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On Achieving Optimal Throughput
with Network Coding

Zongpeng Li, Baochun Li, Dan Jiang, Lap Chi Lau

Abstract— With the constraints of network topologies and link more general and fundamental in that, a solution constiucte
capacities, achieving the optimal end-to-end throughput in data for undirected networks can usually be applied to solve the
networks has been known as a fundamental but computationally same problem in directed networks, but not vice versa. This
hard problem. In this paper, we seek efficient solutions to the . ticularly t f bl 'd lution in thi )
problem of achieving optimal throughput in data networks, with IS parucu ary rue for our prq e_m an solu 'O_n In this pap
single or multiple unicast, multicast and broadcast sessions. Se€cond, undirected communication links provide the coteple
Although previous approaches lead to solving NP-complete prob- flexibility in capacity allocation, and consequently leatds
lems, we show the surprising result that, facilitated by the recent hjgher transmission rates that better represent the optima
ahdvancgs c|>f neévvork cdod;]ng, Cﬁmputmg tt?e stra}teglez to achlleve formation flow rate. Finally, in special network scenariosts
the optimal end-to-end throughput can be performed in poly- . ' N
nomial time. This result holds for one or more communication &5 ere|eSS a_d hoc networks, communication _I|n|_<s are niyura
sessions, as well as in the overlay network model. Supported by Undirected, in the sense that data transmission along both
empirical studies, we present the surprising observation that in directions of the wireless link share the available spectru
most topologies, applying network coding may not improve the |n this paper, we seek to bring fundamentally new insights
achievable optimal throughput; rather, it facilitates the design of and efficient solutions to the problem of optimizing end-to-
significantly more efficient algorithms to achieve such optimality. . . Y

end throughput in undirected data networks. We first ilatstr

Index terms: Graph theory, Information theory, Mathematicathe power ofnetwork coding[4], [5] with respect to achiev-

programming/optimization, Simulations. ing optimal throughput. In the paradigm of network coding,
information flows in data networks may not only be stored
|. INTRODUCTION and forwarded, but also be encoded and decoded in any nodes

In its most general form, a data network consists of a si the network. We show t_hat, although preyious direct?ons

of end hosts and switches interconnected via undirected computing optimal multicast throughput .mVOIVe solving

duplex) communication links. In data networks with know d—ctcr)]mplete probl(;a.ms, tr;.e rT|1aX|rr|1tgm {milt'(iaSt throui?hf(;put

topologies and bandwidth capacity bounds for each undidec n € corresponading optimal mufticast strategy can ee
g computed efficientlyn polynomial time with the unique

link, a fundamental problem is to compute and achieve t . ) .
maximum end-to-end throughput for one or multiple aCtivgncodable property of information flows considered. We then
10w that this conclusion can be extended to multiple con-

communication sessions. Depending on the objectives of . o
rrent sessions, as well as to other types of communigation

plications, a communication session may be in the for . X N
of unicast (one-to-one), multicast (one-to-many), braatic Including unicast, broadcast and group communicationnEve
' ' hen the general form of data networks is modified to reflect

one-to-all), or group communication (many-to-man . ThEMen ! .
( ) group ( y % \ﬁallstlc characteristics of overlay networks (where oahd

solutions to this problem may lead to fundamental and néhosts at the edge may be able to replicate, encode and decode
insights with respect to optimal routing and traffic enghireg . . ' ;
9 P b 9 g ata), the same conclusion still holds. The solutions to the

For example, the recent paradigm of selfish routing [1] adlo I includ t onl timal routi trategies toéa

end hosts to choose routes themselves using source rouflf detm$ Irt]r?u etno kor:)ytog? 'mr? I‘O(;J |tng S rat()agles G’(‘j d and

strategies. Finding the optimal strategy to disseminata tta mitdata in the€ network, but aiso how data may be encoded an
decoded as they are relayed towards the destinations. fihoug

multiple destinations with maximum throughput is of natura ) _ .

interests in such a paradigm, especially when we wish ere exist previous results on network coded thr_oughput_ln

optimally exploit existing network capacities to disseai# uec_tednetworks, o the b?St of our k nowledge, this paper is
the first work that systematically studies the effects ofvoek

large volumes of data. di ith - timizing th hout imdirected
The focus on the undirected network model is supported g t;nr?er\\//\llorkrsespec 0 optimizing throughput tmdirecte

the following justifications. First, as past research invoek Lo . . -
¥ P The availability of efficient solutions makes it finally pos-

flow theory [2] and information theory [3] suggests, the. . )
undirected network model has its own rhythm, and resu §b le to study various aspech of properties of the achlevab
obtained there may be drastically different from those ioleth t.r.o ughput,_ N reahstlcally. S'Zed. networks. We present em
in the directed network model. In fact. the undirected maslel pirical studies based on simulation results over thousarfids
' ’ test scenarios using our algorithms. We compare the optimal
Zongpeng Li, Baochun Li and Dan Jiang are with the Departmént énulticast throughput with and without network coding, and
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out previous theoretical results on the upper bound of theThere have been studies on achieving optimality with
advantage of network coding in undirected networks [3heat respect to computingoblivious routing strategies in data
than increasing throughput, the advantage of network gpdinetworks. The objectives are to maximize throughput for a
is indeed to facilitate significantly more efficient comdiga source-destination pair, and to minimize congestion on the
of the strategies to achiewsptimal throughput of information network. Most notably, using linear programming technijue
flows. Our empirical studies also show that overlay multicapolynomial timealgorithms (with a polynomial number of
which has recently attracted extensive research effortg; nvariables and constraints in the LP formulation) can be con-
approach optimal throughput quite well. structed to compute strategies fiptimal oblivious routing for

