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On Achieving Maximum Multicast Throughput
In Undirected Networks

Zongpeng Li, Baochun Li, Lap Chi Lau

Abstract—The transmission of information within a data net- information flows at network nodes, referred to metwork
work is constrained by the network topology and link capacities. coding[1], [2], the information flow rate in a multicast session
In this paper, we study the fundamental upper bound of infor- may be improved in directed networks.

mation dissemination rates with these constraints in undirected . ) _— -
networks, given the unique replicable and encodable properties In ,th's paper, we seek to b”_”g new_ |nS|ghts_ and efficient
of information flows. Based on recent advances in network coding Solutions to the problem of maximizing information flow raite
and classical modelling techniques in flow networks, we provide (or throughpuj in undirected data networks. We first illustrate
a natural linear programming formulation of the maximum  the power ofnetwork codingwith respect to achieving maxi-
multicast rate problem. By applying Lagrangian relaxation on the mum throughput. Although previous directions of computing
primal and the dual LPs respectively, we derive (a) a necessary . . . .

and sufficient condition characterizing multicast rate feasibility, the maximum mul_t|cast rate_s involve solving NP-CompIet_e
and (b) an efficient and distributed subgradient algorithm for ~Problems, the maximum multicast rates and the correspgndin
computing the maximum multicast rate. We also extend our optimal multicast strategy can indeed be computed effilgient
discussions to multiple communication sessions, as well as tojn polynomial time, with the unique encodable property of
overlay and ad hoc network models. Both our theoretical and jntormation flows considered. We provide a natural linear-pr

simulation results conclude that, network coding may not be . f lati f th " th hout bl
instrumental to achieve better maximum multicast rates in most 9f@mming formulation of the maximum throughput probliem,

cases; rather, it facilitates the design of significantly more efficien  With & polynomial number of variables and constraints. By
algorithms to achieve such optimality. applying Lagrangian relaxation on the primal LP, we derive a
Index Terms— Duality, Multicast, Network Coding, Network .necessary and sufficient conditioh for multicas.t rate tﬂ'.ﬁ!lsli
Flow, Steiner Tree, Subgradient Optimization, Undirected Net- in undirected networks, from a distance labelling perspect
works We show how it generalizes correspondent results in the

unicast and broadcast cases, and how it connects multicast
|. INTRODUCTION throughput with network capacity and bandwidth consump-

E study in this paper information dissemination in aHon. We further apply Lagrangian relaxation on the dual LP,
W undirected network. which consists of a set of en nd construct an efficient subgradient algorithm for corimgut

hosts and switches interconnected via undirected (or dppl%. € maximum mUIt'CaSt throughput gnd_the_ (_:orr_espon_dlng op-
communication links. In data networks with known topolagie imal transm_lssmn scheme. We pr_owde |ntU|t_|ve mteramens_
and bandwidth capacity bounds for each undirected Iink,0 th_e algorlthrr_], and show that it can be implemented in a
fundamental problem is to compute and achieve the maxim tnbute@_ fashion. . .

end-to-end throughput for one or multiple active communica n 'addltlc.)n, we extend the SO|U'FIOn to multiple concurrent
tion sessions. Depending on the objectives of applica,tiansSeSSIonS without inter-session coding, as well as to offest

communication session may be in the form of unicast (one-t [ comrr_]untlpanoEn, mC“rJ]dm?h unicast, Ik;roadc?zt tand tgroukp
one), multicast (one-to-many), broadcast (one-to-atigroup communication. Even when the generalform of data networks

communication (many-to-many). Our focus is on muIticasitS modified to reflect realistic characteristics of overlagt-n
which is representative in that the other types of trandoniss works (where only end hosts at the edge may be able to

are special cases of or can be transformed into multicégpl'cate and code data), or wireless ad hoc _ne_tworks (wh_ere
transmissions. ata is communicated through antennas), similar modelling

Packet transmission in data networks may be modellgg_lqhsomt'o.r g.alpthm?uef? qretstlllletf_fectlve. kes it ible t
as the flow of bit streams, referred to egormation flows d € availabiity o te |c]:en S0 L:.'Ons fnlﬁ €s |h.pos§: € to
Compared to classical network flows, information flows ma) udy various aspects of properties of hé achievable rates

not only be buffered and forwarded, but also be replicate a realistically sized networks. We present empirical &ad

coded. In previous work, it has been shown that by codi HaSEd on 5|m_ulat|0n results overthousands of test SCansio
ifg our algorithms. We compare the maximum multicast rates
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to facilitate significantly more efficient computation ofeth There have been studies on achieving optimality with
strategies to achieve the maximum rate of information flowsespect to computingoblivious routing strategies in data
Our empirical studies also show that overlay multicast,clvhi networks. The objectives are to maximize throughput for a
has recently attracted extensive research efforts, maysée usource-destination pair, and to minimize congestion on the
to approach maximum rates quite well. To the best of ometwork. Most notably, using linear programming techngue
knowledge, this work is the first that systematically stsdigpolynomial timealgorithms (with a polynomial number of
the effects of network coding with respect to maximizingariables and constraints in the LP formulation) can be con-
information flow rates irundirectednetworks. structed to compute strategies fiptimal oblivious routing for
The remainder of this paper is organized as follows. We firatyy network, directed or undirected [11]. Though we also em-
discuss related work in Sec. Il. From Sec. Il to Sec. VI, wploy linear optimization tools and study undirected networ
present the feasibility condition and efficient solutions the our problem domain is more general: while optimal oblivious
single multicast case. In Sec. VII, we extend our resulthéo trouting focuses on origin-destination pairswficastsessions
cases of multiple sessions of unicast, multicast, broadand (possibly exploiting path diversity), we focus on a variefy
group communication. We also consider the model of overl@gmmunication sessions, including unicast, multicasbat¥
networks and the model of wireless ad hoc networks. We theast and group communication. We seek fundamental insights
present empirical studies in Sec. VIII, and conclude theepapn how optimal a routing strategy may become, and what is the
in Sec. IX. maximum achievable throughput in a communication session.
Recent research in information theory discovers that mguti
alone is not sufficient to achieve the maximum information
transmission rate across a data network [1], [2]. Rather,
The problem of achieving optimal end-to-end throughpuipplying encoding and decoding operations at relay nodes as
with efficient algorithms has not been discussed in depitell as at the sender and receivers, are in general necessary
in existing literature. There exist, however, similar geshs in an optimal transmission strategy. Such coding operation
that have been extensively studied. Towards the directfon are referred to ametwork coding The pioneering work by
Quiality of Service (QoS) routing, the objective is to find endAhlswedeet al. [1] and Koetteret al. [2] proves that, in a
to-end paths or multicast trees that satisfy specific baditwi directed network with network coding support, a multicaser
or delay constraints, and therefore provide the desired QBSfeasible if and only if it is feasible for a unicast from the
guarantees [3]. With respect to end-to-end throughputirfind sender to each receiver. ki al. [12] then prove that linear
good topologies that satisfy bandwidth requirements isi-oboding usually suffices in achieving the maximum rate.
ously different from — and arguably easier than — finding In [13], Jaggiet al. study efficient code assignment in
optimal ones. directed acyclic networks. They design polynomial time al-
There exists an extensive body of research in the areagafrithms that determine the coding operations to be applied
multicast routing in wide-area IP networke.q., [4]). The at each node, in order to achieve the maximum multicast
advantage of IP-based multicast is brought by data packate. Their result improves the previous algorithm of dti
replication on multicast-capable switches, improving ddanal., which performs exponentially many linear independence
width efficiency and throughput compared to naive all urticamspections [12]. Code assignment is complementary to our
between the source and the multicast receivers. Howewee siwork in this paper. Our subgradient algorithm finds the optim
it is based on the construction of a single tree, the enditb-erouting strategy, which specifies how much flow is to be
throughput is not optimal compared to what is achievable bguted through each link. Code assignment then determines
a mesh topology beyond a tree. the content of these flows.e., their linear relation with the
As IP multicast is not readily deployed, algorithms proeriginal information flows at the sender.
moting application-layer overlay multicast have recefien Traditional network flow theory studies the transmission of
proposed as remedial solutions, focusing on the issue of cgoods within a capacitied transportation network. The max-
structing and maintaining a multicast tree using only enstho imum transmission rate between two nodes is characterized
[5], [6]. Though a single multicast tree may not lead to ogtim by the celebrated max-flow min-cut theorem [14]flow rate
throughput, recent studies.., SplitStream [7], CoopNet [8], x between nodes and v is feasible, if and only if every
Digital Fountain [9] and Bullet [10]) have proposed to @i cut betweernu and v has size at least. Various algorithms
either multiple multicast treeddres) or a topologicalmesh may compute the maximum flow efficiently, some of which
to deliver striped data from the source, using either migitipallow fully distributed implementatione.g, the push-relabel
description coding or source erasure codes to split comtentalgorithm [14] and thee-relaxation algorithm [15]. While
be multicast. These proposals have indeed improved end-tdormation flows also need to confine to network topology and
end throughput beyond that of a single tree, but there hamaspect link capacities, they are different than commdititys
been no discussions on whether the optimal throughput maythat they are replicable and encodable. Data replicatith
be achieved, or how close the proposed algorithms approaching are essential in throughput optimization for infation
optimality. In this paper, we study such achievable optitpal flows.
while considering the general case where the data sourc®ur subgradient solutions in this paper were also inspired
transmits a stream of bytes, and is not assumed to perfoosn a preliminary version of [16], in which Lurt al. suc-
any source or error correction coding. cessfully design subgradient algorithms for computing the

Il. RELATED WORK
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min-cost multicast topology in directed networks. Bothithe
algorithm and ours target efficiency and the potential for
distributed implementation. Their algorithm works on atjgér
Lagrangian dual of the primal problem, and employs primal
recovery techniques to obtain the entire optimal solutdar
algorithm applies Lagrangian relaxation on the dual proble
and compute the entire optimal primal solution from partial
primal solution through pure combinatorial computations.
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(a) Steiner tree packing and (b) multicast with network coding.
multicast without coding.

