
Fast Matrix Rank Algorithms and Applications

Ho Yee Cheung
∗

The Chinese University of
Hong Kong

Tsz Chiu Kwok
The Chinese University of

Hong Kong

Lap Chi Lau
The Chinese University of

Hong Kong

ABSTRACT
We consider the problem of computing the rank of an m×n
matrix A over a field. We present a randomized algorithm
to find a set of r = rank(A) linearly independent columns in

Õ(|A|+ rω) field operations, where |A| denotes the number
of nonzero entries in A and ω < 2.38 is the matrix multi-
plication exponent. Previously the best known algorithm to
find a set of r linearly independent columns is by Gaussian
elimination, with running time O(mnrω−2). Our algorithm
is faster when r < max{m,n}, for instance when the matrix
is rectangular. We also consider the problem of computing
the rank of a matrix dynamically, supporting the operations
of rank one updates and additions and deletions of rows and
columns. We present an algorithm that updates the rank
in Õ(mn) field operations. We show that these algorithms
can be used to obtain faster algorithms for various problems
in numerical linear algebra, combinatorial optimization and
dynamic data structure.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Analysis of Algorithms

Keywords
Matrix Rank, Numerical Linear Algebra, Combinatorial Op-
timization, Randomized Algorithm

1. Introduction
Given an m×n matrix A over a field F , the rank of A, de-

noted by rank(A), is the maximum number of linearly inde-
pendent columns of A. We consider the problem of comput-
ing rank(A) and finding a set of rank(A) linearly indepen-
dent columns efficiently. It is a basic computational problem
in numerical linear algebra that is used as a subroutine for
other problems [40, 20]. It also has a number of applications

∗Now at University of Southern California.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

in graph algorithms and combinatorial optimization: Some
of the fastest algorithms for graph matching [33, 22], graph
connectivity [10, 35, 12], matroid optimization problems [22,
11] are based on fast algorithms for computing matrix rank
and finding linearly independent columns.

The traditional approach to compute rank(A) is by Gaus-
sian elimination. For an m × n matrix with m ≤ n, it is
known that this approach can be implemented in O(nmω−1)
field operations [6, 27], where ω < 2.38 is the matrix multi-
plication exponent [14]. More generally, given an m × n
matrix and a parameter k ≤ m ≤ n, one can compute
min{rank(A), k} in O(nmkω−2) field operations [39]. The
Gaussian elimination approach has the advantage that it
can also find a set of min{rank(A), k} linearly independent
columns in the same time. These algorithms are determin-
istic.

There are also randomized algorithms to compute the
value of rank(A) more efficiently. We know of three ap-
proaches.

1. The first approach is to do an efficient precondition-
ing [29, 9]. Let B = T1AT2 where T1 and T2 are
Toeplitz matrices with entries chosen uniformly and
randomly from a large enough subset of the field. Then
B can be computed in Õ(mn) time because of the
structure of T1 and T2. Let r = rank(A). It is proven
that [29] the leading r×r minor of B is of full rank with
high probability. Thus rank(A) can be computed in

Õ(mn+rω) field operations. There is another efficient
preconditioner based on butterfly network [9] with sim-
ilar property and running time. This approach works
for any field.

2. There is a black-box approach that computes rank(A)
in O(m · |A|) field operations [43, 20, 37] where |A|
is the number of nonzero entries of A. The method
is based on computing the minimal polynomial of A
for Krylov subspaces. It does not require to store A
explicitly, as long as there is an oracle to compute Ab
for any vector b. This approach is fast when the matrix
is sparse, and it works for any field.

3. Another approach is based on random projection for
matrices over real numbers. Given an m×n matrix A
over R, one can reduce A into an m × (m logm) ma-
trix A′ so that rank(A) = rank(A′) with high probabil-
ity [36] by the Johnson-Lindenstrauss lemma. The ma-
trix A′ can be computed efficiently using fast Johnson-
Lindenstrauss transform [2, 3], and this implies an

Õ(nm+mω) randomized algorithm to compute rank(A).

This approach is only known to work for matrices over
real numbers.

We remark that only the Gaussian elimination approach
can also find a set of rank(A) linearly independent columns,
while other approaches can only compute the value of rank(A).

1.1 Main Results
We present faster randomized algorithms to compute ma-

trix rank and show their applications. In this section we use
the Õ notation to hide (small) polylog factors in the time
bounds. We will state the precise time bounds in the techni-
cal sections. We assume that there is at least one nonzero en-
try in each row and each column, and thus |A| ≥ max{m,n}.

Theorem 1.1. Given an m × n matrix A over a field
F and a parameter k where k ≤ m ≤ n, there is a ran-
domized algorithm to compute min{rank(A), k} in O(|A| +
min{kω, k|A|}) field operations where |A| denotes the num-
ber of nonzeros in A. Furthermore, there is a randomized
algorithm to find a set of min{rank(A), k} linearly indepen-

dent columns in Õ(|A|+ kω) field operations.

For computing min{rank(A), k}, previous algorithms re-

quire Õ(mn+ kω) field operations, while we replace the mn
term by |A| and remove the (small) polylog factor. More
importantly, we can also find a set of min{rank(A), k} lin-
early independent columns in about the same time, which is
considerably faster than the O(mnkω−2) algorithm by Gaus-
sian elimination when k is small. For instances, we can find
a set of k = n1/ω ≈ n0.42 linearly independent columns in
Õ(|A|) field operations, and a set of k = n1/(ω−1) ≈ n0.72 lin-

early independent columns in Õ(mn) field operations, while
previously it was possible only for k = O(polylog(n)). The
algorithm for finding linearly independent columns is needed
in all applications of Theorem 1.1 that we will describe in
the next subsection.

We also present a dynamic algorithm to efficiently update
the matrix rank.

Theorem 1.2. Given an m× n matrix A over a field F ,
there is a randomized algorithm to compute rank(A) dynam-

ically in Õ(mn) field operations in the worst case, supporting
the operations of rank one updates and adding and deleting
rows and columns.

Previously there is a dynamic algorithm to update the
matrix rank in O(n2) field operations for an n × n square
matrix, supporting the operation of rank one updates [16,
35]. There are also subquadratic dynamic algorithms to up-
date the matrix rank when few entries are changed [16, 35].
Our algorithm supports the new operations of adding and
deleting rows and columns. These new operations will be
useful in computing graph connectivities dynamically (see
Theorem 1.5).

1.2 Applications
The matrix rank algorithms can be readily applied to var-

ious problems in numerical linear algebra, combinatorial op-
timization, and dynamic data structure. First we show that
the algorithms can be applied to computing a rank-one de-
composition, finding a basis of the null space, and perform-
ing matrix multiplication for a low rank matrix.

Theorem 1.3. Let A be an m× n matrix over a field F .
Let r = rank(A). Let m′ = min{m,n}. Let ω(a, b, c) be the
exponent for multiplying an na × nb matrix with an nb × nc
matrix.

1. There is a randomized algorithm to compute an m× r
matrix X and an r × n matrix Y such that A = XY
in Õ(|A|+ rω(1,1,logr m

′)) = Õ(|A|+m′rω−1) steps.

2. There is a randomized algorithm to find a basis of the
null space of A in Õ(|A| + rω(1,1,logr n)) = Õ(|A| +
nrω−1) steps.

3. Let A and B be n × n matrices. There is a random-
ized algorithm to compute AB in Õ(nω(logn r,1,1)) =

Õ(n2rω−2) steps.

The success probability for all three tasks is at least 1 −
O(log(nm)/|A|1/3).

Previously the best known algorithms require Θ̃(mnrω−2)

for the first two tasks, and Θ̃(n2rω−2) for the third task.
Our algorithms are faster than the existing algorithms, es-
pecially when r is small. For rank-one decomposition, the
algorithm requires only Õ(mn) field operations when r ≤
(max{m,n})0.72. For finding null space, the algorithm re-

quires only Õ(mn) field operations when r ≤ m0.72. For

matrix multiplication, the algorithm requires only Õ(n2+ε)
field operations when r ≤ n0.29, since ω(0.29, 1, 1) ≤ 2 + ε
for any ε > 0 [13, 26]. The statement about matrix multipli-
cation essentially says that the problem of multiplying two
n×n matrices while one matrix is of rank r can be reduced
to the problem of multiplying an r×n matrix and an n×n
matrix.

In combinatorial optimization, there are algebraic formu-
lations of the problems that relate the optimal value to the
rank of an associated matrix. Using this connection, we can
apply the algorithm in Theorem 1.1 to obtain fast algorithms
for graph matching and matroid optimization problems. See
Section 4 for the definitions of these problems.

Theorem 1.4. Let opt be the optimal value of an opti-
mization problem.

1. Given an undirected graph G = (V,E), there is a ran-
domized algorithm to find a matching of size min{opt, k}
in Õ(|E|+ kω) time.

2. Given a linear matroid intersection problem or a linear
matroid parity problem with an r× 2n matrix A, there
is a randomized algorithm to find a solution of size
min{opt, k} in Õ(|A|+ nkω−1) time.

3. Given a linear matroid union problem with an r × n
matrix |A|, there is a randomized algorithm to find

min{opt, k} disjoint bases in Õ(k|A|+min{kω+1bω, k3b3})
time, where b denotes the size of a basis.

Table 1.1 lists the time complexity of the best known
combinatorial algorithms and algebraic algorithms for these
problems. Notice that previous algebraic algorithms have
the same time complexity even when the optimal value is
small. On the other hand, combinatorial algorithms for
these problems are based on finding augmenting structures
iteratively, and thus the number of iterations and the overall

graph matching linear matroid intersection linear matroid union

combinatorial O(
√
opt · |E|) [32, 21] Õ(nr(opt)

1
4−ω) [19] Õ(nrb(opt) + nb2(opt)2) [15]

algebraic O(|V |ω) [33] O(nrω−1) [22] –

this paper Õ(|E|+ (opt)ω) Õ(nr + n(opt)ω−1) Õ(nr(opt) + b3(opt)3)

Table 1.1: Time complexity of algorithms for some problems in combinatorial optimization

complexity depend on the optimal value. While the previ-
ous algebraic algorithms are faster than combinatorial algo-
rithms only when the optimal value is large, the results in
Theorem 1.4 show that the algebraic approach can be faster
for any optimal value. For the matroid optimization prob-
lems, the algorithms in Theorem 1.4 are faster than previous
algorithms in any setting. The result in the graph match-
ing problem can be applied to the subset matching prob-
lem [4] and the lopsided bipartite matching problem [8]. See
Section 4 for more discussions on previous work for these
problems.

