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Fast Matrix Rank Algorithms and Applications
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We consider the problem of computing the rank of an m× n matrix A over a field. We present a randomized
algorithm to find a set of r = rank(A) linearly independent columns in Õ(|A| + rω) field operations, where |A|
denotes the number of nonzero entries in A and ω < 2.38 is the matrix multiplication exponent. Previously
the best known algorithm to find a set of r linearly independent columns is by Gaussian elimination, with
deterministic running time O(mnrω−2). Our algorithm is faster when r < max{m, n}, for instance when
the matrix is rectangular. We also consider the problem of computing the rank of a matrix dynamically,
supporting the operations of rank one updates and additions and deletions of rows and columns. We present
an algorithm that updates the rank in Õ(mn) field operations. We show that these algorithms can be used
to obtain faster algorithms for various problems in exact linear algebra, combinatorial optimization and
dynamic data structure.
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1. INTRODUCTION

Given an m × n matrix A over a field F, the rank of A, denoted by rank(A), is the
maximum number of linearly independent columns of A. We consider the problem
of computing rank(A) and finding a set of rank(A) linearly independent columns
efficiently. It is a basic computational problem in exact linear algebra that is used as a
subroutine for other problems [Trefethen and Bau 1997; von zur Gathen and Gerhard
2003]. It also has a number of applications in graph algorithms and combinatorial op-
timization: Some of the fastest algorithms for graph matching [Mucha and Sankowski
2004; Harvey 2009], graph connectivity [Cheriyan 1997; Sankowski 2007; Cheung et al.
2011a], matroid optimization problems [Harvey 2009; Cheung et al. 2011b] are based on
fast algorithms for computing matrix rank and finding linearly independent columns.
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The traditional approach to compute rank(A) is by Gaussian elimination. For an m×n
matrix with m ≤ n, it is known that this approach can be implemented in O(nmω−1)
field operations [Bunch and Hopcroft 1974; Ibarra et al. 1982], where ω < 2.373 is
the matrix multiplication exponent [Coppersmith and Winograd 1990; Williams 2012].
More generally, given an m× n matrix and a parameter k ≤ m ≤ n, one can compute
min{rank(A), k} in O(nmkω−2) field operations [Storjohann 2009]. The time complexity
can be improved somewhat for sparse matrices [Yuster 2010]. The Gaussian elimination
approach has the advantage that it can also find a set of min{rank(A), k} linearly
independent columns in the same time. These algorithms are deterministic.

There are also randomized algorithms to compute the value of rank(A) more effi-
ciently. There are at least three approaches.

(1) The first approach is to do an efficient preconditioning [Kaltofen and Saunders
1991; Chen et al. 2002]. Let B = T1 AT2 where T1 and T2 are Toeplitz matrices
with entries chosen uniformly and randomly from a large enough subset of the
field. Then B can be computed in Õ(mn) time because of the structure of T1 and
T2. Let r = rank(A). It is proven that [Kaltofen and Saunders 1991] the leading
r ×r minor of B is of full rank with high probability. Thus rank(A) can be computed
in Õ(mn + rω) field operations. There is another efficient preconditioner based on
butterfly network [Chen et al. 2002] with similar property and running time. This
approach works for any field.

(2) There is a black-box approach that computes rank(A) in O(m · |A|) field opera-
tions [Wiedemann 1986; von zur Gathen and Gerhard 2003; Saunders et al. 2004]
where |A| is the number of nonzero entries of A. The method is based on computing
the minimal polynomial of A for Krylov subspaces. It does not require to store A
explicitly, as long as there is an oracle to compute Ab for any vector b. This approach
is fast when the matrix is sparse, and it works for any field.

(3) Another approach is based on random projection for matrices over real numbers.
Given an m × n matrix A over R, one can reduce A into an m × (mlog m) ma-
trix A′ so that rank(A) = rank(A′) with high probability [Sarlós 2006] by the
Johnson-Lindenstrauss lemma. The matrix A′ can be computed efficiently using
fast Johnson-Lindenstrauss transform [Ailon and Chazelle 2006; Ailon and Liberty
2011], and this implies an Õ(nm+ mω) randomized algorithm to compute rank(A).
This approach is only known to work for matrices over real numbers.

We note that only the Gaussian elimination approach can also find a set of rank(A)
linearly independent columns, while other approaches can only compute the value of
rank(A).

1.1. Main Results

We present faster randomized algorithms to compute matrix rank and show their
applications. In this section, we use the Õ notation to hide (small) polylog factors in
the time bounds. We will state the precise time bounds in the technical sections. We
assume that there is at least one nonzero entry in each row and each column, and thus
|A| ≥ max{m, n}.

THEOREM 1.1. Given an m × n matrix A over a field F and a parameter k where
k ≤ min{m, n}, there is a randomized algorithm to compute min{rank(A), k} in
O(|A| + min{kω, k|A|}) field operations where |A| denotes the number of nonzeros in A.
Furthermore, there is a randomized algorithm to find a set of min{rank(A), k} linearly
independent columns in Õ(|A| + kω) field operations.
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For computing min{rank(A), k}, previous algorithms require Õ(mn + kω) field opera-
tions, while we replace the mn term by |A| and remove the (small) polylog factor. More-
over, we can also find a set of min{rank(A), k} linearly independent columns in about
the same time, which is considerably faster than the O(mnkω−2) algorithm by Gaussian
elimination when k is small. For instances, we can find a set of k = n1/ω ≈ n0.42 linearly
independent columns in Õ(|A|) field operations, and a set of k = n1/(ω−1) ≈ n0.72 linearly
independent columns in Õ(mn) field operations, while previously it was possible only
for k = O(polylog(n)). The algorithm for finding linearly independent columns is needed
in all applications of Theorem 1.1 that we will describe in the next section.

We also present a dynamic algorithm to efficiently update the matrix rank.

THEOREM 1.2. Given an m×nmatrix Aover a field F, there is a randomized algorithm
to compute rank(A) dynamically in Õ(mn) field operations in the worst case, supporting
the operations of rank one updates and adding and deleting rows and columns.

Previously, there is a dynamic algorithm to update the matrix rank in O(n2) field
operations for an n × n square matrix, supporting the operation of rank one updates
[Frandsen and Frandsen 2009; Sankowski 2007]. There are also subquadratic dynamic
algorithms to update the matrix rank when few entries are changed [Frandsen and
Frandsen 2009; Sankowski 2007]. Our algorithm supports the new operations of
adding and deleting rows and columns. These new operations will be useful in
computing graph connectivities dynamically (see Theorem 1.5).

1.2. Applications

The matrix rank algorithms can be readily applied to various problems in exact linear
algebra, combinatorial optimization, and dynamic data structure. First, we show that
the algorithms can be applied to computing a rank-one decomposition, finding a basis
of the null space, and performing matrix multiplication for a low rank matrix.

THEOREM 1.3. Let A be an m × n matrix over a field F. Let r = rank(A). Let m′ =
min{m, n}.
(1) There is a randomized algorithm to compute an m× r matrix X and an r × n matrix

Y such that A = XY in Õ(|A| + m′rω−1) steps.
(2) There is a randomized algorithm to find a basis of the null space of Ain Õ(|A|+nrω−1)

steps.
(3) Let A and B be n × n matrices. There is a randomized algorithm to compute AB in

Õ(n2rω−2) steps.

The success probability for all three tasks is at least 1 − O(log(nm)/|A|1/3).

Our algorithms are faster than the existing algorithms, especially when r is small.
See Section 4.1 for details.

In combinatorial optimization, there are algebraic formulations of the problems that
relate the optimal value to the rank of an associated matrix. Using this connection, we
can apply the algorithm in Theorem 1.1 to obtain fast algorithms for graph matching
and matroid optimization problems. See Section 4 for the definitions of these problems.

THEOREM 1.4. Let opt be the optimal value of an optimization problem.

(1) Given an undirected graph G = (V, E), there is a randomized algorithm to find a
matching of size min{opt, k} in Õ(|E| + kω) time.

(2) Given a linear matroid intersection problem or a linear matroid parity problem
with an r × 2n matrix A, there is a randomized algorithm to find a solution of size
min{opt, k} in Õ(|A| + nkω−1) time.
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Table I. Time Complexity of Algorithms for Some Problems in Combinatorial Optimization

graph matching linear matroid intersection linear matroid union

combinatorial O(
√

opt · |E|) Õ(nr(opt)
1

4−ω ) Õ(nrb(opt) + nb2(opt)2)
[Micali and Vazirani 1980] [Gabow and Xu 1996] [Cunningham 1986]

[Goldberg and Karzanov 2004]
algebraic O(|V |ω) O(nrω−1) –

[Mucha and Sankowski 2004] [Harvey 2009]
this paper Õ(|E| + (opt)ω) Õ(nr + n(opt)ω−1) Õ(nr(opt) + b3(opt)3)

(3) Given a linear matroid union problem with an r×nmatrix |A|, there is a randomized
algorithm to find min{opt, k} disjoint bases in Õ(k|A|+min{kω+1bω, k3b3}) time, where
b denotes the size of a basis.

Table I lists the time complexity of the best-known combinatorial algorithms and
algebraic algorithms for these problems. Notice that previous algebraic algorithms
have the same time complexity even when the optimal value is small. On the other
hand, combinatorial algorithms for these problems are based on finding augmenting
structures iteratively, and thus the number of iterations and the overall complexity
are smaller when the optimal value is small. While previous algebraic algorithms are
faster than combinatorial algorithms only when the optimal value is large, the results
in Theorem 1.4 show that the algebraic approach can be faster for any optimal value.
For the matroid optimization problems, the algorithms in Theorem 1.4 are faster than
previous algorithms in any setting. The result in the graph matching problem can
be applied to the subset matching problem [Alon and Yuster 2007] and the lopsided
bipartite matching problem [Charles et al. 2010]. See Section 4 for more discussions
on previous work for these problems.