The remainder of this paper is organized as follows. We firahy network, directed or undirected [14]. Though we also em-
discuss related work in Sec. Il. In Sec. lll, we present ouinmaploy linear optimization tools and study undirected netor
theorems and algorithm with respect to achieving optimdtenour problem domain is more general: while optimal oblivious
to-end throughput with a single multicast session. In S€c. Irouting focuses on origin-destination pairsioficastsessions
we extend our results to the cases of multiple sessions (pbssibly exploiting path diversity), we focus on a variefy
unicast, multicast, broadcast, and group communicatioa. \8bmmunication sessions, including unicast, multicasbabs
also consider the model of overlay networks, where only aast and group communication. We seek fundamental insights
subset of nodes are capable of replication and coding. We thlen how optimal a routing strategy may become, and what is the
present empirical studies in Sec. V, and conclude the papemiaximum achievable throughput in a communication session.
Sec. VL. The theory ofnetwork flowsstudies the transmission of

commodities of the same type (unicommodity flows) through
Il. RELATED WORK a capacitied network. The maximum flow rate between the

The open problem of achieving optimal end-to-end througleurce and the destination which may be computed with vari-
put with efficient algorithms has not been discussed in depehs efficient combinatorial algorithms [2]. When commoditie
in existing literature. There exist, however, similar desbs to be transmitted are of different types (multicommodity
that have been extensively studied. Towards the directfon flows), computing the maximum flow rate can be solved as
Quiality of Service (QoS) routing, the objective is to find enda linear optimization problem. In both unicommodity and
to-end paths or multicast trees that satisfy specific badfidwi multicommodity flows, commodities may only berwardedat
or delay constraints, and therefore providing the desire& Qintermediate nodes, comparable to all unicast in data riksyvo
guarantees [6]. With respect to end-to-end throughputirfind The concept ofnetwork codingextends the capabilities of
good topologies that satisfy bandwidth requirements is-obwietwork nodes in a communication session: from basic data
ously different from — and arguably easier than — findingprwarding (as in all unicast) and data replication (as irotP
optimal ones. overlay multicast), tawoding in Galois fieldsFig. 1 illustrates

There exists an extensive body of research in the areaaotlassic example of how network coding assists to improve
multicast routing in wide-area IP networke.d., [7]). The end-to-end throughput. Af2; receives botha and ¢ + b
advantage of IP-based multicast is brought by data packetcoded over GF(2)), it is able to decode and retrieve both
replication on multicast-capable switches, improving ddana andb. If the link capacities aré, the maximum achievable
width efficiency and throughput compared to all (naive) astc throughput with network coding i8. Without coding, it can
between the source and the multicast receivers. Howewnee sibe computed that the optimal throughputli875 [3]. If only
it is based on the construction of a single tree, the enditb-eone multicast tree is used (as in IP multicast), the achieved
throughput is not optimal compared to what is achievable Itroughput isl.

a topology beyond a tree.

As IP multicast is not readily deployed, algorithms pro-
moting application-layer overlay multicast have recefgen
proposed as remedial solutions, focusing on the issue of
constructing and maintaining a multicast tree using onlg en
hosts [8], [9]. Though a single multicast tree may not lead to
optimized throughput, recent studies.d., SplitStream [10],

. . . R R R R
COOpNet [11]1 Dlgltal Fountain [12] and Bullet [13]) have (a) Maxi%num throughput with 0r12e multicast (b) ?\/Iaximumthroughputwizth
proposed to utilize either multiple multicast treésrés) or a tree is 1(1.875 with multiple trees). network coding is 2.

topologicalmeshto deliver striped data from the source, usingi _ _ .

. . . . g. 1. The advantage of network coding with respect to imimgwhe
either multiple description coding or source erasure cddeSeng.to-end multicast throughput frosito R, and Ro.
split content to be multicast. These proposals have indeed
improved end-to-end throughput beyond that of a single, tree The recent breakthrough theorem in network coding shows
but there have been no discussions on whether the optirttedt, for a multicast session in directed networks, if a rate
throughput may be achieved, or how close the proposedcan be achieved from the sender to each of the multicast
algorithms approach optimality. In this paper, we studyhsueeceivers independently, it can also be achieved for thieeent
achievable optimality, while considering the most geneasmle multicast session (refer to independent proofs of Ahlswede
where the data source transmits a stream of bytes, and is @btl. [4] and Koetteret al. [5]). In addition, Li et al. [15]
assumed to perform any source or error correction coding.show thatlinear codessuffice to achieve such a property. All



linear coding operations are defined as linear combinations
over Galois fields with fixed element lengths, thus the size of
the data does not increase after being encoded.

bdefh

IIl. ACHIEVING OPTIMAL THROUGHPUT INUNDIRECTED

DATA NETWORKS. THE SINGLE MULTICAST CASE m
We begin our study from the case of a single multicast
session. We consider the most general form of data networks, (a) steiner tree packing and (b) multicast with network coding.
represented by a simple gragh = (V, E) with undirected multicast without cading.

Edge_s petwgen network nodes. EaCh. ?dge represents a GaiNa. The achievable optimal throughputliss without coding, and with
munication link, and the edge capacities are specified bycaiing.

functionC : E — Q (where Q" denotes the set of positive
rational numbers), representing the available bandwidpac-
ities of communication links. Throughout this paper, weu®c
on thefractional model of data routing, where the capacity o
each link may be shared fractionally in both directions, a
information flows may be split and merged at arbitrarily fin
scales.