The dynamic matrix rank algorithm in Theorem 1.2 can
be applied to obtain a dynamic algorithm to compute edge
connectivities in a directed graph.

Theorem 1.5. Given an uncapacitated directed graph G =
(V,E), there is a randomized algorithm to compute all-pairs

edge-connectivities dynamically in Õ(|E|2) time and Õ(|E|2)
space, supporting the operations of adding and deleting edges.

In undirected graphs, there are polylogarithmic time dy-
namic algorithms for computing k-edge-connectivity for k ≤
2 [24], and a Õ(|V ||E|) time algorithm to compute all pairs
edge connectivities [5]. The corresponding problems are
more difficult for directed graphs. There is a subquadratic
dynamic algorithm for computing 1-edge-connectivity in di-
rected graphs [34]. For all pairs edge connectivities in di-
rected graphs, we do not know of any dynamic algorithm
that is faster than the straightforward dynamic algorithm
that uses Θ(|V |2|E|) time and Θ(|V |2|E|) space, by storing
the flow paths for each pair and running an augmentation
step for each pair after each edge update. For graphs with
O(|V |) edges (e.g. planar graphs), the amortized complex-
ity of our algorithm to update the edge connectivity for one
pair is O(1) field operations.

1.3 Methods
Similar to the preconditioning approach, our approach is

to compress the matrix A into a O(k)×O(k) matrix B, while
keeping the property that min{rank(B), k} = min{rank(A), k}
with high probability. To illustrate the ideas, we consider
the special case of computing the rank of a rectangular m×n
matrix A where m < n, and the goal is to compress the ma-
trix into an m × O(m) matrix with rank(B) = rank(A).
We present two efficient methods to do the compression,
assuming the field size is sufficiently large for now. The
first method is inspired by the random linear coding al-
gorithm [23] in network coding [1] and its efficient imple-
mentation using superconcentrators [12]. Suppose we write
each column of B as a random linear combination of all
the columns of A. Then it can be shown that rank(B) =
rank(A) with high probability by the Schwartz-Zippel lemma,
but the direct implementation of this method requires a fast
rectangular matrix multiplication algorithm. To do the com-
pression efficiently, we use a construction similar to that of

magical graphs [25] in the construction of superconcentra-
tors. We prove that if each column of B is a random linear
combination of O(n/m) random columns of A, it still holds
with high probability that rank(B) = rank(A). In addition,
this property still holds when each column of A is involved
in only O(1) linear combinations, and so the sparsity of the
matrix can be preserved, i.e. |B| = O(|A|). Hence B can be
constructed in O(|A|) field operations, and rank(B) can be
computed in O(mω) field operations, and thus rank(A) can
be computed in O(|A| + mω) field operations. Based on a
bounded degree condition of the magical graphs, the above
procedure can be applied iteratively to reduce the number of
columns of A progressively, so that a set of rank(A) linearly

independent columns in A can be found in Õ(|A|+mω) field
operations.

Another method to compute B is to multiply A with an
n ×m random Vandermonde matrix V with only one vari-
able. We show that rank(B) = rank(A) with high prob-
ability, by using the Cauchy-Binet formula and a base ex-
change argument. The m×m matrix B = AV can be com-
puted in Õ(mn) field operations using fast Fourier trans-
form. This provides an alternative way to compute rank(A)

in Õ(mn + mω) field operations, although it is slower than
the above method. The advantage of this method is that
it allows us to update the matrix rank efficiently when we
add and delete rows and columns of A, because of the special
structures of the Vandermonde matrices. For instance, when
the m × n matrix A is changed from m < n to m > n, we
can change the representation from B = AV to B′ = V ′A
by doing an inverse Fourier transform. This allows us to
update rank(A) in Õ(mn) field operations in the worst case.

2. Fast Matrix Rank Algorithms
In this section we will prove Theorem 1.1. Let A be an

m × n matrix over a field F . We will assume that A is
given by a list of the value and the position of its non-zero
entries, and each row and column of A contains at least one
non-zero entry, so |A| ≥ max(n,m). We will also assume
that |F | = Ω(n4) by the following lemma using standard
techniques.

Lemma 2.1. Let A be an m × n matrix over a field F
with pc elements. We can construct a finite field F ′ with
pck = Ω(n4) elements and an injective mapping f : F →
F ′ so that the image of F is a subfield of F ′. Then the
m × n matrix A′ where a′ij = f(aij) satisfies the property
that rank(A′) = rank(A). This preprocessing step can be
done in O(|A|) field operations. Each field operation in F ′

can be done in Õ(log |F |+ logn) steps.

Proof. All the statements in this proof refer to the state-
ments in book [20]. Let q = pc. By Theorem 14.42 in [20],
we can construct a monic irreducible polynomial h with de-
gree k in expected O(k2 log2 k log log k(log k + log q)) field
operations in Fq. Note that the collection of polynomials

Input: (1) An m× n matrix A over a field F .
(2) A (k, ε)-magical graph G = (X,Y ;E) with |X| = n and |Y | = l.

Output: An m× l matrix B over a field F with min{rank(B), k} = min{rank(A), k}.

Algorithm: Let X = {x1, . . . , xn} and Y = {y1, . . . , yl}. Each column of A corresponds to a vertex in X and each column of
B corresponds to a vertex in Y . Let Aj be the j-th column of A for 1 ≤ j ≤ n and Bi be the i-th column of B for 1 ≤ i ≤ l.
Construct B by writing Bi as a random linear combination of those columns of A whose corresponding vertices have an edge
to yi. More precisely, we write Bi =

∑
e=xjyi∈E ceAj for 1 ≤ i ≤ l where ce is an independent uniformly random element in

F for each edge e ∈ G.

Figure 2.1: Compression Algorithm by Magical Graphs.

with coefficients in Fq and degree less than k, with multi-
plications and division under modulo h, is a field with size
qk. So we can use an ordered k-tuple (c0, c1, . . . , ck−1) with

ci ∈ Fq to represent an element
∑k−1
i=0 cix

i in Fqk . The injec-
tive mapping f in the statement is just the identity mapping
in this construction, i.e. f(c) = (c, 0, 0, . . . , 0). The over-
all preprocessing time is O(|A| + k2 log2 k log log k(log k +
log q)) = O(|A|) field operations in Fqk . It follows directly
that rank(A′) = rank(A).

Additions and subtractions are done coordinate-wise, and
thus requires O(k) field operations. For two polynomials
g1 and g2 with coefficients in Fq and degree less than k,
g1 × g2 can be computed in O(k log k log log k) field opera-
tions in Fq, by Theorem 8.22 and Exercise 8.30 in [20]. So
g1 × g2 mod h can be computed in O(k log k log log k) field
operations in Fq by Theorem 9.6 in [20]. Division a/b is
done by multiplying the inverse a × b−1. The inverse b−1

can be computed by the extended euclidean algorithm, in
O(k log2 k log log k) field operations in Fq by Theorem 11.7
in [20]. Since field operations in Fq can be computed in

Õ(log q) steps, the operations in Fqk in our representation

can be done in Õ(log qk), where Õ hides some polylog factors
of log qk.

Suppose a parameter k is given and the task is to com-
pute min{rank(A), k}. Our approach is to compress the
matrix into a O(k) × O(k) matrix whose rank is at least
min{rank(A), k} with high probability. Our method is in-
spired by the random linear coding algorithm [23, 12] in net-
work coding [1]. We can construct an m×k matrix B where
each column of B is a random linear combination of the
columns of A, i.e. Bi =

∑n
j=1 cj,iAj where Ai and Bi denote

the i-th column of A and B respectively and cj,i is uniformly
independent random element in F . In other words, B = AC
where C is an n × k matrix where each entry is a random
element in F . It can be shown that rank(B) = rank(A)
with high probability using the Schwartz-Zippel lemma (see
Lemma 2.3), but it requires a fast rectangular matrix mul-
tiplication algorithm [26] to compute B. We observe that
this way of constructing B is the same as doing the ran-
dom linear coding algorithm in a single vertex with n in-
coming edges and k outgoing edges. And so the ideas of
using a superconcentrator to do the random linear coding
efficiently [12] can be applied to construct an m× k matrix
B′ in O(mn) field operations, while rank(B′) = rank(A)
with high probability (see Appendix A for details). This im-
plies that min{rank(A), k} can be computed in O(mn+ kω)
field operations with high probability, improving the exist-
ing algorithms by removing the polylog factor. There are,
however, two disadvantages of this method. One is that the

compression algorithm requires Θ(mn) field operations even
when A is a sparse matrix. Another is that we do not know
how to find a set of min{rank(A), k} linearly independent
columns of A using this method.

To improve the compression algorithm, we use sparse ran-
dom bipartite graphs similar to that of magical graphs [25]
in the construction of superconcentrators. The idea is to
choose a sparse matrix C so that B = AC can be computed
efficiently while min{rank(B), k} = min{rank(A), k} with
high probability, but it is easier to explain the compression
algorithm using graph theoretical concepts. Our construc-
tion requires a probability distribution of bipartite graphs
with the following properties.

Definition 2.2 (Magical Graph). A random bipar-
tite graph G = (X,Y ;E) is (k, ε)-magical if for every subset
S ⊆ X with |S| = k, the probability that there is a matching
in G in which every vertex in S is matched is at least 1− ε.

Notice that this definition only requires a particular sub-
set S of size k can be matched to the other side with high
probability, while the definition in [25] requires that all sub-
sets up to certain size can be matched to the other side.
In the following we first see how to use a magical graph to
do compression (Figure 2.1), and then we will see how to
generate a magical graph with good parameters efficiently.