The dynamic matrix rank algorithm in Theorem 1.2 can be applied to obtain a
dynamic algorithm to compute edge connectivities in a directed graph.

THEOREM 1.5. Given an uncapacitated directed graph G = (V, E), there is a ran-
domized algorithm to compute all-pairs edge-connectivities dynamically in Õ(|E|2) time
and Õ(|E|2) space, supporting the operations of adding and deleting edges.

In undirected graphs, there are polylogarithmic time dynamic algorithms for com-
puting k-edge-connectivity for k ≤ 2 [Holm et al. 2001], and a Õ(|V ||E|)-time algorithm
to compute all pairs edge connectivities [Bhalgat et al. 2007]. The corresponding prob-
lems are more difficult for directed graphs. There is a subquadratic dynamic algorithm
for computing 1-edge-connectivity in directed graphs [Sankowski 2004]. For all pairs
edge connectivities in directed graphs, we do not know of any dynamic algorithm that
is faster than the straightforward dynamic algorithm that uses �(|V |2|E|) time and
�(|V |2|E|) space, by storing the flow paths for each pair and running an augmentation
step for each pair after each edge update. For graphs with O(|V |) edges (e.g., planar
graphs), the amortized complexity of our algorithm to update the edge connectivity for
one pair is O(1) field operations.

1.3. Methods

Similar to the preconditioning approach, our approach is to compress the m×nmatrix A
into a O(k)×O(k) matrix C efficiently, while keeping the property that min{rank(C), k} =
min{rank(A), k} with high probability. To illustrate the ideas, we consider the case when
k = r = rank(A). To do so, we first compress the m× n matrix A into a m× O(r) matrix
B efficiently, while keeping the property that rank(B) = rank(A) with high probability.
We present two efficient methods to do the compression, assuming the field size is
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sufficiently large for now. The first method is inspired by the random linear coding
algorithm [Ho et al. 2006] in network coding [Ahlswede et al. 2000] and its efficient
implementation using superconcentrators [Cheung et al. 2011a]. Suppose we write each
column of Bas a random linear combination of all the columns of A. Then it can be shown
that rank(B) = rank(A) with high probability by the Schwartz-Zippel lemma, but the
direct implementation of this method requires a fast rectangular matrix multiplication
algorithm. To do the compression efficiently, we use a construction similar to that of
magical graphs [Hoory et al. 2006] in the construction of superconcentrators. We prove
that if each column of B is a random linear combination of O(n/r) random columns of
A, it still holds with high probability that rank(B) = rank(A). In addition, this property
still holds when each column of A is involved in only O(1) linear combinations, and
so the sparsity of the matrix can be preserved, that is, |B| = O(|A|). Hence, B can
be constructed in O(|A|) field operations. Then, we can apply the same procedure to
compress the m× O(r) matrix B into a O(r) × O(r) matrix C, in O(|B|) field operations
with the property that rank(C) = rank(B) with high probability. Since C is an O(r)×O(r)
matrix, we can compute rank(C) in O(rω) field operations. Therefore, rank(A) can be
computed in O(|A| + rω) field operations. Based on a bounded degree condition of the
magical graph, from a set of r linearly independent columns in C, we can reduce the
number of columns of A by a constant factor while preserving the rank of A. So, this
procedure can be applied iteratively to reduce the number of columns of Aprogressively,
so that a set of r linearly independent columns in A can be found in O((|A| + rω) log n)
field operations.

Another method to do the compression is to multiply A with an n × m random Van-
dermonde matrix V with only one variable. We show that rank(B) = rank(A) with high
probability, by using the Cauchy-Binet formula and a base exchange argument. The
m× m matrix B = AV can be computed in Õ(mn) field operations using a fast Fourier
transform. This provides an alternative way to compute rank(A) efficiently, although
it is slower than the above method. The advantage of this method is that it allows us
to update the matrix rank efficiently when we add and delete rows and columns of A,
because of the special structures of the Vandermonde matrices. For instance, when the
m× n matrix A is changed from m < n to m > n, we can change the representation from
B = AV to B′ = V ′ A by doing an inverse Fourier transform. This allows us to update
rank(A) in Õ(mn) field operations in the worst case.

2. FAST MATRIX RANK ALGORITHMS

In this section, we will prove Theorem 1.1. First, we state the setting in Section 2.1 and
present an outline of our approach in Section 2.2. Then, we define magical graphs in
Section 2.3, and use them to obtain the compression algorithm in Section 2.4. Finally,
we present the algorithms to computing the matrix rank and finding a maximum set
of independent columns in Section 2.5 and Section 2.6, respectively.

2.1. Setting

Let A be an m× n matrix over a field F. We will assume that A is given by a list of the
value and the position of its nonzero entries, and each row and column of A contains at
least one nonzero entry, so |A| ≥ max(n, m).

When F is a finite field, we will assume that |F| = �(n4) by the following lemma
using an extension field. The proof is well known but we include one in Appendix A for
completeness.

LEMMA 2.1. Let Abe an m×n matrix over a field F with pc elements. We can construct
a finite field F ′ with pck = �(n4) elements and an injective mapping f : F → F ′ so that
the image of F is a subfield of F ′. Then, the m× n matrix A′ where a′

i j = f (aij) satisfies
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the property that rank(A′) = rank(A). This preprocessing step can be done in O(|A|) field
operations. Each field operation in F ′ can be done in Õ(log |F| + log n) steps.

When F is an infinite field, we will assume the exact arithmetic model where each
field operation can be done at unit cost. In the algorithms, we will need to choose a
random element from F. When F is an infinite field, we just choose an arbitrary subset
S ⊂ F with |S| = �(n4), and pick a uniformly random element from S. This will be
enough for our applications of the Schwartz-Zippel lemma [Schwartz 1980].

LEMMA 2.2 (SCHWARTZ-ZIPPEL). Let P ∈ F[x1, . . . , xn] be a nonzero polynomial of total
degree d over a field F. Let S be a finite subset of F and let r1, . . . , rn be selected randomly
from S. Then, the probability that P(r1, . . . , rn) = 0 is at most d/|S|.

2.2. Outline

Suppose a parameter k is given and the task is to compute min{rank(A), k}. Our ap-
proach is to compress the matrix into a O(k) × O(k) matrix whose rank is at least
min{rank(A), k} with high probability. Our method is inspired by the random linear
coding algorithm [Ho et al. 2006; Cheung et al. 2011a] in network coding [Ahlswede
et al. 2000]. We can construct an m× k matrix B where each column of B is a random
linear combination of the columns of A, that is, Bi = ∑n

j=1 rj,i Aj where Aj and Bi denote
the jth column of A and the ith column of B, respectively, and rj,i is a random element
in F. In other words, B = AR where R is an n× k matrix where each entry is a random
element in F. It can be shown that rank(B) = min{rank(A), k} with high probability
using the Schwartz-Zippel lemma (see Lemma 2.5), but the problem is that it requires
a rectangular matrix multiplication algorithm [Huang and Pan 1998] to compute B
and it is not efficient.

We observe that this way of constructing B is the same as doing the random linear
coding algorithm in a single vertex with n incoming edges and k outgoing edges. And so
the idea of using a superconcentrator to do the random linear coding efficiently [Cheung
et al. 2011a] can be applied to construct an m× k matrix B in O(mn) field operations,
while rank(B) = min{rank(A), k} with high probability. We can apply the same pro-
cedure to reduce the matrix B into a k × k matrix C in O(mk) field operations while
rank(C) = rank(B) with high probability, and then rank(C) can be computed directly.
The technical point here (see Appendix B for details) is that a superconcentrator is
a sparse graph that has a strong connectivity property. The sparsity allows for fast
computation. And the strong connectivity property ensures that any set of k linearly
independent columns in A can be mapped to the k columns in B bijectively by some lin-
ear combinations, and random linear combinations ensure that rank(B) = {rank(A), k}
with high probability by the Schwartz-Zippel lemma. This implies that min{rank(A), k}
can be computed in O(mn + kω) field operations with high probability, improving the
existing algorithms by removing the polylog factor. There are, however, two disad-
vantages of this method. One is that the compression algorithm requires �(mn) field
operations even when A is a sparse matrix. Another is that we do not know how to find
a set of min{rank(A), k} linearly independent columns of A using this method.

To improve the compression algorithm, we choose R to be a sparse n × l matrix
(indeed l = O(k) would be enough), with at most two nonzeros per row and about 2n/l
nonzeros per column. Their locations are chosen at random, so that with high probabil-
ity they form a “magical graph” (a sparse expander graph used in the construction of a
superconcentrator) when the matrix R is viewed as a bipartite graph with n vertices on
one side and l vertices on the other side. The property of the magical graph ensures that
with high probability any set of k linearly independent columns in A can be mapped to
some set of k columns in B bijectively by some linear combinations. Again, the nonzero
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values are chosen randomly from the field, so that min{rank(B), k} = min{rank(A), k}
with high probability by the Schwartz-Zippel lemma. Since there are only two nonzeros
per row of R, we can compute B = AR easily in O(|A|) time. Furthermore, since there
are about 2n/l nonzeros per column of R, from any set of at most k linearly independent
columns in B, we can identify a subset of at most 2nk/l columns in A with the same
number of linearly independent columns. By choosing l ≈ 11k, we can (1) guarantee
with high probability that R is a magical graph, (2) compute the rank of the compressed
matrix in O(kω) field operations, and (3) remove a constant fraction of the columns of A
while keeping min{rank(A), k} unchanged. Therefore, we can repeat this procedure for
O(log n) times to reduce the number of columns in A to be O(k), and the total running
time is O((|A| + kω) log n) field operations.

2.3. Magical Graphs

Our construction requires a probability distribution of bipartite graphs with the fol-
lowing properties.

Definition 2.3 (Magical Graphs). A probability distribution of bipartite graphs with
vertex set X ∪ Y is (k, ε)-magical if for any given subset S ⊆ X with |S| = k, the
probability that there is a matching in which every vertex in S is matched is at least
1 − ε.