We useM = {mg,m1,...,mi} C V to specify the set
of nodes in the multicast group, with, being the sender. In
graphical illustrations throughout this paper, nodes\inare
shown as black, and nodes In — M are shown as white
Links are labeled with their capacities, aalll unlabeled links
have a capacity of.

least one source or receiver node in each component of the
artition. Let P be the set of all such partitions. Tligteiner
Erengthof N is defined asnin,ep |E.|/(|p| — 1), where|E,|
the total inter-component link capacity on the set of dink
%. being cut, andlp| is the number of components in the
partition p. It is a natural extension afetwork strengtH19]
defined for a broadcast network. It is known from our previous
work that network strength is equivalent to the achievable
optimal throughput in broadcast sessions [3]. Therefdiis,a
" natural direction to compute optimal multicast throughput
computing the Steiner strength.
Unfortunately, the Steiner strength problem turns out to be
A. Steiner tree packing and Steiner strength NP-complete as well. The fact that computing Steiner stieng

To compute the optimal throughput of multicast sessioni§, NP-compIete.aIso rulgs out the possibility that Steiner
Steiner tree packinL6], [17] andSteiner strengtthave been Stréngth and optimal multicast throughput are always edoal
the state-of-the-art. Unfortunately, both are NP-hardtimhs. fact, we find 'that Stelngr strength is either equal to or highe
Steiner tree packing. Consider the case of information flowsthan the achievable optimal throughhut
in one multicast session from a source to a set of destiratio
It can be theoretically shown that, if coding is not consédir
achieving optimal throughput via multiple multicast trees
equivalent to the problem @teiner tree packingvhich seeks ~ Contrary to the previous pessimistic views, we present the
to find the maximum number of pairwise edge-disjoint Steingtirprising result that efficient solutions do exist for cartipg
trees, in each of which the multicast group remains condect@ptimal throughput in undirected networks. We first forntela
An intuitive explanation to such equivalence is that, eadh€ problem as a linear network optimization problem, in
unit throughput corresponds to a unit information flow beinghich both the number of variables and the number of
transmitted along a tree that connects every node in thepgrogonstraints are bounded b9(|M||E|). We then show that
The maximum number of trees we can find corresponds to ¢ result of such optimization exactly gives the maximum
optimal throughput for the session. Fig. 2(a) shows such aahievable throughput, as well as the corresponding rgutin
example. In the figure, each letter corresponds to a distirséfategy. We also discuss possible solutions to the linear
Steiner tree, and nine such Steiner treedo(:) exist in the program.
shown packing scheme, where the tree corresponding to We begin by presenting therientation constraintsof the
is highlighted. Since each link with unit capacity needs tinear program that computes optimal throughput. éaen-
accommodate$ Steiner trees, the achievable throughput oi@tion of a network N is a strategy to replace each undirected
each tree is, thereforg,2. This leads to a multicast throughputink e = uv with two directed linksa; =uv and ax =vu,
of 1.8, which is optimal without coding. such thatC(e) = C(a1) + C(aq). After the orientation, the

Unfortunately, Steiner tree packing has been shown to bet of undirected links” becomes a set of directed links,
NP-complete [17], [18], and the best known polynomial timwith the number of links in the set doubled.
algorithm has an approximation ratio of aroumd5 [18]. We proceed to consider flows from the source to the
With the same example, we can also show that the achievabiglticast receivers. To take advantage of the power of nétwo
optimal throughput with network coding 2s(Fig. 2(b)), which coding to resolve competition for link capacities, we infioe
is higher than that achieved without coding. Consequentipe concept o€onceptual flowgcFlow). We define conceptual
even if Steiner tree packing is computationally feasilleay
not always yield the actual optimal multicast throughput. 1Observing space constraints, we exclude the proofs of ésslirand the

. . . NP-completeness of Steiner strength. Interested readerseferred to our
Steiner strength. In an undirected capacitied network,

- o ) technical report [20], which also includes more detailedl@xptions and an
we consider partitions of the network where there exists @tample in which the Steiner strength is higher than the optintaughput.

B. Efficient solutions for throughput optimization: the oWl
Linear Program



flows as network flows that co-exist in the netwaslithout result of the maximization is the maximum possible flow rate
contending for link capacities. that can be independently achieved from the source to all

Our linear program to compute the optimal throughputeceivers, over all possible orientations of the network:
shown in Table I, is referred to as thd-low LP since it
is based on conceptual flows. In the LP, ... f* are the = x =max[ min (maximummg, — m; flow rate)],

. 0€0 m;eM—{mo}

conceptual flows from sendet, to each of the receivers. Each
flow vector f? specifies a flow rat¢(a) for each directed link  where O denotes all possible orientations of the network,
a € A. fi (v) denotes the total incomingy flow rate at a node and M — {m,} is the set of multicast receivers. Recall the
v, similar for fi_,(v). Finally, the scalary is the target flow recent breakthrough in network coding [4], [5] shows that,
rate of optimization. a fixed orientation of the network, a ratecan be achieved for

In addition to the orientation constraints, tbi€low LP also the entire multicast session if and only if it can be achieved
includes thenetwork flowconstraints for each conceptual flowfor each multicast receiver independently. This implieat,th
and theequal rateconstraints. The network flow constraintdhe maximum throughput in each orientation equals to the
are specified in a compact form for all conceptual flowsninimum of the maximum source to receiver flow rate. The
which requires (1) flow rates must be upper bounded by lirgElow LP essentially maximizes this min-max flow over all
capacities; (2flow conservationi.e., the incoming flow rate in possible network orientations, and obtains the max-mir-ma
the conceptual flowf® equals to outgoing flow rate ifi* at a flow that is precisely the maximum multicast throughput ie th
relay node forf?; and (3) the incoming flow rate at the sourc@riginal undirected network. Further, the source may tmahs
and the outgoing flow rates at the receiver are all zero, foformation to each receiven,; according to the conceptual
eachfi. The equal rate constraints require that the flow ratew f*. Should more than one conceptual flows utilize ca-
of conceptual flows are identical, with being the uniform pacity on the same link, the conflict can always be resolved,
flow rate. With these linear constraints, the target flow rate provided that network coding is applied appropriately [8],
is then maximized. The cFlow LP contains2|E| orientation variablesC(a),
2|M||E| virtual flow variables f(a), and one target flow

TABLE | . ) :
rate variabley. Therefore, the total number of variables is

THE cFlowLP

— 2(|M| + 1)|E| + 1, which is on the order oO(|M]||E]). In
I\S/Il?k))('lg;]:ltztec;' X addition, thecFlow LP contains3|E| orientation constraints,
OrieJntatioﬁ constraints: (4|E| + |V])(]M| — 1) network flow constraints, as well as