HI. ACHIEVING OPTIMAL THROUGHPUT INUNDIRECTED Fig. 1. The achievable optimal throughputli without coding, an@® with
DATA NETWORKS. THE SINGLE MULTICAST CASE coding.

We begin our study from the case of a single multicast

session. We consider the general form of data networks, refigorithm has an approximation ratio bf-n 3/2 ~ 1.55 [19].
resented by a simple gragh = (V, E) with undirectededges With the same example, we can also show that the achievable
between network nodes. Each edge represents a communggiimal throughput with network coding #s(Fig. 1(b)), which
tion link, and the edge capacities are specified by a functigh higher than that achieved without coding. Consequently,
C:E— Q; (whereQ, denotes the set of positive rationakven if Steiner tree packing is computationally feasitileyay
numbers), representing the available bandwidth capaatife not always yield the actual optimal multicast throughput.
communication links. We use = |V| to denote the number of Steiner strength.In an undirected link-capacitied networ¥,
nodes andn = |E| to denote the number of undirected linkswe consider partitions of the network where there exists at
Throughout this paper, we focus on thractional model of |east one source or receiver node in each component of the
data routing, where the capacity of each link may be shargdrtition. Let P be the set of all such partitions. Ti8teiner
fractionally in both directions, and information flows mag bstrength of N is defined asmin,ep |E.|/(|p| — 1), where
split and merged at arbitrarily fine scales. |E.| is the total inter-component link capacity on the set of
We useM = {S.T1,..., Ty} C V to specify the set |inks E. being cut, andp| is the number of components in
of nodes in the multicast group, with' being the sender, the partitionp. It is a natural extension afietwork strength
and k being the number of multicast receivers. In graphicgp0] defined for a broadcast network. It appears to be a
illustrations throughout this paper, terminal nodesMihare reasonable direction to compute the optimal throughput by
shown as black, and relay nodes ih— M are shown as computing the Steiner strength, due to the following two
white. Links are labelled with their capacities, and unledte reasons. First, it is known that network strength is eqeivial

links each has a capacity af to the achievable optimal throughput in the well-studiedeca
of broadcast networks [21]. Second, these two quantiies
A. Steiner tree packing and Steiner strength equal in most networks, especially in real-world networks o

To compute the optimal throughput of multicast session@ndqmly generat_ed petworks. we are aware of only a few
Steiner tree packinfl7], [18] andSteiner strengtlihave been contrived topolt;gles n which the%/ dlffelr from each other.
the state-of-the-art. Unfortunately, both are NP-hardtsmhs. Egﬂgtuna}ely, the Sltlemer strength problem turns out to be
Steiner tree packing.Consider the case of information flows ™ omplete as well.
in one multicast session from a source to a set of destirmtiomheorem 1. The Steiner strength problem is NP-Complete.

It can be theoretically shown that, if coding is not consédkr Proof: We present a brief outline of the proof. We can
achieving optimal throughput via multiple multicast treées reduce another well-known NP-Complete problemgax cut
equivalent to the problem @teiner tree packingvhich seeks [22], to the Steiner strength problem in polynomial timeeTh
to find the maximum number of pairwise edge-disjoint Steineeduction works in essentially the same way as the one given
trees, in each of which the multicast group remains condectéy Dahlhauset al, in their NP-Completeness proof for the
An intuitive explanation to such equivalence is that, eacdhultiterminal cutproblem [23]. We observe that in the instance
unit throughput corresponds to a unit information flow beingraph constructed in their proof, the optimal multiternhina
transmitted along a tree that connects every node in thepgroout always leads to the minimun®,|/(|p| — 1) ratio, and
The maximum number of trees we can find corresponds to tisetherefore always the optimal partition that correspotuals
optimal throughput for the session. Fig. 1(a) shows such #we Steiner strength value of the network. Since the max cut
example. In the figure, each letter corresponds to a distirgtthe original graph corresponds to the optimal multitevahi
Steiner tree, and nine such Steiner treedd(7) exist in the cut, it also corresponds to the optimal partition for theirgte
shown packing scheme, where the tree corresponding tostrength. The remaining steps of the proof can be found in
is highlighted. Since each link with unit capacity needs t{23] and are omitted in this paper. O
accommodates Steiner trees, the achievable throughput on The fact that computing Steiner strength is NP-Complete
each tree is, therefor@,2. This leads to a multicast throughputalso rules out the possibility that Steiner strength and- opt
of 1.8, which is optimal without coding. mal multicast throughput are always equal. If the maximum

Unfortunately, Steiner tree packing has been shown to bmulticast rate always equals to the Steiner strength, then t
NP-Complete [17], [19], and the best known polynomial timexistence of a partition withE.|/(|p| — 1) = x can serve as
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a short certificate for the claim that no transmission srate Subject to:

can achieve a higher multicast rate thanand vice versa. ~ -

Consequently both the maximum throughput problem and { y(w) +p(v) > p(u) Y uv#TS

the Steiner strength problem would be Co-NP. This is very p(T) = p(S) 2 1

gnlikely to be true given the fact the Steiner Strength Eobl y(av) > 0 v

is NP-Complete.

IV. M AXIMUM MULTICAST RATE : LINEAR PROGRAMMING In the min-cut LP, vectoy indicates which links are “cut”.
FORMULATION This LP always has an optimal solution that is integral, weher

Despite the previous pessimistic views, The introductio‘ﬁaCh entry iny is valued to eithed or 0, indicating whether

of network coding dramatically changes the picture. In thi€ corresponding link is in the min-cut or not. The consitsi

section, We first formulate the maximum multicast throughpL'J’nply that, for each pathP’ connecting the sourc§ to the

problem as a linear network optimization problem, with botHeStination?, >z, _,v; > 1, i.e, at least one link along the

the number of variables and the number of constraints bcwn(f@_th is cut. The objective is to minimize the total link caac

by O(km). The resulting LPs are a natural combination gpeing cut.

recent advances on multicast with network coding and aaksi

formulation techniques in flow networks. We then show that

optimal solutions from the linear program gives exactly thB. The primal cFlow linear program

maximum achievable throughput, as well as the correspgndin

flow routing strategy. We are now ready to present our linear programming for-
Based on our LP formulation, we derive in Sec. V énulation of the maximum multicast rate prOblem. Intuith(eI

necessary and sufficient condition that characterizesicastt it orients undirected links into directed ones, and essabb

rate feasibility in undirected networks. Based on its du@) L Vvirtual network flows from the sender to each receiver. Viecto

we design in Sec. VI a subgradient algorithm that efficiently € Q- stores capacities for directed linkss., the allocation

solves the LP in a distributed manner. Our primal and du@f the undirected link capacity in both directiong.is the

linear programs have an underlying structure of network floverall multicast rate. Vectorg; € Q¢ denotes the network

and cut, respectively. For the ease of understanding ard lgtow from senderS to receiverT;. Directed linksT;S with

reference, we present the max-flow and the min-cut line@finite capacity are again introduced for a concise presiamt

programs first. of the LP.
A. The max-flow LP and the min-cut LP Maximize X
_ Subject to:
In the max-flow LP, TS is a virtual directed link with —

infinite capacity, going from the destinatigh to the source | X < fi(ZiS) vi (@D
S. N(u) = {v|uv € E} denotes the set of neighbors of nodd fi(uv) < c(uv) Vi,V w#T;S  (4.2)
u. f € Qf is the flow vector, wherel = {uv, vu |uv € E} is S venq (filuv) = fi(vw)) =0 Vi, Vu (4.3)
the set of directed arcs. The scajais the overall end-to-end | c(uv) + c(vu) < C(uw) Vuv # TiS (4.4)

flow rate. The max-flow LP essentially maximizes the end-to- _ — L =
end flow rate, with link capacity limits and flow conservatiorf("**)> fi(#0):x = 0 Vi,V w
requirements (total incoming flow rate at a node equals its

total outgoing flow rate). Flow conservation at the sourcg an

destination nodes are possible due to the virtual ik we
add, on which the flow rate exactly equals the overall flo
rate from.S to 7.

This linear program is referred to as ttiElow LP, reflecting
We fact that each network floy; is conceptual rather than
physical, and two different flows do not contend for the
capacity available at a directed link. Constraints in thienpt
program require capacities allocated to both directiortstmo
exceed the undirected link capacity (4.4), each flfjwo be
Maximize Y= f(fs) a valid network flow (4.2)(4.3), and the multicast rate not to
exceed any of these network flow rates (4.1). Essentially, th

The max-flow linear program

Subject to: ) . i . ; ;

_ primal LP tries to establish an orientation of the undirdcte
f(uv) < C(uv) Y wo#£TS network, within which it sets up independent network flows
S e (f(uv) = fou)) =0 Vu from the sendef to each receiver;. It does so in an optimal

_ . way, in that the minimum of the independent max-flow rates
fluv) =0 Vv — which by the result of Ahlswedet al. [1] is equal to

the multicast rate — is maximized. A feasible solution to the
primal LP provides an orientation of the original network,
c(uv); a flow routing schemef(uv) = max; f;(uw); and a
Minimize > = Cluv)y(uv) feasible multicast ratey.