We note that this definition only requires any particular subset S of size k can
be matched to the other side with high probability, while the definition in Hoory et al.
[2006] requires that all subsets up to certain size can be matched to the other side. This
will allow us to show that for any particular set of k linearly independently columns
in the original matrix, with high probability there exist some linear combinations that
will map it to some set of k columns bijectively in the compressed matrix.

We show that a graph from a magical distribution with good parameters can be
generated efficiently.

LEMMA 2.4. For any values of |X| ≥ |Y | ≥ ck where c ≥ 11, there is a (k, O(1/k))-
magical distribution with the additional properties that each vertex of X is of degree 2
and each vertex of Y is of degree at most 2�|X|/|Y |
. Moreover, there is a randomized
O(|X|) time algorithm to generate a graph from this distribution.

We note that the magical graphs in Hoory et al. [2006] cannot be used directly
because of the following reasons: (1) the failure probability in Hoory et al. [2006] is
a constant while we need a much smaller failure probability in order to find a set of
linearly independent columns, (2) we need the additional property that the graph is
almost regular to find a set of linearly independent columns. The proof is by a standard
probabilistic argument, which can be skipped in the first reading.

PROOF. The generation algorithm is simple. We assume that |X| is a multiple of |Y |;
otherwise we construct a slightly larger graph and delete the extra vertices. We first
construct a 2-regular graph G′ with |X| vertices on both sides, by taking the union of
two random perfect matchings independently from |X| vertices to |X| vertices. Then we
divide the |X| vertices on one side into |Y | groups where each group has |X|/|Y | vertices.
We obtain G by merging each group into a single vertex, and so each vertex in Y is of
degree 2|X|/|Y |.

For any S ⊆ X with |S| = k, we analyze the probability that there is a matching in
G in which every vertex in S is matched. By Hall’s theorem, we need to show that for
any S′ ⊆ S, the neighbor set of S′ in G is of size at least |S′|. To analyze the probability
that the neighbor set of S′ is at least |S′| for a fixed S′ ⊆ S, we consider the equivalent
random process where the 2|S′| edges incident on S′ are added one by one. Consider
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Fig. 1. Compression algorithm by magical graphs.

the ith edge added. We say that it is a bad edge if the other endpoint falls in the same
group with some previously added edges. If the neighbor set size of S′ is less than |S′|,
then there must be at least |S′| + 1 bad edges out of the 2|S′| edges, and the probability
that an edge is bad is less than |S′|/|Y |. So the probability that the neighbor set size of
S′ is less than |S′| is less than

(
2|S′|

|S′| + 1

)
×

( |S′|
|Y |

)|S′|+1

by a union bound on the possible |S′| + 1 bad edges. Summing over the choices of the
size of S′ and the choices of S′ with that size, we have that the probability that there
is a subset S′ ⊆ S with less than |S′| neighbors is at most

k∑
z=0

(
2z

z + 1

) (
z

|Y |
)z+1 (

k
z

)
≤

k∑
z=0

22z
(

z
|Y |

)z+1 (
ke
z

)z

≤
k∑

z=0

(
4e
c

)z z
ck

= O(1/k),

using |Y | ≥ ck and the identity
∑∞

z=0 rz · z = r/(1 − r)2 for r < 1, and setting r = 4e/c
as c ≥ 11 > 4e by our assumption. Therefore, by Hall’s theorem, the probability that
there is a matching in which every vertex in S is matched is at least 1 − O(1/k).

2.4. Compression Algorithm by Magical Graph

In the following, we use a graph from a magical distribution to do an efficient rank-
preserving compression. The algorithm is shown in Figure 1 and illustrated in Figure 2.

The following lemma uses the Schwartz-Zippel lemma to prove that the compression
algorithm is rank-preserving with high probability.

LEMMA 2.5. The probability that the algorithm in Figure 1 returns a matrix B such
that min{rank(B), k} = min{rank(A), k} is at least 1 − ε − k/|F|.

PROOF. Clearly, rank(B) ≤ rank(A) since the column space of B is a subspace of the
column space of A. So min{rank(B), k} ≤ min{rank(A), k}, and it remains to show that
rank(B) ≥ min{rank(A), k} with high probability.

Let k′ = min{rank(A), k}. Let S be a set of linearly independent columns of A with
|S| = k′, and let AU,S be a k′ × k′ submatrix of A with rank(AU,S) = k′. We overload
notation to also use S to denote the subset of vertices in G corresponding to those
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Fig. 2. The notations used are the same as in Figure 1. The bipartite graph G = (X, Y ; E) is used to compress
the matrix A into matrix B. Each column of B is a random linear combination of the columns of its neighbors,
for example, B3 is a random linear combination of A2, A3 and A8.

columns. Since G is sampled from a (k, ε)-magical distribution, the probability that
there is a matching M in which every vertex in S is matched is at least 1 − ε. Suppose
such a matching M exists and let T be the neighbors of S in M with |T | = |S| = k′. (In
the example in Figure 2, suppose S = {A1, A2, A3}, then M could be {x1y2, x2y3, x3y1}
and T = {B1, B2, B3}.) If we view each ce as a variable, then det(BU,T ) is a multivariate
polynomial with total degree k′. By setting ce = 1 for each e ∈ M and ce = 0 for each
e ∈ E − M, we get that BU,T = AU,S and thus det(BU,T ) is a nonzero multivariate
polynomial as AU,S is of full rank. By the Schwartz-Zippel lemma, if we substitute each
variable ce by a random element in a field F, then the probability that det(BU,T ) = 0
is at most k′/|F| ≤ k/|F|. So, if G has a matching that matches every vertex in S, then
rank(B) ≥ rank(BU,T ) = k′ with probability at least 1 − k/|F|. Therefore, the algorithm
succeeds with probability at least 1 − ε − k/|F|.

We can combine Lemma 2.4 and Lemma 2.5 to obtain an efficient compression
algorithm.

THEOREM 2.6. Suppose an m× n matrix A over a field F is given. Given k, there is an
algorithm that constructs an m× O(k) matrix B over F with the following properties.

(1) min{rank(A), k} = min{rank(B), k} with probability at least 1 − O(1/k) − O(k/|F|).
(2) |B| = O(|A|) and B can be constructed in O(|A|) field operations.

PROOF. We can assume n ≥ 11k; otherwise, we can just let B = A. We sample a
bipartite graph G = (X, Y ; E) with |X| = n and |Y | = 11k from a (k, O(1/k))-magical
distribution in O(n) time by Lemma 2.4, with the additional property that each vertex
in X is of degree two. We use G in the algorithm in Figure 1 to obtain an m×11k matrix
Bover F. Since each vertex of X is of degree two, each entry of A is related to two entries
in B. We can represent B by listing the value and position of its nonzero entries without
handling duplicate positions, that is, each nonzero entry in A introduces exactly two
entries in B. Therefore, |B| = 2|A| and B can be constructed in O(|A|) field operations.
The probability that min{rank(A), k} = min{rank(B), k} is at least 1− O(1/k)− O(k/|F|)
by Lemma 2.5.

2.5. Computing Matrix Rank

With the compression algorithm, the first part of Theorem 1.1 follows easily.
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THEOREM 2.7. Suppose an m× n matrix A over a field F is given with m ≤ n. There
is an algorithm to compute min{rank(A), k} for a given k ≤ m in O(|A| + min{kω, k|A|})
field operations with success probability at least 1 − O(1/n1/3).

PROOF. We can assume that |F| = �(n4) by Lemma 2.1. We also assume that k ≥ n1/3;
otherwise if k < n1/3 we just reset k to be n1/3. We apply Theorem 2.6 to compress the
m × n matrix A into an m × O(k) matrix B. Then min{rank(B), k} = min{rank(A), k}
with probability at least 1 − O(1/k) − O(k/|F|) = 1 − O(1/n1/3) since n1/3 ≤ k ≤ n and
|F| = �(n4). And B can be constructed in O(|A|) field operations with |B| = O(|A|).
We then apply Theorem 2.6 again on BT to compress the m × O(k) matrix B into
an O(k) × O(k) matrix C. Then min{rank(C), k} = min{rank(B), k} with probability at
least 1 − O(1/n1/3) and C can be constructed in O(|A|) field operations with |C| =
O(|A|). Now we can compute rank(C) in O(kω) field operations by using fast matrix
multiplication [Bunch and Hopcroft 1974]. Alternatively, we can compute rank(C) in
O(k|C|) = O(k|A|) field operations using the black box approach [Saunders et al. 2004;
von zur Gathen and Gerhard 2003]. Thus, min{rank(A), k} can be computed in O(|A| +
min{kω, k|A|}) field operations with success probability 1 − O(1/n1/3).

COROLLARY 2.8. Given the same setting as in Theorem 2.7, there is an algorithm
to compute r = rank(A) in O(|A| log r + min{rω, r|A|}) field operations with success
probability 1 − O(1/n1/3).

PROOF. To compute rank(A), we can simply apply Theorem 2.7 with k =
n1/3, 2n1/3, 4n1/3, . . . , 2log n2/3

n1/3 until the algorithm returns an answer smaller than
k or A is of full rank. Let r = rank(A). The failure probability is bounded by
O(1/n1/3) since sum of 1/k is less than 2/n1/3. The number of field operations needed is
O(|A| log r+min{rω, r|A|}), since the sum of kω is O(rω) and the sum of k|A| is O(r|A|).

We can improve Corollary 2.8 slightly to reduce the time complexity to
O(min{|A| log r, nm} + min{rω, r|A|}) field operations. This is done by computing the
compressed matrices aggregately and we omit the details here (see Section B for such
a statement using superconcentrators).