0 < C(a) VaecA |M|—1 equal rate constraints. The total number of constraints

C(a1)+C(a2) = Cle) VeeE is, therefore(4|E| + |V |+ 1)(J]M]| — 1) + 3| E|, which is also
Independent network flow constraints for each conceptual flow:|on the order ofO(|M||E|). O

0 < fla) Vie[l.kVacA The optimal routing strategy computed bfflow LP spec-

f(a) < Clo) Vie[l.k[VaeA ifies the rate of data streams being transmitted along each

Fin() = foulv) Vi€ [l Yo eV —{mo,mi} |y Based on the routing strategy, we need to perform the

fi(mo) = 0 Vi € [1.k] o g strategy, perto

flm) = 0 Vi € [1.K] additional step ofcode assignmento compute_ thecoding _
Equal rate constraints: strategy, before data streams may be transmitted. The godin
X = fh(mi) Viel[l.k] strategy includes one transformation matrix for each node,

which specifies how incoming data streams are linearly coded
into outgoing streams. Given the routing strategy from the

We are now ready to present one of our main contributiog§low LP, there exist polynomial time algorithms to perform
of this paper, by showing that theFlow LP provides an effi- such code assignments [21]. Therefore, we have the follpwin
cient algorithm to compute the achievable optimal throughp corollary of Theorem 1.

as well as the routing strategy. Corollary 1. The complete solution that achieves optimal

Theorem 1. For an undirected data network with a singléhroughput in undirected data networks with a single mattic
multicast sessionN = {G(V,E),C : E — Q" M = session can be computed in polynomial time, including both
{mg,m1,...,mr} C V}, the maximum end-to-end through-the routing and coding strategies.

put x(N) and its corresponding optimal routing strategy can
be computed ipolynomial timeusing thecFlow LP, in which
both the number of variables and the number of constraiets
polynomial, and on the order @P(|M||E|). The conceptual
flows f1... f*¥ constitute the optimal routing strategy.

In order to evaluate the advantage of network coding with
respect to improving achievable optimal throughput, weehav
%plemented both theFlow LP and a brute-force algorithm

to compute the Steiner tree packing number. The Steiner tree
packing algorithm enumerates all steiner trees in the nitwo
Proof: The orientation constraints reflect complete flexibilitgssigns a flow variable to each tree, and then maximizes the
in orienting the undirected network’, without being too summation of all tree flows, subject to the constraints that t
restrictive or too relaxed. For each fixed orientation, eptoal total weight (throughput) of trees using each link should no
flows are being maximized with independent and standaesceed its capacity.

network flow constraints, as well as the extra constraint tha We have evaluated both theFlow LP and Steiner tree
conceptual flow rates are equal to each other. Therefore, thaeking (denoted as(N)) using our previous example in



Fig. 1, as well as a set ahiform bipartitenetworks, which are A. The cases of unicast, broadcast and group communication
believed to be good candidates to show the power of coding s@ssions
improving throughput [21], [22]. A uniform bipartite netwo
C(n, k) consists of the data source and two layers: one with  Since unicast and broadcast can be viewed as special cases
relay nodes and the other Wi(@) receivers. Each relay nodeof multicast, where two nodes and all nodes are in the mul-
is connected to the sender, and each receiver is connecéed figast group, respectively, our solution in the single noakt
different group ofk relay nodes, and all links have a capacitgase can be readily applied to a single unicast or broadcast
of 1. For instance, the network in Fig. 2 (5(3,2), and the session without modifications. In the case of a unicast @essi
classic example of network coding in Fig. 1 is isomorphic tthe cFlow LP essentially solves a linear program for a single
C(3,2). network flow. In the case of a broadcast session,dRiew
Table Il summarizes the results of our empirical studiekP computes the optimal broadcast throughput, which has
from which we have derived the following observations. frirsbeen shown by our previous work to be the same as both
the cFlow LP is much more scalable and efficient than Steinélne spanning tree packing number and the network strength
tree packing, which fails to compute a solution for a netwask [3].
small asC'(5, 3), with only 16 nodes and5 links, but almost  Traditionally, these three equal quantities have been com-
50 million different Steiner trees. In Separate eXperimentﬁuted from either the perspective of network Strength onspa
the cFlow LP is able to compute the optimal throughpuhing tree packing. Cunningham [19] first gave a combinaltoria
for networks having thousands of nodes. Second, optimghorithm that computes the network strength, which was
throughput with coding is always lower bounded by thahter improved by Barahona [24]. Both algorithms are based
without coding; however, network coding only introduces gn matroid theory, and are highly sophisticated. Though the
slight advantage, with the(V)/7(N) ratio no higher than spanning tree packing problem has an LP formulation, the
1.125. Third, coded transmission may lead to more integraumber of variables is exponential. It is therefore neagssa

flow rates and throughput than uncoded transmission. to work on its dual program, where the minimum Spanning
tree algorithms can serve as the separation oracle. In com-
TABLE Il parison, thecFlow LP provides an efficient alternative, with a
COMPUTING OPTIMAL THROUGHPUT CFloWLP VS. STEINER TREE polynomial number of constraints and variables, and witth bo

PACKING general LP solvers and custom-tailored distributed subgra

Network | [V] | [M[] 1B] | x(N) #(V) :% 2% of trees solutions [23] available.