The min-cut linear program
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C. The dual cFlow linear program

The dual linear program for the maximum multicast rate x = max[min(maximums — T; flow rate)],
problem is: 0€0 " i
where O denotes all possible orientations of the network,
and M — {my} is the set of multicast receivers. Recall the

Minimize 2w Cluv)z(uv) recent breakthrough in network coding [1], [2] shows that, f
Subject to: a fixed orientation of the network, a ratecan be achieved for
— the entire multicast session if and only if it can be achiefeed
>S5y Y TS 4.5 . . . . .
m(“i) =2y (;w) 1,“} i g (4.5) each multicast receiver independently. This implies ttfae,
g? ELT“-))) jg?((gg S Z?(“) :Z’v w7 Ty Ej‘gg maximum throughput in each orientation equals the minimum
Sl (4.8) of the maximum source to receiver flow rates. Ttilow

~ ~ LP essentially maximizes this min-max flow over all possible
z(uv),yi(uv), zi = 0 Vi, ¥ uv network orientations, and obtains the max-min-max flow that
is precisely the maximum multicast throughput in the ordin
undirected network. Further, the source may transmit méer
While the primal LP is in the form of flow maximization, tion to each receivem; according to the conceptual floy.
the dual LP is in the form of cut minimization. In an optimalShould more than one conceptual flows utilize the capacity on
solution, each dual variable in vectors y and z is valued the same link, the conflict can always be resolved, provided
between0 and 1. In the dual constraints, (4.8) distributeghat network coding is applied appropriately [1], [2].
weights among the cuts betweehand eachZ;. (4.6) and The number of variables in the primal program and the
(4.7) require each cuj; to be a valid cut, except that an edgéumber of constraints in the dual program é&+1)m +k +
in the cut will now be cut to percentagg, rather thani00% 1. The number of constraints in the primal program and the
as in the minimum cut LP. Then the cut values of a link ifumber of variables in the dual program @2é+1)m-+kn+k.
the k different cuts are added up in (4.5). If the summatiorf8oth are on the order aD(km).
in two directions differ, the larger one is taken to be the cut o
value for the undirected link. The optimal routing strategy computed by tbElow LP
The variable-constraint correspondence in the primal afgecifies the rate of data streams being transmitted alaiy ea
dual LPs is given in the table below. It will later assist us tdnk. Based on the routing strategy, we need to perform the

decide which constraints to relax in Sec. V and Sec. vI. additional step ofcode assignmento compute thecoding
strategy, before data streams may be transmitted. The godin

primal | (4.1) (4.2) (4.3) (4.4) ¢ flav) | f(1;5) | x | Strategy includes one transformation matrix for each node,
dual | 2 Y P T (45) (4.6) @7 (4.8) Which specifies how incoming data streams are linearly coded
into outgoing streams. Given the routing strategy from the
cFlow LP, there exist polynomial time algorithms to perform
such code assignments [13], [24]. Therefore, we have the
D. Correctness of the cFlow LPs following corollary of Theorem 2:

The primal and the duatFlow LPs are computationally Corollary 1. The complete solution that achieves optimal
equivalent to each other, with their optimal values beindproughput in undirected data networks with a single makic
identical. We now prove their correctness by showing thaession can be computed in polynomial time, including both
an optimal solution of the primal LP yields the maximunihe routing and coding strategies.
multicast rate and the corresponding flow routing scheme.

Theorem 2. For an undirected data network with a singleV. MULTICAST RATE FEASIBILITY: THE NECESSARY AND
multicast session, the maximum end-to-end througlypamd SUFFICIENT CONDITION

its corresponding optimal routing strategy can be computed  \we now apply Lagrangian relaxation on the primal LP to
polynomial time using theFlow LP, in which both the number derive the necessary and sufficient condition for multicast
of variables and the number of constraints are polynomiglate feasibility in undirected networks. We explain how it
and on the order ofO(km). The conceptual flowg: ... fi  generalizes the conditions in unicast and broadcast cases,

constitute the optimal routing strategy. provide an interpretation from the perspective of bandwidt
Proof: The orientation constraints reflect complete flexibilitefficiency.

in orienting the undirected networkV, without being too

restrictive or too relaxed. For each fixed orientation, @maal A. The condition as a theorem

;:gxscgrrztgﬁgn:seSV;\IIIItZSI?r?eegitnrie:c:nasrt]giiﬁ?\i?? netlvgofheorem 3. A multicast ratg is feasible in an undirected
’ networkG, if and only if for every link distance function e

flow rates are equal to each other. Therefore, the resulteof th ¢

maximization is the maximum possible flow rate that can b&™’

independently achieved from the source to all receiversr ov |G >

all possible orientations of the network: Miny (py—1|fle — X
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*

X
In the theorem abové(s|, denotes the size of the network  —,  Min,~o{Maxp, [x — S z(uw)Afuv)]}
under distance vector, i.e, |G|, = >, C(uv)z(uv).
f € Qf denotes a multicast topology, or a flow routing =, Min,so{Maxp, [x — > o z(w)c(uv) + 3, (uww)C(uv)]}
scheme; andfl, = > - f(uv)z(uwv) is the size of the _
multicast topology, under distance vector Min,(s)—1|f|= =3 Minz>o{Maxp, [x — |flo +[Gl]}

denotes the size of the minimum multicast topology that Min {Max
. . . . = . i P X — | fle +|Gla]}
achieves unit multicast rate. Note that a multicast topplog 20.MiNy ()= 11221 il ]
is not necessarily a multicast tree — for instance, the stcon __

in i |G|
. 7 . . . >0,Min L fle>11Y
multicast transmission in Fig. 1 constitutes a counter gtam o= x(p=1lfle2

=6 M|n$207MinX(f):1\f\m=1‘G‘m

|Gl

=7 MlanO me(f):ﬂflm

B. The proof of correctness

In the derivations aboves; holds due to Lagrangian dual-
Proof of Theorem 3Consider the primatFlow LP given in ity, as discussed early-; and=3 are due to definitions=4
Sec. IV-B. We now formulate its Lagrangian dual by relaxings due to dual feasibility. The inner maximization subpesbl
the undirected link capacity constraints (4.4), and inidg  is unbounded in cases where Mim_,|f|. < 1 — one may
the corresponding prices into the objective function, Wwhicscale up flows inf to arbitrarily large, and hence scale up the

becomes: difference betweery and|f|, to arbitrarily large =5 is due to
X = a(uw)Auv). the fact that when Mig ;—:|f|. > 1, we havey — |f|, <0,
v and Maxe [x—|f|++|G|z] = |G|z- =6 is due to the observation

~ that for everyr where Min,()—1|f|. > 1, there exists another
In Lr1e modified objective function aboveé)(uv) = c¢(uv) + vectorz’ = z/Miny =1/ f|z, such that Mig )| fl. = 1,
c¢(vu) — C(uv) denotes the amount of capacity over-use @ind |G|,» < |G|.. Finally, =; is due to the fact that if we
link wv, andz(uv) is the Lagrangian multiplier acting as thescale link distances in: proportionally, the ratio|G|, /|f].
unit price charged for the capacity over-use. At this pointemains at the same value.

the primal cFlow LP is transformed into the Lagrangian Now we can claimy* = Min >0¢ and that
subproblem: TZOMIN, ()=l flo
P : concludes the proof of Theorem 3.
L(z) = Maxp, [x — >_ z(uv)A(uv)],
uv C. Interpretation and discussions
with P being the following polytope: Comparison with unicast and broadcast cases
y < fi(T?S) i A gnicast is an one-to-one datg trgnsmis_sion, and a broad-
fian) < (i) Vi H#Tfs cast is an one-to-all data transmission. It is known that for
P i) = ey N Z" w7t unicast or broadcast, encodability does not make a diféeren
ZiGN(u) Ji(uv) =2 ven(w filvu) WV”_) in the maximum achievable transmission rate [21]. Theggfor
c(uv), fi(uv),x >0 Vi,V uv each atomic unicast topology is a path, and each atomic

broadcast topology is a spanning tree. The maximum unicast
rate problem is equivalent to the path packing or maximum
flow problem, and the maximum broadcast rate problem is
Minimize L(zx) equivalent to the spanning tree packing problem. For uhicas
Subject to: x>0 rate feasibility, the max-flow min-cut theorem constitutes
elegant necessary and sufficient condition. For broadeast r
feasibility, Tutte-Nash-Williams’ theorem takes the r¢Bb],

The Lagrangian duality theorem assures that each feasif#6]: A capacitied networlG containsy pair-wise capacity-
value of L(z) is an upper-bound for a feasible multicast rgte disjoint unit spanning trees, if and only if for every padit
Furthermore, this bound is tight in the sense that the minimuhat separates the network infocomponents, the total cross-
value of L(z) exactly matches the maximum achievable raisomponent link capacity is at leagt — 1)y.