Lemma 2.3. The probability that the algorithm in Fig-
ure 2.1 returns a matrix B such that min{rank(B), k} =
min{rank(A), k} is at least 1− ε− k/|F |.

Proof. Clearly rank(B) ≤ rank(A) since the column
space of B is a subspace of the column space of A. So
min{rank(B), k} ≤ min{rank(A), k}, and it remains to show
that rank(B) ≥ min{rank(A), k} with high probability.

Let k′ = min{rank(A), k}. Let S be a set of linearly
independent columns of A with |S| = k′, and let AU,S be
a k′ × k′ submatrix of A with rank(AU,S) = k′. Since G
is a magical graph, the probability that there is a matching
M in which every vertex in S is matched is at least 1 −
ε. Suppose such a matching M exists and let T be the
neighbors of S in M with |T | = |S| = k′. If we view each ce
as a variable, then det(BU,T) is a multivariate polynomial
with total degree k′. By setting ce = 1 for each e ∈ M and
ce = 0 for each e ∈ E−M , we get that BU,T = AU,S and thus
det(BU,T) is a nonzero multivariate polynomial since AU,S is
of full rank. By the Schwartz-Zippel lemma, if we substitute
each variable ce by a random element in a field F , then the
probability that det(BU,T) = 0 is at most k′/|F | ≤ k/|F |.
So, if G has a matching that matches every vertex in S,
then rank(B) ≥ rank(BU,T) = k′ with probability at least

1−k/|F |. Therefore the algorithm succeeds with probability
at least 1− ε− k/|F |.

We show that a magical graph with good parameters can
be generated efficiently.

Lemma 2.4. There is a randomized O(|X|) time algorithm
to construct a (k,O(1/k))-magical graph G = (X,Y ;E) for
any values of |X| ≥ |Y | ≥ ck where c ≥ 11, with the ad-
ditional properties that each vertex of X is of degree 2 and
each vertex of Y is of degree at most 2d|X|/|Y |e.

We note that the magical graphs in [25] cannot be used di-
rectly because of the following reasons: (1) the failure prob-
ability in [25] is a constant while we need a much smaller
failure probability in order to find a set of linearly indepen-
dent columns, (2) we need the additional property that the
graph is almost regular to find a set of linearly independent
columns. Also the proof is somewhat different and the de-
gree of the vertices in X is smaller.

Proof. The generation algorithm is simple. We assume
that |X| is a multiple of |Y |; otherwise we construct a slightly
larger graph and delete the extra vertices. We first construct
a 2-regular graph G′ with |X| vertices on both sides, by
taking the union of two random perfect matchings indepen-
dently from |X| vertices to |X| vertices. Then we divide the
|X| vertices on one side into |Y | groups where each group
has |X|/|Y | vertices. We obtain G by merging each group
into a single vertex, and so each vertex in Y is of degree
2|X|/|Y |.

For any S ⊆ X with |S| = k, we analyze the probability
that there is a matching in G in which every vertex in S is
matched. By Hall’s theorem, we need to show that for any
S′ ⊆ S, the neighbor set of S′ in G is of size at least |S′|. To
analyze the probability that the neighbor set of S′ is at least
|S′| for a fixed S′ ⊆ S, we consider the equivalent random
process where the 2|S′| edges incident on S′ are added one
by one. Consider the i-th edge added. We say that it is a
bad edge if the other endpoint falls in the same group with
some previously added edges. If the neighbor set size of S′

is less than |S′|, then there must be at least |S′| + 1 bad
edges out of the 2|S′| edges, and the probability that an
edge is bad is less than |S′|/|Y |. So the probability that the
neighbor set size of S′ is less than |S′| is less than(

2|S′|
|S′|+ 1

)
×
(|S′|
|Y |

)|S′|+1

by a union bound on the possible |S′|+ 1 bad edges. Sum-
ming over the choices of the size of S′ and the choices of S′

with that size, we have that the probability that there is a
subset S′ ⊆ S with less than |S′| neighbors is at most

k∑
z=0

(
2z

z + 1

)(
z

|Y |

)z+1
(
k

z

)
≤

k∑
z=0

22z

(
z

|Y |

)z+1(
ke

z

)z

≤
k∑
z=0

(
4e

c

)z
z

ck

= O(1/k),

using |Y | ≥ ck and the identity
∑∞
z=0 r

z · z = r/(1 − r)2
for r < 1, and setting r = 4e/c as c ≥ 11 > 4e by our as-
sumption. Therefore, by Hall’s theorem, the probability that

there is a matching in which every vertex in S is matched is
at least 1−O(1/k).

We can combine Lemma 2.4 and Lemma 2.3 to obtain an
efficient compression algorithm.

Theorem 2.5. Suppose an m × n matrix A over a field
F is given. Given k, there is an algorithm that constructs
an m×O(k) matrix B over F with the following properties.

1. min{rank(A), k} = min{rank(B), k} with probability
at least 1−O(1/k)−O(k/|F |).

2. |B| = O(|A|) and B can be constructed in O(|A|) field
operations.

Proof. We can assume n ≥ 11k; otherwise we can just
let B = A. We construct a (k,O(1/k))-magical graph G =
(X,Y ;E) with |X| = n and |Y | = 11k in O(n) time by
Lemma 2.4, with the additional property that each ver-
tex in X is of degree two. We use G in the algorithm in
Figure 2.1 to obtain an m × 11k matrix B over F . Since
each vertex of X is of degree two, each entry of A is re-
lated to two entries in B. We can represent B by listing
the value and position of its nonzero entries without han-
dling duplicate positions, i.e. each nonzero entry in A intro-
duces exactly two entries in B. Therefore, |B| = 2|A| and
B can be constructed in O(|A|) field operations. The prob-
ability that min{rank(A), k} = min{rank(B), k} is at least
1−O(1/k)−O(k/|F |) by Lemma 2.3.

The first part of Theorem 1.1 follows.

Theorem 2.6. Suppose an m × n matrix A over a field
F is given with m ≤ n. There is an algorithm to compute
min{rank(A), k} for a given k ≤ m in O(|A|+min{kω, k|A|})
field operations with success probability at least 1−O(1/n1/3).
Furthermore, there is an algorithm to compute r = rank(A)
in O(|A| log r + min{rω, r|A|}) field operations with success

probability 1− O(1/n1/3). Each field operation can be done

in Õ(logn+ log |F |) steps.

Proof. We can assume that |F | = Ω(n4) by Lemma 2.1.

We also assume that k ≥ n1/3; otherwise if k < n1/3 we
just reset k to be n1/3. We apply Theorem 2.5 to com-
press the m × n matrix A into an m × O(k) matrix B.
Then min{rank(B), k} = min{rank(A), k} with probabil-

ity at least 1 − O(1/k) − O(k/|F |) = 1 − O(1/n1/3) since

n1/3 ≤ k ≤ n and |F | = Ω(n4). And B can be constructed
in O(|A|) field operations and |B| = O(|A|). We then apply
Theorem 2.5 again on BT to compress the m×O(k) matrix
B into an O(k)×O(k) matrix C. Then min{rank(C), k} =

min{rank(B), k} with probability at least 1 − O(1/n1/3)
and C can be constructed in O(|A|) field operations with
|C| = O(|A|). Now we can compute rank(C) in O(kω) field
operations by using fast matrix multiplication [6]. Alterna-
tively, we can compute rank(C) in O(k|C|) = O(k|A|) field
operations using the black box approach in [37, 20]. Thus
min{rank(A), k} can be computed in O(|A|+min{kω, k|A|})
field operations with success probability 1−O(1/n1/3), since

kω ≤ n ≤ |A| for k ≤ n1/3. To compute rank(A), we

can simply apply the above algorithm with k = n1/3, 2n1/3,

4n1/3, . . . , 2logn2/3

n1/3 until the algorithm returns an an-
swer smaller than k or A is of full rank. Let r = rank(A).

The failure probability is bounded by O(1/n1/3) since sum

of 1/k is less than 2/n1/3. The number of field operations
needed is O(|A| log r + min{rω, r|A|}) since sum of kω is
O(rω) and sum of k|A| is O(r|A|). If the field size is |F |,
then each field operation can be done in Õ(log |F |) steps
using fast arithmetic algorithms by Lemma 2.1. Since we
assume |F | = Ω(n4), each field operation can be done in

Õ(log max{|F |, n4}) = Õ(log |F |+ logn) steps.

We can improve Theorem 2.6 slightly to reduce the time
complexity to O(min{|A| log r, nm} + min{rω, r|A|}) field
operations. This is done by computing the compressed ma-
trices aggregately and we omit the details here (see Section A
for such a statement using superconcentrators).

Finally, we find a set of min{rank(A), k} linearly indepen-
dent columns of A by applying the compression algorithm
iteratively to reduce the number of columns of A progres-
sively. The bounded degree condition of magical graphs is
important in the following algorithm.

Theorem 2.7. Suppose an m×n matrix A over a field F
is given. There is an algorithm to find a set of min{rank(A), k}
linearly independent columns of A for a given k in O((|A|+
kω) logn) field operations with success probability at least

1 − O((logn)/n1/3), while each field operation can be done

in Õ(logn+ log |F |) steps.

Proof. The idea is to compress the matrix A to a smaller
matrix B, and then we can focus on columns in A that
corresponds to a set of linearly independent columns in B.
We will show that this reduce the number of columns of A
by a constant factor, so that we can repeat this procedure
to reduce the number of columns of A to a small number.

We assume k ≥ n1/3 as in Theorem 2.6. Let c = 11. If
m > ck, we first apply the algorithm in Theorem 2.5 to
AT to compress A into a ck × n matrix A′ in O(|A|) field
operations. We claim that if a set of columns is linearly
independent in A then it is linearly independent in A′ with
high probability. Let S be a set of linearly independent
columns of A. By Theorem 2.5 we have rank(A′[ck],S) =

rank(A[m],S) = |S| with probability at least 1 − O(1/n1/3),
and thus S is a set of linearly independent columns in A′.
Henceforth we use the smaller matrix A′ to find the linearly
independent columns of A.