Fig. 1 7 3 9 2 1.875 | 1.067 | 17

C3,2) |7 |4 |9 |2 18 | 1.111 | 26

C(4,3) 9 5 16 | 3 2.667 | 1.125 | 1,113

C(4,2) 11 | 7 16 | 2 1.778 | 1.125 | 1,128

C,4) |11 |6 |25 |4 3571 1.12 | 75,524

C(,2) |16 |11 [ 25 | 2 1.786 | 1.12 | 119,104

C(,3) |16 | 11 [ 35 | 3 = = 49,956,624

As a final note, we point out that beyond applying general
linear programming solutions — such as the simplex method
— it is also possible to design custom-tailored algorithims f Fig. 3. Transforming group communication into multicast trarssioin.
the cFlow LP, to take advantage of its underlying network
flow structure. In an accompanying paper [23], we apply o )
Lagrangian relaxation on the dual program of the cFlow LP, Group communication refers to many-to-many communi-
and design a distributed subgradient solution. The algorit cation sessions where multlple. sources multicast indegrgnd
iteratively refines an existing orientation of the origimegt- data to the same group of receivers, the set of senders and the
work, until an optimal one is reached. At this poifit/| max- set of receivers may or may not overlap. Previous work [5] has

flow computations are invoked to find the optimal multicastown that a many-to-many session can be easily transformed
throughput. into a multicast session, by addingsapersource, which is a

traditional technique in network flows. As illustrated irgFB,
we can add an additional sourSeo the network, and connect

IV. ACHIEVING OPTIMAL THROUGHPUT INUNDIRECTED it to each of the sources in the group communication session,

DATA NETWORKS MORE GENERAL CASES with links of unbounded capacity. We may then apply the
cFlow LP to maximize the multicast throughput fro to

Our efficient solution, thecFlow LP, can be extended toall the receivers. Additional constraints can be applietiaw
solve the optimal throughput problem in cases beyond assingétes on the newly added links between the super source and
multicast session. We now present its extensions (1) tastic the original sources in the session, governing fairnessngmo
broadcast and group communication sessions, (2) to the cHee original sources. The outcome from tti€low LP is the
of multiple communication sessions, and (3) to the model optimal throughput and its corresponding routing stratfegy
overlay networks. the original group communication session.



TABLE Il

B. The case of multiple sessions THE MElowLP

In its most general form, the optimal throughput problem

allows multiple communication sessions of different types Maximize: X
co-exist in the same network. Since multicast is repretigata | sypject to:
— in that unicast, broadcast and group communication can |albrientation constraints:
be transformed into multicast — it is sufficient to considee t 0 < C(a) VaeA
optimal throughput problem in the case of multiple multicag | C(@1) +Cla2) = Cle) Vee k
. Multicommodity cFlow constraints:
sessions. o . .
. . . . . 0 < fli(a) Viel.s],Vj € [l.k],

To achieve optimal throughput with multiple sessions, wei Vac A
need to consider the problem of inter-session fairness. The (i (qa) < fia) Vi € [1..s],Vj € [1..ki],
definition of fairness is usually application dependentyvho . VYa € A
ever, as long as it can be expressed using linear consfraiats| { >2i_, f'(a) < C(a) VaeA
can easily include them in the LP formulation. With respect fi2(v) = fi.(v) Vié€[l.s],Vj€ [1.ki]
network coding in multiple sessions, it is theoreticall\spible . V? S {@0, mi; }
to apply network coding on multiple incoming streams qf | fin(7mi0) = 0 Vi € [L..s],Vj € [1..ki]
different sessions. However, we argue against this pdisgibi fou(mi;) = 0 Vi € [1..s],Vj € [1..ki]
and usecoding by superpositiorf4], i.e., network coding Eq;‘a' rate S?“Stra'nts" _
is applied only to incoming streams of the same sessign.X = Jin(mi;) .W € [1.5],Vj € [1.-ki]
This argument is mainly supported by the computational':alrness CO.nS"a'nt?'
. . . e . v = Y'Jw, ¥Yiec[l.s]
intractability of the optimal throughput problem if intsession N N T

coding is allowed. In addition, our empirical experiences
show that allowing inter-session coding can hardly improve ] ) ) o
optimal throughput, and it is not practical to code datazstre when competing for link capacity. Furthermore, it is easy to

from different applications either. check that both the number of variables and the number of
The mFlow LP given in Table il is designed to solve theconstraints in thenFlow LP are on the order ab(s|M||E]),
optimal throughput problem with multiple multicast sessip Wheres is the number of sessions. 0

where we use weighted proportional fairness as the fairness

model. It is the result of extending theFlow LP to its C. The case of overlay networks
multicommodity variant. We assume there exist a totals of
multicast sessions, numbered &s..s. Each sessiori has
a sourcem;,, a number of receivers;, oMy, A set of
conceptual flows ... fix:, as well as a weigh; indicating
the importance of the session. The scalaris the common
rate for conceptual flows within sessionthe scalary is the

Since neither network coding nor data replication (for
IP multicast) are widely supported in the current-generati
network elements in the core, we consider the casaveflay
networkswhere only the end hosts have the full capabilities to
forward, replicate and code data streams, and the core retwo
.__elements (henceforth referred torasiters may only forward

"Fata packets as is. We note that the case of overlay networks

is actually more general than the classical model of untécec
Ndata networks we have used so far, which hints that the optima
throughput problem may become harder to solve.

et N = {G(V,E),C :— QT .M = {mg,...,mp},H =
U {mg41,...mp} C V} be an overlay network with

b multicast session. The multicast grop is a subset of
the end hosts{. If M = H, i.e, all end hosts are in the
multicast group, Gargt al. [25] has shown that the optimal
i fy , Phulticast throughput can be efficiently computed in thisecas
f'la) = fhi(a),¥j € 1. ki]. by working on the dual program of a natural LP formulation.