X, i.e, the optimal objective values of the primal LP and Unicast and broadcast are special cases of multicast, with
the Lagrangian dual are equal. Consequently, the maximuh@ number of receivers beirig and n, respectively. Conse-

The Lagrangian dual problem is then:

multicast ratey* can be computed as: quently, Theorem 3 is a generalization of both the max-flow
. . min-cut theorem and Tutte-Nash-Williams’ theorem. For any
X" = Min,>o{Maxp, [x — Zx(UU)A(“”)]} given cut (vertex partition) of the network, we can assign a

uv

distancel to each link in the cut (partition), and a distarce
We now perform manipulations on the expressionxdf to all the other links. Then the condition in Theorem 3 implie
and provide justifications for each step. the cut condition (the partition connectivity conditiom) the
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max-flow min-cut theorem (Tutte-Nash-Williams’ theorem)reasonable amount of time (on the order of seconds), as long
The reverse implications are also true due to the validity as the multicast group is smak K 5). For networks that are

Theorem 3 and the two special case theorems. larger, or for a broadcast network with a few hundred nodes
. o ) and less than one thousand links, the computation easigstak
A bandwidth efficiency perspective hours. The performance of the simplex method is constantly

Since the total bandwidth capacity of a network is fixedvorse than that of the interior-point method.
the achievable multicast rate closely depends on the bandAnother critical drawback of applying general linear pro-
width efficiency of the multicast transmissiarg., how much gramming methods is that they are inherently centralized,
bandwidth consumption is necessary to achieve a unit end-tequiring global information to be collected to one central
end throughput. Generally speaking, the higher the barttwigpoint of computation. The solution we construct in this sect
efficiency, the higher the achievable multicast rate. Taeor resolves both problems. It decomposes the maximum muiticas
3 essentially claims that these two quantities are exactigte computation into a sequence of max-flow/min-cut com-
proportional to each other, once we account for the fact thaitations, for which very efficient algorithms exist and can
prolonging or shrinking an internal branch without chamginbe applied. It also allows the computation to be distributed
its capacity does not affect the achievable multicast ra@ito each node in the network, where only local information
We now reformulate Theorem 3 towards this direction, aftés collected.
giving two definitions. Alink contraction means replacing To construct a subgradient solution for the maximum multi-
a 2-hop internal pathui-z-v (internal means degree of is cast rate problem, we have the choices of applying Lagrangia
2) with a link uv, and setC(uv) = min{C(uz),C(zv)}. relaxation on either constraints in the primal program (dua
Link expansionis the inverse operation for link contraction subgradient), or constraints in the dual program (primél su
where a linkuv is replaced with a 2-hop path-z-v, with gradient). We have decided to take the later approach, due
C(uz) = C(zv) = C(uv). to the following facts. First, dual subgradient methods do
Theorem 3.a. For a multicast connection in an undirectegot always yield optimal primal solutions, which contaire th
networkG, a sequence of link contraction and link expansioaptimal routing information we need. Second, as we will
operations can be applied o, after which the maximum show, our primal subgradient algorithm decomposes theeenti
multicast rate equals the bandwidth capacity of the netwogkoblem into a sequence of max-flow/min-cut computations,
divided by the minimum bandwidth consumption required fand allows appealing combinatorial interpretations. Wev no
multicasting one bit information. present the primal subgradient solution in three steps: the

The following two facts may help establish the connectiodualization strategy, subgradient iterations, and marimate
between Theorem 3 and Theorem 3.a. First, it is alwagemputation.
possible to apply link expansion and contraction operation
such that the topological distance between every pair oésod o
uv is proportional to its assigned distaneéuv). Second, the A. The dualization strategy
“if and only if” relation in Theorem 3 assures that there gl&ya  Consider the duakFlow LP given in Sec.lV-C for the
exists a distance function that makes the equality hold maximum multicast rate problem. We choose to relax con-
Theorem 3. Theorem 3.a shows that a multicast network candteaint group (4.5), which corresponds to primal variables
manipulated using link expansion and contraction opematioc(uv). Recall thai:(uv) specifies the capacity of each directed
to a stage where (@) it is possible to utilize only the mosihk, and therefore determines an orientation of the ogbin
bandwidth efficient multicast topologies to achieve the maundirected network. The objective function is modified to:
throughput, and (b) the bandwidth capacity of the network is
tehr:grlz)r/];ltjlkzed in the transmission scheme achievingrtia .., Cluv)e(uv) + 3o c(@n) (S, yi(iab) — x(uv))

3o () (C(uw) — c(uwv) — c(vw)) + 3 2 (c(uv) 3, yi(uv))
> Zﬂ, c(@)yl(qﬂ;) — > e T(u) A(uw)

VI. MAXIMUM MULTICAST RATE : THE SUBGRADIENT
ALGORITHM

Previous experiences show that for network flow type N o
problems with extra side constrainesg, the multicommodity ~ Note whenA(uv) > 0 for any uv, the modified objective
flow problem, the performance of general linear programmisi%g:t'on does not have a lower bound, witt{uv) freely
techniques are often below acceptable levels, when the sg@sen fronf0, co). Therefore dual feasibility requires < 0,
of the problem is relatively large. For the multicast rate€. c(uv) + c(vu) < C(uv), Yuv.
problem in particular, we have expgrimgnted .with both the The Lagrangian dual we obtain is then:
simplex method and the primal-dual interior-point methasl,
implemented ingl pk 4. 4 [27]. We apply both methods to Maximize L(c)
solve the primal LP as a black-box, on networks and multicast Subject to:
groups with various sizes. Our findings show that, on a typica - .

{ c(uv) + c(vu) < C(uww) Yuv

Pentium IV computing platform, the interior-point method i v
c(uv) >0 Y uv

may handle networks with a few thousand links within a
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where
L(c) = Minp, > > " c(uv)y; (uv) (6.1) y; = argmin cp > clk] (uv)y(uv)
with 7, being the polytope: Then letj = argmin Y_ . ¢[k](uv)y; (uv), we updatey as
— S follows:
Yi(uv) +pi(v) = pi(u) Vi,V w#T;S y;[K] = y*, and
p, . pi(T) —pi(S) = 2 Vi I 7
] Tim>1 vilk] = 0,Vi % j.

yi(uv), z; > 0 Vi,V uv

Two critical observations justify our choice of the dualYPdating primal variables
ization strategy above. First, the price variables intusdl  Primal variables in the orientation are updated in two
through relaxation and optimized through subgradientitersteps. First, we compute a new orientation veetars follows:
tions, ¢, is exactly the orientation of the network, the optimal
values of which are essential to decide the maximum mutticas ¢ = clk] + 0[] > yilk] (6.2)
rate and the optimal routing strategy. Second, the minitioiaa @
subproblem (6.1) is separable, and may be decomposed intavhere § is a prescribed sequence of step sizes. The new
k min-cut computations. We shall come back to these twector ¢’ is not feasible in general. Therefore we need to
facts in the presentation of the subgradient iterationsthad project it into the feasible simplex, to obtain a valid newctee
maximum rate computation, respectively. for updatingc. One possible way of projection is to take a

feasible point that is nearest tti

B. Subgradient iterations clk+1] = afgmir};go,AgoHC - (6.3)

Choosing the initial primal solution ) .
i i ) ) Here||!|| denotes the geometrical length of a vedtore.,
To start the subgradient iterations, we need a valid sgf; — (1. 1), 1] = (2, 12)1/2. Another simpler way

of initial values for c¢(uv), i.e, an initial orientation_}of the of projection, is to normalizé’zgécording to:
multicast network. A promising choice is to s€d](uv) = _

1C(uv), ¥ wv. Note that any transmission that is feasible N () A'(uv) <0
in the undirected network is feasible in the network obtdinel 1 (uv) = %C(uv) Al(uv) > 0
by scaling up link capacities in the balanced orientation o' (uv)+e’(vu)
by a factor of 2. Therefore the balanced orientation is 2- whereA’ (uv) = c’(ﬁ,)+cl(ﬁ)_c(w)_ After both primal
competitive,i.e., if the maximum multicast rate in an optimaland dual variables are updated, the next iteration starts.
orientation isy*, then the balanced orientation may support a

rate of at Ieas%x*. Step size selection and convergence

(6.4)

Step size rules play an important role in subgradient opti-
mization. It governs both the ultimate convergence in theor

During each roundk, given current values ot[k], we and the speed of convergence to the optimal solution in
solve subproblem (6.1) to obtain new dual valueg/fikl. As practice. Large step sizes may be unstable, while small step
previously mentioned, this subproblem has a nice separabiges lead to slow convergence speed. Therefore it is common
structure, in the form of a weighted minimum cut computatiorpractice to use varying step sizes: take a small number of

Updating dual variables

Note that whern) . z; = 1, large steps to reach the proximity of the optimal solutitvent
. . switch to small steps to avoid overhitting. In our case, wher
L(c) = Minp,> > - c(uv)y;(uv) the original program is linear, designing step sizes thtisfya
= Min;[Minp, Y. c(uv)y; (uv)] the following conditions will guarantee convergence:
o
whereP; is the standard cut polytope: 0[k] > 0, lim #[k] =0, and Z 0[k] = oo
k—oo
k=1

y(uv) + p(v) A simple sequence that satisfies the conditions above is

>
Pa: p(ji) —plS) 2 - 0[k] = a/(bk + ¢), for some positive constants b and c.
y(uv) 2 0 Vv Below we give an example to illustrate the input, output, and
i.e., the weighted minimum cut is equal to the minimum cutonvergence of the proposed algorithm.
when all weights sum ta. Further note thap ", z; = 1 must In the example shown in Fig. & is the multicast sender,
be satisfied in any optimal solution, since dual complemgntdl; andT; are the multicast receivers. The maximum multicast
slackness conditions requisg , z; — 1) = 0. Therefore, for rate possible isl3.5. The rate computed by the subgradient
our specific problem, we can computg] by first computing algorithm converges to rang&3.4, 13.5] within 100 iterations.
k minimum cuts,.e., one minimum cut between the sendér The network in this example is actually among the most ad-
and each receiver;: verse to our algorithm, in that network flows towards differe

p(u) V @#T?S
1
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TABLE |
MAXIMUM MULTICAST RATE : SOLUTION SUMMARY

(1) Choose initial orientation€.g, balanced orientation)

(2) Repeat
ComputeS—T; max-flow,Vi
Refine orientation:
increase bandwidth share for saturated links
decrease bandwidth share for under-utilized links
Until convergence
— optimal orientation obtained

(3) ComputeS—T; max-flow,V:
— optimal multicast rate and routing strategy obtained