2.6. Finding Independent Set

In this section, we will find a set of min{rank(A), k} linearly independent columns of A,
by applying the compression algorithm iteratively to reduce the number of columns of
A progressively. In the following, we let c = 11, and assume without loss of generality
that k ≥ n1/3 (as in Theorem 2.7). First, we compress the rows while preserving the
position of a set of at most k independent columns.

LEMMA 2.9. Suppose an m×n matrix A over a field F is given. There is an algorithm
to return a ck × n matrix A′ in O(|A|) field operations with |A′| = O(|A|), such that if S
is a set of at most k linearly independent columns in A, then S is also a set of linearly
independent columns in A′ with probability at least 1 − O(1/n1/3).

PROOF. If m > ck, we apply the algorithm in Theorem 2.6 to AT to compress A into
a ck × n matrix A′ in O(|A|) field operations, such that |A′| = O(|A|). Let S be a set of
at most k linearly independent columns in A, that is, |S| ≤ k. By Theorem 2.6, we have
rank(A′

[ck],S) = rank(A[m],S) = |S| with probability at least 1 − O(1/n1/3), and thus S is
a set of linearly independent columns in A′.

Next, given a ck × n matrix A, we show how to find a submatrix A′ of A with at most
n/5 columns in O(|A|+kω) field operations, such that min{rank(A), k} = min{rank(A′), k}
with high probability. The bounded degree condition of magical graphs is important in
the following lemma.
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LEMMA 2.10. Given a ck × n matrix A over a field F where ck ≤ n, there is an
algorithm to find a (ck) × (n/5) submatrix A′ of A in O(|A| + kω) field operations, such
that min{rank(A), k} = min{rank(A′), k} with probability at least 1 − O(1/n1/3).

PROOF. We use the algorithm in Theorem 2.6 to compress A into a ck × ck matrix
B in O(|A|) field operations, while min{rank(A), k} = min{rank(B), k} with probability
at least 1 − O(1/n1/3). Since B is a ck × ck matrix, we can directly find a set S of
min{rank(B), k} linearly independent columns in B in O(kω) field operations using fast
matrix multiplication [Bunch and Hopcroft 1974]. Let G = (X, Y ; E) be the bipartite
graph used in the compression algorithm with |X| = n and |Y | = ck. Let T be the set of
columns in A that correspond to the neighbors of the vertices corresponding to S in G.
By the bounded degree condition of G, each vertex corresponding to a column in S is
of degree at most 2|X|/|Y | = 2n/(ck) and hence |T | ≤ 2n|S|/(ck) ≤ 2n/c < n/5. We have
that the ck × |T | submatrix A′ := A[ck],T is of rank at least min{rank(A), k}, since the
column space of S in B is spanned by the column space of A[ck],T .

Applying Lemma 2.10 repeatedly gives us the second part of Theorem 1.1.

THEOREM 2.11. Suppose an m × n matrix A over a field F is given. There is an
algorithm to find a set of min{rank(A), k} linearly independent columns of A for a given
k in O((|A|+kω) log n) field operations with success probability at least 1−O((log n)/n1/3).
When F is a finite field, each field operation can be done in Õ(log n + log |F|) steps.

PROOF. First, we apply Lemma 2.9 to reduce the number of rows to ck. Then, we apply
Lemma 2.10 repeatedly until the number of columns is reduced to O(k). Since each
time we can reduce the number of columns by a constant factor, we need to repeat the
algorithm in Lemma 2.10 at most O(log n) times. Finally, we find a set of min{rank(A), k}
linearly independent columns by Gaussian elimination in the ck × O(k) submatrix in
O(kω) time. So, the whole algorithm can be done in at most O((|A| + kω) log n) field
operations, and the failure probability is at most O((log n)/n1/3).

3. DYNAMIC MATRIX RANK ALGORITHM

In this section, we present a dynamic algorithm for computing matrix rank and prove
Theorem 1.2. Given an m × n matrix A, we will first show that rank(A) = rank(AV )
with high probability for an n × m random Vandermonde matrix V with one variable.
Then we show that the special structure of V can be used to update the matrix rank of
A efficiently.

3.1. Compress Algorithm by Vandermonde Matrix

An m× n Vandermonde matrix is a matrix with the terms of a geometric progression
in each row, that is, ith row is (1, αi, α

2
i , . . . , αn−1

i ) for a variable αi. In the following,
we consider a very similar matrix with only one variable x, where the ith row is
(xi, x2i, . . . , xni), and we call this a Vandermonde matrix with one variable. This matrix
is symmetric which is useful for fast computation.

First, we prove in the following lemma that multiplying by a random Vandermonde
matrix is rank-preserving with high probability. Then, we will see that this matrix
multiplication can be done efficiently by a fast Fourier transform.

LEMMA 3.1. Let m ≤ n. Let V be a n × m random Vandermonde matrix with one
variable, that is, Vij = xij for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Suppose x is a random element in
F, then for any m× n matrix A over F, we have rank(A) = rank(AV ) with probability
at least 1 − O(nm2/|F|).
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PROOF. We will first prove the lemma when A is of full rank. Suppose A is of full rank,
then there exist mlinearly independent columns. LetB = {I ⊆ [n] | |I| = m, det(A[m],I) �=
0} be the set of subsets of indices whose columns are linearly independent. Then, B �= ∅.
By the Cauchy-Binet formula,

det(AV ) =
∑

I⊆[n],|I|=m

det
(
A[m],I

)
det

(
VI,[m]

)

=
∑
I∈B

det
(
A[m],I

)
det

(
VI,[m]

)
.

View det(VI,[m]) as a polynomial in x. Suppose I = {i1, i2, . . . , im} with i1 < i2 < · · · < im.
Let Sm be the set of permutations of [m]. Note that

det
(
VI,[m]

) =
∑
π∈Sm

sgn(π )
m∏

k=1

Vik,πk

=
∑
π∈Sm

sgn(π )
m∏

k=1

xik·πk

=
∑
π∈Sm

sgn(π )x
∑m

k=1 ik·πk.

By the rearrangement inequality
∑m

k=1 ikπk ≤ ∑m
k=1 ik · k, and the equality holds only

when πk = k for all k. Therefore,

deg
(

det
(
VI,[m]

)) =
m∑

k=1

ik · k. (3.1)

Clearly deg(det(AV )) ≤ maxI∈B deg(det(VI,[m])). We are going to show that the equality
actually holds, by arguing that maxI∈B deg(det(VI,[m])) is attained by only one I. Sup-
pose not, let J �= K be two sets in B satisfying deg(det(VJ,[m])) = deg(det(VK,[m])) =
maxI∈B deg(det(VI,[m])). Let j = min{i | i ∈ (J − K) ∪ (K − J)}, and without loss of
generality assume j ∈ J. It is well known that the sets in B are the bases of a (lin-
ear) matroid [Schrijver 2003]. Therefore, by the base exchange property of a matroid
[Schrijver 2003, Theorem 39.6], there exists some k ∈ K such that (J − { j}) ∪ {k} ∈ B.
By the choice of j, we have j < k, and thus deg(det(V(J−{ j})∪{k},[m])) > deg(det(VJ,[m]))
by (3.1), contradicting the maximality of J. In particular, since B �= ∅, this implies that
deg(det(AV )) > 0 and thus is a nonzero polynomial. And deg(det(VI,[m])) = ∑m

k=1 ik · k ≤
nm2 for any I. Therefore, det(AV ) is a nonzero polynomial with total degree at most nm2.
By the Schwartz-Zippel lemma, by substituting x with a random element in F, we have
det(AV ) �= 0 and thus rank(AV ) = rank(A) with probability at least 1 − O(nm2/|F|).

In general, let rank(A) = k, and assume without loss of generality, that the first k
rows of A are linearly independent. Clearly, rank(AV ) ≤ rank(A) as the column space
of AV is spanned by the column space of A. We prove that rank(AV ) ≥ rank(A) with
high probability. Let A′ be the k × n submatrix of A consisting of the first k rows of A,
and V ′ be the n × k submatrix of V consisting of the first k columns of V . Then, by
this argument we have that det(A′V ′) �= 0 with probability at least 1 − O(nm2/|F|).
Observe that A′V ′ is equal to the k × k submatrix (AV )[k],[k] of AV . Therefore, we have
rank(AV ) ≥ rank((AV )[k],[k]) = k = rank(A) with probability at least 1− O(nm2/|F|).

The matrix AV can be computed efficiently using fast arithmetic algorithms: The
multiplication of one row of A with V is equivalent to the evaluation of a polynomial
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over mpoints (x, x2, . . . , xm) and this can be implemented efficiently using the following
result.

THEOREM 3.2 [VON ZUR GATHEN AND GERHARD 2003, COROLLARY 10.8]. There exist an
algorithm that evaluates a degree n polynomial f ∈ F[x] at m points in F, and it
takes O(n log n log log n log m) field operations.

Therefore, the matrix AV can be computed in O(nmlog n log log n log m) field oper-
ations. By Lemma 3.1, to guarantee a high success probability, it is enough to work
on a field with �(n4) elements, so that each field operation can be done in Õ(log n)
steps [von zur Gathen and Gerhard 2003]. This gives an alternative method to com-
pute rank(A) of an m× n matrix in Õ(nmlog m(log n)2 + mω log n) steps, which is slower
than the algorithm in Theorem 1.1 but has similar running time as previous algorithms.

3.2. Outline

The following is an outline of the dynamic algorithm for computing matrix rank. Given
an m× n matrix A with m ≤ n, we generate a random n × m Vandermonde matrix V
and we know by Lemma 3.1 that rank(A) = rank(AV ) with high probability. We reduce
AV to the rank normal form by elementary row and column operations, and maintain
the decomposition that XAV Y = D, where X and Y are m× m invertible matrices and
D = (

Ir 0
0 0

)
. Then rank(A) = r with high probability.