The_orem 2.In the case of multiple multicast sessions WitI’IL[ has also been shown in [25] that, in the general case the
°°d"?9 by superposition, Fhe Op“”?a' end-to-en-d thro.ughpb'ptimal throughput problem without network coding is the
and its corresponding optimal rou.tlng strategy n undedct overlay Steiner tree packing problem, and is still NP-caatel
data networks can be computed in polynomial time, by theWith the support of network coding, however, we are able
mFlO\_N LP. _ to extend thecFlow LP to its overlay variant, referred to as
Proof: The correctness of thenFlow LP builds upon the the oFlow LP, to solve the optimal throughput problem in

correctness of theFIow_LP, which is p“?Yed in Theore_m_ L the model of overlay networks. ThaFlow LP takes a hier-
plus the fact that for coding by superposition, data trassfan archical view of the multicast transmission, with anderlay

from different sessions constitute totally different cootities and anoverlay level. The underlay level corresponds to the

o o . o physical network topology, and has multicommodity floyis
It is known that finding sufficient and necessary conditions the . h ir of end h d . |
feasibility of multiple sessions in this case is equivalamtfihding a point Con_neCt'ng gac pair of end hosts andm;;, Y'a only routers
in an algebraic variety, which is NP-hard [5]. as intermediate nodes. The overlay level is conceptual, and

and the target of thenFlow LP is to maximizey.
The mFlow LP replaces the standard network flow co
straints in thecFlow LP with a set of multicommoditgFlow
constraints. Since flows of different sessions contendifdx |
capacity, the summation of the per-session flow rates shoul
not exceed link capacities. Since flows within the same sass
do not compete for link capacity, the effective flow rate with
a sessioni on link a is f'(a) = max;cp. k) [ (a). The
max function is not linear, so this constraint is relaxed t



contains end hosts fully connected as a complete graph. Wi¢h the overlaymFlow constraints in the third group of con-
link a;; from m; to m; has a capacity equal to the underlagtraints of theoFlow LP. The resulting linear program has both
flow rateg®*. We then apply theFlow LP in the overlay level its number of variables and number of constraints bounded by
to maximize the end-to-end throughput, where each nodeQ$(|H|? + s|M|)|E|). This is usually not worse than those
capable of replication and coding. of the single-sessioaFlow LP, since|H|? dominatess|M| in

In the oFlow LP shown in Table IV, we include threemost cases.
groups of constraints. First, the orientation constraiats
identical to those included in theFlow LP. Second, the
standard multicommodity flow constraints are specified for V. EMPIRICAL STUDIES

the underlay flows between end hosts and via routers onIy.Due to the lack of efficient algorithms, previous studies

Third, we introduce the mapping constraints that map the, e proplem of improving session throughput are largely
underlay g* flow rate to the overlay link capacity (referred, o on experimental or intuitive insights. We argue that t
to asC’(aj;)), and then apply the original constraints in the, ijapiity of the cFlow, mFlow and oFlow LPs has signifi-
cFlow ITP'at the overlay !evel. The target of tiolow LP is cantly changed the landscape, and has made it comput&gional
to maximize throughput in the overlay level. feasible to study the exact benefits of various proposals to
achieve higher throughput, including a single multicasetr
with data replication, multiple multicast trees, and netwo
coding. Our empirical studies are based on the implementati
of all three LPs that we have proposed. In comparison studies

TABLE IV
THE oFlowLP

Maximize: X we have also implemented algorithms to compute the optimal
Subject to: o throughput with multiple multicast trees but without caglin
Orientation constraints: . . . .

0 < Cla) Va€cA the optimal throughput with a widest multicast tree, as \asll|

Cla1)+C(a2) = Cle) VeeE the optimal throughput with all unicast from the source to al
Underlay multicommodity flow constraints: receivers. Topologies used in our simulations are gere:iate

0o < g¢7(a) Vi, j€[l.h,Va€ A the BRITE topology generator [26], with sizes ranging from

>.97(a) < C(a) Vi,je€[l.h],Va€ A 10 to 500 nodes, both with and without power-law properties,

9in(v) = goa(v) Vi,j€[lh],VoeV —H with heavy-tailed or constant link capacities.

gy () =0 Vi, j € [1..h],Yv € H — {m;}

gos(v) =0 Vi, j € [1..h],Yv € H — {m;} How advantageous is network coding with respect to improv-
Overlay cFlow constraints: ing optimal throughput?

i _ ij .o
g (a35) 2 fc‘ii(b;(,;m) zz’ é [el'%]'h] The ratio of achievable optimal throughput with coding over
- Va' € A Z {al;]1 <i,j < h} that without coding is refgrred to as th_mdlng advantqge

fia) < C'(d) Va' € A'\Vi € [1.k] Recall that we have investigated the coding advantage ileTab

fin(v) = foulw) Vie[l.k,YweH-M I, and are unable to experimentally find cases where network

fla(mo) = 0 Vi € [1..k] coding may improve optimal throughput by a factor higher

four(mi) = 0 Vi € [1..K] than1.125. We are naturally led to the questiowhat is the

X = fh.(m;) Vie[l.k] upper bound of the coding advantage?

Previous work [21] shows that in directed acyclic networks
with integral routing requirement, there exist multicagt-n

Theorem 3. In the case of a single multicast session in the . :
works where the coding advantage grows proportionally as

model of overlay networks, the optimal end-to-end throughplog(‘v‘), and is thus not finitely bounded. However, we found

and |ts_, correspondmg opt|m_al routing strategy can be COe situation is drastically different in undirected neti In
puted in polynomial time, using theFlow LP.

. ) 3], we use undirected splitting and graph orientation tovpr
Proof. Since relay nodes in the overlay network can n({ ] P g grap P

. . . h t, for multicast transmissions in undirected netwotks,
replicate or encode data, a data stream that is transmltg%%mg advantage is bounded by a constant factoz.of
between two end hosts without passing a third end host )

; L Given the bound.125 obtained for contrived networks, and
remains unchanged throughout the transmission and upon ar-

rival. Therefore, it is valid to model these direct transsioss € bound2 proven in theory, we further studied the coding

between end hosts as multicommodity flows. The validity (%dvantage in over one thousarahdomly generated topolo-

the cFlow constraints in the overlay layer may be derive?'es' Our observation is that, fafl the random topologies we

from the correctness of theFlow LP, which we have proved estgd, the coding .advantage alwa_lys remalﬂsl.e:, netwgrk
cadlng does not introduce any improvement in achievable

in Theorem 1. Furthermore, inspection on the variables a L X
constraints in theFlow LP reveals that, the number of bothﬂwouthm' This implies that the fundamental benefit of net

are on the order of)(|H|?|E|). V\{OI’K _codlng |sn0th|g_h_er optimal thrpughput_, but to faC|I|'Fate
Similar to the extension froneFlow to mFlow, one may significantly more efficient computation and implementatib
) : . R strategies to achieve such optimal throughput.
extend theoFlow LP into its multicommodity variant to 9 P ghp

accommodate multiple sessions in overlay networks. MoHow advantageous is standard multicast compared to unicast
specifically, one needs to replace the ovedBlow constraints and overlay multicast?