(4) Randomized code assignment
— complete transmission strategy obtained

Multicast rate (Kbps)

8
0

20 40 60 80 100 these optimal dual values [16], [28], it is not necessarytin o
Iteration number solution. We can directly recover the whole set of optimal
Fig. 2. A test case of the subgradient algorithm: input neftwautput primal values from OP“ma| values Idfl. . . .
orientation, and convergence sequence. Recall that a feasible vectar specifies an orientation of
the undirected network. Therefore optimal values: give an
optimal orientation. Once the orientation is determindd t
receivers constantly compete for link bandwidth in opgositindirected maximum multicast rate problem boils down to
directions. As later shown in Sec. VIII, the convergencg directed onej.e, computing the maximum multicast rate
speed is usually much faster for randomly generated matticth a directed network. By the result on directed multicast
networks. rate feasibility proven by Ahlswedet al. and Koetteret
al., this can be accomplished by invoking a maximum flow
computation from sendes to each of thek receiversT;. Let
We now take a retrospect of the subgradient algorithm jugt denote the resulting—T; flow vector, and|f| denote
presented, and show that it has a very appealing combiahtothe corresponding flow rate. Then our final solution to the
interpretation. First, the algorithm takes a guessed ti@m maximum multicast rate problem is:
of the network as a starting point. Then during each itematio , maximum multicast rateg = min; |f;|
it updates the orientation according to (6.2), (6.3) and)(8n  , optimal routing strategy of information flowg:, where
(6.2), larger values fod _, y;[k] leads to larger values far, £*(wv) = max; fi(w), ¥ we A
which in turn leads to larger values fefk + 1] in (6.3)(6.4).
Note that non-zero values fay;(uv) means the linkuv is
in the S-T; min-cut, and is therefore the “bottleneck” for
the S—T; transmission. From the flow perspective, non-zerg,
values ofy(uv) meansf (uv) = c(uv), since dual complemen-
tary slackness conditions requigg(uv)(f(uv) — c(uv)) = 0.
Therefore links with non-zerg; values are saturated links ,
in the S—T; max-flow. We conclude that the new capacity
allocation in (6.2), (6.3) and (6.4) favors links with large
>, yilk] values, which are links that are more saturated. T T,
Therefore, during each iteration of orientation refinement \—/ \E/
the algorithm computes the max-flow/min-cut from the sender
to each receiver, and increases the capacity share for meige3. Output network flow to each multicast receiver.
saturated links, while decreases the capacity share fogrund
utilized links. This has been summarized in Table I.

Algorithm interpretation

As an illustration, the two network flows computed in the
previous example are shown in Fig. 3.

Ty

D. Discussions on distributed implementation

C. Computing the maximum rate Beside simplicity and efficiency, the potential for distried
When the subgradient algorithm converges, it yields optimmhplementation has been another objective during our desig
primal values ir, but not necessarily optimal dual valuesyjin of the subgradient algorithm. After all, decentralized and
— the dual values upon convergence may not even be feasilsiealable implementations are always preferred for realevo
Although there exist convex combination techniques toveco protocols. we now take a step-by-step examination of the
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entire solution, and discuss how each step can be trangfersaown by our previous work [21] to be the same as both the
into distributed, pure local computations, where each nodpanning tree packing number and the network strength.

maintains only local information about its incident linksda  Traditionally, the three equal quantities above have been
one-hop neighbors. computed from either the perspective of network strength

In the initialization phase of the dual subgradient aldgornit or spanning tree packing. Cunningham [20] first gave a
it is sufficient to have each node compute its local orien- combinatorial algorithm that computes the network striengt
tation, by settinge(uv) = c(vu) = 3C(uv), for each of its through O(n®) max-flow computations. Barahona [30] later
incident link uw. improved the time complexity ta)(n?) max-flow compu-

Primal variable update is achieved through pure local corations. Both algorithms are based on matroid theory, and
putation, since each node can update the capacity of ane highly sophisticated. Though the spanning tree packing
incident directed linkuv according to (6.2), based on currenproblem has an LP formulation, the number of variables is
values of local variables[k](uv), 0[k] andy[k](uv). exponential. It is therefore necessary to work on its dual

Most computation in the subgradient algorithm is performe@rogram, where the minimum spanning tree algorithms can
in dual variable updates, and in the final maximum flogerve as the separation oracle. In comparison, atlow
rate computation. Each of these steps translateskiniax- approach provides an effective alternative, which is easy t
flow/min-cut computations. As previously mentioned, vago understand, allows fully-distributed implementationgd astill
efficient algorithms exist for the classical max-flow/mimtc achieves high time efficiency.
problem, some of which permits natural distributed imple-
mentations, such as the push-relabel algorithm [14] and the
e-relaxation algorithm [15]. For example, throughout the-ex
cution of the distributed version of the push-relabel atton,
each node exchanges messages with its direct neighbors only
and maintains information about capacities and flow rates on
its incident links, plus distance labels of its neighbord #&s
own.

So far, we have shown that our algorithm for computing
the optimal multicast routing strategy can be implemented li:ig 4. Transforming group communication into multicast trarssion
a distributed fashion. In order to utilize such optimal gt Y '
strategy in data transmission, we need to further decide how,

. ) o L . Group communication refers to many-to-many communi-
each node linearly combines its incoming information flows_: : . : .
. e . . I ation sessions where multiple sources multicast indegrgnd
to form its outgoing information flows. A simple distribute .
.data to the same group of receivers. The set of senders and the

solution to this code assignment problem is randomizednepdi . :
9 P aet of receivers may or may not overlap. Previous work [2] has

[29], in which each node just locally generates a random co ﬁ . :
L : . - shown that a many-to-many session can be easily transformed
matrix, without any message-passing required at all. Witd m

assumptions on the size of the base field for coding o els.atioInto a multicast session, by addingsapersource, which is a
P . o - gop Praditional technique in network flows. As illustrated irgF#,
the chance of generating a conflict is negligibly small [29].

we can add an additional sour§eo the network, and connect

it to each of the sources in the group communication session,

VII. ACHIEVING OPTIMAL THROUGHPUT INUNDIRECTED  with links of unbounded capacity. We may then apply the
DATA NETWORKS: MORE GENERAL CASES cFlow LP to maximize the multicast throughput fros to

The cFlow LP. can be extended to solve the optima"i‘” the receivers. Additional constraints can be applietice

throughput problem in cases beyond a single multicastaessiates on the newly added links between the super source and

We now present its extensions (1) to unicast, broadcast 4l °riginal sources in the session, governing fairnessngmo

group communication sessions, (2) to the case of multiptfée original sources. The outcome from ttiElow LP is the

communication sessions, (3) to the model of overlay netsyorloPtima! throughput and its corresponding routing stratfegy
and (4) to the model of wireless ad hoc networks. the original group communication session.

A. The cases of unicast, broadcast and group communicati%n The case of multiple sessions

sessions In its most general form, the optimal throughput problem
%@gvs multiple communication sessions of different types
(§o-exist in the same network. Since multicast is represieata
ticast group, respectively, our solution in the single ficait in that unicast, broadcast and group communication can all

case can be readily applied to a single unicast or broadcggt_transformed Into multlcast_— itis sufficient to_ conside t
session without modifications. In the case of a unicasttszne:ssiom'mall throughput problem in the case of multiple multicas

the cFlow LP essentially solves a linear program for a Singlaessmns.
network flow. In th? case of a broadcast sessmnpfﬁew LP 1A representative max-flow algorithm, such as the FIFO-prefiosh
computes the optimal broadcast throughput, which has beggorithm, runs inO(n3) time itself.

Since unicast and broadcast can be viewed as special ¢
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To achieve optimal throughput with multiple sessions, wglus the fact that for coding by superposition, data trassion
need to consider the problem of inter-session fairness. Tinem different sessions constitute totally different cootities
definition of fairness is usually application dependentwvho when competing for link capacity. Furthermore, it is easy to
ever, as long as it can be expressed using linear constrasts check that both the number of variables and the number of
can easily include them in the LP formulation. With respect tconstraints in thenFlow LP are on the order o®(kms). O
network coding in multiple sessions, it is theoreticallysgpible
to apply network coding on multiple incoming streams of
different sessions. However, we argue against this pdisgibi C- The case of overlay networks

and usecoding by superpositioffl], i.e., network coding  Since neither network coding nor data replication (for
is applied only to incoming streams of the same sessiqp. multicast) are widely supported in the current-generati
This argument is mainly supported by the computationgbtwork elements in the core, we consider the casaveflay
intractability of the optimal throughput problem if inteession networkswhere only the end hosts have the full capabilities to
coding is allowed. So far we are not aware of any efficiefrward, replicate and code data streams, and the core rietwo
algorithm that can compute max throughput with inter-sessi elements (henceforth referred torasiter§ may only forward
coding, or any effective characterization of rate feaijbith  gata packets as is. We note that the case of overlay networks
inter-session coding. In addition, our empirical exper& s actually more general than the classical model of untéitec
show that allowing inter-session coding can hardly improvgata networks we have used so far, which hints that the optima
optimal throughput, and it is not praCticaI to code datasstre throughput pr0b|em may become harder to solve.
from different app!ications eit.her. . . Let N = {G(V,E),C,M = {S,Ty,..., Tx} CH C V}
ThemFlowLP given below is designed to solve the optimahe an overlay network with a multicast session. The mutticas
throughput problem with multiple multicast sessions, vehelyoup 17 is a subset of the end hosf. If M = H, i.e,
we use weighted proportional fairness as the faimess mtidely| eng hosts are in the multicast group, Gatgal. [31] has
is the result of extending theFlow LP to its multicommodity - shown that the optimal multicast throughput can be effityent
variant. We assume there exist a totalsahulticast sessions, computed in this case, by working on the dual program of a
numbered as ... s. Each sessionhas a source;, a number natyral LP formulation. It has also been shown in [31] that,
of receiversl;, ... T;, , a set of conceptual flows, ... fi, ., in the general case, the optimal throughput problem without

as well as a weighw; indicating the importance of the sessionyetwork coding is the overlay Steiner tree packing problem,
The scalary is the common weighted throughput for all theynq is still NP-Complete.