We then use the algorithm in Theorem 2.5 to compress
A′ into a ck × ck matrix B in O(|A′|) = O(|A|) field op-
erations, while min{rank(A), k} = min{rank(B), k} with

probability at least 1 − O(1/n1/3). Since B is a ck × ck
matrix, we can directly find a set S of min{rank(B), k} lin-
early independent columns in B in O(kω) field operations
using fast matrix multiplication [6]. Let G = (X,Y ;E) be
the magical graph used in the compression algorithm with
|X| = n and |Y | = ck. Let T be the set of columns in
A that correspond to the neighbors of the vertices corre-
sponding to S in G. By the bounded degree condition of
G, each vertex corresponding to a column in S is of degree
at most 2|X|/|Y | = 2n/(ck) and hence |T | ≤ 2n|S|/(ck) ≤
2n/c < n/5. Observe that the ck × |T | submatrix A′R′,T
of A′ is of rank at least min{rank(A), k}, since the column
space of S in B is spanned by the column space of A′R′,T .
Thus we have reduced the original problem to finding a set
of min{rank(A′R′,T), k} linearly independent columns in a

ck × (n/5) matrix A′R′,T . We can repeat the above al-
gorithm until the number of columns is reduced to O(k).

Since each time we can reduce the number of columns by
a constant factor, we need to repeat the algorithm at most
O(logn) times. So the whole algorithm can be done in at
most O((|A| + kω) logn) field operations, and the failure

probability is at most O((logn)/n1/3).

Theorem 1.1 follows from Theorem 2.6 and Theorem 2.7.

3. Dynamic Matrix Rank Algorithm
In this section we present a dynamic algorithm for com-

puting matrix rank and prove Theorem 1.2. Given an m×n
matrix A, we will first show that rank(A) = rank(AV) with
high probability for an n × m random Vandermonde ma-
trix V with one variable. Then we show that the special
structure of V can be used to update the matrix rank of A
efficiently.

Lemma 3.1. Let m ≤ n. Let V be a n × m random
Vandermonde matrix with one variable, i.e., Vij = xij for
1 ≤ i ≤ n, 1 ≤ j ≤ m. Suppose x is chosen uniformly ran-
domly in F , then for any m× n matrix A over F , we have
rank(A) = rank(AV) with probability at least 1−O(nm2/|F |).

Proof. We will first prove the lemma when A is of full
rank. Suppose A is of full rank, then there exist m lin-
early independent columns. Let B = {I ⊆ [n] | |I| =
m, det(A[m],I) 6= 0} be the set of subsets of indices whose
columns are linearly independent. Then B 6= ∅. By the
Cauchy-Binet formula,

det(AV) =
∑

I⊆[n],|I|=m

det(A[m],I) det(VI,[m])

=
∑
I∈B

det(A[m],I) det(VI,[m]).

Now view det(VI,[m]) as a polynomial in x. Suppose I =
{i1, i2, . . . im} with i1 < i2 < · · · < im. Let Sm be the set of
permutations of [m]. Note that

det(VI,[m]) =
∑
π∈Sm

sgn(π)

m∏
k=1

Vik,πk

=
∑
π∈Sm

sgn(π)

m∏
k=1

xik·πk

=
∑
π∈Sm

sgn(π)x
∑m

k=1 ik·πk .

By the rearrangement inequality
∑m
k=1 ikπk ≤

∑m
k=1 ik · k,

and the equality holds only when πk = k for all k. Therefore,

deg(det(VI,[m])) =

m∑
k=1

ik · k. (3.1)

Clearly deg(det(AV)) ≤ maxI∈B deg(det(VI,[m])). We are
going to show that the equality actually holds, by argu-
ing that maxI∈B deg(det(VI,[m])) is attained by only one
I. Suppose not, let J 6= K be two sets in B satisfying
deg(det(VJ,[m])) = deg(det(VK,[m])) = maxI∈B deg(det(VI,[m])).
Let j = min{i | i ∈ (J −K) ∪ (K − J)}, and without loss
of generality assume j ∈ J . It is well know that the sets
in B are the bases of a (linear) matroid [38]. Therefore,
by the base exchange property of a matroid ([38], Theo-
rem 39.6), there exists some k ∈ K such that (J − {j}) ∪
{k} ∈ B. By the choice of j, we have j < k, and thus

deg(det(V(J−{j})∪{k},[m])) > deg(det(VJ,[m])) by (3.1), con-
tradicting the maximality of J . In particular, since B 6= ∅,
this implies that deg(det(AV)) > 0 and thus is a non-zero
polynomial. And deg(det(VI,[m])) =

∑m
k=1 ik · k ≤ nm2 for

any I. Therefore det(AV) is a non-zero polynomial with
total degree at most nm2. By the Schwartz-Zippel lemma,
by substituting x with a random element in F , we have
det(AV) 6= 0 and thus rank(AV) = rank(A) with probabil-
ity at least 1−O(nm2/|F |).

In general let rank(A) = k and assume without loss of
generality that the first k rows of A are linearly indepen-
dent. Clearly, rank(AV) ≤ rank(A) as the column space of
AV is spanned by the column space of A. We prove that
rank(AV) ≥ rank(A) with high probability. Let A′ be the
k × n submatrix of A consisting of the first k rows of A,
and V ′ be the n × k submatrix of V consisting of the first
k columns of V . Then by the above argument we have that
det(A′V ′) 6= 0 with probability at least 1−O(nm2/|F |). Ob-
serve that A′V ′ is equal to the k × k submatrix (AV)[k],[k]
of AV . Therefore, we have rank(AV) ≥ rank((AV)[k],[k]) =

k = rank(A) with probability at least 1−O(nm2/|F |).

The matrix AV can be computed efficiently using fast
arithmetic algorithms: The multiplication of one row of A
with V is equivalent to the evaluation of a polynomial over
m points (x, x2, . . . , xm) and this can be implemented effi-
ciently using the following result.

Theorem 3.2 ([20] Corollary 10.8). There exist an
algorithm that evaluates a degree n polynomial f ∈ F [x] at
m points in F , and it takes O(n logn log logn logm) field
operations.

Therefore, the matrix AV can be computed in O(nm logn
log logn logm) field operations. By Lemma 3.1, to guar-
antee a high success probability, it is enough to work on
a field with Θ(n4) elements, so that each field operation

can be done in Õ(logn) steps [20]. This gives an alterna-
tive method to compute rank(A) of an m × n matrix in

Õ(nm logm(logn)2 + mω logn) steps, which is slower than
the algorithm in Theorem 1.1 but has similar running time
as previous algorithms.

The following is an outline of the dynamic algorithm for
computing matrix rank. Given an m × n matrix A with
m ≤ n, we generate a random n×m Vandermonde matrix V
and we know by Lemma 3.1 that rank(A) = rank(AV) with
high probability. We reduce AV to the rank normal form
by elementary row and column operations, and maintain the
decomposition that XAV Y = D where X and Y are m×m
invertible matrices and D =

(
Ir 0
0 0

)
. Then rank(A) = r with

high probability. We briefly describe how to maintain the
rank under different operations. If we do a rank one update
on A (i.e. A← A+uvT where u and v are column vectors),
then it corresponds to a rank one update on D and we can
bring it back to the rank normal form efficiently. If we add
a column to or delete a column from A, then we can add a
row to or delete a row from V so that rank(AV) is still equal
to rank(A) with high probability, because of the structure
of Vandermonde matrices. If we add a row to or delete
a row from A, then we can do some rank one updates to
maintain the structure of V and rank(AV) = rank(A) with
high probability. The most interesting case is when m < n is
changed to m > n or vice versa. In this case we can change
the decomposition of D = XAV Y to D = (XV −1)V A(V Y)

and set the newX to beXV −1 and the new Y to be V Y , and
this can be implemented efficiently by fast Fourier transform
and fast inverse Fourier transform.

Lemma 3.3. Given an m × n matrix A over a field F ,
there is a data structure that maintains rank(A) supporting
the following operations.

1. The data structure can be initialized in O(mn logm logn
log log(m+ n) + (min{m,n})ω) field operations.

2. rank(A) can be updated in O(mn) field operations if a
rank one update is performed on A.

3. rank(A) can be updated in O(mn(log min{m,n})2) field
operations if a row or a column is added to or deleted
from A.

The data structure requires space to store O(mn) elements
in F . The probability of failure in any operation is at most
O(ñm2/|F |), where ñ is the maximum n throughout the up-
dates.

Proof. The data structure stores six matricesX ∈ Fm×m,
A ∈ Fm×n, V ∈ Fn×m, E ∈ Fm×m, Y ∈ Fm×m, D ∈ Fm×m.
Let B = AV if m ≤ n and B = V A if m > n. In the follow-
ing we assume that m ≤ n, when m > n all the procedures
are done in a symmetric manner. We maintain D = XBY
with the following properties.

1. X,Y are invertible.

2. V is a Vandermonde matrix, i.e., Vij = gji for some
gi ∈ F .

3. D is a matrix in the form D =
(
Ir 0
0 0

)
where Ir is an

r × r identity matrix.

Initialization: We choose g uniformly randomly in F
and set Vij = gij . We can reduce B = AV into the rank nor-
mal form in O(mω) field operations, and thus obtain X and
Y such that X and Y are both invertible and XBY =

(
Ir 0
0 0

)
where r is the rank of B (see e.g. Proposition 16.13 of [7]).
This completes the initialization. Note that computing the
i-th row of B is equivalent to doing a multipoint evalua-
tion of a degree n polynomial with coefficients defined by
the i-th row of A on the points g, g2, . . . , gm. Thus each
row can be computed in O(n logn log logn logm) field oper-
ations by Theorem 3.2, and the total cost for computing B
is O(nm logm logn log logn) field operations.
Rank one update: Let A′ = A+u′v′T where u′ ∈ Fm×1

and v′ ∈ Fn×1. Then XA′V Y = D + (Xu′)(v′TV Y) =
D + uvT where u = Xu′ and vT = v′TV Y , and u and
v can be computed in O(m2) and O(nm) field operations
respectively. And B′ = A′V = AV + u′v′TV can be up-
dated in O(nm) field operations. Suppose ui 6= 0 where
ui is the i-th entry of u. Let E1 = I − (ei − (1/ui)u)eTi
where ei is the i-th standard unit vector. Then E1 is in-
vertible and E1XA

′V Y is a sum of a diagonal matrix, at
most one nonzero row and at most one nonzero column1.