The cFlow LP is instrumental to precisely compute theunicast approach, and links incident to the sender become
achievable optimal throughput with one multicast communbottlenecks for the transmission. Surprisingly, the figais
cation session, either with network coding or with multiplsuggests that, the optimal throughput achieved by overlay
multicast trees, since the outcomes from the two are hardiulticast is almost identical to that achieved by standard
different. In either case, data replication need to be stpgo multicast, where all network nodes are able to replicateodec
on all network nodes, including core network elements. # halata. On average, the optimal throughput of overlay mudtica
been common knowledge that, when compared to unicast frasnover 95% of standard multicast. This observation shows
the source to all receivers, standard multicast bringsebetthat, from the perspective of maximum achievable throughpu
bandwidth efficiency and higher end-to-end session throughhile there may exist contrived network topologies thatvsho
put. However, even in the case of unicast, path diversitgieenore significant advantages of standard multicast ovelayer
to be exploited to achieve optimal throughput, equivalerthe multicast, little difference remains once large scale ticat
maximum unicommodity flow problem. It is not immediatelynetwork topologies are considered. In summary, the allagtic
clear how advantageous standard multicast is. approach does not scale, while overlay multicast may gjosel

Overlay multicast balances the tradeoff between the praaipproach optimal throughput without requiring core rositer
cality of standard multicast and unicast. It refers to theecabe modified.
where only the members of the multicast group may replica}t_F
or code data, whereas all other nodes may only forwarao
data. The optimal throughput achieved by overlay multicastWWhen new nodes join the multicast session, how may
is efficiently computed by theFlow LP. achievable optimal throughput be affected? Intuitivefyai

We perform a quantitative study that compares the optimf@l@y node joins the multicast group and becomes a new
throughput achieved with standard multicast, overlay ivast "€C€iver, the achievable session throughput should dezrea
and unicast. The study is performed in random networks widlye to the following two causes: (1) a larger number of
up to 500 nodes and ovel000 links. There are3 and 10 receivers may lead to more intense competition for bandyidt
members in the multicast group respectively, in two diffiere 2nd (2) @ new node with low capacity may become a bottleneck
sets of tests. Multicast nodes are randomly selected, witRd limit the throughput for the entire session. Our simaiat
different multicast groups being as disjoint as possibler Fresults show that,.the second cause has a much more significan
each network size, multiple tests are performed with difier impact than the first one.
network topologies and different choices of the multicast Fig- 5(@) shows variations of optimal throughput as the

W sensitive is optimal throughput to node joins?

group, the results are then averaged. number of nodes in the multicast group increases from three
to [|V|/2], and then tgV| (effectively a broadcast session),
~ (&) Size of mulicast group = 3 for various network sizegV|. In this experiment, network
_ topologies are generated with two edges per node without
ézz power-law relationships, with heavy-tailed bandwidthtriis
5 bution between 10 and 50 Kbps on the links. As we can
5% observe, when the size of the multicast group increases from
g three to[|V|/2], the effects on achievable throughput is rather
Ev significant. However, further expanding the multicast grou
Ss to the entire network leads to a much smaller decrease. Both
950100 150 200 250 300 350 400 450 500 causes that we have discussed contribute to the initiabdser
N e o mlecnt gy <20 of throughput, while the second causee( the effects of a
* [E Standard multcast bottleneck node) plays a less important role in the subsgque
B 30 1 Overlay multicast . .
g B Al unicast decrease — when the multicast group contains half of the
= nodes in the network, it is very likely for the group to have
%?0 already contained a node with low capacity.
£ We further performed the same tests on power-law network
gw topologies with10 Kbps constant link bandwidth, and the
S thi | | I 1/ results are shown in Fig. 5(b). In the power-law topologies,
0100 150 290 250 390 350 400 450 500 most nodes have small degrees of two or three, while a

Number of nodes in the network

small number of nodes have high degrees. Therefore, the
Fig. 4. Achievable optimal throughput using standard musticaverlay iNitial multicast group usually contains a node with a small
multicast, and all unicast from the sender to all receivers. degree already, which also has a low capacity, since the
link bandwidth is constant. In this case, only inter-reeeiv
As we may observe from Fig. 4, there exists obviousandwidth competition remains as a major concern. However,
differences between standard multicast throughput and al we can observe in the figure, in most cases the optimal
unicast throughput, and the differences are more significanulticast throughput remains roughly constant, even aftier
in Fig. 4(b), where the scale of the multicast transmiss®on the nodes have joined the multicast session. This counter-
larger. This is due to the fact that with a large number afituitive observation shows that, new receivers may share
receivers, the number of unicast flows increases in the BHndwidth with existing receivers well, and do not signifitta
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. L . . Fig. 6. Throughput variations as a new session is created.
Fig. 5. \Variations of optimal throughput due to new nodes if@nthe

multicast session.