multicast sessions, and the target of thmd-low LP is to With the support of network coding, however, we are able

maximize x. to extend thecFlow LP to its overlay variant, referred to as
Maximize Y the oFlow LP, to solve the optimal throughput problem in the
Subject to: model of overlay networks. TheFlow LP takes a hierarchical
- view of the multicast transmission, with both amderlay
X < fi; (Ti; Si) [wi vi,vj o and anoverlay level. The underlay level corresponds to the
fij (o) < fi( j{) . Vi, Vj, ¥ uv physical network topology, and has multicommodity flayys
2oven(u iy (uv) = fiy (vu)) =0 Vi, ¥j, Yu_ connecting each pair of end hostsand v, via only routers
3, filww) < c(uv) Y wv#T;, S as intermediate nodes. The overlay level is conceptual, and
c(uv) + c(vu) < C(uv) Yuv # Ty, Si contains end hosts fully connected as a complete graph. The
_ - - L overlay link wv has a capacity that is equal to the underlay
c(uv), fi; (wv), fi(uv), x 2 0 Vi, V5,V uv flow rate g, (v.). We then apply theFlow LP in the overlay

level to maximize the end-to-end throughput, where eackenod

is capable of replication and coding.
The mFlow LP replaces the standard network flow con-

straints in thecFlow LP with a set of multicommoditgFlow  Maximize %
constraints. Since flows of different sessions contendifde |  Subject to:
capacity, the summation of the per-session flow rates shoujd

not exceed link capacities. Since flows within the same sessi| X < f{(T38) ~ - VZ:

do not compete for link capacity, the effective flow rate wvith ver—u(filw) = fi(vu)) =0 Vi,Vue H -
a session on link a is f;(uv) = max;c(1 4, fi, (uv). The Jiluv) < guu(U:) - Vi,V wve H x H— TS
max function is not linear, so this constraint is relaxed td > .enu)(9pa(uV) = gpg(vu)) =0 Vp,q € H,Vu

fi(uv) > fi; (wv), V. > Ipa(uv) < c(uv), Vp,q € H,Y uvqp
Theorem 4. In the case of multiple multicast sessions with c(uv) + ¢(vv) < C(uv) Vuw

coding by superposition, the optimal end-to-end throughpu _, =

and its corresponding optimal routing strategy in undiggtt ¢(4V): fi(4), gpa(
data networks can be computed in polynomial time, by the

mFlow LP.

Proof: The correctness of thenFlow LP builds upon the Theorem 5. In the case of a single multicast session in the
correctness of theFlow LP, which is proved in Theorem 2, model of overlay networks, the optimal end-to-end throughp

uv),x >0 Vi, Vp,q € H,Y uv



IEEE TRANS. ON INFORMATION THEORY & IEEE/ACM TRANS. ON NETWORKINGSPECIAL ISSUE ON NETWORKING & INFORMATION THEORY, JUNE 200612

and its corresponding optimal routing strategy can be com- In (7.1), u(qﬂ)) is the strength of the signal fromperceived
puted in polynomial time, using the~low LP. atv, P(u) denotes the adjustable power level at nade is a
Proof: Since relay nodes in the overlay network can ngtonstant usually betweehand4, andb is background noise.
replicate or encode data, a data stream that is transmitted/nder such a physical model, the maximum multicast
between two end hosts without passing a third end hdbroughput problem can be formulated as:
remains unchanged throughout the transmission and upon ar-
rival. Therefore, it is valid to model these direct transsioss
between end hosts as multicommodity flows. The validity of
the cFlow constraints in the overlay layer may be derived { X € C(c)
from the correctness of theFlow LP, which we have proved cel(p)
in Theorem 2. Furthermore, inspection on the variables and
constraints in theFlow LP reveals that, the number of both WhereC(c) is equivalent to polytop@; given link capacity
are on the order of)(|H|?m). O vector ¢, as defined in Sec.V-B, and(P) is the feasible
Similar to the extension froncFlow to mFlow, one may €gion fo.r the capaci_ty vectar, as def!ngd in (7.1). A crit_ical
extend theoFlow LP into its multicommodity variant to OPServation about this non-linear optimization problertha,
accommodate multiple sessions in overlay networks. MoRy relaxing fi < ¢ in P, we can decompose it into two
specifically, one needs to replace the overdBjow constraints SUP-problems without compromising optimality. Due to spac
with the overlay mFlow constraints in the third group of constraints, we on.Iy provide a brlgf sketch qf the solution
constraints of theoFlow LP. The resulting linear program Method, more details can be found in our technical repoit [32
has both its number of variables and number of constrairfisSimilar approach was also taken in [33], where near-ogtima
bounded byO((|H |2 + ks)m). This is usually not worse than throughput is targeted.

those of the single-sessiaFlow LP, since|H|? dominates  After relaxing f; < ¢ in Py with price z, we can then
ks in most cases. iteratively solve two sub-problems at the network layer el

physical layer respectively. At the network layer, we hawe t
flow routing sub-problem, maximize—z™ ", (c— f;) subject
to flow conservation constraints only, which can be solved as
a network flow problem since and ¢ are constant vectors

A wireless ad hoc network is a multi-hop wireless networkere. At the physical layer, we have the power allocatior sub
consisting of nodes communicating via antennas. In cantrggoblem, maximizer” ¢ subject toc € C(P). While C(P) is
to single-hop wireless wireless networks, nodes in an ad hipcgeneral not convex, it can be transformed into a convex
network relay data packets for each other to realize multine via time sharing techniques such as OFDM. After solving
hop routing. Here we consider two different transmissiofoth sub-problems, the price vectoris updated according
technologies in the underlying physical and media accegs prescribed step sizes and the next iteration starts| unti
layers: omni-directional antennas and beam-forming av@en convergence.

We point out, however, that the solutions presented above
do not take into account the fact that flows going out from

With omni-directional antennas, signal propagation isldf0 the same node may carry the same information, in which
cast in nature, and nearby transmissions interfere with eagse the broadcast nature of omni-directional antennas can
other. Traditionally, there have been two major directioms pe exploited to further increase the throughput. Consetyuen
modelling such wireless medium contention, thgical model g |ower bound of the optimal throughput is obtained. It is
and thephysical model Ad hoc routing research uses thgyyr ongoing research to appropriately incorporate thelesse
logical model and view physical layer interactions as alblachroadcast advantage into the optimization framework for ad
box: a local transmission is successful if the sender and th§c networks. We refer the readers to heuristic for incor-
receiver are within the effective transmission range, #edet porating the broadcast advantage discussed by dtual. in
is no other active transmissions within the interferencgea [34], and to a related study of achieving minimum energy

Under such a model, even if the routing and coding schem@snsumption of wireless transmissions by \&ual. in [35].
have been decided, determining the optimal temporal s¢édedu

of per-hop transmissions to achieve the maximum through&l‘?am.'form'ng a-nten.nas and the node-centrl-c approach .
is equivalent to the graph coloring problem, and is theeefor While omni-directional antenna leads to intense medium

Maximize X
Subject to:

D. The case of wireless ad hoc networks

Omni-directional antennas and the physical model

NP-hard. contention, beam-forming antennas direct energy radiatio
On the other hand, the capacity of a link is determined Bgwards the intended receiver only, no node in other doesti
its SNR (signal-to-noise ratio) in the physical model: will be affected by the transmission if beam-forming is idea

Therefore the radio capacity at each node is shared among

c(uv) < log(1+ SNR(wv)), where transmissions to and from it, and flow scheduling becomes

- node-centric. We show that such a node-centric optiminatio

SNR(uv) = /‘(““l . p(aw) = |uv]| " P(u) problem, as formulated below, can also be solved efficiently

Dty H(TV) + b via the subgradient approach.

(7.1) Maximize X
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Subject to: implemented both theFlow LP and a brute-force algorithm

- to compute the Steiner tree packing number. The Steiner tree
X < fi(TiS) _ vi (1) packing algorithm enumerates all Steiner trees in the métwo
Zuezv(w(f(uﬂ) + f(mi)) <Cw) Vu (2) assigns a flow variable to each tree, and then maximizes the
2 ven((filww) = fi(vu)) =0 Vi, Vu 3) summation of all tree flows, subject to the constraints that t
fi(uwv) < f(uv) Vi,V ﬁ;;éﬁs (4) total weight (throughput) of trees using each link should no
. . . exceed its capacity.

f(uv), fi(uv),x = 0 Vi,V uv We have evaluated both theFlow LP and Steiner tree

packing (denoted as(N)) using our previous example in
In the LP above,C € QY denotes total radio capacity Fig- 1, as well as a set afhiform bipartitenetworks, which are
(f(uv) n f(w believed to be good candidates to show the power of coding on
nl‘mprovmg throughput [24], [37]. A uniform bipartite netwo

C'(n, k) consists of the data source and two layers: one with

available at each node. By relaxing,c v,
)) < C(u), we obtain the equivalent Lagrangian dual proble

Maximize L(f) relay nodes and the other wifff) receivers. Each relay node
Subject to: is connected to the sender, and each receiver is connected to
_ _ different group ofk relay nodes, and all links have a capacity
2ven(w (fww) + flvu)) < Cu) Vu of 1. For instance, the network in Fig. 1 &(3,2), and the
f(uv) >0 Y ww classic example showing the power of network coding [1] is
where isomorphic toC(3, 2).