We briefly describe how to maintain the rank under different operations. If we do a
rank one update on A (i.e., A ← A + uvT where u and v are column vectors), then it
corresponds to a rank one update on D and we can bring it back to the rank normal
form by O(m) elementary row and column operations. If we add a column to or delete
a column from A, then we can add a row to or delete a row from V so that rank(AV ) is
still equal to rank(A) with high probability, because of the structure of Vandermonde
matrices. If we add a row to or delete a row from A, then we can do some rank one
updates to maintain the structure of V and rank(AV ) = rank(A) with high probability.
The most interesting case is when m < n is changed to m > n or vice versa. In this case
we can change the decomposition of D = XAV Y to D = (XV −1)V A(V Y ) and set the
new X to be XV −1 and the new Y to be V Y , and this can be implemented efficiently
by fast Fourier transform and fast inverse Fourier transform (as multiplying by V can
be done by n-point evaluations of polynomials, while multiplying by V −1 is the inverse
operation that can be done by n-point interpolations).

LEMMA 3.3. Given an m× n matrix A over a field F, there is a data structure that
maintains rank(A) supporting the following operations.

(1) The data structure can be initialized in O(mn log mlog n log log(m+n)+(min{m, n})ω)
field operations.

(2) rank(A) can be updated in O(mn) field operations if a rank one update is performed
on A.

(3) rank(A) can be updated in O(mn(log min{m, n})2) field operations if a row or a column
is added to or deleted from A.

The data structure requires space to store O(mn) elements in F. The probability of failure
in any operation is at most O(ñ3/|F|), where ñ is the maximum nthroughout the updates.

3.3. Proof

The data structure stores six matrices X ∈ Fm×m, A ∈ Fm×n, V ∈ Fn×m, B ∈ Fm×m, Y ∈
Fm×m, D ∈ Fm×m. Let B = AV if m ≤ n and B = V A if m > n. In the following, we
assume that m ≤ n, when m > n all the procedures are done in a symmetric manner.
We maintain D = XBY with the following invariants.
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(1) X, Y are invertible.
(2) V is a Vandermonde matrix, that is, Vij = (gci ) j for some ci, where different rows

have different ci, and ci ≤ ñ where ñ is the maximum n throughout the updates.
(3) D is a matrix in the form D = ( Ir 0

0 0

)
where Ir is an r × r identity matrix.

3.3.1. Initialization. We choose g as a random element in F and set Vij = gij . We can
reduce B = AV into the rank normal form in O(mω) field operations, and thus obtain
X and Y such that X and Y are both invertible and XBY = (

Ir 0
0 0

)
, where r is the

rank of B (see, e.g., Proposition 16.13 of Buergisser et al. [1997]). This completes the
initialization.

We note that computing the ith row of B is equivalent to doing an n-point evaluation
of a degree n polynomial with coefficients defined by the ith row of A on the points
g, g2, . . . , gm. Thus, each row can be computed in O(n log n log log n log m) field operations
by Theorem 3.2, and the total cost for computing B is O(nmlog mlog n log log n) field
operations. This proves the first part of Lemma 3.3.

3.3.2. Rank One Update. Let A′ = A + u′v′T where u′ ∈ Fm×1 and v′ ∈ Fn×1. Then
XA′V Y = D + (Xu′)(v′T V Y ) = D + uvT where u = Xu′ and vT = v′T V Y , and u and
v can be computed in O(m2) and O(nm) field operations respectively. And B′ = A′V =
AV + u′v′T V can be updated in O(nm) field operations. We need to bring the matrix
XA′V Y = D+uvT back into the rank normal form. In the following paragraph, we will
show that this can be done in O(m) elementary row and column operations, since this
is just a rank one update of the matrix D.

The details are as follows. If u = 0, then there is nothing to do. Suppose ui �= 0 where
ui is the ith entry of u. Then, we will use the ith row of D + uvT to eliminate other
rows. Let E1 = I − (ei − (1/ui)u)eT

i , where ei is the ith standard unit vector. Then E1

is invertible, and E1(D + uvT ) is a matrix with nonzeros only in the diagonal, in the
ith row and in the ith column.1 Hence, we can use O(m) elementary row and column
operations to transform E1(D + uvT ) into a matrix with each row and column having
at most one nonzero entry, where the only nonzero entry is one. This matrix can be
further transformed to the rank normal form D′ = ( Ir′ 0

0 0

)
by using two permutation

matrices to permute the rows and columns, where r′ is the rank of D + uvT = XA′V Y .
Let E2 be the composition of elementary row operations done, E3 be the composition
of elementary column operations done, P1 be the permutation of rows and P2 be the
permutation of columns. Then, P1 E2 E1 XA′V Y E3 P2 = D′. Note that X′ = P1 E2 E1 X and
Y ′ = Y E3 P2 can be computed in O(m2) field operations. This is because E1 and E2 are
compositions of O(m) elementary operations and each elementary operation acting on
an m× m matrix can be done in O(m) field operations. Also permutations of rows and
columns can be done in O(m2) field operations. Now we have X′ A′V Y ′ = D′, where
A′ is updated in O(nm) field operations, and X′, Y ′ and D′ are updated in O(m2) field
operations. This proves the second part of Lemma 3.3.

3.3.3. Adding a Column or Adding a Row. To add a column or a row, we can first add a zero
column or a zero row and then do a rank one update. Since we know how to do rank-one
updates, we restrict our attention to adding a zero column and adding a zero row.

Suppose we add a zero column in the end. Then, we set A′ = (A, 0) and V ′
n+1, j = gcj

where c is the smallest index such that gc �= Vi,1 for 1 ≤ i ≤ n. Adding a zero column in

1The details are as follows: E1uvT = uvT + (ei − (1/ui)u)uiv
T = uieiv

T is a matrix with only the ith
row is nonzero. If i > r, then E1(D + uvT ) = E1 D + uieiv

T = D + uieiv
T since eT

i D = 0. If i ≤ r, then
E1(D + uvT ) = E1 D + uieiv

T = D − (ei − (1/ui)u)eT
i + uieiv

T since eT
i D = eT

i . In either case, E1(D + uvT ) is
a matrix with nonzeros only in the diagonal, in the ith row and in the ith column.
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the ith column of A is done similarly by adding a new row in the ith row of V . Then we
maintain the invariants that B = A′V ′ and D = XBY .

Suppose we add a zero row in the end. Then, we set A′ = (
A
0

)
, and set V ′

i,m+1 =
(V ′

i,1)m+1 for all i. Then, we update B′ = A′V ′ = ( B AV ′
m+1

0 0

)
in O(nm) field operations

where V ′
m+1 is the (m+ 1)-th column of V ′. Note that

(
X 0
0 1

)(
B 0
0 0

)(
Y 0
0 1

) = (
D 0
0 0

)
and the

difference between B′ and
(

B 0
0 0

)
is a single column, which is a rank one matrix. By the

same argument used in rank one update, we can update X, Y and D in O(m2) field
operations accordingly. If the zero row is not added at the end, we can first permute
the rows so that the added row is at the end, by updating X with XP where P is
the corresponding permutation matrix, and then do the above procedure. Then, we
maintain the invariants that B′ = A′V ′ and D′ = X′B′Y ′.

3.3.4. Deleting a Column or Deleting a Row. To delete a column or a row, we can do a rank
one update to set the column or row to zero, and then delete a zero column or a zero
row. So we restrict our attention to deleting a zero column or a zero row.

Deleting a zero column is done by deleting the corresponding row in V . There is no
change to X, B, Y, D, and we maintain the invariants that B = A′V ′ and D = XBY .

Suppose we delete a zero row at the end of A to obtain A′. Then we delete the last
column of V to obtain V ′. Let B′ = A′V ′ and B′′ = (

B′ 0
0 0

)
. Note that B = (

B′ AVm
0 0

)
where Vm

is the mth column of V , and so the difference of Band B′′ is a rank one update. So we can
compute X′′, Y ′′, and D′′ such that X′′B′′Y ′′ = D′′ where D′′ = ( Ir 0

0 0

)
efficiently. Now, let X′,

Y ′, and D′ be obtained by deleting the last row and column of X′′, Y ′′ and D′′, respectively.
Then, X′B′Y ′ = D′, because D′′

i j = ∑m
k=1

∑m
l=1 X′′

i,kB′′
k,lY

′′
l, j = ∑m−1

k=1
∑m−1

l=1 X′
i,kB′

k,lY
′
l, j = D′

i, j
for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m− 1 as Bk,l = 0 if k = m or l = m. Clearly, the updates
can be done in O(nm) field operations. If the zero row deleted is not at the end, we can
first permute the rows so that the deleted row is at the end, by updating X with XP
where P is the corresponding permutation matrix, and then do this procedure. Then,
we maintain the invariants that B′ = A′V ′ and D′ = X′B′Y ′.

3.3.5. Changing Representation. Note that in this operations we assume m ≤ n. Some
operations require O(m2) field operations and thus if m > n this is greater than O(mn).
Instead, we will maintain B = V A and D = XBY when m > n.

To change the representation, when m = n, we rewrite D = XAV Y =
(X(V ′)−1)V ′ A(V Y ), and set X′ = X(V ′)−1 and Y ′ = V Y and V ′

i j = gij for all 1 ≤ i, j ≤ n.
Note that V Y can be computed in O(n2 log2 n log log n) field operations by Theorem 3.2,
as computing each column of V Y is equivalent to an n-point evaluation of a de-
gree n polynomial (with the coefficients in each column of Y ). Moreover, after re-
setting V ′

i j = gij , using Theorem 3.4 we can compute X(V ′)−1 in O(n2 log2 n log log n)
field operations, as it is equivalent to doing an n-point interpolation n times for
each pair of rows of X and X(V ′)−1. To see this, let Z = X(V ′)−1, then X = ZV ′,
and so each row of X is equivalent to an n-point evaluation of a degree n polyno-
mial (with the coefficients in each row of Z), and thus each row of Z can be com-
puted by an n-point interpolation from the corresponding row of X. Also B′ = V ′ A
can be computed in O(n2 log2 n log log n) field operations by the multipoint evalua-
tion algorithm in Theorem 3.2. Therefore, we maintain the invariants that B′ = V ′ A
and X′B′Y ′ = D, and this can be used to support these operations in a symmetric
manner.