1The details are as follows: E1uvT = uvT +(ei−(1/ui)u)uiv
T =

uieiv
T is a matrix with only one row is non-zero. If i > r, then

E1XA′V Y = E1(D + uvT) = E1D + uieiv
T = D + uieiv

T

since eTi D = 0. If i ≤ r, then E1XA′V Y = E1D + uieiv
T =

D − (ei − (1/ui)u)e
T
i + uieiv

T if i ≤ r since eTi D = eTi . In
either case E1XA′V Y is a sum of a diagonal matrix, at most one
nonzero row and at most one nonzero column.

Hence we can use O(m) elementary row and column op-
erations to transform E1XA

′V Y into a matrix with each
row and column having at most one non-zero entry, where
the only nonzero entry is one. This matrix can be further
transformed to the rank normal form D′ =

(
Ir′ 0
0 0

)
by using

two permutation matrices to permute the rows and columns,
where r′ is the rank of XA′V Y . Let E2 be the composition
of elementary row operations done, E3 be the composition
of elementary column operations done, P1 be the permuta-
tion of rows and P2 is the permutation of columns. Then
P1E2E1XA

′V Y E3P2 = D′. Note that X ′ = P1E2E1X and
Y ′ = Y E3P2 can be computed in O(m2) field operations.
This is because E1 and E2 are compositions of O(m) elemen-
tary operations and each elementary operation acting on an
m ×m matrix can be done in O(m) field operations. Also
permutations of rows and columns can be done in O(m2)
field operations. Now we have X ′A′V Y ′ = D′, where A′ is
updated in O(nm) field operations, and X ′, Y ′ and D′ are
updated in O(m2) field operations.

Adding a column or adding a row: To add a column
or a row, we can first add a zero column or a zero row
and then do a rank one update. Since we know how to
do rank one updates, we restrict our attention to adding a
zero column and adding a zero row. Suppose we add a zero
column in the end. Then we set A′ = (A, 0) and V ′n+1,j =

gcj where c is the smallest index such that gc 6= Vi,1 for
1 ≤ i ≤ n. Adding a zero column in the i-th column of A
is done similarly by adding a new row in the i-th row of V .
Then we maintain that B = A′V ′ and D = XBY . Suppose
we add a zero row in the end. Then we set A′ =

(
A
0

)
,

and set V ′i,m+1 = (V ′i,1)m+1 for all i. Then we update B′ =

A′V ′ =
(
B AV ′m+1
0 0

)
in O(nm) field operations where V ′m+1 is

the (m+1)-th column of V ′. Note that
(
X 0
0 1

)(
B 0
0 0

)(
Y 0
0 1

)
=(

D 0
0 0

)
and the difference between B′ and

(
B 0
0 0

)
is a single

column, which is a rank one matrix. By the same argument
used in rank one update, we can update X, Y and D in
O(m2) field operations accordingly. If the zero row is not
added at the end, we can first permute the rows so that the
added row is at the end, by updating X with XP where P
is the corresponding permutation matrix, and then do the
above procedure. Then we maintain that B′ = A′V ′ and
D′ = X ′B′Y ′.

Deleting a column or deleting a row: To delete
a column or a row, we can do a rank one update to set
the column or row to zero, and then delete a zero column
or a zero row. So we restrict our attention to deleting
a zero column or a zero row. Deleting a zero column is
done by deleting the corresponding row in V . There is
no change to X,B, Y,D, and we maintain B = A′V ′ and
D = XBY . Suppose we delete a zero row at the end of
A to obtain A′. Then we delete the last column of V to
obtain V ′. Let B′ = A′V ′. Note that B′′ =

(
B′ 0
0 0

)
and

B =
(
B′ AVm
0 0

)
where Vm is the m-th column of V , and so

the difference is a rank one update. So we can find X ′′,
Y ′′, and D′′ such that X ′′B′′Y ′′ = D′′ where D′′ =

(
Ir 0
0 0

)
.

Now let X ′, Y ′, and D′ be obtained by deleting the last
row and column of X ′′, Y ′′ and D′′ respectively. Then
X ′B′Y ′ = D′, because D′′ij =

∑m
k=1

∑m
l=1X

′′
i,kB

′′
k,lY

′′
l,j =∑m−1

k=1

∑m−1
l=1 X ′i,kB

′
k,lY

′
l,j = D′i,j for 1 ≤ i ≤ m − 1 and

1 ≤ j ≤ m − 1 as Bk,l = 0 if k = m or l = m. Clearly the
updates can be done in O(nm) field operations. If the zero
row deleted is not at the end, we can first permute the rows

so that the deleted row is at the end, by updating X with
XP where P is the corresponding permutation matrix, and
then do the above procedure.

Changing representation: Note that in the above op-
erations we assume m ≤ n. Some operations require O(m2)
field operations and thus if m > n this is greater than
O(mn). Instead we will maintain B = V A and D = XBY
when m > n. To change the representation, when m = n, we
rewrite D = XAV Y = (X(V ′)−1)V ′A(V Y), and set X ′ =
X(V ′)−1 and Y ′ = V Y and V ′ij = gij for all 1 ≤ i, j ≤ n.

Note that V Y can be computed in O(n2 log2 n log log n) field
operations by Theorem 3.2, since it is equivalent to n points
evaluation of n degree n polynomials. Moreover, after reset-
ing V ′ij = gij , using Theorem 3.4 we can compute X(V ′)−1

in O(n2 log2 n log logn) field operations, as it is equivalent
to doing n points interpolation n times for each pairs of
rows of X and X(V ′)−1. Also B′ = V ′A can be computed
in O(n2 log2 n log logn) field operations by the multipoint
evaluation algorithm in Theorem 3.2. Therefore, we main-
tain B′ = V ′A and X ′B′Y ′ = D, and this can be used to
support the above operations in a symmetric manner.

Theorem 3.4 ([20] Corollary 10.13). There is an al-
gorithm that takes n points (xi, yi) ∈ F 2 as input and returns
a polynomial f ∈ F [x] with degree less than n which satisfies
f(xi) = yi for each i. The algorithm takes O(n log2 n log log n)
field operations.

Error probability: The rank query will only fail when
rank(A) 6= rank(AV) at some point, which happens with
probability at most O(ñm2/|F |) by Lemma 3.1. This com-
pletes the proof.

Let Q be an upper bound on the number of updates to the
matrix. Then ñ ≤ n+Q. By setting |F | = Θ((n+Q)3m3),
then the probability that the algorithm does not make any
error in the whole execution is at least 1−O(1/((n+Q)m)),

while each field operation requires Õ(log((n+Q)m)) steps.
This proves Theorem 1.2.

4. Applications
In this section we will show some applications of The-

orem 1.1 and Theorem 1.2 to problems in numerical lin-
ear algebra, combinatorial optimization, and dynamic data
structures. In each subsection we will state the problems,
describe the previous work, and present the improvements.

4.1 Numerical Linear Algebra
Let A be an m×n matrix over a field F . Let r = rank(A).

The rank-one decomposition of A is to write A as the sum of
r rank one matrices. The null space of A is the subspace of
vectors for which Ax = 0, and the problem is to find a basis
of the null space of A. The matrix multiplication problem is
to computeAB for two n×nmatricesA andB. We will show
that these problems can be solved faster when r is small.
The previous best known algorithms require Θ(nmrω−2)
field operations, where the bottleneck of these algorithms
is in finding a set of r linearly independent columns. Note
that previous randomized algorithms for computing r can-
not be used to solve these problems, as they do not find a
set of r linearly independent columns. In the following we
assume that |F | = Ω(m+ n) and |A| = Ω(m+ n).
Rank-one decomposition: Without loss of generality

we assume m ≤ n; otherwise we consider AT instead of

A. By Theorem 1.1, we can find a set of r independent
columns of A in O((|A| + rω) logn) field operations, with

success probability at least 1 − O(logn/n1/3). Let T ⊆ [n]
be a set of r independent columns, and S ⊆ [m] with |S| = r
be the set of rows such that AS,T is of full rank. Again by
Theorem 1.1 we can find S in O(|A| + rω) field operations

with success probability at least 1−O(logn/n1/3). Now set
B = A[m],T and C = A−1

S,T × AS,[n]. Then C[r],T = Ir
and thus (BC)[m],T = A[m],T . Similarly (BC)S,[n] = AS,[n],
and thus the entries of BC and A match in the rows of
S and also the columns of T . Note that both BC and A
are of rank r, and both BCS,T and AS,T are of full rank.
So for any i 6∈ S and j 6∈ T , det(AS∪{i},T∪{j}) = 0 and
thus Aij is uniquely determined by other entries of A. The
same applies to BC and thus A = BC. Clearly C can
be computed in O(rω(1,1,logr n)) field operations. Thus the

overall complexity is O((|A|+ rω) logn+ rω(1,1,logr n)) field
operations.

Null space: By the above algorithm for rank-one de-
composition, we can find S ⊆ [m], T ⊆ [n], B ∈ Fm×r, and
C ∈ F r×n such that A = BC, |S| = |T | = r and CS,T = Ir,
with required probability and time complexity. Note that
Ax = 0 ⇐⇒ BCx = 0 ⇐⇒ Cx = 0 since the columns
in B are linearly independent. Since C[r],T = Ir, we have
Cx = 0 ⇐⇒ xT = −C[n]−Tx[n]−T . Thus the entries of
x[n]−T can be arbitrarily assigned and then the entries of
xT is uniquely determined. Assume without loss of gener-
ality that T = {1, . . . , r}. Then a basis {bi} for i ∈ [n] − T
would be bi(k) = −Ck,i for 1 ≤ k ≤ r, and then set bi(i) = 1
and set bi(j) = 0 otherwise.

Matrix multiplication: Applying the rank-one decom-
position algorithm to A to find A = A1A2 for some A1 ∈
Fn×r, A2 ∈ F r×n in Õ(|A| + rω(1,1,logr n)) field operations.