Table Il summarizes the results of our empirical studies,

f) =Minp, Z Z f(ﬁ))yi(zﬂ}) from which we have derived the following observations. firs

; the cFlow LP is much more scalable and efficient than Steiner
tree packing, which fails to compute a solution for a netwask
small asC(5, 3), with only 16 nodes and5 links, but almost
50 million different Steiner trees. In separate experiments,
the cFlow LP is able to compute the optimal throughput
for networks having thousands of nodes. Second, optimal
throughput with coding is always lower bounded by that
without coding; however, network coding only introduces a
sI ht advantage, with thg(N)/x(NN) ratio no higher than
5. Third, coded transmission may lead to more integral
rates and throughput than uncoded transmission.

and P, is the same polytope af; as defined in Sec.VI-A.
Fixing f, L(f) can be computed in the same way B&)
in the link-centric case in Sec. VI, by separating the proble
into a sequence of min-cut computations. The only diffeeen
is in the initialization and update of the primal variableere
f can be initialized accordln? to an even capacny distrdmyti
by settingf[0](uv) = min Q\N(uu)|’ 3 Ng’u)l) ¥ wv. Then at the
end of each iteration it can be updated based on new value
y; and prescribed step sizes, and projected such that the t(ﬂ
incident flow rate respects the node capacity.

TABLE II
VIIl. EMPIRICAL STUDIES COMPUTING OPTIMAL THROUGHPUT CFlow LP Vs. STEINER TREE
Due to the lack of efficient algorithms, previous studies pACKING
on the problem of improving session throughput are largely
based on experimental or intuitive insights. We argue that t Network| |V| | [M|| |E| | x(N)| =(N) :Ex; # of trees
availability of thecFlow, mFlow and oFlow LPs has signifi- [classical| 7 3 9 2 1.875 | 1.067 | 17
cantly changed the landscape, and has made it computdgionalC’(3,2) | 7 4 9 2 1.8 1111 | 26
feasible to study the exact benefits of various proposals|tbig-2 |8 |3 |16 | 135|135 | 1.0 298
achieve higher throughput, including a single multicasetr C¢(4,3) |9 > 16 | 3 2.667 | 1125 | 1,113
. i . . c4,2) |11 | 7 16 | 2 1.778 | 1.125 | 1,128
with data replication, multiple multicast trees, and netwo
. - . . C(5,4) |11 | 6 25 | 4 3.571 | 1.12 75,524
coding. Our emp|r|cgl studies are based on the implememntat CG.2) 16 1L [25 |2 1786 | 1.12 | 119,104
of the LPs and solutions that we have proposed. In compari§of(s.3) [ 16 | 11 | 35 | 3 - - 49,956,624
studies, we have also implemented algorithms to compute the

optimal throughput with multiple multicast trees but wittio

coding, the optimal throughput with a widest multicast free Previous work [24] shows that in directed acyclic networks
as well as the optimal throughput with all unicast from th@ith integral routing requirement, there exist multicastt-n
source to all receivers. Topologies used in our simulatanes Works where the coding advantage grows proportionally as
generated by the BRITE topology generator [36], with sizé88(n), and is thus not finitely bounded. However, we found
ranging from10 to 1, 000 nodes, both with and without pOWer_the situation is drastically different in undirected neti

law properties, with heavy-tailed or constant link cagasit !N [21], we use undirected splitting and graph orientation t
prove that, for multicast transmissions in undirected ek,

How advantageous is network coding with respect to improvine coding advantage is bounded by a constant facta. of

ing optimal throughput? Given the bound.125 obtained for contrived networks, and
In order to evaluate the advantage of network coding withe bound2 proven in theory, we further studied the coding

respect to improving achievable optimal throughput, weehaadvantage in over one thousarehdomly generated topolo-
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(a) Size of multicast group = 3

n

gies. Our observation is that, fatl the random topologies we

tested, the coding advantage always remaifisi.e., network B30
coding does not introduce any improvement in achievable ?;25
throughput. This implies that the fundamental benefit of net gzo
work coding isnot higher optimal throughput, but to facilitate Sis
significantly more efficient computation and implementatib éw | | |
strategies to achieve such optimal throughput. 5,
Finally, we point out that the potential for network codiryg t .
decrease cost in the min-cost multicast problem is esgigntia **Nimber of nodes in the network
the same as its potential to increase throughput in the max- DI T
rate multicast problem [38], and both are equivalent to the B30 o Qyerlay multicast
integrality gap of a bi-directed relaxation of the minimum gzs
Steiner tree problem [39]. The largest value known so far for 2,
these three equal quantities 8g7 [38], [39]. Our results in é’m
Table 1l have also advanced the previously known largesteval %w
in gquasi-bipartite networks, which wa$/9. § .
How advantageous is standard multicast compared to unicast 0 sol w!, 15! 20! 250 30! 35! 200 45! 50!

Number of nodes in the network

and overlay multicast?

The cFlow LP is instrumental to precisely compute théig. 5. Achievable optimal throughput using standard musticaverlay
achievable optimal throughput with one multicast COmmLmrir_luIticast, and all unicast from the sender to all receivers.
cation session, either with network coding or with multiple
multicast trees, since the outcomes from the two are hardly
different. In either case, data rep"cation need to be Snppo multicast, where all network nodes are able to replicatEDdEC
on all network nodes, including core network elements. & h&ata. On average, the optimal throughput of overlay mustica
been common knowledge that, when compared to unicast fréfnover 95% of standard multicast. This observation shows
the source to all receivers, standard multicast bringsebetthat, from the perspective of maximum achievable throughpu
bandwidth efficiency and higher end-to-end session throughhile there may exist contrived network topologies thatvsho
put. However, even in the case of unicast, path diversitgseenore significant advantages of standard multicast overayer
to be exploited to achieve optimal throughput, equivalenhe Multicast, little difference remains once large scale frat
maximum unicommodity flow problem. It is not immediatelyr€twork topologies are considered. In summary, the allastic
clear how advantageous standard multicast is. approach does not scale, while overlay multicast may gosel
Overlay multicast balances the trade-off between the prad2Proach optimal throughput without requiring core rositer
ticality of standard multicast and unicast. It refers to tase € modified.
where only the members of the multicast group may replicate, time-efficient is the subgradient solution?
or code data, whereas all other nodes may only forward
data. The optimal throughput achieved by overlay multicastFig. 6 shows the convergence speed of the subgradient
is efficiently computed by theFlow LP. algorithm on random networks generated by BRITE [36],
We perform a quantitative study that compares the optimaith network sizes up td000 nodes, and witl2, 5, and 10
throughput achieved with standard multicast, overlay iwast receivers, respectively. As we can see, the optimal swiutio
and unicast. The study is performed in random networks with usually approached withii0 iterations, regardless of the
up to 500 nodes and ovei000 links. There are3 and 10 network size or the multicast group size. However, the com-
members in the multicast group respectively, in two difféere putation time for large networks or for large multicast grsu
sets of tests. Multicast nodes are randomly selected, witte longer, due to the fact that the time taken by each single
different multicast groups being as disjoint as possibler Fmax-flow/min-cut computation is roughly proportional i,
each network size, multiple tests are performed with difiér and that the number of max-flow/min-cut computations in each
network topologies and different choices of the multicagieration is proportional to the multicast group size.
group, the results are then averaged. We proceed to compare the computation time of the follow-
As we may observe from Fig. 5, there exists obviousg three approaches for computing maximum multicast rate i
differences between standard multicast throughput and m#itworks with various sizes: Steiner tree packing, direear
unicast throughput, and the differences are more significgmwogram solving, and applying the subgradient algorithm. T
in Fig. 5(b), where the scale of the multicast transmissgn make the comparison possible, we further implemented a
larger. This is due to the fact that with a large number dfrute-force algorithm to compute the optimal Steiner tree
receivers, the number of unicast flows increases in the pHcking number. The algorithm exhaustively enumerates all
unicast approach, and links incident to the sender becoutistinct Steiner trees connecting the multicast groupn the
bottlenecks for the transmission. Surprisingly, the figalso assigns a flow rate to each tree, and maximizes the summation
suggests that, the optimal throughput achieved by overlafall tree flow rates with the constraint that, total flow sate
multicast is almost identical to that achieved by standadf trees using a linkiv should not exceed the capaci{uv).
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w
o

achievable optimal throughput be affected? Intuitivefyai
relay node joins the multicast group and becomes a new
receiver, the achievable session throughput should dezrea

3 1 due to the following two causes: (1) a larger number of
Jﬂ“ﬂ”ﬂ”ﬂ“ﬂ“ﬂhﬂL receivers may lead to more intense competition for bandyidt

N
o
T

[y
o

# of iterations

o

10 20 50 100 200 500 1000 and (2) a new node with low capacity may become a bottleneck
. and limit the throughput for the entire session. Our siniokat

Bl 2 receivers results show that, the second cause has a much more significan
6| B 5 receivers ] impact than the first one.