THEOREM 3.4 [VON ZUR GATHEN AND GERHARD 2003, COROLLARY 10.13]. There is an al-
gorithm that takes n points (xi, yi) ∈ F2 as input and returns a polynomial f ∈ F[x]

Journal of the ACM, Vol. 60, No. 5, Article 31, Publication date: October 2013.



31:16 H. Y. Cheung et al.

with degree less than n which satisfies f (xi) = yi for each i. The algorithm takes
O(n log2 n log log n) field operations.

3.3.6. Error Probability. The rank query will only fail when rank(A) �= rank(AV ) at some
point. By the second invariant, the n × m matrix V is always a submatrix of the ñ × ñ
Vandermonde matrix with one variable V ∗ (with the first m columns), and V fails to
preserve the rank of Aonly if V ∗ fails to preserve the rank of some matrix (with Abeing
a submatrix and zero otherwise), which happens with probability at most O(ñ3/|F|) by
Lemma 3.1. This completes the proof of Lemma 3.3.

Let Q be an upper bound on the number of updates to the matrix. Then ñ ≤ n+ Q. By
setting |F| = �((n + Q)5), then the probability that the algorithm does not make any
error in the whole execution is at least 1 − O(1/((n + Q))), while each field operation
requires Õ(log((n + Q))) steps. This proves Theorem 1.2.

4. APPLICATIONS

In this section, we will show some applications of Theorem 1.1 and Theorem 1.2 to
problems in exact linear algebra, combinatorial optimization, and dynamic data struc-
tures. In each subsection we will state the problems, describe the previous work, and
present the improvements.

4.1. Exact Linear Algebra

Let A be an m× n matrix over a field F. Let r = rank(A). The rank-one decomposition
of A is to write A as the sum of r rank one matrices. The null space of A is the subspace
of vectors for which Ax = 0, and the problem is to find a basis of the null space of A.
The matrix multiplication problem is to compute AB for two n × n matrices A and B.
Previously, the best-known algorithms require �̃(mnrω−2) for the first two tasks, and
�̃(n2rω−2) for the third task.

We will show that these problems can be solved faster when r is small. The bottleneck
of the previous algorithms is in finding a set of r linearly independent columns. Note
that previous randomized algorithms for computing r cannot be used to solve these
problems, as they do not find a set of r linearly independent columns. In the following,
we assume that |F| = �(m+ n) and |A| = �(m+ n). Let ω(a, b, c) be the infimum over
all t such that multiplying an sa × sb matrix with an sb × sc matrix can be done using
O(st) field operations.

4.1.1. Rank One Decomposition. We assume without loss of generality that m ≥ n; oth-
erwise we consider AT instead of A. By Theorem 1.1, we can find a set of r independent
columns of A in O((|A| + rω) log n) field operations, with success probability at least
1 − O(log n/n1/3). Let T ⊆ [n] be a set of r independent columns, and S ⊆ [m] with
|S| = r be the set of rows such that AS,T is of full rank. Again, by Theorem 1.1, we can
find S in O(|A| + rω) field operations with success probability at least 1 − O(log n/n1/3).

We argue that A = BC for B = A[m],T and C = A−1
S,T × AS,[n]. First, C[r],T = Ir and

thus (BC)[m],T = A[m],T . Similarly, (BC)S,[n] = AS,[n], and thus the entries of BC and
A match in the rows of S and also the columns of T . Note that both BC and A are
of rank r, and both (BC)S,T and AS,T are of full rank. So, for any i �∈ S and j �∈ T ,
det(AS∪{i},T ∪{ j}) = 0 and thus Aij is uniquely determined by other entries of A. The
same applies to BC and thus A = BC. Clearly, C can be computed in O(rω(1,1,logr n)) =
O(nrω−1) field operations. Thus, the overall complexity is O((|A| + rω) log n + nrω−1)
field operations.

4.1.2. Basis of Null Space. Given the algorithm for rank-one decomposition, a basis of
the null space can be computed easily. The details are as follows. By the above algorithm
for rank-one decomposition, we can find S ⊆ [m], T ⊆ [n], B ∈ Fm×r, and C ∈ Fr×n
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such that A = BC, |S| = |T | = r and CS,T = Ir, with the required probability and time
complexity. Note that Ax = 0 ⇐⇒ BCx = 0 ⇐⇒ Cx = 0 since the columns in B are
linearly independent. Since C[r],T = Ir, we have Cx = 0 ⇐⇒ xT = −C([r],[n]−T )x([n]−T ).
Thus, the entries of x[n]−T can be arbitrarily assigned, and then the entries of xT are
uniquely determined. Assume without loss of generality that T = {1, . . . , r}. Then, a
basis {bi} for i ∈ [n] − T would be bi(k) = −Ck,i for 1 ≤ k ≤ r, and then set bi(i) = 1 and
set bi( j) = 0, otherwise.

4.1.3. Matrix Multiplication. Using the algorithm for rank-one decomposition, the prob-
lem of multiplying two n × n matrices while one matrix is of rank r can be reduced to
the problem of multiplying an r × n matrix and an n × n matrix. The details are as
follows. Applying the rank-one decomposition algorithm to A to find A = XY for some
X ∈ Fn×r, Y ∈ Fr×n in Õ(|A| + rω(1,1,logr n)) field operations. Now Y B can be computed in
O(nω(logn r,1,1)) field operations, and so do X(Y B) since ω(1, c, 1) = ω(c, 1, 1) [Pan 1972;
Huang and Pan 1998]. So the overall complexity is Õ(nω(logn r,1,1)) = Õ(n2rω−2) field
operations.

4.2. Graph Matching

Given an undirected graph G = (V, E), the maximum matching problem is to find a set
of maximum number of vertex disjoint edges in G.

4.2.1. Previous Work. The time complexity of the fastest combinatorial algorithms for
this problem is O(

√
opt · |E|) [Micali and Vazirani 1980; Vazirani 1990; Goldberg and

Karzanov 2004], where opt denotes the size of a maximum matching.
There is an algebraic formulation for the maximum matching problem proposed by

Tutte [1947]. Let V = {1, . . . , n} and xe be a variable for each edge e. Let A be an n × n
matrix where Ai, j = xe and Aj,i = −xe if e = i j ∈ E and Ai, j = Aj,i = 0, otherwise.
Tutte [1947] proved that G has a perfect matching if and only if A is nonsingular, and
Lovász [1979] generalized it to show that rank(A) = 2opt. Using the Schwartz-Zippel
lemma, Lovász [1979] also proved that rank(A) is preserved with high probability, if
we substitute nonzero values for the variables xe from a sufficiently large field, say of
size �(n2). This implies that the size of a maximum matching can be computed in O(nω)
field operations, where each field operation can be performed in O(log n) steps. With
additional nontrivial ideas, Mucha and Sankowski [2004] and Harvey [2009] showed
how to also find a maximum matching in O(nω) field operations. This is faster than the
combinatorial algorithms when the graph is dense and the opt is large, for example
when |E| = �(n2) and opt = n the combinatorial algorithms require �(n2.5) steps.

4.2.2. Improvement. We prove the statement about graph matching in Theorem 1.4.
Suppose k is given and the task is to find a matching of size min{k, opt}. Let k′ =
2 min{k, opt}. We can first use the algorithm in Theorem 1.1 to find a set S of k′ linearly
independent columns in A in Õ(|A|+ (k′)ω) = Õ(|E|+ (k′)ω) field operations, where |E| is
the number of edges in G. Let AV,S be the n×k′ submatrix formed by these independent
columns. We can apply the algorithm in Theorem 1.1 again on AV,S to find a set R of k′

linearly independent rows in AV,S in Õ(|AV,S| + (k′)ω) = Õ(|E| + (k′)ω) field operations.
Let AR,S be the k′ ×k′ submatrix formed by these rows and columns. Consider AR∪S,R∪S
which is a matrix with size at most 2k′ × 2k′ and rank at least k′. Note that this is the
algebraic formulation for the maximum matching problem in G[R∪ S], where G[R∪ S]
denotes the induced subgraph on the vertices corresponding to R∪ S. And so there is a
matching of size k′/2 = min{k, opt} in G[R∪ S]. We can use the algorithm of Mucha and
Sankowski [2004] or Harvey [2009] to find a matching of size min{k, opt} in O(kω) field
operations. Thus, the overall complexity is Õ(|E| + kω) and this proves the statement
about graph matching in Theorem 1.4. To find a matching of size opt, we can first use
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a linear time 2-approximation greedy algorithm to find a matching M of size at least
opt/2, and then set k = 2|M| and run this algorithm.

4.2.3. Applications. We mention two problems where this matching result can be
applied. One is the maximum subset matching problem considered by Alon and
Yuster [2007], which asks what is the maximum number of vertices in S ⊆ V that
can be matched in a matching of G. They proved that this maximum number is equal
to rank(AS,V ) where AS,V is the submatrix of the Tutte matrix formed by the rows of
S. Thus, we can use Theorem 1.1 to obtain an Õ(|δ(S)| + |S|ω) algorithm where |δ(S)|
counts the number of edges with one endpoint in S and another endpoint in V −S. This
improves upon their result which takes Õ(|δ(S)|·|S|(ω−1)/2) steps when |δ(S)| ≥ |S|(ω+1)/2.

Another is the maximum matching problem in a lopsided bipartite graph G =
(X, Y ; E) where one side is much larger than the other side [Charles et al. 2010], that
is |X| � |Y |. In this case, opt ≤ |X| and our algorithm can find a maximum matching
in Õ(|E| + |X|ω) steps.