Now A2B can be computed in O(nω(logn r,1,1)) field opera-
tions, and so do A1(A2B) since ω(1, c, 1) = ω(c, 1, 1) [26].

So the overall complexity is Õ(nω(logn r,1,1) field operations.

4.2 Graph Matching
Given an undirected graph G = (V,E), the maximum

matching problem is to find a set of maximum number of
vertex disjoint edges in G. The time complexity of the
fastest combinatorial algorithms for this problem is O(

√
opt·

|E|) [32, 42, 21], where opt denotes the size of a maximum
matching.

There is an algebraic formulation for the maximum match-
ing problem proposed by Tutte [41]. Let V = {1, . . . , n}
and xe be a variable for each edge e. Let A be an n × n
matrix where aij = xe and aji = −xe if e = ij ∈ E and
aij = aji = 0 otherwise. Tutte [41] proved that G has
a perfect matching if and only if A is non-singular, and
Lovász [30] generalized it to show that rank(A) = 2opt.
Using the Schwartz-Zippel lemma, Lovász [30] also proved
that rank(A) is preserved with high probability, if we substi-
tute non-zero values for the variables xe from a sufficiently
large field, say of size Θ(n2). This implies that the size
of a maximum matching can be computed in O(nω) field
operations, where each field operation can be performed in
O(logn) steps. With additional non-trivial ideas, Mucha
and Sankowski [33] and Harvey [22] showed how to also find
a maximum matching in O(nω) field operations. This is
faster than the combinatorial algorithms when the graph is
dense and the opt is large, for example when |E| = Θ(n2)

and opt = n the combinatorial algorithms require Θ(n2.5)
steps.

We prove the statement about graph matching in Theo-
rem 1.4. Suppose k is given and the task is to find a matching
of size min{k, opt}. Let k′ = 2 min{k, opt}. We can first use
the algorithm in Theorem 1.1 to find a set S of k′ linearly
independent columns in A in Õ(|A|+(k′)ω) = Õ(|E|+(k′)ω)
field operations, where |E| is the number of edges in G. Let
AV,S be the n× k′ submatrix formed by these independent
columns. We can apply the algorithm in Theorem 1.1 again
on AV,S to find a set R of k′ linearly independent rows in
AV,S in Õ(|AV,S |+ (k′)ω) = Õ(|E|+ (k′)ω) field operations.
Let AR,S be the k′×k′ submatrix formed by these rows and
columns. Consider AR∪S,R∪S which is a matrix with size
at most 2k′ × 2k′ and rank at least k′. Note that it is the
algebraic formulation for the maximum matching problem
in G[R ∪ S], where G[R ∪ S] denotes the induced subgraph
on the vertices corresponding to R ∪ S. And so there is a
matching of size k′/2 = min{k, opt} in G[R∪S]. We can use
the algorithm of Mucha and Sankowski [33] or Harvey [22]
to find a matching of size min{k, opt} in O(kω) field opera-

tions. Thus the overall complexity is Õ(|E| + kω) and this
proves the statement about graph matching in Theorem 1.4.
To find a matching of size opt, we can first use a linear time
2-approximation greedy algorithm to find a matching M of
size at least opt/2, and then set k = 2|M | and run the above
algorithm.

We mention two problems where this matching result can
be applied. One is the maximum subset matching problem
considered by Alon and Yuster [4], which asks what is the
maximum number of vertices in S ⊆ V that can be matched
in a matching ofG. They proved that this maximum number
is equal to rank(AS,V) where AS,V is the submatrix of the
Tutte matrix formed by the rows of S. Thus we can use
Theorem 1.1 to obtain an Õ(|δ(S)|+ |S|ω) algorithm where
|δ(S)| counts the number of edges with one endpoint in S
and another endpoint in V − S. This improves upon their
result which takes Õ(|δ(S)| · |S|(ω−1)/2) steps when |δ(S)| ≥
|S|(ω+1)/2. Another is the maximum matching problem in
a lopsided bipartite graph G = (X,Y ;E) where one side is
much larger than the other side [8], that is |X| � |Y |. In
this case opt ≤ |X| and our algorithm can find a maximum

matching in Õ(|E|+ |X|ω) steps.

4.3 Linear Matroid Intersection and Linear
Matroid Parity

In the linear matroid intersection problem, we are given
two r × n matrices M and N where the columns in M and
N are indexed by {1, . . . , n}, and the task is to find a set
S ⊆ {1, . . . , n} of maximum size so that the columns in
S are linearly independent in both M and N . In the linear
matroid parity problem, we are given an r×2n matrix where
the columns are partitioned into n pairs, and the task is to
find a maximum cardinality collection of pairs so that the
union of the columns of these pairs are linearly independent.

For the linear matroid intersection problem, Gabow and
Xu [19] gave a combinatorial algorithm (using fast matrix

multiplication) with time complexity O(nr(opt)1/(4−ω)) =
O(nr(opt)0.62) when ω ≈ 2.38. Harvey [22] gave an alge-
braic algorithm with time complexity O(nrω−1), which is
faster for any opt ≥ r0.62 when ω ≈ 2.38. For the linear
matroid parity problem, Gabow and Stallmann [18] gave a
combinatorial algorithm (using fast matrix multiplication)

with time complexity O(nrω−1(opt)), and Cheung, Lau and
Leung [11] gave an algebraic algorithm with time complexity

Õ(nrω−1) by extending Harvey’s algorithm.
We prove the statement about linear matroid intersec-

tion and linear matroid parity in Theorem 1.4. The lin-
ear matroid parity problem is a generalization of the lin-
ear matroid intersection problem, and any algorithm for the
linear matroid parity problem implies an algorithm for the
linear matroid intersection with the same time complexity,
and so we only consider the linear matroid parity prob-
lem in the following. Let A be an r × 2n matrix where
the columns are {c1, c2, . . . , c2n−1, c2n} and (c2i−1, c2i) is a
column pair for 1 ≤ i ≤ n. Suppose k is given and the
task is to find min{k, opt} pairs of columns so that the
union of the columns of these pairs are linearly indepen-
dent. We use the algorithm in Theorem 2.5 to compress the
matrix A into a O(k)× 2n matrix A′ in O(|A|) field opera-
tions, and let the columns of A′ be {c′1, c′2, . . . , c′2n−1, c

′
2n}.

Let k′ = min{k, opt}. Assume without loss of generality
that the columns in S = {c1, c2, . . . , c2k′−1, c2k′} are lin-
early independent. We claim that the columns in S′ =
{c′1, c′2 . . . , c′2k′−1, c

′
2k′} are linearly independent with high

probability. Consider the submatrix AR,S of A where R is
the set of all r rows of A. By Theorem 2.5 we have that
rank(AR,S) = rank(A′R′,S′) with high probability where R′

is the set of all O(k) rows of A′. Since rank(AR,S) = 2k′, it
implies that rank(A′R′,S′) = 2k′ and thus the columns in S′

are linearly independent with high probability, proving the
claim. Therefore we can apply the algorithm in [11] to solve
the matroid parity problem on A′, and this can be done in
O(nkω−1) field operations since A′ is a O(k) × 2n matrix.
This proves the statement about linear matroid intersection
and linear matroid parity in Theorem 1.4.

To find a solution of size opt, we can set k = 2, 4, 8, . . . , 2log2 r

and apply the above algorithm until there is no solution of
size k or there is a solution of size r. A direct implementa-
tion of this idea gives an algorithm to find an optimal solu-
tion in O(|A| log opt + n(opt)ω−1) field operations. We can
slightly improve this to O(min{|A| log opt, nr}+n(opt)ω−1)
field operations by computing the compressed matrices ag-
gregately, but the details are omitted here. Since opt ≤ r,
our algorithm is faster than the algorithms in [19, 22].

4.4 Linear Matroid Union
In the linear matroid union problem, we are given an r ×

n matrix A with r ≤ n, and the task is to find a set of
maximum number of disjoint bases, where a basis is a set
of maximum number of linearly independent columns, and
two bases are disjoint if they do not share any column. For
example, the problem of finding a set of maximum number
of edge disjoint spanning trees in an undirected graph is a
special case of the linear matroid union problem. Let opt
be the maximum number of disjoint bases in A, and b be
the number of columns in a basis. Cunningham [15] gave a
combinatorial algorithm with time complexity O(nrb(opt)+
nb2(opt)2).

There is a well known reduction from the linear matroid
union problem to the linear matroid intersection problem [38].
Suppose k is given and the task is to find k disjoint bases
of A or determine that none exist. Let M be the kr × kn

matrix 
A 0 . . . 0
0 A . . . 0
0 0 . . . 0
0 0 . . . A

 ,

where 0 denotes the r × n all zero matrix. Let N be an
n × kn matrix (I, I, . . . , I) where I is the n × n identity
matrix. Then it can be checked that A has k disjoint bases
if and only if the linear matroid intersection problem for M
and N has a solution of size kb. A direct application of
Harvey’s algorithm [22] for linear matroid intersection gives
an algorithm with time complexity O((kn) · (kr)ω−1 + (kn) ·
nω−1) = O(nrω−1kω + nωk).

To do better, we can first reduce the matrix A into a
matrix with kb columns before running a linear matroid in-
tersection algorithm, as follows. We can use a compact alge-
braic formulation for linear matroid intersection [22] where

B =
∑kn
i=1 xi ·mi · nTi where xi is a random element from a

sufficiently large field (say of size Θ(n2)) and mi and ni are
the i-th column of M and N respectively. For this particular
M and N , we have

B =


A1

A2

...
Ak


where each column of Ai is equal to the corresponding col-
umn of A multiplied by an independent random field ele-
ment. Using the result for linear matroid intersection, it
can be shown that if A has k disjoint bases, then B has
rank kb with high probability. Furthermore, if we find kb
linearly independent columns in B, then the corresponding
columns in A can be partitioned into k disjoint bases. So,
one can first find a set of kb linearly independent columns in
B in O(n(kr)ω−1) field operations by Gaussian elimination
(or conclude that there are no k disjoint bases if none exist),
and then delete the other columns and consider the linear
matroid union problem for the r× kb submatrix of A. Then
we can run the linear matroid intersection algorithm [22]
to find the k disjoint bases in O((kb)rω−1kω + (kb)ωk) =
O(rω−1bkω+1) field operations by using n = kb and b ≤ r.
This results in an O(nrω−1kω−1 + rω−1bkω+1) algebraic al-
gorithm for the linear matroid union problem using existing
techniques, although it was not explicitly stated in the lit-
erature.

