute thewidest
Steiner tree, which has the highest throughput from all possible
multicast trees. The throughput of a tree is the lowest capacity
of its links. We choose the tree with the highest throughput
rather than the one that is most bandwidth efficient, since the
latter is equivalent to the minimum Steiner tree problem, which
is hard to compute or to approximate. Even when we can find
such a bandwidth efficient tree, it may have an exceedingly
low throughput, which is not practical for data transmissions.
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Fig. 11. Achievable throughput and bandwidth efficiency: a comparison
between the optimal throughput multicast (cFlow LP) and the widest Steiner
tree.

In Fig. 11, we compare both achievable throughput and
bandwidth efficiency between the two approaches. Bandwidth
efficiency is computed as the total receiving rate at all receivers
divided by the total bandwidth consumption. We tested two
groups of networks, one with variable link capacity conform-
ing to the heavy-tailed distribution, the other with constant
link capacity. For the variable link capacity case, optimal
throughput is higher than the widest Steiner tree throughput by

a factor of over2 on average, showing the advantage of using
the optimal transmission strategy computed with thecFlowLP,
beyond a single multicast tree. Interestingly, the bandwidth ef-
ficiency of optimal throughput multicast also outperforms that
of the widest Steiner tree multicast. The widest Steiner tree
insists to use links with the highest bandwidth possible, and
therefore may result in rather long tree branches, especially
when the network size is large. For the constant link capacity
case, the difference between the optimal and widest Steiner
tree throughput becomes even larger. Every tree in this casehas
the same throughput, therefore the “widest” selection criterion
becomes irrelevant. However, the difference in bandwidth
efficiency decreases, since it is no longer necessary to include
long tree branches to achieve the maximum tree throughput.

IX. CONCLUDING REMARKS

The main problem we have studied in this paper is to
compute and achieve optimal throughput in data networks,
in the general case of undirected communication links. We
have been pleasantly surprised at how results from network
coding are able to facilitate the design of efficient solutions
to this fundamental problem that was previously viewed as
very hard. We also show the counter-intuitive conclusion
that, the most significant benefit of network coding is not to
achieve higher optimal throughput, but to make it feasible
to achieve such optimality in polynomial time. We show
that such efficient algorithms may be designed for multiple
communication sessions of a variety of types, and for the
more realistic model of overlay networks. Simulation studies
also suggest that, overlay multicast techniques may approach
optimal multicast throughput quite well.
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