4.3. Linear Matroid Intersection and Linear Matroid Parity

In the linear matroid intersection problem, we are given two r × n matrices M and N
where the columns in M and N are indexed by {1, . . . , n}, and the task is to find a set
S ⊆ {1, . . . , n} of maximum size so that the columns in S are linearly independent in
both M and N.

In the linear matroid parity problem, we are given an r×2nmatrix where the columns
are partitioned into n pairs, and the task is to find a maximum cardinality collection of
pairs so that the union of the columns of these pairs are linearly independent.

4.3.1. Previous Work. For the linear matroid intersection problem, Gabow and
Xu [1996] gave a combinatorial algorithm (using fast matrix multiplication) with time
complexity O(nr(opt)1/(4−ω)) = O(nr(opt)0.62) when ω ≈ 2.38. Harvey [2009] gave an
algebraic algorithm with time complexity O(nrω−1), which is faster for any opt ≥ r0.62

when ω ≈ 2.38.
For the linear matroid parity problem, Gabow and Stallmann [1986] gave a combina-

torial algorithm (using fast matrix multiplication) with time complexity O(nrω−1(opt)),
and Cheung et al. [2011b] gave an algebraic algorithm with time complexity Õ(nrω−1)
by extending Harvey’s algorithm.

4.3.2. Improvement. We prove the statement about linear matroid intersection and
linear matroid parity in Theorem 1.4. The linear matroid parity problem is a gener-
alization of the linear matroid intersection problem, and any algorithm for the linear
matroid parity problem implies an algorithm for the linear matroid intersection with
the same time complexity, and so we only consider the linear matroid parity problem
in the following.

Let A be an r × 2n matrix. Suppose k is given and the task is to find min{k, opt} pairs
of columns so that the union of the columns of these pairs are linearly independent.
We apply Lemma 2.9 to compress the matrix A into a O(k) × 2n matrix A′, such that
if S is a set of min{k, opt} linearly independent columns in A, then S is also a set of
linearly independent columns in A′. Then, we can apply the algorithm in Cheung et al.
[2011b] to solve the matroid parity problem on A′, and this can be done in O(nkω−1)
field operations since A′ is a O(k) × 2n matrix. This proves the statement about linear
matroid intersection and linear matroid parity in Theorem 1.4.

To find a solution of size opt, we can set k = 2, 4, 8, . . . , 2log2 r and apply this algorithm
until there is no solution of size k or there is a solution of size r. A direct implementation
of this idea gives an algorithm to find an optimal solution in O(|A| log opt + n(opt)ω−1)
field operations. We can slightly improve this to O(min{|A| log opt, nr} + n(opt)ω−1) field
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operations by computing the compressed matrices aggregately, but the details are
omitted here. Since opt ≤ r, our algorithm is faster than the algorithms in Gabow and
Xu [1996] and Harvey [2009].

4.4. Linear Matroid Union

In the linear matroid union problem, we are given an r × n matrix A with r ≤ n, and
the task is to find a set of maximum number of disjoint bases, where a basis is a set
of maximum number of linearly independent columns, and two bases are disjoint if
they do not share any column. For example, the problem of finding a set of maximum
number of edge disjoint spanning trees in an undirected graph is a special case of the
linear matroid union problem.

4.4.1. Previous Work. Let opt be the maximum number of disjoint bases in A, and b be
the number of columns in a basis. Cunningham [1986] gave a combinatorial algorithm
with time complexity O(nrb(opt) + nb2(opt)2).

There is a well-known reduction from the linear matroid union problem to the linear
matroid intersection problem [Schrijver 2003]. Suppose k is given and the task is to
find k disjoint bases of A or determine that none exist. Let M be the kr × kn matrix⎛

⎜⎜⎝
A 0 . . . 0
0 A . . . 0
0 0 . . . 0
0 0 . . . A

⎞
⎟⎟⎠ ,

where 0 denotes the r × n all zero matrix. Let N be an n× kn matrix (I, I, . . . , I) where
I is the n× n identity matrix. Then it can be checked that A has k disjoint bases if and
only if the linear matroid intersection problem for M and N has a solution of size kb.
A direct application of Harvey’s algorithm [2009] for linear matroid intersection gives
an algorithm with time complexity O((kn) · (kr)ω−1 + (kn) · nω−1) = O(nrω−1kω + nωk).

To do better, we can first reduce the matrix A into a matrix with kb columns
before running a linear matroid intersection algorithm, as follows. We can use a
compact algebraic formulation for linear matroid intersection [Harvey 2009] where
B = ∑kn

i=1 xi · Mi · NT
i where xi is a random element from a sufficiently large field (say

of size �(n2)) and Mi and Ni are the ith column of M and N, respectively. For this
particular M and N, we have

B =

⎛
⎜⎜⎜⎝

A(1)

A(2)

...
A(k)

⎞
⎟⎟⎟⎠ ,

where each column of A(i) is equal to the corresponding column of A multiplied by an
independent random field element. Using the result for linear matroid intersection, it
can be shown that if A has k disjoint bases, then B has rank kb with high probability.
Furthermore, if we find kb linearly independent columns in B, then the corresponding
columns in A can be partitioned into k disjoint bases. So, one can first find a set of
kb linearly independent columns in B in O(n(kr)ω−1) field operations by Gaussian
elimination (or conclude that there are no k disjoint bases if none exist), and then
delete the other columns and consider the linear matroid union problem for the r × kb
submatrix of A. Then, we can run the linear matroid intersection algorithm [Harvey
2009] to find the k disjoint bases in O((kb)rω−1kω + (kb)ωk) = O(rω−1bkω+1) field
operations by using n = kb and b ≤ r. This gives an O(nrω−1kω−1 + rω−1bkω+1) algebraic
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algorithm for the linear matroid union problem using existing techniques, although it
may not have been explicitly stated in the literature.

4.4.2. Improvement. We prove the statement about linear matroid union in
Theorem 1.4. First, we apply Lemma 2.9 to reduce A to a O(b) × n matrix A′ with
|A′| = O(|A|) in O(|A|) field operations, such that if A has k disjoint bases then A′ has
the same k disjoint bases with high probability. We construct the O(kb) × n matrix B′
as in the previous paragraph in O(k|A′|) = O(k|A|) field operations since |A′| = O(|A|).
Then, we use the algorithm in Theorem 1.1 to find kb linearly independent columns
in B′ in Õ(k|A| + (kb)ω) field operations since kb ≤ n (or conclude that there are no k
disjoint bases if none exist). As stated in the previous paragraph, the corresponding
kb columns in A′ can be partitioned into k disjoint bases with high probability. So, we
delete other columns and only consider the O(b) × kb submatrix A′′ of A′.

Now, we have reduced the linear matroid union problem for an r × n matrix A to
the linear matroid union problem for a O(b) × kb matrix A′′. We can run Harvey’s
linear matroid intersection algorithm using the above reduction to find the k disjoint
bases in O((kb)bω−1kω + (kb)ωk) = O(bωkω+1) field operations by putting n = kb and
r = O(b). Alternatively, we can use Cunningham’s algorithm to find the k disjoint bases
in O((kb)b2k + (kb)b2k2) = O(b3k3) field operations by putting n = kb and r = O(b).
Therefore, the total complexity is Õ(k|A| + min{bωkω+1, b3k3}) field operations where
|A| ≤ nr, proving the statement about linear matroid union in Theorem 1.4. To find the
maximum number of disjoint bases, we can use doubling (k = 2, 4, 8, . . . , 2log opt) and
then binary search, and apply this algorithm as in linear matroid parity, and obtain
an algorithm with time complexity Õ(log opt(nr(opt) + min{bω(opt)ω+1, b3(opt)3)) field
operations. Ignoring polylog factors, this is faster than the previous algorithms for any
values of r, b, opt, n.

4.5. Dynamic Edge Connectivities

In this section, we show that the dynamic matrix rank algorithm in Theorem 1.2
can be applied to obtain an efficient dynamic algorithm for computing all pairs edge
connectivities in a simple directed graph G = (V, E), supporting the operations of
adding and deleting edges. The s-t edge connectivity is defined as the size of a minimum
s-t cut, or equivalently the number of edge disjoint directed paths from s to t.

4.5.1. Algebraic Formulation. We will use a recent algebraic formulation that for graph
connectivity [Cheung et al. 2011a]. Construct an |E| × |E| matrix M as follows:

Mi, j =
⎧⎨
⎩

xi, j if the head of ei is equal to the tail of e j

−1 if i = j
0 otherwise.

The matrix has the following properties.

THEOREM 4.1 [CHEUNG ET AL. 2011a]. The s-t edge connectivity is equal to the rank of
the submatrix M−1

δout(s),δin(t), where δin(v) and δout(v) are the set of incoming and outgoing
edges of v respectively. In addition, if we substitute random values to xi, j from a field F,
the claim still holds with probability at least 1 − O(|E|2/|F|).

This formulation implies an O(|E|ω) time algorithm for computing all pairs edge
connectivities for simple directed graphs.

4.5.2. Improvement. We are going to show that using the dynamic matrix rank algo-
rithm, we can support each adding and deleting edge operation in Õ(|E|2) time, by
maintaining the ranks of all the submatrices (M−1)δout(s),δin(t) dynamically.
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First, we consider the case of adding an edge. Let G be the original graph, and G̃
be the graph with an edge added to G. Let M and M̃ be the edge connectivity matrix
formulation for G and G̃, respectively. Observe that M̃ is obtained from M by adding
one extra row and one extra column at the end. We will maintain M−1 and the ranks
of its submatrices, by first adding a trivial row and column to M, and then fill in the
required entries. Let

M′ =
(

M 0
0 −1

)
and (M′)−1 =

(
M−1 0

0 −1

)
.

Since we only have to modify the last row and last column of M′ to get M̃, we can write
M̃ = M′+U V T for two (|E|+1)×2 matrices U = (�e, c) and V = (r, �e), where c is the new
column with |E|+ 1 entries, rT is the new row with |E|+ 1 entries, and �e be the column
vector with the first |E| entries to be zero and the last entry to be one. The following
result shows that the inverse of the updated matrix can be updated efficiently.