We are now ready to prove the statement about linear
matroid union in Theorem 1.4. First we use the compres-
sion algorithm in Theorem 2.5 to reduce A to a O(b) × n
matrix A′ with |A′| = O(|A|) in O(|A|) field operations.
By the same argument used in linear matroid parity, we
can show that if A has k disjoint bases, then A′ has the
same k disjoint bases with high probability. We construct
the O(kb) × n matrix B′ as in the previous paragraph in
O(k|A′|) = O(k|A|) field operations since |A′| = O(|A|).
Then we use the algorithm in Theorem 1.1 to find kb linearly
independent columns in B′ in Õ(k|A| + (kb)ω) field opera-
tions since kb ≤ n (or conclude that there are no k disjoint
bases if none exist). As stated in the previous paragraph,
the corresponding kb columns in A′ can be partitioned into
k disjoint bases with high probability. So we delete other
columns and only consider the O(b) × kb submatrix A′′ of
A′. Now we have reduced the linear matroid parity problem

for an r×n matrix A to the linear matroid union problem for
a O(b)× kb matrix A′′. We can run Harvey’s linear matroid
intersection algorithm using the above reduction to find the
k disjoint bases in O((kb)bω−1kω + (kb)ωk) = O(bωkω+1)
field operations by putting n = kb and r = O(b). Alter-
natively, we can use Cunningham’s algorithm to find the k
disjoint bases in O((kb)b2k+(kb)b2k2) = O(b3k3) field oper-
ations by putting n = kb and r = O(b). Therefore the total

complexity is Õ(k|A|+ min{bωkω+1, b3k3}) field operations
where |A| ≤ nr, proving the statement about linear matroid
union in Theorem 1.4. To find the maximum number of
disjoint bases, we can use doubling (k = 2, 4, 8, . . . , 2log opt)
and then binary search, and apply the above algorithm as
in linear matroid parity, and obtain an algorithm with time
complexity Õ(log opt(nr(opt) + min{bω(opt)ω+1, b3(opt)3))
field operations. Ignoring polylog factors, this is faster than
the previous algorithms for any values of r, b, opt, n.

4.5 Dynamic Edge Connectivities
In this section we show that the dynamic matrix rank al-

gorithm in Theorem 1.2 can be applied to obtain an efficient
dynamic algorithm for computing all pairs edge connectivi-
ties in a simple directed graph G = (V,E), supporting the
operations of adding and deleting edges. The s-t edge con-
nectivity is defined as the size of a minimum s-t cut, or
equivalently the number of edge disjoint directed paths from
s to t.

We will use a recent algebraic formulation that relates
edge connectivities to matrix ranks [12]. Construct an |E|×
|E| matrix M as follows:

Mi,j =


xi,j if the head of ei is equal to the tail of ej

−1 if i = j

0 otherwise

The matrix has the following properties:

Theorem 4.1 ([12]). The s-t edge connectivity is equal
to the rank of the submatrix M−1

δout(s),δin(t), where δin(v)

and δout(v) are the set of incoming and outgoing edges of v
respectively. In addition, if we substitute random values to
xi,j from a field F , the claim still holds with probability at
least 1−O(|E|2/|F |).

This formulation implies an O(|E|ω) time algorithm for
computing all pairs edge connectivities for simple directed
graphs. We are going to show that using the dynamic matrix
rank algorithm, we can support each adding and deleting
edge operation in Õ(|E|2) time, by maintaining the ranks of
all the submatrices (M−1)δout(s),δin(t) dynamically.

First we consider the case of adding an edge. Let G be the
original graph, and G̃ be the graph with an edge added to G.
Let M and M̃ be the edge connectivity matrix formulation
for G and G̃ respectively. Observe that M̃ is obtained from
M by adding one extra row and one extra column at the end.
We will maintain M−1 and the ranks of its submatrices, by
first adding a trivial row and column to M , and then fill in
the required entries. Let

M ′ =

(
M 0
0 −1

)
and (M ′)−1 =

(
M−1 0

0 −1

)
.

Since we only have to modify the last row and last column
of M ′ to get M̃ , we can write M̃ = M ′ + UV T for two
(|E| + 1) × 2 matrices U = (~e, c) and V = (r, ~e), where c

is the new column with |E| + 1 entries, rT is the new row
with |E| + 1 entries, and ~e be the column vector with the
first |E| entries to be zero and the last entry to be one. The
following result shows that such a low rank update can be
computed efficiently.

Theorem 4.2 (Sherman-Morrison-Woodbury [44]).
Suppose that matrices M and M+UV T are both non-singular,
then (M+UV T)−1 = M−1−M−1U(I+V TM−1U)−1V TM−1.

By the theorem M̃−1 is also a rank-2 update to (M ′)−1,

and M̃−1 can be obtained from M−1 in O(|E|2) time since
U and V are (|E| + 1) × 2 matrices. Similarly, any sub-

matrix (M̃−1)δout(s)δin(t) can be obtained by a rank-2 up-

date to ((M ′)−1)δout(s),δin(t), and ((M ′)−1)δout(s),δin(t) can
be obtained by adding at most one row and one column to
(M−1)δout(s),δin(t). Since both operations are supported by

our dynamic matrix rank algorithm in Õ(|δout(s)||δin(t)|)
field operations, we can maintain rank((M̃−1)δout(s)δin(t))
and thus the s-t edge connectivity between any pair of ver-
tices s and t in Õ(|δout(s)||δin(t)|) field operations after an
edge is added. Thus we can maintain all pairs edge connec-
tivities in Õ(

∑
s,t∈V |δ

out(s)||δin(t)|) = Õ(|E|2) field oper-
ations. Let Q be an upper bound on the number of edge
updates throughout the whole algorithm. For one pair, by
the result in Section 3, the probability that the algorithm
makes some mistake during the whole algorithm is at most
O(1/(Q|E|3)), if the field size is Θ(|E|5Q3). Therefore, the
probability that the algorithm makes a mistake for some pair
during the whole algorithm is at most O(1/(Q|E|)). There-

fore, each field operation can be done in Õ(log(|E|Q)) steps.
The case of deleting an edge is almost the same. As-

sume we are deleting the edge that correspond to the last
row and column of M . We first write zero to all the en-
tries of that row and column except keeping M|E|,|E| = −1,
and then we delete the last row and column. These two
steps correspond to a rank-2 update followed by a row and
column deletion on M−1 using the dynamic matrix rank
algorithm. This is just the reverse process for adding an
edge. By the same argument as above, the new inverse and
the ranks of all the required submatrices can be updated
in O(|E|2) field operations, where each field operation can

be done in Õ(log(|E|Q)) steps. Note that we just require
O(|E|2 log(|E|Q)) space to store the inverse of M . This
proves Theorem 1.5.

Acknowledgement
The research is supported by Hong Kong RGC grant 413411.
We thank Arne Storjohann for pointing out the previous re-
sults on computing matrix rank in [29, 9], Ankur Moitra for
asking the question on dynamic graph connectivity, David
Woodruff for pointing out the references on random projec-
tion and fast Johnson Lindenstrauss transform, and Nick
Harvey and Mohit Singh for useful comments on an earlier
draft of this paper.

5. References
[1] R. Ahlswede, N. Cai, S.R. Li, and R.W. Yeung.

Network Information Flow. IEEE Transactions on
Information Theory, 46(4):1204–1216, 2000.

[2] N. Ailon, B. Chazelle. Approximate Nearest Neighbors
and the Fast Johnson-Lindenstrauss Transform.

Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), 557–563, 2006.

[3] N. Ailon, E. Liberty. An Almost Optimal Unrestricted
Fast Johnson-Lindenstrauss Transform. Proceddings
of the 22nd ACM-SIAM Symposium on Discrete
Algorithms (SODA), 185–191, 2011.

[4] N. Alon, R. Yuster. Fast Algorithms for Maximum
Subset Matching and All-Pairs Shortest Paths in
Graphs with a (Not So) Small Vertex Cover.
Proceedings of the 15th Annual European Symposium
on Algorithms (ESA), 175–186, 2007.

[5] A. Bhalgat, R. Hariharan, T. Kavitha, and D.

Panigrahi. An Õ(mn) Gomory-Hu Tree Construction
Algorithm for Unweighted Graphs. Proceedings of the
39th Annual ACM Symposium on Theory of
Computing (STOC), 605–614, 2007.

[6] J.R. Bunch, J.E. Hopcroft. Triangular Factorization
and Inversion by Fast Matrix Multiplication.
Mathematics of Computation, 28(125):231–236, 1974.

[7] P. Bürgisser, M. Clausen, M.A. Shokrollahi. Algebraic
Complexity Theory, Springer, 1997.

[8] D. Charles, M. Chickering, N.R. Devanur, K. Jain, M.
Sanghi. Fast Algorithms for Finding Matchings in
Lopsided Bipartite Graphs with Applications to
Display Ads. Proceedings of the ACM Conference on
Electronic Commerce, 121–128, 2010.

[9] L. Chen, W. Eberly, E. Kaltofen, B.D. Saunders, W.J.
Turner, G. Villard. Efficient Matrix Preconditioners
for Black Box Linear Algebra. Linear Algebra and its
Applications, 343-344:119–146, 2002.

[10] J. Cheriyan. Randomized Õ(M(|V |)) Algorithms for
Problems in Matching Theory. SIAM Journal on
Computing, 26(6):1635–1655, 1997.

[11] H.Y. Cheung, L.C. Lau, K.M. Leung. Algebraic
Algorithms for Linear Matroid Parity Problems.
Proceedings of the 22nd ACM-SIAM Symposium on
Discrete Algorithms (SODA), 1366–1382, 2011.