resulting throughput is not satisfactory unless the nunuder
affect the achievable throughput, as long as their cagacitie sessions is very smalk (= 2). In general, this may lead to
not too low. Spikes in Fig. 5(b) correspond to the occasiongéry low, even zero, throughput for the new session. Thezefo
cases where nodes in the initial multicast group all haviis necessary to perform re-optimization before a newisass
relatively high capacities. Both results in Fig. 5(a) ant)5( starts to transmit.
havg led to thg same observation that’ when new ners 9" &y sensitive is optimal throughput to fairness constrag®t
multicast session, the decreased optimal throughput ialynai

due to bottleneck receivers with lower capacities. ] ] ) ] ] )
In order to investigate how inter-session fairness reguire

How sensitive is optimal throughput to the addition of newments affect the optimal throughput, we establish three one
sessions? to-two multicast sessions in networks of various sizes betw
When new sessions are added to the network, how #6 and 350, and computed their total optimal throughput with
they affect achievable optimal throughput? Tim&low LP, the following fairness constraints, respectively: (a) amrfess
presented in Sec. IV, makes it feasible to carry out ouequirement, which leads to the maximum value possible for
empirical studies. Fig. 6 shows the variation of optimahe total throughput; (b) absolute fairness, in which each
throughput as new communication sessions are createde Trgession is required to have exactly the same throughput; (c)
types of throughput are shown: (pyevious optimal which weighted proportional fairness, where the throughput chea
represents the optimal weighted session throughput béfere session is proportional to the associated weight of thaices
new session is added; (#)cremental which is the weighted and (d) max-min fairness, in which no session throughput
throughput for the new session using residual link capegitican be increased without decreasing another already smalle
only, or just the previous optimal throughput if the achigea session throughput.
throughput of the new session is higher; andrépptimized As a first small-scale experiment to gain some insights,
which is the re-computed optimal session throughput aftEig. 7 shows the total throughput of three sessions in a r&two
the new session is added. Four groups of simulations avéh twenty nodes, using thenFlow LP. Multicast groups
performed, with two, three, four, and five existing sessjionare chosen to be as disjoint as possible. The total weight
respectively, before the new session is established. Eath nof three sessions; + we + w3 = 1. As we can see, the
ticast group has a size five, and nodes in different multicaseight distribution has a significant impact on the achiévab
groups are chosen to be as disjoint as possible. Each sestital throughput. When the three weights are heavily unbal-
is assigned an equal weight. anced, the session with the smallest weight can not realize
Results in Fig. 6 show that, the addition of an extra sessi@a throughput potential, and consequently leads to a small
does not dramatically affect the achievable optimal thhguuy, value of total throughput. The achievable throughput with
especially when the network size is large in comparison @bsolute fairness ai; = wy = wz = 0.333 is 91.8 Kbps.
the number of nodes involved in the transmissions. Howevdhe global optimal throughput07.0 Kbps is achieved at
if the existing sessions remain transmitting accordinghte t (wq, w2, ws) = (0.287,0.407,0.306), which turns out to be
optimal transmission strategy computed before the nevicgessdentical to the throughput with max-min fairness in thisea
joins, and only residual capacities can be utilized to serveFurther results in Table V show that the excellent perfor-
the new session (thaacremental throughputase), then the mance of max-min fairness in the above example is not a
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coincidence. As we may observe, when the network size
relatively large $0 and above in the table), max-min fairnes: %10 50 100 200 300 400 500 %10 50 100 200 300 400 500
always leads to optimal throughput. When the network size
small (10 and20 in the table), the inter-session competition for
bandwidth becomes more intense. The throughput with mabig. 8.  Achievable throughput and bandwidth efficiency: anparison
min fairness may be inferior to the optimal throughput irsthitbrigNeen the optimal throughput multicasFlow LP) and the widest Steiner
case, but the difference is usually small. '

Number of nodes in the network

TABLE V

TOTAL ACHIEVABLE THROUGHPUT WITH MAX-MIN FAIRNESS VS. GLOBAL when the network size is Iarge' For the constant link CapaCIt

case, the difference between the optimal and widest Steiner
tree throughput becomes even larger. Every tree in thistese
network size 10 50 100 [ 150 [ 250 [ 350 the same throughput, therefore the “widest” selectioreddn
max-min (Kbps) | 120.0] 173.3| 160.0 146.7| 146.7| 183.3 pecomes irrelevant. However, the difference in bandwidth
optimal (Kbps) | 126.1] 173.3 160.0 146.7] 146.7] 183.3 fficiency decreases, since it is no longer necessary tadacl
long tree branches to achieve the maximum tree throughput.

Does optimal throughput lead to low bandwidth efficiency?

In order to find out whether achieving optimal throughput V1. CONCLUDING REMARKS
sacrifices bandwidth efficiency, we have conducted perfor-The main problem we have studied in this paper is to
mance comparisons between optimal throughput multicast asompute and achieve optimal throughput in data networks,
single tree multicast. In the latter case, we computentitest in the general case of undirected communication links. We
Steiner treewhich has the highest throughput from all possibleave been pleasantly surprised at how results from network
multicast trees. The throughput of a tree is the lowest dpaccoding are able to facilitate the design of efficient soluio
of its links. We choose the tree with the highest throughptt this fundamental problem that was previously viewed as
rather than the one that is most bandwidth efficient, sinee thery hard. We also show the counter-intuitive conclusion
latter is equivalent to the minimum Steiner tree problemiciwh that, the most significant benefit of network coding is not to
is hard to compute or to approximate. Even when we can fiadhieve higher optimal throughput, but to make it feasible
such a bandwidth efficient tree, it may have an exceedingly achieve such optimality in polynomial time. We show
low throughput, which is not practical for data transmissio that such efficient algorithms may be designed for multiple

In Fig. 8, we compare both achievable throughput angbmmunication sessions of a variety of types, and for the
bandwidth efficiency between the two approaches. Bandwidifore realistic model of overlay networks. Simulation sesdi
efficiency is computed as the total receiving rate at alliv@re also suggest that, overlay multicast techniques may approa
divided by the total bandwidth consumption. We tested twsptimal multicast throughput quite well.
groups of networks, one with variable link capacity conferm
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