THEOREM 4.2 (SHERMAN-MORRISON-WOODBURY [WOODBURY 1950]). Suppose that ma-
trices M and M + U V T are both nonsingular, then (M + U V T )−1 = M−1 − M−1U (I +
V T M−1U )−1V T M−1.

By this theorem, M̃−1 is also a rank-2 update to (M′)−1, and M̃−1 can be ob-
tained from M−1 in O(|E|2) time since U and V are (|E| + 1) × 2 matrices. Similarly,
any submatrix (M̃−1)δout(s)δin(t) can be obtained by a rank-2 update to ((M′)−1)δout(s),δin(t),
and ((M′)−1)δout(s),δin(t) can be obtained by adding at most one row and one column to
(M−1)δout(s),δin(t). Since both operations are supported by our dynamic matrix rank al-
gorithm in Õ(|δout(s)||δin(t)|) field operations, we can maintain rank((M̃−1)δout(s)δin(t)) and
thus the s-t edge connectivity between any pair of vertices s and t in Õ(|δout(s)||δin(t)|)
field operations after an edge is added.

Thus, we can maintain all pairs edge connectivities in Õ(
∑

s,t∈V |δout(s)||δin(t)|) =
Õ(|E|2) field operations. Let Q be an upper bound on the number of edge updates
throughout the whole algorithm. For one pair, by the result in Section 3, the probability
that the algorithm makes some mistake during the whole algorithm is at most O(1/(Q+
|E|))3), if the field size is �((Q + |E|)6). Therefore, the probability that the algorithm
makes a mistake for some pair during the whole algorithm is at most O(1/(Q + |E|)).
Therefore, each field operation can be done in Õ(log(|E| + Q)) steps.

The case of deleting an edge is almost the same. Assume we are deleting the edge
that corresponds to the last row and column of M. We first write zero to all the entries
of that row and column except keeping M|E|,|E| = −1, and then we delete the last row
and column. These two steps correspond to a rank-2 update followed by a row and
column deletion on M−1 using the dynamic matrix rank algorithm. This is just the
reverse process for adding an edge. By the same argument as above, the new inverse
and the ranks of all the required submatrices can be updated in O(|E|2) field operations,
where each field operation can be done in Õ(log(|E|+Q)) steps. Note that we just require
O(|E|2 log(|E| + Q)) space to store the inverse of M. This proves Theorem 1.5.

APPENDIXES

A. MISSING PROOF IN SECTION 2

PROOF OF LEMMA 2.1. All the statements in this proof refer to the statements in
von zur Gathen and Gerhard [2003]. Let q = pc. By Theorem 14.42 in von zur Gathen
and Gerhard [2003], we can construct a monic irreducible polynomial h with degree
k in expected O(k2 log2 k log log k(log k + log q)) field operations in Fq. Note that the

Journal of the ACM, Vol. 60, No. 5, Article 31, Publication date: October 2013.



31:22 H. Y. Cheung et al.

collection of polynomials with coefficients in Fq and degree less than k, with mul-
tiplications and division under modulo h, is a field with size qk. So we can use
an ordered k-tuple (c0, c1, . . . , ck−1) with ci ∈ Fq to represent an element

∑k−1
i=0 cixi

in Fqk. The injective mapping f in the statement is just the identity mapping in
this construction, that is, f (c) = (c, 0, 0, . . . , 0). The overall preprocessing time is
O(|A| + k2 log2 k log log k(log k + log q)) = O(|A|) field operations in Fqk. It follows di-
rectly that rank(A′) = rank(A).

Additions and subtractions are done coordinate-wise, and thus requires O(k) field
operations. For two polynomials g1 and g2 with coefficients in Fq and degree less than
k, g1 × g2 can be computed in O(k log k log log k) field operations in Fq, by Theorem 8.22
and Exercise 8.30 in von zur Gathen and Gerhard [2003]. So g1 ×g2 mod h can be com-
puted in O(k log k log log k) field operations in Fq by Theorem 9.6 in [von zur Gathen
and Gerhard 2003]. Division a/b is done by multiplying the inverse a × b−1. The in-
verse b−1 can be computed by the extended Euclidean algorithm, in O(k log2 k log log k)
field operations in Fq by Theorem 11.7 in von zur Gathen and Gerhard [2003]. Since
field operations in Fq can be computed in Õ(log q) steps, the operations in Fqk in our
representation can be done in Õ(log qk), where Õ hides some polylog factors of log qk.

B. COMPRESSION ALGORITHM BY SUPERCONCENTRATOR

In this section, we present an algorithm to compute the rank of an m× n matrix with
m ≤ n in O(mn + mω) field operations using a superconcentrator.

Definition B.1 (Superconcentrator). A superconcentrator is a directed graph G =
(V, E) with two given sets I ⊆ V and O ⊆ V with |I| = |O| = n, such that for any
subsets S ⊆ I and T ⊆ O with |S| = |T | = k, there are |S| = |T | vertex disjoint paths
from S to T .

There exist superconcentrators with the following properties: (1) there are O(n)
vertices and O(n) edges, (2) the indegrees and the outdegrees are bounded by a constant,
and (3) the graph is acyclic. Moreover, the construction of such a superconcentrator can
be done in linear time [Hoory et al. 2006]. A superconcentrator can be used to obtain
an efficient compression algorithm.

LEMMA B.2. Given an m× n matrix A over a field F and an integer k ≤ min{n, m},
there is an algorithm to construct an m× k matrix B over F in O(nm) field operations,
such that rank(B) = min{rank(A), k} with probability at least 1 − nm/|F|.

PROOF. To construct the matrix B, we first construct a superconcentrator G = (V, E)
with |I| = |O| = n in linear time. Add a source vertex s and add edges from s to each
node in I in G. We call these edges input edges. Add a sink vertex t and edges from
each node in O to t in G. We call these edges output edges. Now, we associate each
edge e ∈ E with an m-dimensional vector �ve in F. The n vectors �vsu corresponding to the
input edges are set to be the column vectors of A. Next, for each node u ∈ V − {s, t}, for
each incoming edge xu and each outgoing edge uy, associate the pair of edges (xu, uy)
with a random coefficient c(xu,uy) ∈ F. Now we process the nodes of G in a topological
order. For each node u ∈ V −{s, t}, set each vector associated with the outgoing edge �vuy
to be

∑
xu∈E c(xu,uy)�vxu. Finally, we choose the vectors associated with the first k output

edges to be the column vectors of B, and output the matrix B.
Since the indegrees and the outdegrees are bounded by a constant, the number of

field operations required to process one node in G is O(m). Therefore, the algorithm
takes O(nm) field operations.
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We analyze the probability that rank(B) = min{rank(A), k}. Let k′ = min{rank(A), k}.
Clearly, rank(B) ≤ k′, since the column space of B is spanned by the column space of A
and B has only k columns. So we only need to show the other direction. Assume without
loss of generality that A[k′],[k′] is of full rank. By the property of the superconcentrator
G, there exists k′ vertex disjoint paths from the first k′ input nodes to the first k′ output
nodes. Set c(xu,uy) = 1 if the edges xu and uy belongs to one of the paths, and c(xu,uy) = 0
otherwise. Then all edges in the path containing the jth input node is associated with
the jth column vector of A. Thus, the k′ × k′ submatrix B[k′],[k′] of the output matrix B
is the same as A, up to permutation of columns, and thus it is of rank k′. Therefore,
we can conclude that with nonzero probability the above algorithm outputs a matrix B
with rank(B) ≥ rank(B[k′],[k′]) = k′. Finally, note that for a fixed input A, each entry in
the output matrix B is a multivariate polynomial with total degree O(n) (which is the
length of a longest path in G) with variables c(e1,e2). Therefore, the determinant of the
first k′ columns of B is a multivariate polynomial of total degree O(nk′) = O(nm). By
the Schwartz-Zippel lemma, if we substitute the variables with random elements in F,
the probability that the determinant of B[k′],[k′] is nonzero and thus rank(B) ≥ k′ is at
least 1 − O(nm/|F|).

Compared with the algorithm in Theorem 1.1 using magical graphs, this algorithm
has the advantage the compressed matrix is of size k×k rather than of size O(k)× O(k).

Also, we can obtain an algorithm to compute r = rank(A) in O(mn + rω) field opera-
tions as follows. First, we apply Lemma B.2 on Aand get an m×n output matrix B, and
then apply Lemma B.2 on BT and an get an n×moutput matrix C. By Lemma B.2, the
resulting matrix C has the property that the rank of any k × k submatrix is equal to
min{rank(A), k} with probability at least 1− O(nm/|F|). Therefore, to compute rank(A),
one can set k = 2, 4, 8, . . . and compute the rank of any k × k matrix of C until the
returned rank is less than k. The total complexity of this algorithm is only O(mn + rω)
field operations where r = rank(A), which is slightly faster than the O(|A| log r + rω)
algorithm stated in Theorem 2.7 when |A| ≈ mn.
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LOVÁSZ, L. 1979. On determinants, matchings and random algorithms. In Fundamentals of Computation
Theory, vol. 79, 565–574.

MICALI, S. AND VAZIRANI, V. V. 1980. An O(
√|V ||E|) algorithm for finding maximum matching in general

graphs. In Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science. 17–
27.

MUCHA, M. AND SANKOWSKI, P. 2004. Maximum Matchings via Gaussian elimination. In Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science. 248–255.

PAN, V. 1972. On schemes for the evaluation of products and inverses of matrices. Uspekhi Matematicheskikh
Nauk 27, 5, 249–250.

SANKOWSKI, P. 2004. Dynamic Transitive Closure via Dynamic Matrix Inverse. In Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science. 509–517.

SANKOWSKI, P. 2007. Faster dynamic matchings and vertex connectivity. In Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms. 118–126.
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