[12] H.Y. Cheung, L.C. Lau, K.M. Leung. Graph
Connectivities, Network Coding, and Expander
Graphs. Proceedings of the 52nd Annual IEEE
Symposium on Foundations of Computer Science
(FOCS), 2011.

[13] D. Coppersmith. Rectangular Matrix Multiplication
Revisited. Journal of Complexity 13, 42–49, 1997.

[14] D. Coppersmith, S. Winograd. Matrix Multiplication
via Arithmetic Progressions. Journal of Symbolic
Computation, 9:251-280, 1990.

[15] W.H. Cunningham. Improved Bounds for Matroid
Partition and Intersection Algorithms. SIAM Journal
on Computing, 15(4):948–957, 1986.

[16] G.S. Frandsen, P.F. Frandsen. Dynamic Matrix Rank.
Proceedings of the 33rd International Colloquium on
Automata, Language and Programming (ICALP),
395–406, 2006.

[17] O. Gabber, Z. Galil. Explicit Constructions of
Linear-Sized Superconcentrators. Journal of Computer
and System Sciences, 22:407–420, 1981.

[18] H.N. Gabow, M. Stallmann. An Augmenting Path
Algorithm for Linear Matroid Parity. Combinatorica,
6:123-150, 1986.

[19] H.N. Gabow, Y. Xu. Efficient Theoretic and Practical

Algorithms for Linear Matroid Intersection Problems.
Journal of Computer and System Sciences,
53:129–147, 1996.

[20] J. von zur Gathen, J. Gerhard. Modern Computer
Algebra. Cambridge University Press, 2nd edition,
2003.

[21] A.V. Goldberg, A.V. Karzanov. Maximum
Skew-symmetric Flows and Matchings. Mathematical
Programming, 100(3):537–568, 2004.

[22] N. Harvey. Algebraic Algorithms for Matching and
Matroid Problems. SIAM Journal on Computing,
39:679-702, 2009.

[23] T. Ho, M. Médard, R. Koetter, D.R. Karger, M.
Effros, J. Shi, B. Leong. A Random Linear Network
Coding Approach to Multicast. IEEE Transactions on
Information Theory 52, 4413–4430, 2006.

[24] J. Holm, K. de Lichtenberg, M. Thorup.
Poly-logarithmic Deterministic Fully-Dynamic
Algorithms for Connectivity, Minimum spanning tree,
2-edge, and Biconnectivity. Journal of the ACM,
48(4), 2001.

[25] S. Hoory, N. Linial, A. Wigderson. Expander Graphs
and their Applications. Bulletin (New series) of the
American Mathematical Society, 43:439-561, 2006.

[26] X. Huang, V. Pan. Fast Rectangular Matrix
Multiplication and Applications. Journal of
Complexity, 14(2): 257-299, 1998.

[27] O.H. Ibarra, S. Moran, R. Hui. A Generalization of
the Fast LUP Matrix Decomposition Algorithm and
Applications. Journal of Algorithms, 3(1):45–56, 1982.

[28] A.W. Ingleton, M.J. Piff. Gammoids and Transversal
Matroids. J. Combin. Theory Ser. B, 15, 51–68, 1973.

[29] E. Kaltofen, B.D. Saunders. On Wiedemann’s Method
of Solving Sparse Linear Systems. In Proceedings of
the 9th International Symposium, on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes
(AAECC-9), 29–38, 1991.

[30] L. Lovász. On Determinants, Matchings and Random
Algorithms. In L. Budach, editor, Fundamentals of
Computation Theory, FCT 79, 565–574.
Akademie-Verlag, Berlin, 1979.

[31] L. Lovász. Matroid Matching and Some Applications.
Journal of Combinatorial Theory Series B, 28:208–236,
1980.

[32] S. Micali, V.V. Vazirani. An O(
√
|V ||E|) Algorithm

for Finding Maximum Matching in General Graphs. In
Proceedings of the 21st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 17–27,
1980.

[33] M. Mucha, P. Sankowski. Maximum matchings via
Gaussian elimination. Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer
Science (FOCS), 248–255, 2004.

[34] P. Sankowski. Dynamic Transitive Closure via
Dynamic Matrix Inverse. Proceedings of the 45th
Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 509–517, 2004.

[35] P. Sankowski. Faster Dynamic Matchings and Vertex
Connectivity. Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), 118–126, 2007.

[36] T. Sarlós. Improved Approximation Algorithms for
Large Matrices via Random Projections. Proceedings
of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 143-152, 2006.

[37] D. Saunders, A. Storjohann, G. Villard. Matrix Rank
Certification. Electronic Journal of Linear Algebra,
11:16–23, 2004.

[38] A. Schrijver. Combinatorial Optimization. Springer,
2003.

[39] A. Storjohann. Integer Matrix Rank Certification.
Proceedings of the International Symposium on
Symbolic and Algebraic Computation (ISSAC), 2009.

[40] L.N. Trefethen, D. Bau III. Numerical Linear Algebra,
SIAM, 1997.

[41] W.T. Tutte. The factorization of linear graphs.
Journal of the London Mathematical Society,
22:107–111, 1947.

[42] V.V. Vazirani. A Theory of Alternating Paths and

Blossoms for Proving Correctness of the O(
√
|V ||E|)

General Graph Matching Algorithm. In Proceedings of
the 1st Integer Programming and Combinatorial
Optimization Conference (IPCO), 509–530, 1990.

[43] D.H. Wiedemann. Solving Sparse Linear Equations
Over Finite Fields. IEEE Transactions on Information
Theory 32(1), 54–62, 1986.

[44] M.A. Woodbury. Inverting Modified Matrices.
Memorandum Report 42, Statistical Research Group,
Princeton University, 1950.

APPENDIX
A. Matrix Rank Algorithm by Superconcen-

trators
In this section we present an algorithm to compute the

rank of an m × n matrix with m ≤ n in O(mn + mω) field
operations using a superconcentrator.

Definition A.1 (Superconcentrator). A supercon-
centrator is a directed graph G = (V,E) with two given sets
I ⊆ V and O ⊆ V with |I| = |O| = n, such that for any
subsets S ⊆ I and T ⊆ O with |S| = |T | = k, there are
|S| = |T | vertex disjoint paths from S to T .

There exist superconcentrators with the following prop-
erties: (1) there are O(n) vertices and O(n) edges, (2) the
indegrees and the outdegrees are bounded by a constant,
and (3) the graph is acyclic. Moreover, the construction of
such a superconcentrator can be done in linear time [25]. A
superconcentrator can be used to obtain an efficient com-
pression algorithm.

Lemma A.2. Given an m×n matrix A over a field F and
an integer k ≤ min{n,m}, there is an algorithm to construct
an m× k matrix B over F in O(nm) field operations, such
that rank(B) = min{rank(A), k} with probability at least 1−
nm/|F |.

Proof. To construct the matrix B, we first construct a
superconcentrator G = (V,E) with |I| = |O| = n in linear
time. Add a source vertex s and add edges from s to each
node in I in G. We call these edges input edges. Add a sink
vertex t and edges from each node in O to t in G. We call
these edges output edges. Now we associate each edge e ∈ E

with an m-dimensional vector ~ve in F . The n vectors ~vsu
corresponding to the input edges are set to be the column
vectors of A. Next, for each node u ∈ V − {s, t}, for each
incoming edge xu and each outgoing edge uy, associate the
pair of edges (xu, uy) with a random coefficient c(xu,uy) ∈ F .
Now we process the nodes of G in a topological order. For
each node u ∈ V − {s, t}, set each vector associated with
the outgoing edge ~vuy to be

∑
xu∈E c(xu,uy)~vxu. Finally we

choose the vectors associated with the first k output edges
to be the column vectors of B and output the matrix B.

Since the indegrees and the outdegrees are bounded by
a constant, the number of field operations required to pro-
cess one node in G is O(m). Therefore the algorithm takes
O(nm) field operations.

We analyze the probability that rank(B) = min{rank(A), k}.
Let k′ = min{rank(A), k}. Clearly rank(B) ≤ k′ since the
column space of B is spanned by the column space of A and
B has only k columns. So we only need to show the other
direction. Assume without loss of generality that A[k′],[k′]

is of full rank. By the property of the superconcentrator G,
there exists k′ vertex disjoint paths from the first k′ input
nodes to the first k′ output nodes. Set c(xu,uy) = 1 if the
edges xu and uy belongs to one of the paths, and c(xu,uy) = 0
otherwise. Then all edges in the path containing the j-th
input node is associated with the j-th column vector of A.
Thus the k′ × k′ submatrix B[k′],[k′] of the output matrix
B is the same as A, up to permutation of columns, and
thus it is of rank k′. Therefore we can conclude that with
non-zero probability the above algorithm outputs a matrix
B with rank(B) ≥ rank(B[k′],[k′]) = k′. Finally, note that
for a fixed input A, each entry in the output matrix B is
a multivariate polynomial with total degree O(n) (which is
the length of a longest path in G) with variables c(e1,e2).
Therefore the determinant of the first k′ columns of B is a
multivariate polynomial of total degree O(nk′) = O(nm).
By the Schwartz-Zippel lemma, if we substitute the vari-
ables with random elements in F , the probability that the
determinant of B[k′],[k′] is nonzero and thus rank(B) ≥ k′ is
at least 1−O(nm/|F |).

Compared with the algorithm in Theorem 1.1 using magi-
cal graphs, this algorithm has the advantage the compressed
matrix is of size k × k rather than of size O(k)×O(k).

Also we can obtain an algorithm to compute r = rank(A)
in O(mn + rω) field operations as follows. First we apply
Lemma A.2 on A and get an m × n output matrix B, and
then apply Lemma A.2 on BT and an get an n×m output
matrix C. By Lemma A.2, the resulting matrix C has the
property that the rank of any k × k submatrix is equal to
min{rank(A), k} with probability at least 1 − O(nm/|F |).
Therefore, to compute rank(A), one can set k = 2, 4, 8, . . .
and compute the rank of any k × k matrix of C until the
returned rank is less than k. The total complexity of this
algorithm is only O(mn + rω) field operations where r =
rank(A), which is slightly faster than the O(|A| log r + rω)
algorithm stated in Theorem 2.6.