Il 10 receivers

Fig. 8(a) shows variations of optimal throughput as the
number of nodes in the multicast group increases from three
to [n/2], and then ton (effectively a broadcast session),

N
T

Running time (s)
N

o

10 20 50 100 200 500 1000 for various network sizes:. In this experiment, network
VI topologies are generated with two edges per node without
Fig. 6. Convergence speed in random networks. power-law relationships, with heavy-tailed bandwidthtuiis

bution between 10 and 50 Kbps on the links. As we can
observe, when the size of the multicast group increases from
The comparison result is given in Fig. 7. The multicast groupree to[n /2], the effects on achievable throughput is rather

consists of three nodes. significant. However, further expanding the multicast grou
. to the entire network leads to a much smaller decrease. Both
10 = Subgradient algo, causes that we have discussed contribute to the initiabdser
—o— LP: interior point of throughput, while the second causee( the effects of a
Steiner tree packing . .
10° ¢ e bottleneck node) plays a less important role in the subsgque
decrease — when the multicast group contains half of the
% nodes in the network, it is very likely for the group to have
£ already contained a node with low capacity.
2
E (a) Heavy-tailed link capacity
03: 45
—~40
-Q 35
Eso
o Q
e -g.,ZS n
o , , , 32
10 20 50 100 200 500 1000 5]
V| = 15
| % 10
O s
Fig. 7. Computation time comparison: Steiner tree packingeggnLP 0
solver, and proposed subgradient solution (axe$ognscale). 20 25 30 35 40 45 50 55 60 65

w
S

Optimal throughput (Kbps)
5 & 8 &

o

o

Number of nodes in the network

(b) Constant link capacity

The scalability of the brute-force Steiner tree packingpalg =

rithm is extremely poor. We find that its running time crulial ]

depends on the number of links in the network, in a roughly l

exponential fashion. It basically fails for networks witrora

than50 links, and may take more than a minute for a network

with only 11 nodes. Solving the LP with the interior point

method may handle small to medium sized networks in a

reasonable amount of time (on the order of seconds), but 0,25 30 35 40 45 80 85 60 65

the running time grows rapidly as the network size further

grows. On the other hand, the subgradient algorithm mé&ig. 8. Variations of optimal throughput due to new nodes ijnthe

solve networks with one thousand nodes in arotirgbcond. Multicast session.

Another important advantage of the subgradient soluticer ov

the direct LP solving method is that, the former is amenable Ve further performed the same tests on power-law network

to fully distributed implementations, while the later is- intoPologies with10 Kbps constant link bandwidth, and the

herently centralized. We also point out that the computatid€Sults are shown in Fig. 8(b). In the power-law topologies,

time discussed here corresponds to the one-time only sesdlgSt nodes have small degrees of two or three, while a

set up delay, and does not apply to successive data paa{@?” number of nodes have hlgh_ degrees. Th_erefore, the

transmissions. initial multicast group usually contains a node with a small

degree already, which also has a low capacity, since the

How sensitive is optimal throughput to node joins? link bandwidth is constant. In this case, only inter-reeeiv

When new nodes join the multicast session, how mdandwidth competition remains as a major concern. However,
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as we can observe in the figure, in most cases the optinifathe existing sessions remain transmitting accordinghi® t
multicast throughput remains roughly constant, even atler optimal transmission strategy computed before the nevisess
the nodes have joined the multicast session. This countgins, and only residual capacities can be utilized to serve
intuitive observation shows that, new receivers may shatee new session (thincremental throughputase), then the
bandwidth with existing receivers well, and do not signifita  resulting throughput is not satisfactory unless the nundfer
affect the achievable throughput, as long as their capacitie sessions is very smalk (= 2). In general, this may lead to
not too low. Spikes in Fig. 8(b) correspond to the occasionetry low, even zero, throughput for the new session. Thegefo
cases where nodes in the initial multicast group all haveis necessary to perform re-optimization before a newisass
relatively high capacities. Both results in Fig. 8(a) an®)8( starts to transmit.

have led to the same observation that, when new nodes joip'a itive i timal th hout to fai tragt
multicast session, the decreased optimal throughput islynai ow sensilive IS optimal throughput to Talfn€ss constr
due to bottleneck receivers with lower capacities.

In order to investigate how inter-session fairness require

ments affect the optimal throughput, we establish three one
to-two multicast sessions in networks of various sizes betw
When new sessions are added to the network, how dg@ and 350, and computed their total optimal throughput with
they affect achievable optimal throughput? Timlow LP, the following fairness constraints, respectively: (a) airfess
presented in Sec. VI, makes it feasible to carry out oyequirement, which leads to the maximum value possible for
empirical studies. Fig. 9 shows the variation of optimahe total throughput; (b) absolute fairness, in which each
throughput as new communication sessions are createde Thigssion is required to have exactly the same throughput; (c)
types of throughput are shown: (pyevious optimalwhich weighted proportional fairness, where the throughput ahea
represents the optimal weighted session throughput béfere session is proportional to the associated weight of thaices
new session is added; (#)cremental which is the weighted and (d) max-min fairness, in which no session throughput
throughput for the new session using residual link capegitican be increased without decreasing another already smalle
only, or just the previous optimal throughput if the achi@iea session throughput.
throughput of the new session is higher; andrg8pptimized  As a first small-scale experiment to gain some insights,
which is the re-computed optimal session throughput aftefg. 10 shows the total throughput of three sessions in a
the new session is added. Four groups of simulations gf&work with twenty nodes, using theFlow LP. Multicast
performed, with two, three, four, and five existing sessiongroups are chosen to be as disjoint as possible. The total
respectively, before the new session is established. Eath myeight of three sessions; + ws + ws = 1. As we can
ticast group has a size five, and nodes in different multicagde, the weight distribution has a significant impact on the
groups are chosen to be as disjoint as possible. Each sesgigiievable total throughput. When the three weights are-heav

How sensitive is optimal throughput to the addition of new
sessions?

is assigned an equal weight. ily unbalanced, the session with the smallest weight can not
realize its throughput potential, and consequently leada t
5 Number of sessions = 2 g5 Number of sessions = 3 small value of total throughput. The achievable throughput
" " with absolute fairness aty = wy = wsz = 0.333 is 91.8
Kbps. The global optimal throughpat)7.0 Kbps is achieved
* * at (wy, wy, w3) = (0.287,0.407,0.306), which turns out to be
_ 10 10 identical to the throughput with max-min fairness in thisea
5 -
F s
g o 2 o
2 Ntexoa28888 Nsoega8888
a YIS B32R83 g A4 o A4 o4 8 Db A« ® b a
= Number of sessions = 4 = Number of sessions = 5 é‘
g 2 g 2 _ =
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O 20 O 20f| [ incremental k7
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o
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¥y323:888 88 ¥3932838888 =
Number of nodes in the network
Fig. 10. Total throughput of three multicast sessions, a&s-sgssion fairness
Fig. 9. Throughput variations as a new session is created. requirements change.

Results in Fig. 9 show that, the addition of an extra sessionFurther results in Table 11l show that the excellent perfor-
does not dramatically affect the achievable optimal thhgpug, mance of max-min fairness in the above example is not a
especially when the network size is large in comparison twincidence. As we may observe, when the network size is
the number of nodes involved in the transmissions. Howeveelatively large {0 and above in the table), max-min fairness
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always leads to optimal throughput. When the network sizeasfactor of over2 on average, showing the advantage of using
small (10 and20 in the table), the inter-session competition fothe optimal transmission strategy computed withdRow LP,
bandwidth becomes more intense. The throughput with meabeyond a single multicast tree. Interestingly, the bantiwed-
min fairness may be inferior to the optimal throughput irsthificiency of optimal throughput multicast also outperforrhatt

case, but the difference is usually small.

TABLE Il
TOTAL ACHIEVABLE THROUGHPUT WITH MAX-MIN FAIRNESS VS. GLOBAL
OPTIMAL THROUGHPUT

network size 10 50 100 | 150 | 250 | 350
max-min (Kbps) | 120.0] 173.3| 160.0] 146.7| 146.7| 183.3
optimal (Kbps) | 126.1] 173.3[ 160.0] 146.7| 146.7| 183.3

Does optimal throughput lead to low bandwidth efficiency?

of the widest Steiner tree multicast. The widest Steinee tre
insists to use links with the highest bandwidth possiblel an
therefore may result in rather long tree branches, especial
when the network size is large. For the constant link capacit
case, the difference between the optimal and widest Steiner
tree throughput becomes even larger. Every tree in thistwase
the same throughput, therefore the “widest” selectioredadn
becomes irrelevant. However, the difference in bandwidth
efficiency decreases, since it is no longer necessary tadacl
long tree branches to achieve the maximum tree throughput.

In order to find out whether achieving optimal throughput IX. CONCLUDING REMARKS

sacrifices bandwidth efficiency, we have conducted perfor-The main problem we have studied in this paper is to
mance comparisons between optimal throughput multicast afbmpute and achieve optimal throughput in data networks,

single tree multicast. In the latter case, we computentitiest

in the general case of undirected communication links. We

Steiner tregwhich has the highest throughput from all possiblrave been pleasantly surprised at how results from network
multicast trees. The throughput of a tree is the lowest dapaccoding are able to facilitate the design of efficient solsio

of its links. We choose the tree with the highest throughpus this fundamental problem that was previously viewed as
rather than the one that is most bandwidth efficient, sinee thery hard. We also show the counter-intuitive conclusion

latter is equivalent to the minimum Steiner tree problemicivh

that, the most significant benefit of network coding is not to

is hard to compute or to approximate. Even when we can fiadhieve higher optimal throughput, but to make it feasible
such a bandwidth efficient tree, it may have an exceedingly achieve such optimality in polynomial time. We show

low throughput, which is not practical for data transmissio
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Fig. 11.  Achievable throughput and bandwidth efficiency: cmparison
between the optimal throughput multicasElow LP) and the widest Steiner
tree.

that such efficient algorithms may be designed for multiple
communication sessions of a variety of types, and for the
more realistic model of overlay networks. Simulation s&sdi
also suggest that, overlay multicast techniques may approa
optimal multicast throughput quite well.
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